1
|
Curtis BN, Gladfelter AS. Drivers of Morphogenesis: Curvature Sensor Self-Assembly at the Membrane. Cold Spring Harb Perspect Biol 2024; 16:a041528. [PMID: 38697653 PMCID: PMC11610757 DOI: 10.1101/cshperspect.a041528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
This review examines the relationships between membrane chemistry, curvature-sensing proteins, and cellular morphogenesis. Curvature-sensing proteins are often orders of magnitude smaller than the membrane curvatures they localize to. How are nanometer-scale proteins used to sense micrometer-scale membrane features? Here, we trace the journey of curvature-sensing proteins as they engage with lipid membranes through a combination of electrostatic and hydrophobic interactions. We discuss how curvature sensing hinges on membrane features like lipid charge, packing, and the directionality of membrane curvature. Once bound to the membrane, many curvature sensors undergo self-assembly (i.e., they oligomerize or form higher-order assemblies that are key for initiating and regulating cell shape transformations). Central to these discussions are the micrometer-scale curvature-sensing proteins' septins. By discussing recent literature surrounding septin membrane association, assembly, and their many functions in morphogenesis with support from other well-studied curvature sensors, we aim to synthesize possible mechanisms underlining cell shape sensing.
Collapse
Affiliation(s)
- Brandy N Curtis
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Cell Biology, Duke University, Durham, North Carolina 27708, USA
| | - Amy S Gladfelter
- Department of Cell Biology, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
2
|
Schampera JN, Schwan C. Septin dynamics and organization in mammalian cells. Curr Opin Cell Biol 2024; 91:102442. [PMID: 39509956 DOI: 10.1016/j.ceb.2024.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024]
Abstract
Septins are involved in many important cellular processes, and septin dysfunction has been implicated in various pathologies, such as cancer. Like other components of the cytoskeleton -F-actin, microtubules, and intermediate filaments-septins can self-assemble into filaments and higher-order structures. These non-polar filaments are assembled from complex and variable multimeric building blocks. Septins exhibit a distinct preference for interacting with actin and microtubule structures, particularly at the interface with cellular membrane. Although they are crucial for many vital cellular functions and are frequently observed at prominent cellular structures like stress fibers, cilia, and neuronal processes, our understanding of the regulation of septin filament dynamics and the organized assembly of higher-order structures remains limited. However, recent insights into the architecture of septin filaments, the structure of crucial septin domains, and their interactions with other cellular components (F-actin, microtubules, membranes) and regulatory proteins may now pave the way for rapid progress.
Collapse
Affiliation(s)
- Janik N Schampera
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Carsten Schwan
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
3
|
Singh D, Liu Y, Zhu YH, Zhang S, Naegele S, Wu JQ. Septins function in exocytosis via physical interactions with the exocyst complex in fission yeast cytokinesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602728. [PMID: 39026698 PMCID: PMC11257574 DOI: 10.1101/2024.07.09.602728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Septins can function as scaffolds for protein recruitment, membrane-bound diffusion barriers, or membrane curvature sensors. Septins are important for cytokinesis, but their exact roles are still obscure. In fission yeast, four septins (Spn1 to Spn4) accumulate at the rim of the division plane as rings. The octameric exocyst complex, which tethers exocytic vesicles to the plasma membrane, exhibits a similar localization and is essential for plasma membrane deposition during cytokinesis. Without septins, the exocyst spreads across the division plane but absent from the rim during septum formation. These results suggest that septins and the exocyst physically interact for proper localization. Indeed, we predicted six pairs of direct interactions between septin and exocyst subunits by AlphaFold2 ColabFold, most of them are confirmed by co-immunoprecipitation and yeast two-hybrid assays. Exocyst mislocalization results in mistargeting of secretory vesicles and their cargos, which leads to cell-separation delay in septin mutants. Our results indicate that septins guide the targeting of exocyst complex on the plasma membrane for vesicle tethering during cytokinesis through direct physical interactions.
Collapse
Affiliation(s)
- Davinder Singh
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States
| | - Yajun Liu
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States
| | - Yi-Hua Zhu
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States
| | - Sha Zhang
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States
| | - Shelby Naegele
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
4
|
Xu Y, Ding K, Peng T. Chemical Proteomics Reveals N ε-Fatty-Acylation of Septins by Rho Inactivation Domain (RID) of the Vibrio MARTX Toxin to Alter Septin Localization and Organization. Mol Cell Proteomics 2024; 23:100730. [PMID: 38311109 PMCID: PMC10924143 DOI: 10.1016/j.mcpro.2024.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024] Open
Abstract
Vibrio species, the Gram-negative bacterial pathogens causing cholera and sepsis, produce multiple secreted virulence factors for infection and pathogenesis. Among these is the multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin that releases several critical effector domains with distinct functions inside eukaryotic host cells. One such effector domain, the Rho inactivation domain (RID), has been discovered to catalyze long-chain Nε-fatty-acylation on lysine residues of Rho GTPases, causing inactivation of Rho GTPases and disruption of the host actin cytoskeleton. However, whether RID modifies other host proteins to exert additional functions remains to be determined. Herein, we describe the integration of bioorthogonal chemical labeling and quantitative proteomics to globally profile the target proteins modified by RID in living cells. More than 246 proteins are identified as new RID substrates, including many involved in GTPase regulation, cytoskeletal organization, and cell division. We demonstrate that RID extensively Nε-fatty-acylates septin proteins, the fourth cytoskeletal component of mammalian cells with important roles in diverse cellular processes. While affinity purification and mass spectrometry analysis show that RID-mediated Nε-fatty-acylation does not affect septin-septin interactions, this modification increases the membrane association of septins and confers localization to detergent-resistant membrane rafts. As a result, the filamentous assembly and organization of septins are disrupted by RID-mediated Nε-fatty-acylation, further contributing to cytoskeletal and mitotic defects that phenocopy the effects of septin depletion. Overall, our work greatly expands the substrate scope and function of RID and demonstrates the role of RID-mediated Nε-fatty-acylation in manipulating septin localization and organization.
Collapse
Affiliation(s)
- Yaxin Xu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Ke Ding
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China; Shenzhen Bay Laboratory, Institute of Chemical Biology, Shenzhen, China.
| |
Collapse
|
5
|
Gomila Pelegri N, Stanczak AM, Bottomley AL, Cummins ML, Milthorpe BK, Gorrie CA, Padula MP, Santos J. Neural Marker Expression in Adipose-Derived Stem Cells Grown in PEG-Based 3D Matrix Is Enhanced in the Presence of B27 and CultureOne Supplements. Int J Mol Sci 2023; 24:16269. [PMID: 38003460 PMCID: PMC10671562 DOI: 10.3390/ijms242216269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) have incredible potential as an avenue to better understand and treat neurological disorders. While they have been successfully differentiated into neural stem cells and neurons, most such protocols involve 2D environments, which are not representative of in vivo physiology. In this study, human ADSCs were cultured in 1.1 kPa polyethylene-glycol 3D hydrogels for 10 days with B27, CultureOne (C1), and N2 neural supplements to examine the neural differentiation potential of ADSCs using both chemical and mechanical cues. Following treatment, cell viability, proliferation, morphology, and proteome changes were assessed. Results showed that cell viability was maintained during treatments, and while cells continued to proliferate over time, proliferation slowed down. Morphological changes between 3D untreated cells and treated cells were not observed. However, they were observed among 2D treatments, which exhibited cellular elongation and co-alignment. Proteome analysis showed changes consistent with early neural differentiation for B27 and C1 but not N2. No significant changes were detected using immunocytochemistry, potentially indicating a greater differentiation period was required. In conclusion, treatment of 3D-cultured ADSCs in PEG-based hydrogels with B27 and C1 further enhances neural marker expression, however, this was not observed using supplementation with N2.
Collapse
Affiliation(s)
- Neus Gomila Pelegri
- Advanced Tissue Engineering and Stem Cell Biology Group, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (N.G.P.); (B.K.M.)
- Neural Injury Research Unit, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Aleksandra M. Stanczak
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (A.M.S.); (M.P.P.)
| | - Amy L. Bottomley
- Microbial Imaging Facility, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Max L. Cummins
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia;
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Bruce K. Milthorpe
- Advanced Tissue Engineering and Stem Cell Biology Group, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (N.G.P.); (B.K.M.)
| | - Catherine A. Gorrie
- Neural Injury Research Unit, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Matthew P. Padula
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (A.M.S.); (M.P.P.)
| | - Jerran Santos
- Advanced Tissue Engineering and Stem Cell Biology Group, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (N.G.P.); (B.K.M.)
| |
Collapse
|
6
|
Rodríguez-Vega A, Dutra-Tavares AC, Souza TP, Semeão KA, Filgueiras CC, Ribeiro-Carvalho A, Manhães AC, Abreu-Villaça Y. Nicotine Exposure in a Phencyclidine-Induced Mice Model of Schizophrenia: Sex-Selective Medial Prefrontal Cortex Protein Markers of the Combined Insults in Adolescent Mice. Int J Mol Sci 2023; 24:14634. [PMID: 37834084 PMCID: PMC10572990 DOI: 10.3390/ijms241914634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Tobacco misuse as a comorbidity of schizophrenia is frequently established during adolescence. However, comorbidity markers are still missing. Here, the method of label-free proteomics was used to identify deregulated proteins in the medial prefrontal cortex (prelimbic and infralimbic) of male and female mice modelled to schizophrenia with a history of nicotine exposure during adolescence. Phencyclidine (PCP), used to model schizophrenia (SCHZ), was combined with an established model of nicotine minipump infusions (NIC). The combined insults led to worse outcomes than each insult separately when considering the absolute number of deregulated proteins and that of exclusively deregulated ones. Partially shared Reactome pathways between sexes and between PCP, NIC and PCPNIC groups indicate functional overlaps. Distinctively, proteins differentially expressed exclusively in PCPNIC mice reveal unique effects associated with the comorbidity model. Interactome maps of these proteins identified sex-selective subnetworks, within which some proteins stood out: for females, peptidyl-prolyl cis-trans isomerase (Fkbp1a) and heat shock 70 kDa protein 1B (Hspa1b), both components of the oxidative stress subnetwork, and gamma-enolase (Eno2), a component of the energy metabolism subnetwork; and for males, amphiphysin (Amph), a component of the synaptic transmission subnetwork. These are proposed to be further investigated and validated as markers of the combined insult during adolescence.
Collapse
Affiliation(s)
- Andrés Rodríguez-Vega
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Ana Carolina Dutra-Tavares
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Thainá P. Souza
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Keila A. Semeão
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Claudio C. Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo 24435-005, RJ, Brazil;
| | - Alex C. Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| |
Collapse
|
7
|
Sharma K, Menon MB. Decoding post-translational modifications of mammalian septins. Cytoskeleton (Hoboken) 2023; 80:169-181. [PMID: 36797225 DOI: 10.1002/cm.21747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/21/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
Septins are cytoskeletal GTPases that form nonpolar filaments and higher-ordered structures and they take part in a wide range of cellular processes. Septins are conserved from yeast to mammals but absent from higher plants. The number of septin genes vary between organisms and they usually form complex heteropolymeric networks. Most septins are known to be capable of GTP hydrolysis which may regulate septin dynamics. Knowledge on regulation of septin function by post-translational modifications is still in its infancy. In this review article, we highlight the post-translational modifications reported for the 13 human septins and discuss their implications on septin functions. In addition to the functionally investigated modifications, we also try to make sense of the complex septin post-translational modification code revealed from large-scale phospho-proteomic datasets. Future studies may determine how these isoform-specific and homology group specific modifications affect septin structure and function.
Collapse
Affiliation(s)
- Khushboo Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Manoj B Menon
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
8
|
Mostowy S, Bertin A, Ewers H. Introduction to the Special Issue of Cytoskeleton on the molecular and cell biology of septins. Cytoskeleton (Hoboken) 2023; 80:139-140. [PMID: 37278438 DOI: 10.1002/cm.21764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Affiliation(s)
- Serge Mostowy
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Aurelie Bertin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Helge Ewers
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
9
|
Grupp B, Gronemeyer T. A biochemical view on the septins, a less known component of the cytoskeleton. Biol Chem 2023; 404:1-13. [PMID: 36423333 DOI: 10.1515/hsz-2022-0263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/30/2022] [Indexed: 11/25/2022]
Abstract
The septins are a conserved family of guanine nucleotide binding proteins, often named the fourth component of the cytoskeleton. They self-assemble into non-polar filaments and further into higher ordered structures. Properly assembled septin structures are required for a wide range of indispensable intracellular processes such as cytokinesis, vesicular transport, polarity establishment and cellular adhesion. Septins belong structurally to the P-Loop NTPases. However, unlike the small GTPases like Ras, septins do not mediate signals to effectors through GTP binding and hydrolysis. The role of nucleotide binding and subsequent GTP hydrolysis by the septins is rather controversially debated. We compile here the structural features from the existing septin crystal- and cryo-EM structures regarding protofilament formation, inter-subunit interface architecture and nucleotide binding and hydrolysis. These findings are supplemented with a summary of available biochemical studies providing information regarding nucleotide binding and hydrolysis of fungal and mammalian septins.
Collapse
Affiliation(s)
- Benjamin Grupp
- Institute of Molecular Genetics and Cell Biology, Ulm University, James Franck Ring N27, 89081 Ulm, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, Ulm University, James Franck Ring N27, 89081 Ulm, Germany
| |
Collapse
|