1
|
Wang XH, Liu Y, Kang B, Xu JJ, Chen HY. Cell mechanics and energetic costs of collective cell migration under confined microchannels. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Wu K, Wu H, Lyu W, Kim Y, Furdui CM, Anderson KS, Koleske AJ. Platelet-derived growth factor receptor beta activates Abl2 via direct binding and phosphorylation. J Biol Chem 2021; 297:100883. [PMID: 34144039 PMCID: PMC8259415 DOI: 10.1016/j.jbc.2021.100883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 11/27/2022] Open
Abstract
Abl family kinases are nonreceptor tyrosine kinases activated by diverse cellular stimuli that regulate cytoskeleton organization, morphogenesis, and adhesion. The catalytic activity of Abl family kinases is tightly regulated in cells by a complex set of intramolecular and intermolecular interactions and post-translational modifications. For example, the platelet-derived growth factor receptor beta (PDGFRβ), important for cell proliferation and chemotaxis, is a potent activator of Abl family kinases. However, the molecular mechanism by which PDGFRβ engages and activates Abl family kinases is not known. We show here that the Abl2 Src homology 2 domain directly binds to phosphotyrosine Y771 in the PDGFRβ cytoplasmic domain. PDGFRβ directly phosphorylates multiple novel sites on the N-terminal half of Abl2, including Y116, Y139, and Y161 within the Src homology 3 domain, and Y299, Y303, and Y310 on the kinase domain. Y116, Y161, Y272, and Y310 are all located at or near the Src homology 3/Src homology 2-kinase linker interface, which helps maintain Abl family kinases in an autoinhibited conformation. We also found that PDGFRβ-mediated phosphorylation of Abl2 in vitro activates Abl2 kinase activity, but mutation of these four tyrosines (Y116, Y161, Y272, and Y310) to phenylalanine abrogated PDGFRβ-mediated activation of Abl2. These findings reveal how PDGFRβ engages and phosphorylates Abl2 leading to activation of the kinase, providing a framework to understand how growth factor receptors engage and activate Abl family kinases.
Collapse
Affiliation(s)
- Kuanlin Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Wanqing Lyu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Youngjoo Kim
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Karen S Anderson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Neuroscience, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
3
|
Abl2:Cortactin Interactions Regulate Dendritic Spine Stability via Control of a Stable Filamentous Actin Pool. J Neurosci 2021; 41:3068-3081. [PMID: 33622779 DOI: 10.1523/jneurosci.2472-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/15/2021] [Accepted: 02/16/2021] [Indexed: 11/21/2022] Open
Abstract
Dendritic spines act as the receptive contacts at most excitatory synapses. Spines are enriched in a network of actin filaments comprised of two kinetically distinct pools. The majority of spine actin is highly dynamic and regulates spine size, structural plasticity, and postsynaptic density organization. The remainder of the spine actin network is more stable, but the function of this minor actin population is not well understood, as tools to study it have not been available. Previous work has shown that disruption of the Abl2/Arg nonreceptor tyrosine kinase in mice compromises spine stability and size. Here, using cultured hippocampal neurons pooled from both sexes of mice, we provide evidence that binding to cortactin tethers Abl2 in spines, where Abl2 and cortactin maintain the small pool of stable actin required for dendritic spine stability. Using fluorescence recovery after photobleaching of GFP-actin, we find that disruption of Abl2:cortactin interactions eliminates stable actin filaments in dendritic spines, significantly reducing spine density. A subset of spines remaining after Abl2 depletion retain their stable actin pool and undergo activity-dependent spine enlargement, associated with increased cortactin and GluN2B levels. Finally, tonic increases in synaptic activity rescue spine loss following Abl2 depletion by promoting cortactin enrichment in vulnerable spines. Together, our findings strongly suggest that Abl2:cortactin interactions promote spine stability by maintaining pools of stable actin filaments in spines.SIGNIFICANCE STATEMENT Dendritic spines contain two kinetically distinct pools of actin. The more abundant, highly dynamic pool regulates spine shape, size, and plasticity. The function of the smaller, stable actin network is not well understood, as tools to study it have not been available. We demonstrate here that Abl2 and its substrate and interaction partner, cortactin, are essential to maintain the stable pool in spines. Depletion of the stable actin pool via disruption of Abl2 or cortactin, or interactions between the proteins, significantly reduces spine stability. We also provide evidence that tonic increases in synaptic activity promote spine stability via enrichment of cortactin in spines, suggesting that synaptic activity acts on the stable actin pool to stabilize dendritic spines.
Collapse
|
4
|
Bidaud-Meynard A, Binamé F, Lagrée V, Moreau V. Regulation of Rho GTPase activity at the leading edge of migrating cells by p190RhoGAP. Small GTPases 2017; 10:99-110. [PMID: 28287334 DOI: 10.1080/21541248.2017.1280584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell migration, a key feature of embryonic development, immunity, angiogenesis, and tumor metastasis, is based on the coordinated regulation of actin dynamics and integrin-mediated adhesion. Rho GTPases play a major role in this phenomenon by regulating the onset and maintenance of actin-based protruding structures at cell leading edges (i.e. lamellipodia and filopodia) and contractile structures (i.e., stress fibers) at their trailing edge. While spatio-temporal analysis demonstrated the tight regulation of Rho GTPases at the migration front during cell locomotion, little is known about how the main regulators of Rho GTPase activity, such as GAPs, GEFs and GDIs, play a role in this process. In this review, we focus on a major negative regulator of RhoA, p190RhoGAP-A and its close isoform p190RhoGAP-B, which are necessary for efficient cell migration. Recent studies, including our, demonstrated that p190RhoGAP-A localization and activity undergo a complex regulatory mechanism, accounting for the tight regulation of RhoA, but also other members of the Rho GTPase family, at the cell periphery.
Collapse
Affiliation(s)
- Aurélien Bidaud-Meynard
- a Institut National de la Santé et de la Recherche Médicale , Bordeaux , France.,b Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology , Bordeaux , France
| | - Fabien Binamé
- a Institut National de la Santé et de la Recherche Médicale , Bordeaux , France.,b Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology , Bordeaux , France
| | - Valérie Lagrée
- a Institut National de la Santé et de la Recherche Médicale , Bordeaux , France.,b Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology , Bordeaux , France
| | - Violaine Moreau
- a Institut National de la Santé et de la Recherche Médicale , Bordeaux , France.,b Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology , Bordeaux , France
| |
Collapse
|
5
|
Rizzo AN, Aman J, van Nieuw Amerongen GP, Dudek SM. Targeting Abl kinases to regulate vascular leak during sepsis and acute respiratory distress syndrome. Arterioscler Thromb Vasc Biol 2015; 35:1071-9. [PMID: 25814671 DOI: 10.1161/atvbaha.115.305085] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/05/2015] [Indexed: 01/27/2023]
Abstract
The vascular endothelium separates circulating fluid and inflammatory cells from the surrounding tissues. Vascular leak occurs in response to wide-spread inflammatory processes, such as sepsis and acute respiratory distress syndrome, because of the formation of gaps between endothelial cells. Although these disorders are leading causes of mortality in the intensive care unit, no medical therapies exist to restore endothelial cell barrier function. Recent evidence highlights a key role for the Abl family of nonreceptor tyrosine kinases in regulating vascular barrier integrity. These kinases have well-described roles in cancer progression and neuronal morphogenesis, but their functions in the vasculature have remained enigmatic until recently. The Abl family kinases, c-Abl (Abl1) and Abl related gene (Arg, Abl2), phosphorylate several cytoskeletal effectors that mediate vascular permeability, including nonmuscle myosin light chain kinase, cortactin, vinculin, and β-catenin. They also regulate cell-cell and cell-matrix junction dynamics, and the formation of actin-based cellular protrusions in multiple cell types. In addition, both c-Abl and Arg are activated by hyperoxia and contribute to oxidant-induced endothelial cell injury. These numerous roles of Abl kinases in endothelial cells and the current clinical usage of imatinib and other Abl kinase inhibitors have spurred recent interest in repurposing these drugs for the treatment of vascular barrier dysfunction. This review will describe the structure and function of Abl kinases with an emphasis on their roles in mediating vascular barrier integrity. We will also provide a critical evaluation of the potential for exploiting Abl kinase inhibition as a novel therapy for inflammatory vascular leak syndromes.
Collapse
Affiliation(s)
- Alicia N Rizzo
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, College of Medicine (A.N.R., S.M.D.) and Department of Pharmacology (A.N.R., G.P.v.N.A., S.M.D.), University of Illinois at Chicago; Departments of Physiology (J.A., G.P.v.N.A.) and Pulmonary Diseases (J.A.), Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Jurjan Aman
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, College of Medicine (A.N.R., S.M.D.) and Department of Pharmacology (A.N.R., G.P.v.N.A., S.M.D.), University of Illinois at Chicago; Departments of Physiology (J.A., G.P.v.N.A.) and Pulmonary Diseases (J.A.), Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Geerten P van Nieuw Amerongen
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, College of Medicine (A.N.R., S.M.D.) and Department of Pharmacology (A.N.R., G.P.v.N.A., S.M.D.), University of Illinois at Chicago; Departments of Physiology (J.A., G.P.v.N.A.) and Pulmonary Diseases (J.A.), Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Steven M Dudek
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, College of Medicine (A.N.R., S.M.D.) and Department of Pharmacology (A.N.R., G.P.v.N.A., S.M.D.), University of Illinois at Chicago; Departments of Physiology (J.A., G.P.v.N.A.) and Pulmonary Diseases (J.A.), Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Courtemanche N, Gifford SM, Simpson MA, Pollard TD, Koleske AJ. Abl2/Abl-related gene stabilizes actin filaments, stimulates actin branching by actin-related protein 2/3 complex, and promotes actin filament severing by cofilin. J Biol Chem 2014; 290:4038-46. [PMID: 25540195 DOI: 10.1074/jbc.m114.608117] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both Arp2/3 complex and the Abl2/Arg nonreceptor tyrosine kinase are essential to form and maintain diverse actin-based structures in cells, including cell edge protrusions in fibroblasts and cancer cells and dendritic spines in neurons. The ability of Arg to promote cell edge protrusions in fibroblasts does not absolutely require kinase activity, raising the question of how Arg might modulate actin assembly and turnover in the absence of kinase function. Arg has two distinct actin-binding domains and interacts physically and functionally with cortactin, an activator of the Arp2/3 complex. However, it was not known whether and how Arg influences actin filament stability, actin branch formation, or cofilin-mediated actin severing or how cortactin influences these reactions of Arg with actin. Arg or cortactin bound to actin filaments stabilizes them from depolymerization. Low concentrations of Arg and cortactin cooperate to stabilize filaments by slowing depolymerization. Arg stimulates formation of actin filament branches by Arp2/3 complex and cortactin. An Arg mutant lacking the C-terminal calponin homology actin-binding domain stimulates actin branch formation by the Arp2/3 complex, indicative of autoinhibition. ArgΔCH can stimulate the Arp2/3 complex even in the absence of cortactin. Arg greatly potentiates cofilin severing of actin filaments, and cortactin attenuates this enhanced severing. The ability of Arg to stabilize filaments, promote branching, and increase severing requires the internal (I/L)WEQ actin-binding domain. These activities likely underlie important roles that Arg plays in the formation, dynamics, and stability of actin-based cellular structures.
Collapse
Affiliation(s)
- Naomi Courtemanche
- From the Departments of Molecular, Cellular and Developmental Biology and
| | | | - Mark A Simpson
- the Departments of Molecular Biophysics and Biochemistry and
| | - Thomas D Pollard
- From the Departments of Molecular, Cellular and Developmental Biology and the Departments of Molecular Biophysics and Biochemistry and Cell Biology, Yale University, New Haven, Connecticut 06511 and
| | - Anthony J Koleske
- the Departments of Molecular Biophysics and Biochemistry and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06520 Neurobiology and
| |
Collapse
|
7
|
Letsiou E, Rizzo AN, Sammani S, Naureckas P, Jacobson JR, Garcia JGN, Dudek SM. Differential and opposing effects of imatinib on LPS- and ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2014; 308:L259-69. [PMID: 25480336 DOI: 10.1152/ajplung.00323.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endothelial dysfunction underlies the pathophysiology of vascular disorders such as acute lung injury (ALI) syndromes. Recent work has identified the Abl family kinases (c-Abl and Arg) as important regulators of endothelial cell (EC) barrier function and suggests that their inhibition by currently available pharmaceutical agents such as imatinib may be EC protective. Here we describe novel and differential effects of imatinib in regulating lung pathophysiology in two clinically relevant experimental models of ALI. Imatinib attenuates endotoxin (LPS)-induced vascular leak and lung inflammation in mice but exacerbates these features in a mouse model of ventilator-induced lung injury (VILI). We next explored these discrepant observations in vitro through investigation of the roles for Abl kinases in cultured lung EC. Imatinib attenuates LPS-induced lung EC permeability, restores VE-cadherin junctions, and reduces inflammation by suppressing VCAM-1 expression and inflammatory cytokine (IL-8 and IL-6) secretion. Conversely, in EC exposed to pathological 18% cyclic stretch (CS) (in vitro model of VILI), imatinib decreases VE-cadherin expression, disrupts cell-cell junctions, and increases IL-8 levels. Downregulation of c-Abl expression with siRNA attenuates LPS-induced VCAM-1 expression, whereas specific reduction of Arg reduces VE-cadherin expression in 18% CS-challenged ECs to mimic the imatinib effects. In summary, imatinib exhibits pulmonary barrier-protective and anti-inflammatory effects in LPS-injured mice and lung EC; however, imatinib exacerbates VILI as well as dysfunction in 18% CS-EC. These findings identify the Abl family kinases as important modulators of EC function and potential therapeutic targets in lung injury syndromes.
Collapse
Affiliation(s)
- E Letsiou
- University of Illinois at Chicago, Division of Pulmonary, Critical Care, Sleep, and Allergy, Illinois; and
| | - A N Rizzo
- University of Illinois at Chicago, Division of Pulmonary, Critical Care, Sleep, and Allergy, Illinois; and
| | - S Sammani
- University of Illinois at Chicago, Division of Pulmonary, Critical Care, Sleep, and Allergy, Illinois; and
| | - P Naureckas
- University of Illinois at Chicago, Division of Pulmonary, Critical Care, Sleep, and Allergy, Illinois; and
| | - J R Jacobson
- University of Illinois at Chicago, Division of Pulmonary, Critical Care, Sleep, and Allergy, Illinois; and
| | - J G N Garcia
- Arizona Health Sciences Center, University of Arizona, Arizona
| | - S M Dudek
- University of Illinois at Chicago, Division of Pulmonary, Critical Care, Sleep, and Allergy, Illinois; and
| |
Collapse
|
8
|
Bracken CP, Li X, Wright JA, Lawrence DM, Pillman KA, Salmanidis M, Anderson MA, Dredge BK, Gregory PA, Tsykin A, Neilsen C, Thomson DW, Bert AG, Leerberg JM, Yap AS, Jensen KB, Khew-Goodall Y, Goodall GJ. Genome-wide identification of miR-200 targets reveals a regulatory network controlling cell invasion. EMBO J 2014; 33:2040-56. [PMID: 25069772 PMCID: PMC4195771 DOI: 10.15252/embj.201488641] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/06/2014] [Accepted: 06/12/2014] [Indexed: 12/14/2022] Open
Abstract
The microRNAs of the miR-200 family maintain the central characteristics of epithelia and inhibit tumor cell motility and invasiveness. Using the Ago-HITS-CLIP technology for transcriptome-wide identification of direct microRNA targets in living cells, along with extensive validation to verify the reliability of the approach, we have identified hundreds of miR-200a and miR-200b targets, providing insights into general features of miRNA target site selection. Gene ontology analysis revealed a predominant effect of miR-200 targets in widespread coordinate control of actin cytoskeleton dynamics. Functional characterization of the miR-200 targets indicates that they constitute subnetworks that underlie the ability of cancer cells to migrate and invade, including coordinate effects on Rho-ROCK signaling, invadopodia formation, MMP activity, and focal adhesions. Thus, the miR-200 family maintains the central characteristics of the epithelial phenotype by acting on numerous targets at multiple levels, encompassing both cytoskeletal effectors that control actin filament organization and dynamics, and upstream signals that locally regulate the cytoskeleton to maintain cell morphology and prevent cell migration.
Collapse
Affiliation(s)
- Cameron P Bracken
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Xiaochun Li
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Josephine A Wright
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - David M Lawrence
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Marika Salmanidis
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Matthew A Anderson
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - B Kate Dredge
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Anna Tsykin
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Corine Neilsen
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Daniel W Thomson
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Joanne M Leerberg
- Division of Molecular Cell Biology, Institute for Molecular Bioscience University of Queensland, St Lucia, Brisbane, Qld, Australia
| | - Alpha S Yap
- Division of Molecular Cell Biology, Institute for Molecular Bioscience University of Queensland, St Lucia, Brisbane, Qld, Australia
| | - Kirk B Jensen
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
9
|
Gifford SM, Liu W, Mader CC, Halo TL, Machida K, Boggon TJ, Koleske AJ. Two amino acid residues confer different binding affinities of Abelson family kinase SRC homology 2 domains for phosphorylated cortactin. J Biol Chem 2014; 289:19704-13. [PMID: 24891505 DOI: 10.1074/jbc.m114.556480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The closely related Abl family kinases, Arg and Abl, play important non-redundant roles in the regulation of cell morphogenesis and motility. Despite similar N-terminal sequences, Arg and Abl interact with different substrates and binding partners with varying affinities. This selectivity may be due to slight differences in amino acid sequence leading to differential interactions with target proteins. We report that the Arg Src homology (SH) 2 domain binds two specific phosphotyrosines on cortactin, a known Abl/Arg substrate, with over 10-fold higher affinity than the Abl SH2 domain. We show that this significant affinity difference is due to the substitution of arginine 161 and serine 187 in Abl to leucine 207 and threonine 233 in Arg, respectively. We constructed Abl SH2 domains with R161L and S187T mutations alone and in combination and find that these substitutions are sufficient to convert the low affinity Abl SH2 domain to a higher affinity "Arg-like" SH2 domain in binding to a phospho-cortactin peptide. We crystallized the Arg SH2 domain for structural comparison to existing crystal structures of the Abl SH2 domain. We show that these two residues are important determinants of Arg and Abl SH2 domain binding specificity. Finally, we expressed Arg containing an "Abl-like" low affinity mutant Arg SH2 domain (L207R/T233S) and find that this mutant, although properly localized to the cell periphery, does not support wild type levels of cell edge protrusion. Together, these observations indicate that these two amino acid positions confer different binding affinities and cellular functions on the distinct Abl family kinases.
Collapse
Affiliation(s)
| | | | | | | | - Kazuya Machida
- the Department of Genetics and Developmental Biology, Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, University of Connecticut Health Center, Farmington, Conneticut 06030
| | | | - Anthony J Koleske
- From the Departments of Molecular Biophysics and Biochemistry, the Yale Cancer Center, Interdepartmental Neuroscience Program, and Department of Neurobiology, Yale University, New Haven, Connecticut 06520 and
| |
Collapse
|
10
|
Bianchi C, Torsello B, Di Stefano V, Zipeto MA, Facchetti R, Bombelli S, Perego RA. One isoform of Arg/Abl2 tyrosine kinase is nuclear and the other seven cytosolic isoforms differently modulate cell morphology, motility and the cytoskeleton. Exp Cell Res 2013; 319:2091-2102. [PMID: 23707396 DOI: 10.1016/j.yexcr.2013.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/10/2013] [Accepted: 05/11/2013] [Indexed: 12/30/2022]
Abstract
The non-receptor tyrosine kinase Abelson related gene (Arg/Abl2) regulates cell migration and morphogenesis by modulating the cytoskeleton. Arg promotes actin-based cell protrusions and spreading, and inhibits cell migration by attenuating stress fiber formation and contractility via activation of the RhoA inhibitor, p190RhoGAP, and by regulating focal adhesion dynamics also via CrkII phosphorylation. Eight full-length Arg isoforms with different N- and C-termini are endogenously expressed in human cells. In this paper, the eight Arg isoforms, subcloned in the pFLAG-CMV2 vector, were transfected in COS-7 cells in order to study their subcellular distribution and role in cell morphology, migration and cytoskeletal modulation. The transfected 1BSCTS Arg isoform has a nuclear distribution and phosphorylates CrkII in the nucleus, whilst the other isoforms are detected in the cytoplasm. The 1BLCTL, 1BSCTL, 1ASCTS isoforms were able to significantly decrease stress fibers, induce cell shrinkage and filopodia-like protrusions with a significant increase in p190RhoGAP phosphorylation. In contrast, 1ALCTL, 1ALCTS, 1ASCTL and 1BLCTS isoforms do not significantly decrease stress fibers and induce the formation of retraction tail-like protrusions. The 1BLCTL and 1ALCTL isoforms have different effects on cell migration and focal adhesions. All these data may open new perspectives to study the mechanisms of cell invasiveness.
Collapse
Affiliation(s)
- Cristina Bianchi
- Department of Health Sciences, Milano-Bicocca University, 20900 Monza (MB), Italy
| | - Barbara Torsello
- Department of Health Sciences, Milano-Bicocca University, 20900 Monza (MB), Italy
| | - Vitalba Di Stefano
- Department of Health Sciences, Milano-Bicocca University, 20900 Monza (MB), Italy
| | - Maria A Zipeto
- Department of Health Sciences, Milano-Bicocca University, 20900 Monza (MB), Italy
| | - Rita Facchetti
- Department of Health Sciences, Milano-Bicocca University, 20900 Monza (MB), Italy
| | - Silvia Bombelli
- Department of Health Sciences, Milano-Bicocca University, 20900 Monza (MB), Italy
| | - Roberto A Perego
- Department of Health Sciences, Milano-Bicocca University, 20900 Monza (MB), Italy.
| |
Collapse
|
11
|
Abl2/Arg controls dendritic spine and dendrite arbor stability via distinct cytoskeletal control pathways. J Neurosci 2013; 33:1846-57. [PMID: 23365224 DOI: 10.1523/jneurosci.4284-12.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rho family GTPases coordinate cytoskeletal rearrangements in neurons, and mutations in their regulators are associated with mental retardation and other neurodevelopmental disorders (Billuart et al., 1998; Kutsche et al., 2000; Newey et al., 2005; Benarroch, 2007). Chromosomal microdeletions encompassing p190RhoGAP or its upstream regulator, the Abl2/Arg tyrosine kinase, have been observed in cases of mental retardation associated with developmental defects (Scarbrough et al., 1988; James et al., 1996; Takano et al., 1997; Chaabouni et al., 2006; Leal et al., 2009). Genetic knock-out of Arg in mice leads to synapse, dendritic spine, and dendrite arbor loss accompanied by behavioral deficits (Moresco et al., 2005; Sfakianos et al., 2007). To elucidate the cell-autonomous mechanisms by which Arg regulates neuronal stability, we knocked down Arg in mouse hippocampal neuronal cultures. We find that Arg knockdown significantly destabilizes dendrite arbors and reduces dendritic spine density by compromising dendritic spine stability. Inhibiting RhoA prevents dendrite arbor loss following Arg knockdown in neurons, but does not block spine loss. Interestingly, Arg-deficient neurons exhibit increased miniature EPSC amplitudes, and their remaining spines exhibit larger heads deficient in the actin stabilizing protein cortactin. Spine destabilization in Arg knockdown neurons is prevented by blocking NMDA receptor-dependent relocalization of cortactin from spines, or by forcing cortactin into spines via fusion to an actin-binding region of Arg. Thus, Arg employs distinct mechanisms to selectively regulate spine and dendrite stability: Arg dampens activity-dependent disruption of cortactin localization to stabilize spines and attenuates Rho activity to stabilize dendrite arbors.
Collapse
|
12
|
Gleevec, an Abl family inhibitor, produces a profound change in cell shape and migration. PLoS One 2013; 8:e52233. [PMID: 23300967 PMCID: PMC3534684 DOI: 10.1371/journal.pone.0052233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 11/13/2012] [Indexed: 01/27/2023] Open
Abstract
The issue of how contractility and adhesion are related to cell shape and migration pattern remains largely unresolved. In this paper we report that Gleevec (Imatinib), an Abl family kinase inhibitor, produces a profound change in the shape and migration of rat bladder tumor cells (NBTII) plated on collagen-coated substrates. Cells treated with Gleevec adopt a highly spread D-shape and migrate more rapidly with greater persistence. Accompanying this more spread state is an increase in integrin-mediated adhesion coupled with increases in the size and number of discrete adhesions. In addition, both total internal reflection fluorescence microscopy (TIRFM) and interference reflection microscopy (IRM) revealed a band of small punctate adhesions with rapid turnover near the cell leading margin. These changes led to an increase in global cell-substrate adhesion strength, as assessed by laminar flow experiments. Gleevec-treated cells have greater RhoA activity which, via myosin activation, led to an increase in the magnitude of total traction force applied to the substrate. These chemical and physical alterations upon Gleevec treatment produce the dramatic change in morphology and migration that is observed.
Collapse
|
13
|
Abstract
Although c-Abl and Arg non-receptor tyrosine kinases are well known for driving leukemia development, their role in solid tumors has not been appreciated until recently. Accumulating evidence now indicates that c-Abl and/or Arg are activated in some solid tumor cell lines via unique mechanisms that do not involve gene mutation/translocation, and c-Abl/Arg activation promotes matrix degradation, invasion, proliferation, tumorigenesis, and/or metastasis, depending on the tumor type. However, some data suggest that c-Abl also may suppress invasion, proliferation, and tumorigenesis in certain cell contexts. Thus, c-Abl/Arg may serve as molecular switches that suppress proliferation and invasion in response to some stimuli (e.g., ephrins) or when inactive/regulated, or as promote invasion and proliferation in response to other signals (e.g., activated growth factor receptors, loss of inhibitor expression), which induce sustained activation. Clearly, more data are required to determine the extent and prevalence of c-Abl/Arg activation in primary tumors and during progression, and additional animal studies are needed to substantiate in vitro findings. Furthermore, c-Abl/Arg inhibitors have been used in numerous solid tumor clinical trials; however, none of these trials were restricted to patients whose tumors expressed highly activated c-Abl/Arg (targeted trial). Targeted trials are critical for determining whether c-Abl/Arg inhibitors can be effective treatment options for patients whose tumors are driven by c-Abl/Arg.
Collapse
|
14
|
Aman J, van Bezu J, Damanafshan A, Huveneers S, Eringa EC, Vogel SM, Groeneveld ABJ, Vonk Noordegraaf A, van Hinsbergh VWM, van Nieuw Amerongen GP. Effective treatment of edema and endothelial barrier dysfunction with imatinib. Circulation 2012; 126:2728-38. [PMID: 23099479 DOI: 10.1161/circulationaha.112.134304] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Tissue edema and endothelial barrier dysfunction as observed in sepsis and acute lung injury carry high morbidity and mortality, but currently lack specific therapy. In a recent case report, we described fast resolution of pulmonary edema on treatment with the tyrosine kinase inhibitor imatinib through an unknown mechanism. Here, we explored the effect of imatinib on endothelial barrier dysfunction and edema formation. METHODS AND RESULTS We evaluated the effect of imatinib on endothelial barrier function in vitro and in vivo. In human macro- and microvascular endothelial monolayers, imatinib attenuated endothelial barrier dysfunction induced by thrombin and histamine. Small interfering RNA knock-downs of the imatinib-sensitive kinases revealed that imatinib attenuates endothelial barrier dysfunction via inhibition of Abl-related gene kinase (Arg/Abl2), a previously unknown mediator of endothelial barrier dysfunction. Indeed, Arg was activated by endothelial stimulation with thrombin, histamine, and vascular endothelial growth factor. Imatinib limited Arg-mediated endothelial barrier dysfunction by enhancing Rac1 activity and enforcing adhesion of endothelial cells to the extracellular matrix. Using mouse models of vascular leakage as proof-of-concept, we found that pretreatment with imatinib protected against vascular endothelial growth factor-induced vascular leakage in the skin, and effectively prevented edema formation in the lungs. In a murine model of sepsis, imatinib treatment (6 hours and 18 hours after induction of sepsis) attenuated vascular leakage in the kidneys and the lungs (24 hours after induction of sepsis). CONCLUSIONS Thus, imatinib prevents endothelial barrier dysfunction and edema formation via inhibition of Arg. These findings identify imatinib as a promising approach to permeability edema and indicate Arg as novel target for edema treatment.
Collapse
Affiliation(s)
- Jurjan Aman
- Department of Physiology, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
The Abl and Arg kinases mediate distinct modes of phagocytosis and are required for maximal Leishmania infection. Mol Cell Biol 2012; 32:3176-86. [PMID: 22665498 DOI: 10.1128/mcb.00086-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leishmania, an obligate intracellular parasite, binds several receptors to trigger engulfment by phagocytes, leading to cutaneous or visceral disease. These receptors include complement receptor 3 (CR3), used by promastigotes, and the Fc receptor (FcR), used by amastigotes. The mechanisms mediating uptake are not well understood. Here we show that Abl family kinases mediate both phagocytosis and the uptake of Leishmania amazonensis by macrophages (Ms). Imatinib, an Abl/Arg kinase inhibitor, decreases opsonized polystyrene bead phagocytosis and Leishmania uptake. Interestingly, phagocytosis of IgG-coated beads is decreased in Arg-deficient Ms, while that of C3bi-coated beads is unaffected. Conversely, uptake of C3bi-coated beads is decreased in Abl-deficient Ms, but that of IgG-coated beads is unaffected. Consistent with these results, Abl-deficient Ms are inefficient at C3bi-opsonized promastigote uptake, and Arg-deficient Ms are defective in IgG1-opsonized amastigote uptake. Finally, genetic loss of Abl or Arg reduces infection severity in murine cutaneous leishmaniasis, and imatinib treatment results in smaller lesions with fewer parasites than in controls. Our studies are the first to demonstrate that efficient phagocytosis and maximal Leishmania infection require Abl family kinases. These results highlight Abl family kinase-mediated signaling pathways as potential therapeutic targets for leishmaniasis.
Collapse
|