1
|
Teertam SK, Setaluri V, Ayuso JM. Advances in Microengineered Platforms for Skin Research. JID INNOVATIONS 2025; 5:100315. [PMID: 39525704 PMCID: PMC11550131 DOI: 10.1016/j.xjidi.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024] Open
Abstract
The skin plays a critical role in human physiology, acting both as a barrier to environmental insults and as a window to environmental stimuli. Disruption of this homeostasis leads to numerous skin disorders. Human and animal skin differ significantly, limiting the translational potential of animal-based investigations to advance therapeutics to human skin diseases. Hence, there is a critical need for physiologically relevant human skin models to explore novel treatment strategies. Recent advances in microfluidic technologies now allow design and generation of organ-on-chip devices that mimic critical features of tissue architecture. Skin-on-a-chip and microfluidic platforms hold promise as useful models for diverse dermatology applications. Compared with traditional in vitro models, microfluidic platforms offer improved control of fluid flow, which in turn allows precise manipulation of cell and molecular distribution. These properties enable the generation of multilayered in vitro models that mimic human skin structure while simultaneously offering superior control over nutrient and drug distribution. Researchers have used microfluidic platforms for a variety of applications in skin research, including epidermal-dermal cellular crosstalk, cell migration, mechanobiology, microbiome-immune response interactions, vascular biology, and wound healing. In this review, we comprehensively review state-of-the-art microfluidic models for skin research. We discuss the challenges and promise of current skin-on-a-chip technologies and provide a roadmap for future research in this active field.
Collapse
Affiliation(s)
- Sireesh Kumar Teertam
- Department of Dermatology, University of Wisconsin-Madison, Wisconsin, USA
- UW Carbone Cancer Center, Madison, Wisconsin, USA
| | - Vijayasaradhi Setaluri
- Department of Dermatology, University of Wisconsin-Madison, Wisconsin, USA
- UW Carbone Cancer Center, Madison, Wisconsin, USA
- William S. Middleton Memorial VA Hospital. Madison, Wisconsin, USA
| | - Jose M. Ayuso
- Department of Dermatology, University of Wisconsin-Madison, Wisconsin, USA
- UW Carbone Cancer Center, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Wisconsin, USA
| |
Collapse
|
2
|
Jang Y, Lee D, Oh J. Fast Autograft Generation Using Transferable 3D Keratinocyte Cell Sheet on PEDOT:PSS Composite PDMS Membrane for Enhancing Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406529. [PMID: 39588867 DOI: 10.1002/smll.202406529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/20/2024] [Indexed: 11/27/2024]
Abstract
The application of cell sheet technology for wound healing preserves dense cell tissue and the natural extracellular matrix (ECM), contributing to disease prevention. Despite the effectiveness of autologous and allograft cell sheets for wound healing, conventional cell sheets, although stable, may experience necrosis in their middle layers due to a lack of nutrients or oxygen. To address these issues, a novel approach is proposed to create cell sheets using mechanical and electrical stimulation. This method not only facilitates the transfer of cell sheets but also enhances cell bioactivity. The performance of the proposed membrane, with a mechanically controlled microstructure under electrical stimulation, is validated in both in vitro and in vivo models. The micro-structured membrane allows for diverse electrical stimulation compared to flat membranes, which accelerates the detachment of cell sheets and promotes angiogenesis and re-epithelialization. These findings indicate that the innovative cell sheet technology could significantly enhance rapid wound healing in regenerative medicine.
Collapse
Affiliation(s)
- Yeongseok Jang
- Department of Mechanical Design Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Dongwon Lee
- Department of Polymer Nano Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Jonghyun Oh
- Department of Nano-Bio Mechanical System Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
3
|
Ismayilzada N, Tarar C, Dabbagh SR, Tokyay BK, Dilmani SA, Sokullu E, Abaci HE, Tasoglu S. Skin-on-a-chip technologies towards clinical translation and commercialization. Biofabrication 2024; 16:042001. [PMID: 38964314 DOI: 10.1088/1758-5090/ad5f55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Skin is the largest organ of the human body which plays a critical role in thermoregulation, metabolism (e.g. synthesis of vitamin D), and protection of other organs from environmental threats, such as infections, microorganisms, ultraviolet radiation, and physical damage. Even though skin diseases are considered to be less fatal, the ubiquity of skin diseases and irritation caused by them highlights the importance of skin studies. Furthermore, skin is a promising means for transdermal drug delivery, which requires a thorough understanding of human skin structure. Current animal andin vitrotwo/three-dimensional skin models provide a platform for disease studies and drug testing, whereas they face challenges in the complete recapitulation of the dynamic and complex structure of actual skin tissue. One of the most effective methods for testing pharmaceuticals and modeling skin diseases are skin-on-a-chip (SoC) platforms. SoC technologies provide a non-invasive approach for examining 3D skin layers and artificially creating disease models in order to develop diagnostic or therapeutic methods. In addition, SoC models enable dynamic perfusion of culture medium with nutrients and facilitate the continuous removal of cellular waste to further mimic thein vivocondition. Here, the article reviews the most recent advances in the design and applications of SoC platforms for disease modeling as well as the analysis of drugs and cosmetics. By examining the contributions of different patents to the physiological relevance of skin models, the review underscores the significant shift towards more ethical and efficient alternatives to animal testing. Furthermore, it explores the market dynamics ofin vitroskin models and organ-on-a-chip platforms, discussing the impact of legislative changes and market demand on the development and adoption of these advanced research tools. This article also identifies the existing obstacles that hinder the advancement of SoC platforms, proposing directions for future improvements, particularly focusing on the journey towards clinical adoption.
Collapse
Affiliation(s)
- Nilufar Ismayilzada
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | - Ceren Tarar
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | | | - Begüm Kübra Tokyay
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Sara Asghari Dilmani
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Emel Sokullu
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University, New York City, NY, United States of America
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Turkey
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Turkey
| |
Collapse
|
4
|
Jang HJ, Lee JB, Yoon JK. Advanced In Vitro Three-Dimensional Skin Models of Atopic Dermatitis. Tissue Eng Regen Med 2023; 20:539-552. [PMID: 36995643 PMCID: PMC10313606 DOI: 10.1007/s13770-023-00532-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/11/2023] [Accepted: 02/19/2023] [Indexed: 03/31/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most prevalent inflammatory skin diseases that is characterized by eczematous rashes, intense itching, dry skin, and sensitive skin. Although AD significantly impacts the quality of life and the number of patients keeps increasing, its pathological mechanism is still unknown because of its complexity. The importance of developing new in vitro three-dimensional (3D) models has been underlined in order to understand the mechanisms for the development of therapeutics since the limitations of 2D models or animal models have been repeatedly reported. Thus, the new in vitro AD models should not only be created in 3D structure, but also reflect the pathological characteristics of AD, which are known to be associated with Th2-mediated inflammatory responses, epidermal barrier disruption, increased dermal T-cell infiltration, filaggrin down-regulation, or microbial imbalance. In this review, we introduce various types of in vitro skin models including 3D culture methods, skin-on-a-chips, and skin organoids, as well as their applications to AD modeling for drug screening and mechanistic studies.
Collapse
Affiliation(s)
- Hye-Jeong Jang
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Jung Bok Lee
- Department of Biological Sciences, Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| |
Collapse
|
5
|
Shaner S, Savelyeva A, Kvartuh A, Jedrusik N, Matter L, Leal J, Asplund M. Bioelectronic microfluidic wound healing: a platform for investigating direct current stimulation of injured cell collectives. LAB ON A CHIP 2023; 23:1531-1546. [PMID: 36723025 PMCID: PMC10013350 DOI: 10.1039/d2lc01045c] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Upon cutaneous injury, the human body naturally forms an electric field (EF) that acts as a guidance cue for relevant cellular and tissue repair and reorganization. However, the direct current (DC) flow imparted by this EF can be impacted by a variety of diseases. This work delves into the impact of DC stimulation on both healthy and diabetic in vitro wound healing models of human keratinocytes, the most prevalent cell type of the skin. The culmination of non-metal electrode materials and prudent microfluidic design allowed us to create a compact bioelectronic platform to study the effects of different sustained (12 hours galvanostatic DC) EF configurations on wound closure dynamics. Specifically, we compared if electrotactically closing a wound's gap from one wound edge (i.e., uni-directional EF) is as effective as compared to alternatingly polarizing both the wound's edges (i.e., pseudo-converging EF) as both of these spatial stimulation strategies are fundamental to the eventual translational electrode design and strategy. We found that uni-directional electric guidance cues were superior in group keratinocyte healing dynamics by enhancing the wound closure rate nearly three-fold for both healthy and diabetic-like keratinocyte collectives, compared to their non-stimulated respective controls. The motility-inhibited and diabetic-like keratinocytes regained wound closure rates with uni-directional electrical stimulation (increase from 1.0 to 2.8% h-1) comparable to their healthy non-stimulated keratinocyte counterparts (3.5% h-1). Our results bring hope that electrical stimulation delivered in a controlled manner can be a viable pathway to accelerate wound repair, and also by providing a baseline for other researchers trying to find an optimal electrode blueprint for in vivo DC stimulation.
Collapse
Affiliation(s)
- Sebastian Shaner
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
- Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110, Freiburg, Germany.
| | - Anna Savelyeva
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
- Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110, Freiburg, Germany.
| | - Anja Kvartuh
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
| | - Nicole Jedrusik
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
- Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110, Freiburg, Germany.
| | - Lukas Matter
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
| | - José Leal
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
- Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110, Freiburg, Germany.
| | - Maria Asplund
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
- Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110, Freiburg, Germany.
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstr. 19, 79104, Freiburg, Germany
- Division of Nursing and Medical Technology, Luleå University of Technology, 971 87, Luleå, Sweden
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Kemivägen 9, 412 58, Gothenburg, Sweden.
| |
Collapse
|
6
|
Dhall A, Tan JY, Oh MJ, Islam S, Kim J, Kim A, Hwang G. A dental implant-on-a-chip for 3D modeling of host-material-pathogen interactions and therapeutic testing platforms. LAB ON A CHIP 2022; 22:4905-4916. [PMID: 36382363 PMCID: PMC9732915 DOI: 10.1039/d2lc00774f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The precise spatiotemporal control and manipulation of fluid dynamics on a small scale granted by lab-on-a-chip devices provide a new biomedical research realm as a substitute for in vivo studies of host-pathogen interactions. While there has been a rise in the use of various medical devices/implants for human use, the applicability of microfluidic models that integrate such functional biomaterials is currently limited. Here, we introduced a novel dental implant-on-a-chip model to better understand host-material-pathogen interactions in the context of peri-implant diseases. The implant-on-a-chip integrates gingival cells with relevant biomaterials - keratinocytes with dental resin and fibroblasts with titanium while maintaining a spatially separated co-culture. To enable this co-culture, the implant-on-a-chip's core structure necessitates closely spaced, tall microtrenches. Thus, an SU-8 master mold with a high aspect-ratio pillar array was created by employing a unique backside UV exposure with a selective optical filter. With this model, we successfully replicated the morphology of keratinocytes and fibroblasts in the vicinity of dental implant biomaterials. Furthermore, we demonstrated how photobiomodulation therapy might be used to protect the epithelial layer from recurrent bacterial challenges (∼3.5-fold reduction in cellular damage vs. control). Overall, our dental implant-on-a-chip approach proposes a new microfluidic model for multiplexed host-material-pathogen investigations and the evaluation of novel treatment strategies for infectious diseases.
Collapse
Affiliation(s)
- Atul Dhall
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jun Ying Tan
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Min Jun Oh
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sayemul Islam
- Department of Electrical and Computer Engineering, Temple University, Philadelphia, PA 19122, USA
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA.
| | - Jungkwun Kim
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
- Department of Electrical Engineering, University of North Texas, Denton, TX 76203, USA.
| | - Albert Kim
- Department of Electrical and Computer Engineering, Temple University, Philadelphia, PA 19122, USA
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA.
| | - Geelsu Hwang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Modeling an Optimal 3D Skin-on-Chip within Microfluidic Devices for Pharmacological Studies. Pharmaceutics 2022; 14:pharmaceutics14071417. [PMID: 35890312 PMCID: PMC9316928 DOI: 10.3390/pharmaceutics14071417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Preclinical research remains hampered by an inadequate representation of human tissue environments which results in inaccurate predictions of a drug candidate’s effects and target’s suitability. While human 2D and 3D cell cultures and organoids have been extensively improved to mimic the precise structure and function of human tissues, major challenges persist since only few of these models adequately represent the complexity of human tissues. The development of skin-on-chip technology has allowed the transition from static 3D cultures to dynamic 3D cultures resembling human physiology. The integration of vasculature, immune system, or the resident microbiome in the next generation of SoC, with continuous detection of changes in metabolism, would potentially overcome the current limitations, providing reliable and robust results and mimicking the complex human skin. This review aims to provide an overview of the biological skin constituents and mechanical requirements that should be incorporated in a human skin-on-chip, permitting pharmacological, toxicological, and cosmetic tests closer to reality.
Collapse
|
8
|
Zoio P, Oliva A. Skin-on-a-Chip Technology: Microengineering Physiologically Relevant In Vitro Skin Models. Pharmaceutics 2022; 14:pharmaceutics14030682. [PMID: 35336056 PMCID: PMC8955316 DOI: 10.3390/pharmaceutics14030682] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
The increased demand for physiologically relevant in vitro human skin models for testing pharmaceutical drugs has led to significant advancements in skin engineering. One of the most promising approaches is the use of in vitro microfluidic systems to generate advanced skin models, commonly known as skin-on-a-chip (SoC) devices. These devices allow the simulation of key mechanical, functional and structural features of the human skin, better mimicking the native microenvironment. Importantly, contrary to conventional cell culture techniques, SoC devices can perfuse the skin tissue, either by the inclusion of perfusable lumens or by the use of microfluidic channels acting as engineered vasculature. Moreover, integrating sensors on the SoC device allows real-time, non-destructive monitoring of skin function and the effect of topically and systemically applied drugs. In this Review, the major challenges and key prerequisites for the creation of physiologically relevant SoC devices for drug testing are considered. Technical (e.g., SoC fabrication and sensor integration) and biological (e.g., cell sourcing and scaffold materials) aspects are discussed. Recent advancements in SoC devices are here presented, and their main achievements and drawbacks are compared and discussed. Finally, this review highlights the current challenges that need to be overcome for the clinical translation of SoC devices.
Collapse
Affiliation(s)
- Patrícia Zoio
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal;
| | - Abel Oliva
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal;
- Instituto de Biologia Experimental e Tecnológica (IBET), 2781-901 Oeiras, Portugal
- Correspondence:
| |
Collapse
|
9
|
Sutterby E, Thurgood P, Baratchi S, Khoshmanesh K, Pirogova E. Evaluation of in vitro human skin models for studying effects of external stressors and stimuli and developing treatment modalities. VIEW 2022. [DOI: 10.1002/viw.20210012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Emily Sutterby
- School of Engineering RMIT University Melbourne Victoria Australia
| | - Peter Thurgood
- School of Engineering RMIT University Melbourne Victoria Australia
| | - Sara Baratchi
- School of Health and Biomedical Sciences RMIT University Bundoora Victoria Australia
| | | | - Elena Pirogova
- School of Engineering RMIT University Melbourne Victoria Australia
| |
Collapse
|
10
|
Han J, Zhang H, Li N, Aziz AUR, Zhang Z, Liu B. The raft cytoskeleton binding protein complexes personate functional regulators in cell behaviors. Acta Histochem 2022; 124:151859. [PMID: 35123353 DOI: 10.1016/j.acthis.2022.151859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 12/08/2022]
Abstract
Several cytoskeleton proteins interact with raft proteins to form raft-cytoskeleton binding protein complexes (RCPCs) that control cell migration and adhesion. The purpose of this paper is to review the latest research on the modes and mechanisms by which a RCPC controls different cellular functions. This paper discusses RCPC composition and its role in cytoskeleton reorganization, as well as the latest developments in molecular mechanisms that regulate cell adhesion and migration under normal conditions. In addition, the role of some external stimuli (such as stress and chemical signals) in this process is further debated, and meanwhile potential mechanisms for RCPC to regulate lipid raft fluidity is proposed. Thus, this review mainly contributes to the understanding of RCPC signal transduction in cells. Additionally, the targeted signal transduction of RCPC and its mechanism connection with cell behaviors will provide a logical basis for the development of unified interventions to combat metastasis related dysfunction and diseases.
Collapse
Affiliation(s)
- Jinxin Han
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China
| | - Na Li
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China
| | - Zhengyao Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China.
| |
Collapse
|
11
|
Ponmozhi J, Dhinakaran S, Varga-Medveczky Z, Fónagy K, Bors LA, Iván K, Erdő F. Development of Skin-On-A-Chip Platforms for Different Utilizations: Factors to Be Considered. MICROMACHINES 2021; 12:mi12030294. [PMID: 33802208 PMCID: PMC8001759 DOI: 10.3390/mi12030294] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
There is increasing interest in miniaturized technologies in diagnostics, therapeutic testing, and biomedicinal fundamental research. The same is true for the dermal studies in topical drug development, dermatological disease pathology testing, and cosmetic science. This review aims to collect the recent scientific literature and knowledge about the application of skin-on-a-chip technology in drug diffusion studies, in pharmacological and toxicological experiments, in wound healing, and in fields of cosmetic science (ageing or repair). The basic mathematical models are also presented in the article to predict physical phenomena, such as fluid movement, drug diffusion, and heat transfer taking place across the dermal layers in the chip using Computational Fluid Dynamics techniques. Soon, it can be envisioned that animal studies might be at least in part replaced with skin-on-a-chip technology leading to more reliable results close to study on humans. The new technology is a cost-effective alternative to traditional methods used in research institutes, university labs, and industry. With this article, the authors would like to call attention to a new investigational family of platforms to refresh the researchers’ theranostics and preclinical, experimental toolbox.
Collapse
Affiliation(s)
- J. Ponmozhi
- Microfluidics Laboratory, Department of Mechanical Engineering, IPS Academy-Institute of Engineering Science, Indore 452012, India;
| | - S. Dhinakaran
- The Centre for Fluid Dynamics, Department of Mechanical Engineering, Indian Institute of Technology Indore, Indore 453552, India;
| | - Zsófia Varga-Medveczky
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
| | - Katalin Fónagy
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
| | - Luca Anna Bors
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
- Heart and Vascular Centre, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary
| | - Kristóf Iván
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
- Correspondence:
| |
Collapse
|
12
|
Sutterby E, Thurgood P, Baratchi S, Khoshmanesh K, Pirogova E. Microfluidic Skin-on-a-Chip Models: Toward Biomimetic Artificial Skin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002515. [PMID: 33460277 DOI: 10.1002/smll.202002515] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/29/2020] [Indexed: 06/12/2023]
Abstract
The role of skin in the human body is indispensable, serving as a barrier, moderating homeostatic balance, and representing a pronounced endpoint for cosmetics and pharmaceuticals. Despite the extensive achievements of in vitro skin models, they do not recapitulate the complexity of human skin; thus, there remains a dependence on animal models during preclinical drug trials, resulting in expensive drug development with high failure rates. By imparting a fine control over the microenvironment and inducing relevant mechanical cues, skin-on-a-chip (SoC) models have circumvented the limitations of conventional cell studies. Enhanced barrier properties, vascularization, and improved phenotypic differentiation have been achieved by SoC models; however, the successful inclusion of appendages such as hair follicles and sweat glands and pigmentation relevance have yet to be realized. The present Review collates the progress of SoC platforms with a focus on their fabrication and the incorporation of mechanical cues, sensors, and blood vessels.
Collapse
Affiliation(s)
- Emily Sutterby
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Peter Thurgood
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Sara Baratchi
- School of Health and Medical Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | | | - Elena Pirogova
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
13
|
An S, Han SY, Cho SW. Hydrogel-integrated Microfluidic Systems for Advanced Stem Cell Engineering. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-019-3402-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Abstract
The biotensegrity view of the living is a theoretical model and there is no mathematical study in vitro or in vivo that demonstrates its validity, taking into account the presence of liquids (blood, lymph, water), the tension produced by nerves and blood vessels, just as the displacement of the viscera and their resistances and contractions are not taken into consideration. The concept of cellular transduction is reviewed as it is the key to understanding if the passage of different mechanical information occurs only through solid structures, such as the cytoskeleton, or even liquid and viscous. The article focuses on reviewing the weaknesses of the biotensegrity model in the light of new scientific information, trying to coin another term that better reflects the dynamics of living: fascintegrity.
Collapse
Affiliation(s)
- Bruno Bordoni
- Cardiology, Foundation Don Carlo Gnocchi, Milan, ITA
| | - Matthew A Varacallo
- Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, USA
| | - Bruno Morabito
- Osteopathy, School of Osteopathic Centre for Research and Studies, Milan, ITA
| | | |
Collapse
|