1
|
Hemkemeyer SA, Liu Z, Vollmer V, Xu Y, Lohmann B, Bähler M. The RhoGAP-myosin Myo9b regulates ocular lens pit morphogenesis. Dev Dyn 2022; 251:1897-1907. [PMID: 36008362 DOI: 10.1002/dvdy.522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND During eye development the lens placode invaginates to form the lens pit. Further bending of lens epithelium and separation from ectoderm leads eventually to a spherical lens vesicle with enclosed extracellular fluid. Changes in epithelial morphology involve the actin cytoskeleton and its regulators. The myosin Myo9b is simultaneously an actin-based motor and Rho GTPase-activating protein that regulates actin cytoskeleton organization. Myo9b-deficient adult mice and embryos were analyzed for eye malformations and alterations in lens development. RESULTS Myo9b-deficient mice showed a high incidence of microphthalmia and cataracts with occasional blepharitis. Formation of the lens vesicle during embryonic lens development was disordered in virtually all embryos. Lens placode invagination was less deep and gave rise to a conical structure instead of a spherical pit. At later stages either no lens vesicle was formed or a significantly smaller one that was not enclosed by the optic cup. Expression of the cell fate marker Pax6 was not altered. Staining of adherens junctions and F-actin was most intense at the tip of conical invaginations, suggesting that mechanical forces are not properly coordinated between epithelial cells that form the pit. CONCLUSIONS Myo9b is a critical regulator of ocular lens vesicle morphogenesis during eye development.
Collapse
Affiliation(s)
- Sandra A Hemkemeyer
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Zhijun Liu
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Veith Vollmer
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Yan Xu
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Birgit Lohmann
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Martin Bähler
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| |
Collapse
|
2
|
Wang J, Xu H, Chen T, Xu C, Zhang X, Zhao S. Effect of Monoacylglycerol Lipase Inhibition on Intestinal Permeability of Rats With Severe Acute Pancreatitis. Front Pharmacol 2022; 13:869482. [PMID: 35496266 PMCID: PMC9039313 DOI: 10.3389/fphar.2022.869482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Endocannabinoid 2-arachidonoylglycerol (2-AG) is an anti-nociceptive lipid that is inactivated through cellular uptake and subsequent catabolism by monoacylglycerol lipase (MAGL). In this study, we investigated the effects of MAGL inhibition on intestinal permeability and explored the possible mechanism. Methods: A rat model of severe acute pancreatitis (SAP) was established. Rats were divided into three groups according to treatment. We analyzed intestinal permeability to fluorescein isothiocyanate-dextran and the levels of inflammatory factors interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) and 2-AG. Hematoxylin and eosin staining was used to assess histological tissue changes. In vivo intestinal permeability was evaluated by transmission electron microscopy. We obtained ileum tissues, extracted total RNA, and applied RNA-sequencing. Sequencing data were analyzed by bioinformatics. Results: Inflammatory factor levels were higher, while 2-AG levels were lower in the SAP group compared with the control group. Administration of JZL184 to rats with SAP increased the levels of 2-AG and lowered the levels of IL-6 and TNF-α. Notably, intestinal permeability was improved by JZL184 as demonstrated by fluorescein isothiocyanate-dextran measurement, hematoxylin and eosin staining, and transmission electron microscopy. RNA-sequencing showed significant transcriptional differences in SAP and JZL184 groups compared with the control group. KEGG analysis showed that the up- or downregulated genes in multiple comparison groups were enriched in two pathways, focal adhesion and PI3K-Akt signaling pathways. Differential alternative splicing (AS) genes, such as Myo9b, Lsp1, and Git2, have major functions in intestinal diseases. A total of 132 RNA-binding proteins (RBPs) were screened by crossing the identified abnormally expressed genes with the reported RBP genes. Among them, HNRNPDL coexpressed the most AS events as the main RBP. Conclusion: MAGL inhibition improved intestinal mucosal barrier injury in SAP rats and induced a large number of differentially expressed genes and alternative splicing events. HNRNPDL might play an important role in improving intestinal mucosal barrier injury by affecting alternative splicing events.
Collapse
|
3
|
Zeng RZ, Lv XD, Liu GF, Gu GL, Li SQ, Chen L, Fan JH, Liang ZL, Wang HQ, Lu F, Zhan LL, Lv XP. The Correlation Between MYO9B Gene Polymorphism and Inflammatory Bowel Disease in the Guangxi Zhuang Population. Int J Gen Med 2021; 14:9163-9172. [PMID: 34880655 PMCID: PMC8646109 DOI: 10.2147/ijgm.s338142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/27/2021] [Indexed: 11/25/2022] Open
Abstract
Objective To analyze the correlation between site rs962917 of the MYO9B gene and inflammatory bowel disease (IBD) in the Guangxi Zhuang nationality population. Methods The intestinal mucosa tissue of 153 IBD subjects (Han and Zhuang patients only) in the Guangxi Zhuang autonomous region comprised the case group, and the intestinal mucosa tissue of 155 healthy subjects (Han and Zhuang patients only) in the same region represented the control group. Deoxyribonucleic acid was extracted from the intestinal mucosa tissue of each experimental group, and the MYO9B gene-target fragment containing the single nucleotide polymorphism (SNP) site rs962917 was designed. Finally, polymerase chain reaction products were obtained by amplification, analyzed, and compared using the sequencing results. Results The results indicated that the genotype frequency of the MYO9B SNP site rs962917 between Crohn’s disease (CD) and control groups of Zhuang and Han participants differed significantly (P < 0.05). Furthermore, the genotype frequency of MYO9B site rs962917 differed significantly between the Zhuang and Han population groups (P < 0.05). Conclusion Site rs962917 of the MYO9B gene is related to CD susceptibility and incidence among the Guangxi Zhuang population.
Collapse
Affiliation(s)
- Rui-Zhi Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Dan Lv
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Geng-Feng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guang-Li Gu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shi-Quan Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Lan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jun-Hua Fan
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhao-Liang Liang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hui-Qin Wang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Fei Lu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ling-Ling Zhan
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Ping Lv
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
4
|
Matei DE, Menon M, Alber DG, Smith AM, Nedjat-Shokouhi B, Fasano A, Magill L, Duhlin A, Bitoun S, Gleizes A, Hacein-Bey-Abina S, Manson JJ, Rosser EC, Klein N, Blair PA, Mauri C. Intestinal barrier dysfunction plays an integral role in arthritis pathology and can be targeted to ameliorate disease. MED 2021; 2:864-883.e9. [PMID: 34296202 PMCID: PMC8280953 DOI: 10.1016/j.medj.2021.04.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/22/2021] [Accepted: 04/15/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Evidence suggests an important role for gut-microbiota dysbiosis in the development of rheumatoid arthritis (RA). The link between changes in gut bacteria and the development of joint inflammation is missing. Here, we address whether there are changes to the gut environment and how they contribute to arthritis pathogenesis. METHODS We analyzed changes in markers of gut permeability, damage, and inflammation in peripheral blood and serum of RA patients. Serum, intestines, and lymphoid organs isolated from K/BxN mice with spontaneous arthritis or from wild-type, genetically modified interleukin (IL)-10R-/-or claudin-8-/-mice with induced arthritis were analyzed by immunofluorescence/histology, ELISA, and flow cytometry. FINDINGS RA patients display increased levels of serum markers of gut permeability and damage and cellular gut-homing markers, both parameters positively correlating with disease severity. Arthritic mice display increased gut permeability from early stages of disease, as well as bacterial translocation, inflammatory gut damage, increases in interferon γ (IFNγ)+and decreases in IL-10+intestinal-infiltrating leukocyte frequency, and reduced intestinal epithelial IL-10R expression. Mechanistically, both arthritogenic bacteria and leukocytes are required to disrupt gut-barrier integrity. We show that exposing intestinal organoids to IFNγ reduces IL-10R expression by epithelial cells and that mice lacking epithelial IL-10R display increased intestinal permeability and exacerbated arthritis. Claudin-8-/-mice with constitutively increased gut permeability also develop worse joint disease. Treatment of mice with AT-1001, a molecule that prevents development of gut permeability, ameliorates arthritis. CONCLUSIONS We suggest that breakdown of gut-barrier integrity contributes to arthritis development and propose restoration of gut-barrier homeostasis as a new therapeutic approach for RA. FUNDING Funded by Versus Arthritis (21140 and 21257) and UKRI/MRC (MR/T000910/1).
Collapse
Affiliation(s)
- Diana E. Matei
- Centre for Rheumatology, Division of Medicine and Division of Infection and Immunity and Transplantation, University College London, London WC1E 6JF, UK
| | - Madhvi Menon
- Centre for Rheumatology, Division of Medicine and Division of Infection and Immunity and Transplantation, University College London, London WC1E 6JF, UK
- Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester M13 9PL, UK
| | - Dagmar G. Alber
- Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Andrew M. Smith
- Eastman Dental Institute, School of Life and Medical Sciences, UCL, London WC1X 8LD, UK
| | - Bahman Nedjat-Shokouhi
- Eastman Dental Institute, School of Life and Medical Sciences, UCL, London WC1X 8LD, UK
- Centre for Molecular Medicine, Division of Medicine, UCL, London WC1E 6BT, UK
| | - Alessio Fasano
- MassGeneral Hospital for Children, Boston, MA 02114, USA
| | - Laura Magill
- Centre for Rheumatology, Division of Medicine and Division of Infection and Immunity and Transplantation, University College London, London WC1E 6JF, UK
| | - Amanda Duhlin
- Centre for Rheumatology, Division of Medicine and Division of Infection and Immunity and Transplantation, University College London, London WC1E 6JF, UK
| | - Samuel Bitoun
- Rheumatology Department, Bicêtre Hospital AP-HP, Université Paris-Saclay and INSERM UMR 1184 IMVA 78 Avenue du Général Leclerc, 94270 Le Kremlin Bicêtre, France
| | - Aude Gleizes
- Université de Paris, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, 75006 Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, 94270 Le-Kremlin-Bicêtre, France
| | - Salima Hacein-Bey-Abina
- Université de Paris, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, 75006 Paris, France
- Assistance Publique - Hôpitaux Paris Saclay, Clinical Immunology Laboratory, Hôpital Bicêtre, 94275 Le-Kremlin-Bicêtre, France
| | - Jessica J. Manson
- Department of Rheumatology, University College London Hospital, London NW1 2BU, UK
| | - Elizabeth C. Rosser
- Centre for Rheumatology, Division of Medicine and Division of Infection and Immunity and Transplantation, University College London, London WC1E 6JF, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London WC1E 6JF, UK
| | - The ABIRISK Consortium
- Centre for Rheumatology, Division of Medicine and Division of Infection and Immunity and Transplantation, University College London, London WC1E 6JF, UK
- Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester M13 9PL, UK
- Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Eastman Dental Institute, School of Life and Medical Sciences, UCL, London WC1X 8LD, UK
- Centre for Molecular Medicine, Division of Medicine, UCL, London WC1E 6BT, UK
- MassGeneral Hospital for Children, Boston, MA 02114, USA
- Rheumatology Department, Bicêtre Hospital AP-HP, Université Paris-Saclay and INSERM UMR 1184 IMVA 78 Avenue du Général Leclerc, 94270 Le Kremlin Bicêtre, France
- Université de Paris, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, 75006 Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, 94270 Le-Kremlin-Bicêtre, France
- Assistance Publique - Hôpitaux Paris Saclay, Clinical Immunology Laboratory, Hôpital Bicêtre, 94275 Le-Kremlin-Bicêtre, France
- Department of Rheumatology, University College London Hospital, London NW1 2BU, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London WC1E 6JF, UK
| | - Nigel Klein
- Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Paul A. Blair
- Centre for Rheumatology, Division of Medicine and Division of Infection and Immunity and Transplantation, University College London, London WC1E 6JF, UK
| | - Claudia Mauri
- Centre for Rheumatology, Division of Medicine and Division of Infection and Immunity and Transplantation, University College London, London WC1E 6JF, UK
| |
Collapse
|
5
|
Abstract
Autoimmune diseases are one of the dreadful group of human diseases that have always been of keen interest to researchers. Due to complex and broad-spectrum nature, scientists are not yet able to pinpoint the pathogenesis of and delineate effective therapy against this group of diseases. However, it is becoming clear that a decrease in number and function of T regulatory cells (Treg), an increase in autoreactive Th1/Th17 cells and associated immunomodulation and inflammation participate in the pathogenesis of many autoimmune diseases. Cinnamon (Cinnamonum verum or Cinnamonum cassia) is a widely used natural spice and flavoring ingredient and its metabolite sodium benzoate (NaB) is a food-additive and FDA-approved drug against nonketotic hyperglycinemia (NKH) and urea cycle disorders (UCD). Recent studies indicate that cinnamon either in powder or extract form and NaB are capable of modulating different autoimmune pathways as well as protecting animals from different autoimmune disorders. Here, we have made an honest attempt to delineate such pieces of evidence with available anti-autoimmune mechanisms and analyze whether cinnamon supplements could be used to control the fury of autoimmune disorders.
Collapse
Affiliation(s)
- Swarupa Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| | - Kalipada Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA.,Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| |
Collapse
|
6
|
Lechuga S, Ivanov AI. Actin cytoskeleton dynamics during mucosal inflammation: a view from broken epithelial barriers. CURRENT OPINION IN PHYSIOLOGY 2020; 19:10-16. [PMID: 32728653 DOI: 10.1016/j.cophys.2020.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Disruption of epithelial barriers is a key pathogenic event of mucosal inflammation: It ignites the exaggerated immune response and accelerates tissue damage. Loss of barrier function is attributed to the abnormal structure and permeability of epithelial adherens junctions and tight junctions, driven by inflammatory stimuli through a variety of cellular mechanisms. This review focuses on roles of the actin cytoskeleton in mediating disruption of epithelial junctions and creation of leaky barriers in inflamed tissues. We summarize recent advances in understanding the role of cytoskeletal remodeling driven by actin filament turnover and myosin II-dependent contractility in the homeostatic regulation of epithelial barriers and barrier disruption during mucosal inflammation. We also discuss how the altered biochemical and physical environment of the inflamed tissues could affect the dynamics of the junction-associated actomyosin cytoskeleton, leading to the disruption of epithelial barriers.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Andrei I Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195
| |
Collapse
|
7
|
Class IX Myosins: Motorized RhoGAP Signaling Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:381-389. [PMID: 32451867 DOI: 10.1007/978-3-030-38062-5_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Class IX myosins are simultaneously motor and signaling molecules. In addition to myosin class-specific functions of the tail region, they feature unique motor properties. Within their motor region they contain a long insertion with a calmodulin- and a F-actin-binding site. The rate-limiting step in the ATPase cycle is ATP hydrolysis rather than, typical for other myosins, the release of either product. This means that class IX myosins spend a large fraction of their cycle time in the ATP-bound state, which is typically a low F-actin affinity state. Nevertheless, class IX myosins in the ATP-bound state stochastically switch between a low and a high F-actin affinity state. Single motor domains even show characteristics of processive movement towards the plus end of actin filaments. The insertion thereby acts as an actin tether. The motor domain transports as intramolecular cargo a signaling Rho GTPase-activating protein domain located in the tail region. Rho GTPase-activating proteins catalyze the conversion of active GTP-bound Rho to inactive GDP-bound Rho by stimulating GTP hydrolysis. In cells, Rho activity regulates actin cytoskeleton organization and actomyosin II contractility. Thus, class IX myosins regulate cell morphology, cell migration, cell-cell junctions and membrane trafficking. These cellular functions affect embryonic development, adult organ homeostasis and immune responses. Human diseases associated with mutations in the two class IX myosins, Myo9a and Myo9b, have been identified, including hydrocephalus and congenital myasthenic syndrome in connection with Myo9a and autoimmune diseases in connection with Myo9b.
Collapse
|
8
|
Intestinal Organoids as a Novel Complementary Model to Dissect Inflammatory Bowel Disease. Stem Cells Int 2019; 2019:8010645. [PMID: 31015842 PMCID: PMC6444246 DOI: 10.1155/2019/8010645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/04/2019] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) include colitis ulcerosa and Crohn's disease, besides the rare microscopic colitis. Both diseases show a long-lasting, relapsing-remitting, or even chronic active course with tremendous impact on quality of life. IBDs frequently cause disability, surgical interventions, and high costs; as in other autoimmune diseases, their prevalent occurrence at an early phase of life raises the burden on health care systems. Unfortunately, our understanding of the pathogenesis is still incomplete and treatment therefore largely focuses on suppressing the resulting excessive inflammation. One obstacle for deciphering the causative processes is the scarcity of models that parallel the development of the disease, since intestinal inflammation is mostly induced artificially; moreover, the intestinal epithelium, which strongly contributes to IBD pathogenesis, is difficult to assess. Recently, the development of intestinal epithelial organoids has overcome many of those problems. Here, we give an overview on the current understanding of the pathogenesis of IBDs with reference to the limitations of previous well-established experimental models. We highlight the advantages and detriments of recent organoid-based experimental setups within the IBD field and suggest possible future applications.
Collapse
|
9
|
Wallace AG, Raduwan H, Carlet J, Soto MC. The RhoGAP HUM-7/Myo9 integrates signals to modulate RHO-1/RhoA during embryonic morphogenesis in Caenorhabditiselegans. Development 2018; 145:dev168724. [PMID: 30389847 PMCID: PMC6288380 DOI: 10.1242/dev.168724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/29/2018] [Indexed: 01/23/2023]
Abstract
During embryonic morphogenesis, cells and tissues undergo dramatic movements under the control of F-actin regulators. Our studies of epidermal cell migrations in developing Caenorhabditiselegans embryos have identified multiple plasma membrane signals that regulate the Rac GTPase, thus regulating WAVE and Arp2/3 complexes, to promote branched F-actin formation and polarized enrichment. Here, we describe a pathway that acts in parallel to Rac to transduce membrane signals to control epidermal F-actin through the GTPase RHO-1/RhoA. RHO-1 contributes to epidermal migration through effects on underlying neuroblasts. We identify signals to regulate RHO-1-dependent events in the epidermis. HUM-7, the C. elegans homolog of human MYO9A and MYO9B, regulates F-actin dynamics during epidermal migration. Genetics and biochemistry support that HUM-7 behaves as a GTPase-activating protein (GAP) for the RHO-1/RhoA and CDC-42 GTPases. Loss of HUM-7 enhances RHO-1-dependent epidermal cell behaviors. We identify SAX-3/ROBO as an upstream signal that contributes to attenuated RHO-1 activation through its regulation of HUM-7/Myo9. These studies identify a new role for RHO-1 during epidermal cell migration, and suggest that RHO-1 activity is regulated by SAX-3/ROBO acting on the RhoGAP HUM-7.
Collapse
Affiliation(s)
- Andre G Wallace
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
- School of Natural Sciences, Fairleigh Dickinson University, Teaneck, NJ 07666, USA
| | - Hamidah Raduwan
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - John Carlet
- School of Natural Sciences, Fairleigh Dickinson University, Teaneck, NJ 07666, USA
| | - Martha C Soto
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
10
|
Mouse models of inflammatory bowel disease for investigating mucosal immunity in the intestine. Curr Opin Gastroenterol 2017; 33:411-416. [PMID: 28901966 DOI: 10.1097/mog.0000000000000402] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Currently several mouse models are considered representative of inflammatory bowel disease (IBD). This review presents recent developments regarding the role of animal models of intestinal inflammation as research tools in IBD. RECENT FINDINGS Preclinical studies in animal models of intestinal inflammation have generated novel findings in several areas of IBD research. The combination of chemical and genetically engineered models have revealed protective or harmful roles for various components of the innate immune system in response to acute injury and repair mechanisms for the intestinal mucosa. Advances in the use of endoscopic and radiologic techniques have allowed identification of inflammatory biomarkers and in-vivo monitoring of cell trafficking towards inflammatory sites. Translational research has shed light on pathogenic mechanisms through which recent biological treatments may exert their beneficial effects in patients with IBD. Finally, novel therapies are continuously tested in animal models of IBD as part of preclinical drug development programs. SUMMARY Animal models of intestinal inflammation continue to be important research tools with high significance for understanding the pathogenesis of IBD and exploring novel therapeutic options. Development of additional experimental models that address existing limitations, and more closely resemble the characteristics of Crohn's disease and ulcerative colitis are greatly needed.
Collapse
|
11
|
McMichael BK, Jeong YH, Auerbach JA, Han CM, Sedlar R, Shettigar V, Bähler M, Agarwal S, Kim DG, Lee BS. The RhoGAP Myo9b Promotes Bone Growth by Mediating Osteoblastic Responsiveness to IGF-1. J Bone Miner Res 2017; 32:2103-2115. [PMID: 28585695 DOI: 10.1002/jbmr.3192] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 05/26/2017] [Accepted: 06/05/2017] [Indexed: 12/31/2022]
Abstract
The Ras homolog A (RhoA) subfamily of Rho guanosine triphosphatases (GTPases) regulates actin-based cellular functions in bone such as differentiation, migration, and mechanotransduction. Polymorphisms or genetic ablation of RHOA and some of its regulatory guanine exchange factors (GEFs) have been linked to poor bone health in humans and mice, but the effects of RhoA-specific GTPase-activating proteins (GAPs) on bone quality have not yet been identified. Therefore, we examined the consequences of RhoGAP Myo9b gene knockout on bone growth, phenotype, and cellular activity. Male and female mice lacking both alleles demonstrated growth retardation and decreased bone formation rates during early puberty. These mice had smaller, weaker bones by 4 weeks of age, but only female KOs had altered cellular numbers, with fewer osteoblasts and more osteoclasts. By 12 weeks of age, bone quality in KOs worsened. In contrast, 4-week-old heterozygotes demonstrated bone defects that resolved by 12 weeks of age. Throughout, Myo9b ablation affected females more than males. Osteoclast activity appeared unaffected. In primary osteogenic cells, Myo9b was distributed in stress fibers and focal adhesions, and its absence resulted in poor spreading and eventual detachment from culture dishes. Similarly, MC3T3-E1 preosteoblasts with transiently suppressed Myo9b levels spread poorly and contained decreased numbers of focal adhesions. These cells also demonstrated reduced ability to undergo IGF-1-induced spreading or chemotaxis toward IGF-1, though responses to PDGF and BMP-2 were unaffected. IGF-1 receptor (IGF1R) activation was normal in cells with diminished Myo9b levels, but the activated receptor was redistributed from stress fibers and focal adhesions into nuclei, potentially affecting receptor accessibility and gene expression. These results demonstrate that Myo9b regulates a subset of RhoA-activated processes necessary for IGF-1 responsiveness in osteogenic cells, and is critical for normal bone formation in growing mice. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Yong-Hoon Jeong
- College of Dentistry, The Ohio State University, Columbus, OH, USA
| | | | - Cheol-Min Han
- College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Ryan Sedlar
- College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Vikram Shettigar
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Martin Bähler
- Institut für Molekulare Zellbiologie, Universität Münster, Münster, Germany
| | - Sudha Agarwal
- College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Do-Gyoon Kim
- College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Beth S Lee
- College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
12
|
Lechuga S, Ivanov AI. Disruption of the epithelial barrier during intestinal inflammation: Quest for new molecules and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1183-1194. [PMID: 28322932 DOI: 10.1016/j.bbamcr.2017.03.007] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium forms a key protective barrier that separates internal organs from the harmful environment of the gut lumen. Increased permeability of the gut barrier is a common manifestation of different inflammatory disorders contributing to the severity of disease. Barrier permeability is controlled by epithelial adherens junctions and tight junctions. Junctional assembly and integrity depend on fundamental homeostatic processes such as cell differentiation, rearrangements of the cytoskeleton, and vesicle trafficking. Alterations of intestinal epithelial homeostasis during mucosal inflammation may impair structure and remodeling of apical junctions, resulting in increased permeability of the gut barrier. In this review, we summarize recent advances in our understanding of how altered epithelial homeostasis affects the structure and function of adherens junctions and tight junctions in the inflamed gut. Specifically, we focus on the transcription reprogramming of the cell, alterations in the actin cytoskeleton, and junctional endocytosis and exocytosis. We pay special attention to knockout mouse model studies and discuss the relevance of these mechanisms to human gastrointestinal disorders.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA; Virginia Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
13
|
Zhu J, Fu Q, Ao Q, Tan Y, Luo Y, Jiang H, Li C, Gan X. Transcriptomic profiling analysis of tilapia (Oreochromis niloticus) following Streptococcus agalactiae challenge. FISH & SHELLFISH IMMUNOLOGY 2017; 62:202-212. [PMID: 28111359 DOI: 10.1016/j.fsi.2017.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/11/2017] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
Innate immune system is the primary defense mechanism against pathogen infection in teleost, which are living in pathogen-rich aquatic environment. It has been long hypothesized that the disease resistance in teleost are strongly correlated to the activities of innate immune genes. Tilapia is an important economical fish around the world, especially in China, where the production accounts for nearly half of the global production. Recently, S. agalactiae has become one of the most serious bacterial diseases in southern China, resulted in high cumulative mortality and economic loss to tilapia industry. Therefore, we sought here to characterize the expression profiles of tilapia against S. agalactiae infection at whole transcriptome level by RNA-seq technology. A total of 2822 genes were revealed significantly expressed in tilapia spleen with a general trend of induction. Notably, most of the genes were rapidly the most induced at the early timepoint. The significantly changed genes highlighted the function of pathogen attachment and recognition, antioxidant/apoptosis, cytoskeletal rearrangement, and immune activation. Collectively, the induced expression patterns suggested the strong ability of tilapia to rapidly recognize the invasive bacteria, and activation of downstream immune signaling pathways to clear the bacteria and prevent the tissue damage and bacteria triggered cell apoptosis. Our results heighted important roles of novel candidate genes which were often missed in previous tilapia studies. Further studies are needed to characterize the molecular relationships between key immune genes and disease resistance, and to identify the candidate genes for molecular-assistant selection of disease-resistant broodstock and evaluation of disease prevention and treatment measures.
Collapse
Affiliation(s)
- Jiajie Zhu
- Guangxi Academy of Fishery Sciences, Guangxi Key Lab of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, Guangxi, 530021, China; Guangxi University, Nanning, Guangxi, 530004, China
| | - Qiang Fu
- Guangxi University, Nanning, Guangxi, 530004, China
| | - Qiuwei Ao
- Guangxi Academy of Fishery Sciences, Guangxi Key Lab of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, Guangxi, 530021, China
| | - Yun Tan
- Guangxi Academy of Fishery Sciences, Guangxi Key Lab of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, Guangxi, 530021, China
| | - Yongju Luo
- Guangxi Academy of Fishery Sciences, Guangxi Key Lab of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, Guangxi, 530021, China
| | | | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Xi Gan
- Guangxi Academy of Fishery Sciences, Guangxi Key Lab of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, Guangxi, 530021, China.
| |
Collapse
|
14
|
Abstract
A fundamental function of the intestinal epithelium is to act as a barrier that limits interactions between luminal contents such as the intestinal microbiota, the underlying immune system and the remainder of the body, while supporting vectorial transport of nutrients, water and waste products. Epithelial barrier function requires a contiguous layer of cells as well as the junctions that seal the paracellular space between epithelial cells. Compromised intestinal barrier function has been associated with a number of disease states, both intestinal and systemic. Unfortunately, most current clinical data are correlative, making it difficult to separate cause from effect in interpreting the importance of barrier loss. Some data from experimental animal models suggest that compromised epithelial integrity might have a pathogenic role in specific gastrointestinal diseases, but no FDA-approved agents that target the epithelial barrier are presently available. To develop such therapies, a deeper understanding of both disease pathogenesis and mechanisms of barrier regulation must be reached. Here, we review and discuss mechanisms of intestinal barrier loss and the role of intestinal epithelial barrier function in pathogenesis of both intestinal and systemic diseases. We conclude with a discussion of potential strategies to restore the epithelial barrier.
Collapse
Affiliation(s)
- Matthew A Odenwald
- Department of Pathology, The University of Chicago, 5841 South Maryland, Chicago, Illinois 60637, USA
| | - Jerrold R Turner
- Department of Pathology, The University of Chicago, 5841 South Maryland, Chicago, Illinois 60637, USA
- Departments of Pathology and Medicine (Gastroenterology), Brigham and Women's Hospital and Harvard Medical School, 20 Shattuck Street, Thorn 1428, Boston, Massachusetts 02115, USA
| |
Collapse
|