1
|
Chae S, Hong J, Hwangbo H, Kim G. The utility of biomedical scaffolds laden with spheroids in various tissue engineering applications. Am J Cancer Res 2021; 11:6818-6832. [PMID: 34093855 PMCID: PMC8171099 DOI: 10.7150/thno.58421] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
A spheroid is a complex, spherical cellular aggregate supporting cell-cell and cell-matrix interactions in an environment that mimics the real-world situation. In terms of tissue engineering, spheroids are important building blocks that replace two-dimensional cell cultures. Spheroids replicate tissue physiological activities. The use of spheroids with/without scaffolds yields structures that engage in desired activities and replicate the complicated geometry of three-dimensional tissues. In this mini-review, we describe conventional and novel methods by which scaffold-free and scaffolded spheroids may be fabricated and discuss their applications in tissue regeneration and future perspectives.
Collapse
|
2
|
Friend NE, Rioja AY, Kong YP, Beamish JA, Hong X, Habif JC, Bezenah JR, Deng CX, Stegemann JP, Putnam AJ. Injectable pre-cultured tissue modules catalyze the formation of extensive functional microvasculature in vivo. Sci Rep 2020; 10:15562. [PMID: 32968145 PMCID: PMC7511337 DOI: 10.1038/s41598-020-72576-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Revascularization of ischemic tissues is a major barrier to restoring tissue function in many pathologies. Delivery of pro-angiogenic factors has shown some benefit, but it is difficult to recapitulate the complex set of factors required to form stable vasculature. Cell-based therapies and pre-vascularized tissues have shown promise, but the former require time for vascular assembly in situ while the latter require invasive surgery to implant vascularized scaffolds. Here, we developed cell-laden fibrin microbeads that can be pre-cultured to form primitive vascular networks within the modular structures. These microbeads can be delivered in a minimally invasive manner and form functional microvasculature in vivo. Microbeads containing endothelial cells and stromal fibroblasts were pre-cultured for 3 days in vitro and then injected within a fibrin matrix into subcutaneous pockets on the dorsal flanks of SCID mice. Vessels deployed from these pre-cultured microbeads formed functional connections to host vasculature within 3 days and exhibited extensive, mature vessel coverage after 7 days in vivo. Cellular microbeads showed vascularization potential comparable to bulk cellular hydrogels in this pilot study. Furthermore, our findings highlight some potentially advantageous characteristics of pre-cultured microbeads, such as volume preservation and vascular network distribution, which may be beneficial for treating ischemic diseases.
Collapse
Affiliation(s)
- Nicole E Friend
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Ana Y Rioja
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Yen P Kong
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Jeffrey A Beamish
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - Xiaowei Hong
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Julia C Habif
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Jonathan R Bezenah
- Department of Chemical Engineering, University of Michigan, Ann Arbor, USA
| | - Cheri X Deng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Jan P Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA.
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
3
|
Rioja AY, Daley ELH, Habif JC, Putnam AJ, Stegemann JP. Distributed vasculogenesis from modular agarose-hydroxyapatite-fibrinogen microbeads. Acta Biomater 2017; 55:144-152. [PMID: 28365482 DOI: 10.1016/j.actbio.2017.03.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/03/2017] [Accepted: 03/28/2017] [Indexed: 11/29/2022]
Abstract
Critical limb ischemia impairs circulation to the extremities, causing pain, disrupted wound healing, and potential tissue necrosis. Therapeutic angiogenesis seeks to repair the damaged microvasculature directly to restore blood flow. In this study, we developed modular, micro-scale constructs designed to possess robust handling qualities, allow in vitro pre-culture, and promote microvasculature formation. The microbead matrix consisted of an agarose (AG) base to prevent aggregation, combined with cell-adhesive components of fibrinogen (FGN) and/or hydroxyapatite (HA). Microbeads encapsulating a co-culture of human umbilical vein endothelial cells (HUVEC) and fibroblasts were prepared and characterized. Microbeads were generally 80-100µm in diameter, and the size increased with the addition of FGN and HA. Addition of HA increased the yield of microbeads, as well as the homogeneity of distribution of FGN within the matrix. Cell viability was high in all microbead types. When cell-seeded microbeads were embedded in fibrin hydrogels, HUVEC sprouting and inosculation between neighboring microbeads were observed over seven days. Pre-culture of microbeads for an additional seven days prior to embedding in fibrin resulted in significantly greater HUVEC network length in AG+HA+FGN microbeads, as compared to AG, AG+HA or AG+FGN microbeads. Importantly, composite microbeads resulted in more even and widespread endothelial network formation, relative to control microbeads consisting of pure fibrin. These results demonstrate that AG+HA+FGN microbeads support HUVEC sprouting both within and between adjacent microbeads, and can promote distributed vascularization of an external matrix. Such modular microtissues may have utility in treating ischemic tissue by rapidly re-establishing a microvascular network. STATEMENT OF SIGNIFICANCE Critical limb ischemia (CLI) is a chronic disease that can lead to tissue necrosis, amputation, and death. Cell-based therapies are being explored to restore blood flow and prevent the complications of CLI. In this study, we developed small, non-aggregating agarose-hydroxyapatite-fibrinogen microbeads that contained endothelial cells and fibroblasts. Microbeads were easy to handle and culture, and endothelial sprouts formed within and between microbeads. Our data demonstrates that the composition of the microbead matrix altered the degree of endothelial sprouting, and that the addition of hydroxyapatite and fibrinogen resulted in more distributed sprouting compared to pure fibrin microbeads. The microbead format and control of the matrix formulation may therefore be useful in developing revascularization strategies for the treatment of ischemic disease.
Collapse
Affiliation(s)
- Ana Y Rioja
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Ethan L H Daley
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Julia C Habif
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jan P Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
4
|
Shenoy VB, Wang H, Wang X. A chemo-mechanical free-energy-based approach to model durotaxis and extracellular stiffness-dependent contraction and polarization of cells. Interface Focus 2016; 6:20150067. [PMID: 26855753 DOI: 10.1098/rsfs.2015.0067] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We propose a chemo-mechanical model based on stress-dependent recruitment of myosin motors to describe how the contractility, polarization and strain in cells vary with the stiffness of their surroundings and their shape. A contractility tensor, which depends on the distribution of myosin motors, is introduced to describe the chemical free energy of the cell due to myosin recruitment. We explicitly include the contributions to the free energy that arise from mechanosensitive signalling pathways (such as the SFX, Rho-Rock and MLCK pathways) through chemo-mechanical coupling parameters. Taking the variations of the total free energy, which consists of the chemical and mechanical components, in accordance with the second law of thermodynamics provides equations for the temporal evolution of the active stress and the contractility tensor. Following this approach, we are able to recover the well-known Hill relation for active stresses, based on the fundamental principles of irreversible thermodynamics rather than phenomenology. We have numerically implemented our free energy-based approach to model spatial distribution of strain and contractility in (i) cells supported by flexible microposts, (ii) cells on two-dimensional substrates, and (iii) cells in three-dimensional matrices. We demonstrate how the polarization of the cells and the orientation of stress fibres can be deduced from the eigenvalues and eigenvectors of the contractility tensor. Our calculations suggest that the chemical free energy of the cell decreases with the stiffness of the extracellular environment as the cytoskeleton polarizes in response to stress-dependent recruitment of molecular motors. The mechanical energy, which includes the strain energy and motor potential energy, however, increases with stiffness, but the overall energy is lower for cells in stiffer environments. This provides a thermodynamic basis for durotaxis, whereby cells preferentially migrate towards stiffer regions of the extracellular environment. Our models also explain, from an energetic perspective, why the shape of the cells can change in response to stiffness of the surroundings. The effect of the stiffness of the nucleus on its shape and the orientation of the stress fibres is also studied for all the above geometries. Along with making testable predictions, we have estimated the magnitudes of the chemo-mechanical coupling parameters for myofibroblasts based on data reported in the literature.
Collapse
Affiliation(s)
- Vivek B Shenoy
- Department of Materials Science and Engineering , University of Pennsylvania , Philadelphia, PA 19104 , USA
| | - Hailong Wang
- Department of Materials Science and Engineering , University of Pennsylvania , Philadelphia, PA 19104 , USA
| | - Xiao Wang
- Department of Materials Science and Engineering , University of Pennsylvania , Philadelphia, PA 19104 , USA
| |
Collapse
|
5
|
Rioja AY, Tiruvannamalai Annamalai R, Paris S, Putnam AJ, Stegemann JP. Endothelial sprouting and network formation in collagen- and fibrin-based modular microbeads. Acta Biomater 2016; 29:33-41. [PMID: 26481042 PMCID: PMC4681647 DOI: 10.1016/j.actbio.2015.10.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/04/2015] [Accepted: 10/15/2015] [Indexed: 12/18/2022]
Abstract
A modular tissue engineering approach may have advantages over current therapies in providing rapid and sustained revascularization of ischemic tissue. In this study, modular protein microbeads were prepared from pure fibrin (FIB) and collagen-fibrin composites (COL-FIB) using a simple water-in-oil emulsification technique. Human endothelial cells and fibroblasts were embedded directly in the microbead matrix. The resulting microbeads were generally spheroidal with a diameter of 100-200μm. Cell viability was high (75-80% viable) in microbeads, but was marginally lower than in bulk hydrogels of corresponding composition (85-90% viable). Cell proliferation was significantly greater in COL-FIB microbeads after two weeks in culture, compared to pure FIB microbeads. Upon embedding of microbeads in a surrounding fibrin hydrogel, endothelial cell networks formed inside the microbead matrix and extended into the surrounding matrix. The number of vessel segments, average segment length, and number of branch points was higher in FIB samples, compared to COL-FIB samples, resulting in significantly longer total vessel networks. Anastomosis of vessel networks from adjacent microbeads was also observed. These studies demonstrate that primitive vessel networks can be formed by modular protein microbeads containing embedded endothelial cells and fibroblasts. Such microbeads may find utility as prevascularized tissue modules that can be delivered minimally invasively as a therapy to restore blood flow to ischemic tissues. STATEMENT OF SIGNIFICANCE Vascularization is critically important for tissue engineering and regenerative medicine, and materials that support and/or promote neovascularization are of value both for translational applications and for mechanistic studies and discovery-based research. Therefore, we fabricated small modular microbeads formulated from pure fibrin (FIB) and collagen-fibrin (COL-FIB) containing endothelial cells and supportive fibroblasts. We explored how cells encapsulated within these materials form microvessel-like networks both within and outside of the microbeads when embedded in larger 3D matrices. FIB microbeads were found to initiate more extensive sprouting into the surrounding ECM in vitro. These results represent an important step towards our goal of developing injectable biomaterial modules containing preformed vascular units that can rapidly restore vascularization to an ischemic tissue in vivo.
Collapse
Affiliation(s)
- Ana Y Rioja
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, United States
| | | | - Spencer Paris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, United States
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, United States.
| | - Jan P Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, United States.
| |
Collapse
|
6
|
Three-Dimensional (3D) Cell Culture Conditions, Present and Future Improvements. RAZAVI INTERNATIONAL JOURNAL OF MEDICINE 2014. [DOI: 10.5812/rijm.17803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
7
|
Wang H, Svoronos AA, Boudou T, Sakar MS, Schell JY, Morgan JR, Chen CS, Shenoy VB. Necking and failure of constrained 3D microtissues induced by cellular tension. Proc Natl Acad Sci U S A 2013; 110:20923-8. [PMID: 24324149 PMCID: PMC3876233 DOI: 10.1073/pnas.1313662110] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this paper we report a fundamental morphological instability of constrained 3D microtissues induced by positive chemomechanical feedback between actomyosin-driven contraction and the mechanical stresses arising from the constraints. Using a 3D model for mechanotransduction we find that perturbations in the shape of contractile tissues grow in an unstable manner leading to formation of "necks" that lead to the failure of the tissue by narrowing and subsequent elongation. The magnitude of the instability is shown to be determined by the level of active contractile strain, the stiffness of the extracellular matrix, and the components of the tissue that act in parallel with the active component and the stiffness of the boundaries that constrain the tissue. A phase diagram that demarcates stable and unstable behavior of 3D tissues as a function of these material parameters is derived. The predictions of our model are verified by analyzing the necking and failure of normal human fibroblast tissue constrained in a loop-ended dog-bone geometry and cardiac microtissues constrained between microcantilevers. By analyzing the time evolution of the morphology of the constrained tissues we have quantitatively determined the chemomechanical coupling parameters that characterize the generation of active stresses in these tissues. More generally, the analytical and numerical methods we have developed provide a quantitative framework to study how contractility can influence tissue morphology in complex 3D environments such as morphogenesis and organogenesis.
Collapse
Affiliation(s)
- Hailong Wang
- Department of Materials Science and Engineering and
| | - Alexander A. Svoronos
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Center for Biomedical Engineering, Brown University, Providence, RI 02912; and
| | - Thomas Boudou
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Mahmut Selman Sakar
- Institute of Robotics and Intelligent Systems, Eidgenössische Technische Hochschule Zürich, CH 8092 Zurich, Switzerland
| | - Jacquelyn Youssef Schell
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Center for Biomedical Engineering, Brown University, Providence, RI 02912; and
| | - Jeffrey R. Morgan
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Center for Biomedical Engineering, Brown University, Providence, RI 02912; and
| | - Christopher S. Chen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | | |
Collapse
|
8
|
Svoronos AA, Tejavibulya N, Schell JY, Shenoy VB, Morgan JR. Micro-mold design controls the 3D morphological evolution of self-assembling multicellular microtissues. Tissue Eng Part A 2013; 20:1134-44. [PMID: 24147855 DOI: 10.1089/ten.tea.2013.0297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
When seeded into nonadhesive micro-molds, cells self-assemble three-dimensional (3D) multicellular microtissues via the action of cytoskeletal-mediated contraction and cell-cell adhesion. The size and shape of the tissue is a function of the cell type and the size, shape, and obstacles of the micro-mold. In this article, we used human fibroblasts to investigate some of the elements of mold design and how they can be used to guide the morphological changes that occur as a 3D tissue self-organizes. In a loop-ended dogbone mold with two nonadhesive posts, fibroblasts formed a self-constrained tissue whose tension induced morphological changes that ultimately caused the tissue to thin and rupture. Increasing the width of the dogbone's connecting rod increased the stability, whereas increasing its length decreased the stability. Mapping the rupture points showed that the balance of cell volume between the toroid and connecting rod regions of the dogbone tissue controlled the point of rupture. When cells were treated with transforming growth factor-β1, dogbones ruptured sooner due to increased cell contraction. In mold designs to form tissues with more complex shapes such as three interconnected toroids or a honeycomb, obstacle design controlled tension and tissue morphology. When the vertical posts were changed to cones, they became tension modulators that dictated when and where tension was released in a large self-organizing tissue. By understanding how elements of mold design control morphology, we can produce better models to study organogenesis, examine 3D cell mechanics, and fabricate building parts for tissue engineering.
Collapse
Affiliation(s)
- Alexander A Svoronos
- 1 Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University , Providence, Rhode Island
| | | | | | | | | |
Collapse
|
9
|
Kural MH, Billiar KL. Regulating tension in three-dimensional culture environments. Exp Cell Res 2013; 319:2447-59. [PMID: 23850829 DOI: 10.1016/j.yexcr.2013.06.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/21/2013] [Accepted: 06/25/2013] [Indexed: 01/13/2023]
Abstract
The processes of development, repair, and remodeling of virtually all tissues and organs, are dependent upon mechanical signals including external loading, cell-generated tension, and tissue stiffness. Over the past few decades, much has been learned about mechanotransduction pathways in specialized two-dimensional culture systems; however, it has also become clear that cells behave very differently in two- and three-dimensional (3D) environments. Three-dimensional in vitro models bring the ability to simulate the in vivo matrix environment and the complexity of cell-matrix interactions together. In this review, we describe the role of tension in regulating cell behavior in three-dimensional collagen and fibrin matrices with a focus on the effective use of global boundary conditions to modulate the tension generated by populations of cells acting in concert. The ability to control and measure the tension in these 3D culture systems has the potential to increase our understanding of mechanobiology and facilitate development of new ways to treat diseased tissues and to direct cell fate in regenerative medicine and tissue engineering applications.
Collapse
Affiliation(s)
- Mehmet Hamdi Kural
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | | |
Collapse
|
10
|
Formation of Multicellular Microtissues and Applications in Biofabrication. Biofabrication 2013. [DOI: 10.1016/b978-1-4557-2852-7.00008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
11
|
Bao BA, Lai CP, Naus CC, Morgan JR. Pannexin1 drives multicellular aggregate compaction via a signaling cascade that remodels the actin cytoskeleton. J Biol Chem 2012; 287:8407-16. [PMID: 22267745 DOI: 10.1074/jbc.m111.306522] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pannexin 1 (Panx1) is a novel gap junction protein shown to have tumor-suppressive properties. To model its in vivo role in the intratumor biomechanical environment, we investigated whether Panx1 channels modulate the dynamic assembly of multicellular C6 glioma aggregates. Treatment with carbenoxolone and probenecid, which directly and specifically block Panx1 channels, respectively, showed that Panx1 is involved in accelerating aggregate assembly. Experiments further showed that exogenous ATP can reverse the inhibitive effects of carbenoxolone and that aggregate compaction is sensitive to the purinergic antagonist suramin. With a close examination of the F-actin microfilament network, these findings show that Panx1 channels act as conduits for ATP release that stimulate the P(2)X(7) purinergic receptor pathway, in turn up-regulating actomyosin function. Using a unique three-dimensional scaffold-free method to quantify multicellular interactions, this study shows that Panx1 is intimately involved in regulating intercellular biomechanical interactions pivotal in the progression of cancer.
Collapse
Affiliation(s)
- Brian A Bao
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
12
|
Quantification of the forces driving self-assembly of three-dimensional microtissues. Proc Natl Acad Sci U S A 2011; 108:6993-8. [PMID: 21482784 DOI: 10.1073/pnas.1102559108] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a nonadhesive environment, cells will self-assemble into microtissues, a process relevant to tissue engineering. Although this has been recognized for some time, there is no basis for quantitative characterization of this complex process. Here we describe a recently developed assay designed to quantify aspects of the process and discuss its application in comparing behaviors between cell types. Cells were seeded in nonadhesive micromolded wells, each well with a circular trough at its base formed by the cylindrical sidewalls and by a central peg in the form of a right circular cone. Cells settled into the trough and coalesced into a toroid, which was then driven up the conical peg by the forces of self-assembly. The mass of the toroid and its rate of upward movement were used to calculate the cell power expended in the process against gravity. The power of the toroid was found to be 0.31 ± 0.01 pJ/h and 4.3 ± 1.7 pJ/h for hepatocyte cells and fibroblasts, respectively. Blocking Rho kinase by means of Y-27632 resulted in a 50% and greater reduction in power expended by each type of toroid, indicating that cytoskeletal-mediated contraction plays a significant role in the self-assembly of both cell types. Whereas the driving force for self-assembly has often been viewed as the binding of surface proteins, these data show that cellular contraction is important for cell-cell adhesion. The power measurement quantifies the contribution of cell contraction, and will be useful for understanding the concerted action of the mechanisms that drive self-assembly.
Collapse
|
13
|
Raof NA, Padgen MR, Gracias AR, Bergkvist M, Xie Y. One-dimensional self-assembly of mouse embryonic stem cells using an array of hydrogel microstrands. Biomaterials 2011; 32:4498-505. [PMID: 21459438 DOI: 10.1016/j.biomaterials.2011.03.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 03/07/2011] [Indexed: 02/07/2023]
Abstract
The ability of embryonic stem (ES) cells to self-renew indefinitely and to differentiate into multiple cell lineages holds promise for advances in modeling disease progression, screening drugs and treating diseases. To realize these potentials, it is imperative to study self-assembly in an embryonic microenvironment, as this may increase our understanding of ES cell maintenance and differentiation. In this study, we synthesized an array of one-dimensional alginate gel microstrands and aqueous microstrands through an SU-8 filter device by means of capillary action. Furthermore, we investigated self-assembly behaviors and differentiation potentials of mouse ES cells cultured in microstrands of varying diameters. We found that microstrands with an aqueous interior facilitated high density cell culture and formed compact microtissue structures, while microstrands with gelled interiors promote smaller cell aggregate structures. In particular, we noticed that ES cells collected from one-dimensional aqueous microstrands favored the differentiation towards cell lineages of endoderm and mesoderm, whereas those from gelled microstrands preferred to differentiate into ectoderm and mesoderm lineages. In addition to providing a "liquid-like" tubular microenvironment to understand one-dimensional self-assembly process of ES cells, this alginate hydrogel microstrand system also offers an alternative way to manipulate the stem cell fate-decision using bioengineered microenvironments.
Collapse
Affiliation(s)
- Nurazhani Abdul Raof
- College of Nanoscale Science and Engineering, University at Albany, State University of New York (SUNY), Albany, NY 12203, USA
| | | | | | | | | |
Collapse
|
14
|
Bao B, Jiang J, Yanase T, Nishi Y, Morgan JR. Connexon-mediated cell adhesion drives microtissue self-assembly. FASEB J 2010; 25:255-64. [PMID: 20876208 DOI: 10.1096/fj.10-155291] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microtissue self-assembly is thought to be driven primarily by cadherins, while connexons have been examined mainly in intercellular coupling. We investigated whether connexon 43 (Cx43)-mediated cell adhesion modulates self-assembly of human KGN granulosa cells, normal human fibroblasts (NHFs), and MCF-7 breast cancer cells seeded into nonadhesive agarose gels. We found that treatment with anti-Cx43 E2 (112 μg/ml), which suppresses Cx43 docking, significantly inhibited the kinetics of KGN and NHF self-assembly compared to the preimmune sera control (41.1 ± 4.5 and 24.5 ± 10.4% at 8 h, respectively). Likewise, gap junction inhibitor carbenoxolone also inhibited self-assembly of KGN, NHF, and MCF-7 cells in a dose-dependent manner that was specific to cell type. In contrast, Gap26 connexin mimetic peptide, which inhibits channel permeability but not docking, accelerated self-assembly of KGN and NHF microtissues. Experiments using selective enzymatic digestion of cell adhesion molecules and neutralizing N-cadherin antibodies further showed that self-assembly was comparably disrupted by inhibiting connexin- and cadherin-mediated adhesion. These findings demonstrate that connexon-mediated cell adhesion and intercellular communication differentially influence microtissue self-assembly, and that their contributions are comparable to those of cadherins.
Collapse
Affiliation(s)
- Brian Bao
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA
| | | | | | | | | |
Collapse
|
15
|
Krotz SP, Robins JC, Ferruccio TM, Moore R, Steinhoff MM, Morgan JR, Carson S. In vitro maturation of oocytes via the pre-fabricated self-assembled artificial human ovary. J Assist Reprod Genet 2010; 27:743-50. [PMID: 20737203 DOI: 10.1007/s10815-010-9468-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 08/12/2010] [Indexed: 11/24/2022] Open
Abstract
PURPOSE create a 3-Dimensional artificial human ovary to mature human oocytes. METHODS theca and granulosa cells were isolated from antral follicles of reproductive-aged women, seeded into micro-molded gels and self-assembled into complex 3D microtissues. Immunohistochemistry and live-dead staining confirmed theca cell identity and cellular viability at one week respectively. Placement of granulosa cell spheroids or cumulus-oocyte complexes into theca cell honeycomb openings resulted in creation of an artificial human ovary. Oocytes from this construct were assessed for polar body extrusion. RESULTS theca and granulosa cells self-assembled into complex microtissues, remaining viable for one week. At 72 h after artificial human ovary construction, theca cells completely surrounded the granulosa spheroids or COCs without stromal invasion or disruption. Polar body extrusion occurred in one of three COCs assessed. CONCLUSIONS an artifical human ovary can be created with self-assembled human theca and granulosa cell microtissues, and used for IVM and future oocyte toxicology studies.
Collapse
Affiliation(s)
- Stephan P Krotz
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, Women & Infants' Hospital, Alpert Medical School, Brown University, Providence, RI 02905, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Visconti RP, Kasyanov V, Gentile C, Zhang J, Markwald RR, Mironov V. Towards organ printing: engineering an intra-organ branched vascular tree. Expert Opin Biol Ther 2010; 10:409-20. [PMID: 20132061 PMCID: PMC4580374 DOI: 10.1517/14712590903563352] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IMPORTANCE OF THE FIELD Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. AREAS COVERED IN THIS REVIEW We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. WHAT THE READER WILL GAIN The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. TAKE HOME MESSAGE It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a 'built in' intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a 'built in' intra-organ branched vascular tree.
Collapse
Affiliation(s)
- Richard P Visconti
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Vladimir Kasyanov
- Riga Stradins University, Department of Anatomy and Anthropology, Riga, Latvia
| | - Carmine Gentile
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Jing Zhang
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Roger R Markwald
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Vladimir Mironov
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| |
Collapse
|