1
|
Wang Q, Xu Y, Zhao S, Jiang Y, Yi R, Guo Y, Huang S. Activation of actin-depolymerizing factor by CDPK16-mediated phosphorylation promotes actin turnover in Arabidopsis pollen tubes. PLoS Biol 2023; 21:e3002073. [PMID: 37011088 PMCID: PMC10101649 DOI: 10.1371/journal.pbio.3002073] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/13/2023] [Accepted: 03/11/2023] [Indexed: 04/05/2023] Open
Abstract
As the stimulus-responsive mediator of actin dynamics, actin-depolymerizing factor (ADF)/cofilin is subject to tight regulation. It is well known that kinase-mediated phosphorylation inactivates ADF/cofilin. Here, however, we found that the activity of Arabidopsis ADF7 is enhanced by CDPK16-mediated phosphorylation. We found that CDPK16 interacts with ADF7 both in vitro and in vivo, and it enhances ADF7-mediated actin depolymerization and severing in vitro in a calcium-dependent manner. Accordingly, the rate of actin turnover is reduced in cdpk16 pollen and the amount of actin filaments increases significantly at the tip of cdpk16 pollen tubes. CDPK16 phosphorylates ADF7 at Serine128 both in vitro and in vivo, and the phospho-mimetic mutant ADF7S128D has enhanced actin-depolymerizing activity compared to ADF7. Strikingly, we found that failure in the phosphorylation of ADF7 at Ser128 impairs its function in promoting actin turnover in vivo, which suggests that this phospho-regulation mechanism is biologically significant. Thus, we reveal that CDPK16-mediated phosphorylation up-regulates ADF7 to promote actin turnover in pollen.
Collapse
Affiliation(s)
- Qiannan Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanan Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuangshuang Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan, China
| | - Yuxiang Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ran Yi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Qian D, Xiang Y. Actin Cytoskeleton as Actor in Upstream and Downstream of Calcium Signaling in Plant Cells. Int J Mol Sci 2019; 20:ijms20061403. [PMID: 30897737 PMCID: PMC6471457 DOI: 10.3390/ijms20061403] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/04/2023] Open
Abstract
In plant cells, calcium (Ca2+) serves as a versatile intracellular messenger, participating in several fundamental and important biological processes. Recent studies have shown that the actin cytoskeleton is not only an upstream regulator of Ca2+ signaling, but also a downstream regulator. Ca2+ has been shown to regulates actin dynamics and rearrangements via different mechanisms in plants, and on this basis, the upstream signaling encoded within the Ca2+ transient can be decoded. Moreover, actin dynamics have also been proposed to act as an upstream of Ca2+, adjust Ca2+ oscillations, and establish cytosolic Ca2+ ([Ca2+]cyt) gradients in plant cells. In the current review, we focus on the advances in uncovering the relationship between the actin cytoskeleton and calcium in plant cells and summarize our current understanding of this relationship.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
3
|
Wang B, Zhang Y, Bi Z, Liu Q, Xu T, Yu N, Cao Y, Zhu A, Wu W, Zhan X, Anis GB, Yu P, Chen D, Cheng S, Cao L. Impaired Function of the Calcium-Dependent Protein Kinase, OsCPK12, Leads to Early Senescence in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2019; 10:52. [PMID: 30778363 PMCID: PMC6369234 DOI: 10.3389/fpls.2019.00052] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/16/2019] [Indexed: 05/21/2023]
Abstract
Premature leaf senescence affects plant yield and quality, and numerous researches about it have been conducted until now. In this study, we identified an early senescent mutant es4 in rice (Oryza sativa L.); early senescence appeared approximately at 60 dps and became increasingly senescent with the growth of es4 mutant. We detected that content of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as activity of superoxide dismutase (SOD) were elevated, while chlorophyll content, soluble protein content, activity of catalase (CAT), activity of peroxidase (POD) and photosynthetic rate were reduced in the es4 mutant leaves. We mapped es4 in a 33.5 Kb physical distance on chromosome 4 by map-based cloning. Sequencing analysis in target interval indicated there was an eight bases deletion mutation in OsCPK12 which encoded a calcium-dependent protein kinase. Functional complementation of OsCPK12 in es4 completely restored the normal phenotype. We used CRISPR/Cas9 for targeted disruption of OsCPK12 in ZH8015 and all the mutants exhibited the premature senescence. All the results indicated that the phenotype of es4 was caused by the mutation of OsCPK12. Overexpression of OsCPK12 in ZH8015 enhanced the net photosynthetic rate (P n) and chlorophyll content. OsCPK12 was mainly expressed in green organs. The results of qRT-PCR analysis showed that the expression levels of some key genes involved in senescence, chlorophyll biosynthesis, and photosynthesis were significantly altered in the es4 mutant. Our results demonstrate that the mutant of OsCPK12 triggers the premature leaf senescence; however, the overexpression of OsCPK12 may delay its growth period and provide the potentially positive effect on productivity in rice.
Collapse
Affiliation(s)
- Beifang Wang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhenzhen Bi
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Qunen Liu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Tingting Xu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ning Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yongrun Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Aike Zhu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Nanchong Academy of Agricultural Sciences, Nanchong, China
| | - Weixun Wu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiaodeng Zhan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Galal Bakr Anis
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Rice Research and Training Center, Field Crops Research Institute, Agriculture Research Center, Kafr El Sheikh, Egypt
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Daibo Chen
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
4
|
Ribaudo CM, Curá JA, Cantore ML. Activation of a calcium-dependent protein kinase involved in the Azospirillum growth promotion in rice. World J Microbiol Biotechnol 2017; 33:22. [DOI: 10.1007/s11274-016-2186-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/01/2016] [Indexed: 01/16/2023]
|
5
|
Ermert AL, Mailliet K, Hughes J. Holophytochrome-Interacting Proteins in Physcomitrella: Putative Actors in Phytochrome Cytoplasmic Signaling. FRONTIERS IN PLANT SCIENCE 2016; 7:613. [PMID: 27242820 PMCID: PMC4867686 DOI: 10.3389/fpls.2016.00613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/21/2016] [Indexed: 05/26/2023]
Abstract
Phytochromes are the principle photoreceptors in light-regulated plant development, primarily acting via translocation of the light-activated photoreceptor into the nucleus and subsequent gene regulation. However, several independent lines of evidence indicate unambiguously that an additional cytoplasmic signaling mechanism must exist. Directional responses in filament tip cells of the moss Physcomitrella patens are steered by phy4 which has been shown to interact physically with the blue light receptor phototropin at the plasma membrane. This complex might perceive and transduce vectorial information leading to cytoskeleton reorganization and finally a directional growth response. We developed yeast two-hybrid procedures using photochemically functional, full-length phy4 as bait in Physcomitrella cDNA library screens and growth assays under different light conditions, revealing Pfr-dependent interactions possibly associated with phytochrome cytoplasmic signaling. Candidate proteins were then expressed in planta with fluorescent protein tags to determine their intracellular localization in darkness and red light. Of 14 candidates, 12 were confirmed to interact with phy4 in planta using bimolecular fluorescence complementation. We also used database information to study their expression patterns relative to those of phy4. We discuss the likely functional characteristics of these holophytochrome-interacting proteins (HIP's) and their possible roles in signaling.
Collapse
|
6
|
Chen DH, Acharya BR, Liu W, Zhang W. Interaction between Calcium and Actin in Guard Cell and Pollen Signaling Networks. PLANTS (BASEL, SWITZERLAND) 2013; 2:615-34. [PMID: 27137395 PMCID: PMC4844389 DOI: 10.3390/plants2040615] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/17/2022]
Abstract
Calcium (Ca(2+)) plays important roles in plant growth, development, and signal transduction. It is a vital nutrient for plant physical design, such as cell wall and membrane, and also serves as a counter-cation for biochemical, inorganic, and organic anions, and more particularly, its concentration change in cytosol is a ubiquitous second messenger in plant physiological signaling in responses to developmental and environmental stimuli. Actin cytoskeleton is well known for its importance in cellular architecture maintenance and its significance in cytoplasmic streaming and cell division. In plant cell system, the actin dynamics is a process of polymerization and de-polymerization of globular actin and filamentous actin and that acts as an active regulator for calcium signaling by controlling calcium evoked physiological responses. The elucidation of the interaction between calcium and actin dynamics will be helpful for further investigation of plant cell signaling networks at molecular level. This review mainly focuses on the recent advances in understanding the interaction between the two aforementioned signaling components in two well-established model systems of plant, guard cell, and pollen.
Collapse
Affiliation(s)
- Dong-Hua Chen
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, Jinan 250100, Shandong, China.
| | - Biswa R Acharya
- Biology Department, Penn State University, University Park, PA 16802, USA.
| | - Wei Liu
- High-Tech Research Center, Shandong Academy of Agricultural Sciences, Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, Shandong, China.
| | - Wei Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, Jinan 250100, Shandong, China.
| |
Collapse
|
7
|
Grandellis C, Giammaria V, Bialer M, Santin F, Lin T, Hannapel DJ, Ulloa RM. The novel Solanum tuberosum calcium dependent protein kinase, StCDPK3, is expressed in actively growing organs. PLANTA 2012; 236:1831-48. [PMID: 22922879 DOI: 10.1007/s00425-012-1732-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/30/2012] [Indexed: 05/11/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are key components of calcium regulated signaling cascades in plants. In this work, isoform StCDPK3 from Solanum tuberosum was studied and fully described. StCDPK3 encodes a 63 kDa protein with an N-terminal variable domain (NTV), rich in prolines and glutamines, which presents myristoylation and palmitoylation consensus sites and a PEST sequence indicative of rapid protein degradation. StCDPK3 gene (circa 11 kb) is localized in chromosome 3, shares the eight exons and seven introns structure with other isoforms from subgroup IIa and contains an additional intron in the 5'UTR region. StCDPK3 expression is ubiquitous being transcripts more abundant in early elongating stolons (ES), leaves and roots, however isoform specific antibodies only detected the protein in leaf particulate extracts. The recombinant 6xHis-StCDPK3 is an active kinase that differs in its kinetic parameters and calcium requirements from StCDPK1 and 2 isoforms. In vitro, StCDPK3 undergoes autophosphorylation regardless of the addition of calcium. The StCDPK3 promoter region (circa 1,800 bp) was subcloned by genome walking and fused to GUS. Light and ABRE responsive elements were identified in the promoter region as well as elements associated to expression in roots. StCDPK3 expression was enhanced by ABA while GA decreased it. Potato transgenic lines harboring StCDPK3 promoter∷GUS construct were generated by Agrobacterium tumefaciens mediated plant transformation. Promoter activity was detected in leaves, root tips and branching points, early ES, tuber eyes and developing sprouts indicating that StCDPK3 is expressed in actively growing organs.
Collapse
Affiliation(s)
- Carolina Grandellis
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Hector N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
8
|
Molecular cloning, overexpression, and characterization of autophosphorylation in calcium-dependent protein kinase 1 (CDPK1) from Cicer arietinum. Appl Microbiol Biotechnol 2012; 97:3429-39. [PMID: 22760783 DOI: 10.1007/s00253-012-4215-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 05/24/2012] [Accepted: 05/24/2012] [Indexed: 01/11/2023]
Abstract
In plants, calcium-dependent protein kinases (CDPKs) are key intermediates in calcium-mediated signaling that couple changes in Ca(2+) levels to a specific response. In the present study, we report the high-level soluble expression of calcium-dependent protein kinase1 from Cicer arietinum (CaCDPK1) in Escherichia coli. The expression of soluble CaCDPK1 was temperature dependent with a yield of 3-4 mg/l of bacterial culture. CaCDPK1 expressed as histidine-tag fusion protein was purified using Ni-NTA affinity chromatography till homogeneity. The recombinant CaCDPK1 protein exhibited both calcium-dependent autophosphorylation and substrate phosphorylation activities with a V max and K m value of 13.2 nmol/min/mg and 34.3 μM, respectively, for histone III-S as substrate. Maximum autophosphorylation was seen only in the presence of calcium. Optimum temperature for autophosphorylation was found to be 37 °C. The recombinant protein showed optimum pH range of 6-9. The role of autophosphorylation in substrate phosphorylation was investigated using histone III-S as exogenous substrate. Our results show that autophosphorylation happens before substrate phosphorylation and it happens via intra-molecular mechanism as the activity linearly depends on enzyme concentrations. Autophosphorylation enhances the kinase activity and reduces the lag phase of activation, and CaCDPK1 can utilize both ATP and GTP as phosphodonor but ATP is preferred than GTP.
Collapse
|
9
|
Analysis of calcium signaling pathways in plants. Biochim Biophys Acta Gen Subj 2011; 1820:1283-93. [PMID: 22061997 DOI: 10.1016/j.bbagen.2011.10.012] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/19/2011] [Accepted: 10/21/2011] [Indexed: 11/20/2022]
Abstract
BACKGROUND Calcium serves as a versatile messenger in many adaptation and developmental processes in plants. Ca2+ signals are represented by stimulus-specific spatially and temporally defined Ca2+ signatures. These Ca2+ signatures are detected, decoded and transmitted to downstream responses by a complex toolkit of Ca2+ binding proteins that function as Ca2+ sensors. SCOPE OF REVIEW This review will reflect on advancements in monitoring Ca2+ dynamics in plants. Moreover, it will provide insights in the extensive and complex toolkit of plant Ca2+ sensor proteins that relay the information presented in the Ca2+ signatures into phosphorylation events, changes in protein-protein interaction or regulation of gene expression. MAJOR CONCLUSIONS Plants' response to signals is encoded by different Ca2+ signatures. The plant decoding Ca2+ toolkit encompasses different families of Ca2+ sensors like Calmodulins (CaM), Calmodulin-like proteins (CMLs), Ca2+-dependent protein kinases (CDPKs), Calcineurin B-like proteins (CBLs) and their interacting kinases (CIPKs). These Ca2+ sensors are encoded by complex gene families and form intricate signaling networks in plants that enable specific, robust and flexible information processing. GENERAL SIGNIFICANCE This review provides new insights about the biochemical regulation, physiological functions and of newly identified target proteins of the major plant Ca2+ sensor families. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signaling.
Collapse
|
10
|
Hsu SW, Wang CS. Lily Cdc42/Rac-interactive binding motif-containing protein, a Rop target, involves calcium influx and phosphoproteins during pollen germination and tube growth. PLANT SIGNALING & BEHAVIOR 2010; 5:1460-3. [PMID: 21060254 PMCID: PMC3115255 DOI: 10.4161/psb.5.11.13466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 08/27/2010] [Indexed: 05/25/2023]
Abstract
We report unique desiccation-associated ABA signaling transduction through which the Rop (Rho GTPase of plants) and its target LLP12-2 are regulated during the stage of pollen maturation and tube growth. Overexpression of LLP12-2 drastically inhibited pollen germination and tube growth. Studies on the germination inhibitors, Ca (2+) influx blocking agents LaCl 3 and EGTA and an actin-depolymerizing drug, latrunculin B (LatB), revealed that the LLP12-2-induced inhibition of germination and tube growth is significantly suppressed by LaCl 3 and EGTA in the LLP12-2-overexpressing pollen but not by LatB. These results suggested that LLP12-2 is associated with Ca (2+) influx in the cytoplasm and may be not with actin assembly. With the addition of LaCl 3 and EGTA, LLP12-2-overexpressing pollen increased germination and tube growth compared with the one without addition, whereas pollen expressing GFP decreased germination and tube growth. Thus, an optimum level of [Ca (2+) ]cyt influx is crucial for normal germination and tube growth. Studies on the inhibitors, staurosporine and okadaic acid in the LLP12-2-overexpressing pollen, showed no appreciable increase in germination when compared with the one without addition, suggesting that staurosporine-sensitive protein kinases and dephosphorylation of phosphoproteins may be not involved in the LLP12-2 mediated germination. However, the LLP12-2-induced inhibition of tube length was slightly but significantly suppressed by staurosporine, suggesting that staurosporine-sensitive protein kinases involve in the LLP12-2-induced inhibition of tube growth.
Collapse
Affiliation(s)
- Ssu-Wei Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | | |
Collapse
|
11
|
Zhou L, Fu Y, Yang Z. A genome-wide functional characterization of Arabidopsis regulatory calcium sensors in pollen tubes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:751-761. [PMID: 19686372 DOI: 10.1111/j.1744-7909.2009.00847.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Calcium, an ubiquitous second messenger, plays an essential and versatile role in cellular signaling. The diverse function of calcium signals is achieved by an excess of calcium sensors. Plants possess large numbers of calcium sensors, most of which have not been functionally characterized. To identify physiologically relevant calcium sensors in a specific cell type, we conducted a genome-wide functional survey in pollen tubes, for which spatiotemporal calcium signals are well-characterized and required for polarized tip growth. Pollen-specific members of calmodulin (CaM), CaM-like (CML), calcium-dependent protein kinase (CDPK) and calcineurin B-like protein (CBL) families were tagged with green fluorescence protein (GFP) and their localization patterns and overexpression phenotypes were characterized in tobacco pollen tubes. We found that several fusion proteins showed distinct overexpression phenotypes and subcellular localization patterns. CDPK24-GFP was localized to the vegetative nucleus and the generative cell/sperms. CDPK32-GFP caused severe growth depolarization. CBL2-GFP and CBL3-GFP exhibited dynamic patterns of subcellular localization, including several endomembrane compartments, the apical plasma membrane (PM), and cytoskeleton-like structures in pollen tubes. Their overexpression also inhibited pollen tube elongation and induced growth depolarization. These putative calcium sensors are excellent candidates for the calcium sensors responsible for the regulation of calcium homeostasis and calcium-dependent tip growth and growth oscillation in pollen tubes.
Collapse
Affiliation(s)
- Liming Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | | | | |
Collapse
|
12
|
Liu G, Chen J, Wang X. VfCPK1, a gene encoding calcium-dependent protein kinase from Vicia faba, is induced by drought and abscisic acid. PLANT, CELL & ENVIRONMENT 2006; 29:2091-9. [PMID: 17081243 DOI: 10.1111/j.1365-3040.2006.01582.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Calcium, one of the most ubiquitous second messengers, has been shown to be involved in a wide variety of responses in plants. Calcium-dependent protein kinases (CDPKs) (EC 2.7.1.37) are the predominant Ca(2+)-regulated serine/threonine protein kinase in plants and play an important role in plant calcium signal transduction. CDPKs are encoded by a large multigene family in many plants, which has been showed so far; however, the precise role of each specific CDPK is still largely unknown. A novel CDPK gene designated as VfCPK1 was cloned from epidermal peels of broad bean (Vicia faba L.) leaves using the rapid amplification of cDNA ends (RACE)-PCR technique and its expression was studied in detail. The VfCPK1 cDNA is 1783 bp long and contains an open reading frame of 1482 bp encoding 493 amino acids. VfCPK1 contains all conserved regions found in CDPKs and shows a high level of sequence similarity to many other plant CDPKs. VfCPK1 was highly expressed in leaves, especially in leaf epidermal peels of broad bean in mRNA and protein levels. Expressions of VfCPK1 at both the mRNA and protein levels were increased in leaves treated with abscisic acid or subjected to drought stress. Potential roles of VfCPK1 in epidermal peels are discussed. The nucleotide sequence data reported here were deposited in the GenBank database under accession number AY753552.
Collapse
Affiliation(s)
- Guanshan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | | | |
Collapse
|
13
|
Malhó R, Liu Q, Monteiro D, Rato C, Camacho L, Dinis A. Signalling pathways in pollen germination and tube growth. PROTOPLASMA 2006; 228:21-30. [PMID: 16937051 DOI: 10.1007/s00709-006-0162-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 06/08/2005] [Indexed: 05/11/2023]
Abstract
Signalling is an integral component in the establishment and maintenance of cellular identity. In plants, tip-growing cells represent an ideal system to investigate signal transduction mechanisms, and among these, pollen tubes (PTs) are one of the favourite models. Many signalling pathways have been identified during germination and tip growth, namely, Ca(2+), calmodulin, phosphoinositides, protein kinases, cyclic AMP, and GTPases. These constitute a large and complex web of signalling networks that intersect at various levels such as the control of vesicle targeting and fusion and the physical state of the actin cytoskeleton. Here we discuss some of the most recent advances made in PT signal transduction cascades and their implications for our future research. For reasons of space, emphasis was given to signalling mechanisms that control PT reorientation, so naturally many other relevant works have not been cited.
Collapse
Affiliation(s)
- R Malhó
- Departamento de Biologia Vegetal, Instituto de Ciência Aplicada e Tecnologia, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | | | | | | | | | | |
Collapse
|
14
|
Yoon GM, Dowd PE, Gilroy S, McCubbin AG. Calcium-dependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth, including regulating polarity. THE PLANT CELL 2006; 18:867-78. [PMID: 16531501 PMCID: PMC1425858 DOI: 10.1105/tpc.105.037135] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 02/07/2006] [Accepted: 02/15/2006] [Indexed: 05/07/2023]
Abstract
Calcium is a key regulator of pollen tube growth, but little is known concerning the downstream components of the signaling pathways involved. We identified two pollen-expressed calmodulin-like domain protein kinases from Petunia inflata, CALMODULIN-LIKE DOMAIN PROTEIN KINASE1 (Pi CDPK1) and Pi CDPK2. Transient overexpression or expression of catalytically modified Pi CDPK1 disrupted pollen tube growth polarity, whereas expression of Pi CDPK2 constructs inhibited tube growth but not polarity. Pi CDPK1 exhibited plasma membrane localization most likely mediated by acylation, and we present evidence that suggests this localization is critical to the biological function of this kinase. Pi CDPK2 substantially localized to as yet unidentified internal membrane compartments, and this localization was again, at least partially, mediated by acylation. In contrast with Pi CDPK1, altering the localization of Pi CDPK2 did not noticeably alter the effect of overexpressing this isoform on pollen tube growth. Ca(2+) requirements for Pi CDPK1 activation correlated closely with Ca(2+) concentrations measured in the growth zone at the pollen tube apex. Interestingly, loss of polarity associated with overexpression of Pi CDPK1 was associated with elevated cytosolic Ca(2+) throughout the bulging tube tip, suggesting that Pi CDPK1 may participate in maintaining Ca(2+) homeostasis. These results are discussed in relation to previous models for Ca(2+) regulation of pollen tube growth.
Collapse
Affiliation(s)
- Gyeong Mee Yoon
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| | | | | | | |
Collapse
|
15
|
Yuasa T, Hashimoto H. A Calcium-dependent Protein Kinase (CDPK) in the Unicellular Green Alga Closterium ehrenbergii. Microbes Environ 2006. [DOI: 10.1264/jsme2.21.278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Takashi Yuasa
- Department of Plant Resources, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University
| | - Haruki Hashimoto
- Department of Life and Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo
| |
Collapse
|
16
|
Zhang T, Wang Q, Chen X, Tian C, Wang X, Xing T, Li Y, Wang Y. Cloning and biochemical properties of CDPK gene OsCDPK14 from rice. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:1149-59. [PMID: 16255173 DOI: 10.1016/j.jplph.2004.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A rice CDPK gene, OsCDPK14 (AY144497), was cloned from developing caryopses of rice (Oryza sativa cv. Zhonghua 15). Its cDNA sequence (1922 bp) contains an ORF encoding a 514 amino acids protein (56.7kD, pl 5.18). OsCDPK14 shows the typical structural features of the CDPK family, including a conserved catalytic Ser/Thr kinase domain, an autoinhibitory domain and a CaM-like domain with four putative Ca2+-binding EF hands. Subcellular targeting indicated that OsCDPK14 was located in the cytoplasm, probably due to the absence of myristoylation and palmitoylation motifs. OsCDPK14 was expressed in Escherichia coli and purified from bacterial extracts. The recombinant protein was shown to be a functional protein kinase using Syntide-2, a synthetic peptide. Kinase activity was shown to be Ca2+-dependent, and this activation was strongly enhanced by Mn2+ and inhibited by W7 in vitro. These results provide significant insights into the regulation and biochemical properties of OsCDPK14, suggesting OsCDPK14 may be a signal factor of cytoplasm in rice plant.
Collapse
Affiliation(s)
- Tiegang Zhang
- Laboratory of Plant Development Physiology and Molecular Biology, College of Life Sciences, Beijing Normal University, PR China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kumar KGS, Ullanat R, Jayabaskaran C. Molecular cloning, characterization, tissue-specific and phytohormone-induced expression of calcium-dependent protein kinase gene in cucumber (Cucumis sativus L.). JOURNAL OF PLANT PHYSIOLOGY 2004; 161:1061-1071. [PMID: 15499908 DOI: 10.1016/j.jplph.2004.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A cucumber cDNA designated CsCPK5 and encoding a calcium-dependent protein kinase (CsCDPK5) was isolated and characterized. An open reading frame of 1542 bp was detected that could encode a protein of 514 amino acid residues with a calculated molecular mass of 56.5kDa. Comparison of the deduced amino acid sequence of CsCDPK5 with sequences of other CDPKs revealed the highest similarity (85%) to AtCDPK6. As described for other CDPKs, CsCDPK5 has a long variable domain preceding a catalytic domain, an autoinhibitory function domain, and a C-terminal calmodulin-domain containing 4 EF-hand calcium-binding motifs. The N-terminal long variable domain of CsCDPK5 does not contain the N-myristoylation motif, which is found in many CDPKs. The relative expression level of the CsCPK genes in various organs of cucumber plants and seedlings and in etiolated, excised cotyledons and hypocotyls following treatments with light and/or benzyladenine (BA), abscisic acid (ABA), gibberellic acid (GA) or indole acetic acid (IAA) was determined by northern analysis using the CsCPK5 cDNA probe. The CsCPK transcripts are most abundant in cucumber plant Leaves with less accumulation in cucumber seedling roots and hypocotyls and lowest Levels in cucumber plant flowers and seedling hooks and cotyledons. All phytohormones tested enhanced the accumulation of the transcripts 2-3-fold in etiolated cotyledons. On the other hand, levels of the transcripts increased to a lesser extent in both light and BA- or IAA-treated cotyledons and no effect was noted in response to light treatment with GA. In hypocotyls, no major changes in the relative levels of CsCPK transcripts were observed in the phytohormone-treated etiolated and light-exposed tissues, except an up-regulatory effect with IAA treatment in the etiolated and IAA, ABA and GA treatments in light-exposed hypocotyls. These observations suggest that exogenous phytohormones can up-regulate the CsCPK transcript levels in tissue-specific, and light-dependent and independent manners.
Collapse
Affiliation(s)
- K G Suresh Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
18
|
Chehab EW, Patharkar OR, Hegeman AD, Taybi T, Cushman JC. Autophosphorylation and subcellular localization dynamics of a salt- and water deficit-induced calcium-dependent protein kinase from ice plant. PLANT PHYSIOLOGY 2004; 135:1430-46. [PMID: 15247393 PMCID: PMC519060 DOI: 10.1104/pp.103.035238] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Revised: 04/19/2004] [Accepted: 04/26/2004] [Indexed: 05/18/2023]
Abstract
A salinity and dehydration stress-responsive calcium-dependent protein kinase (CDPK) was isolated from the common ice plant (Mesembryanthemum crystallinum; McCPK1). McCPK1 undergoes myristoylation, but not palmitoylation in vitro. Removal of the N-terminal myristate acceptor site partially reduced McCPK1 plasma membrane (PM) localization as determined by transient expression of green fluorescent protein fusions in microprojectile-bombarded cells. Removal of the N-terminal domain (amino acids 1-70) completely abolished PM localization, suggesting that myristoylation and possibly the N-terminal domain contribute to membrane association of the kinase. The recombinant, Escherichia coli-expressed, full-length McCPK1 protein was catalytically active in a calcium-dependent manner (K0.5 = 0.15 microm). Autophosphorylation of recombinant McCPK1 was observed in vitro on at least two different Ser residues, with the location of two sites being mapped to Ser-62 and Ser-420. An Ala substitution at the Ser-62 or Ser-420 autophosphorylation site resulted in a slight increase in kinase activity relative to wild-type McCPK1 against a histone H1 substrate. In contrast, Ala substitutions at both sites resulted in a dramatic decrease in kinase activity relative to wild-type McCPK1 using histone H1 as substrate. McCPK1 undergoes a reversible change in subcellular localization from the PM to the nucleus, endoplasmic reticulum, and actin microfilaments of the cytoskeleton in response to reductions in humidity, as determined by transient expression of McCPK1-green fluorescent protein fusions in microprojectile-bombarded cells and confirmed by subcellular fractionation and western-blot analysis of 6x His-tagged McCPK1.
Collapse
Affiliation(s)
- E Wassim Chehab
- Department of Biochemistry/MS200, University of Nevada, Reno, Nevada 89557-0014, USA
| | | | | | | | | |
Collapse
|
19
|
Abbasi F, Onodera H, Toki S, Tanaka H, Komatsu S. OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. PLANT MOLECULAR BIOLOGY 2004; 55:541-52. [PMID: 15604699 DOI: 10.1007/s11103-004-1178-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) play an important role in rice signal transduction, but the precise role of each individual CDPK is still largely unknown. Recently, a full-length cDNA encoding OsCDPK13 from rice seedling was isolated. To characterize the function of OsCDPK13, its responses to various stresses and hormones were analyzed in this study. OsCDPK13 accumulated in 2-week-old leaf sheath and callus, and became phosphorylated in response to cold and gibberellin (GA). OsCDPK13 gene expression and protein accumulation were up-regulated in response to GA3 treatment, but suppressed in response to abscisic acid and brassinolide. Antisense OsCDPK13 transgenic rice lines were shorter than the vector control lines, and the expression of OsCDPK13 was lower in dwarf mutants of rice than in wild type. Furthermore, OsCDPK13 gene expression and protein accumulation were enhanced in response to cold, but suppressed under salt and drought stresses. Sense OsCDPK13 transgenic rice lines had higher recovery rates after cold stress than vector control rice. The expression of OsCDPK13 was stronger in cold-tolerant rice varieties than in cold-sensitive ones. The results suggest that OsCDPK13 might be an important signaling component in the response of rice to GA and cold stress.
Collapse
MESH Headings
- Abscisic Acid/pharmacology
- Adenosine Triphosphate/metabolism
- Blotting, Northern
- Blotting, Western
- Brassinosteroids
- Calcium Chloride/pharmacology
- Cholestanols/pharmacology
- Cold Temperature
- DNA, Antisense/genetics
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- Gibberellins/pharmacology
- Oryza/genetics
- Oryza/growth & development
- Oryza/metabolism
- Phenotype
- Phosphorylation/drug effects
- Plant Structures/genetics
- Plant Structures/metabolism
- Plants, Genetically Modified
- Protein Kinases/genetics
- Protein Kinases/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Steroids, Heterocyclic/pharmacology
Collapse
Affiliation(s)
- Fida Abbasi
- National Institute of Agrobiological Sciences, Tsukuba, Japan
| | | | | | | | | |
Collapse
|
20
|
Galatis B, Apostolakos P. The role of the cytoskeleton in the morphogenesis and function of stomatal complexes. THE NEW PHYTOLOGIST 2004; 161:613-639. [PMID: 33873710 DOI: 10.1046/j.1469-8137.2003.00986.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Microtubules (MTs) and actin filaments (AFs) form highly organized arrays in stomatal cells that play key roles in the morphogenesis of stomatal complexes. The cortical MTs controlling the orientation of the depositing cellulose microfibrils (CMs) and affecting the pattern of local wall thickenings define the mechanical properties of the walls of stomatal cells, thus regulating accurately their shape. Besides, they are involved in determination of the cell division plane. Substomatal cavity and stomatal pore formation are also MT-dependent processes. Among the cortical MT arrays, the radial ones lining the periclinal walls are of particular morphogenetic importance. Putative MT organizing centers (MTOCs) function at their focal regions, at least in guard cells (GCs), or alternatively, these regions either organize or nucleate cortical MTs. AFs are involved in cell polarization preceding asymmetrical divisions, in determination of the cell division plane and final cell plate alignment and probably in transduction of stimuli implicated in stomatal complex morphogenesis. Mature kidney-shaped GCs display radial AF arrays, undergoing definite organization cycles during stomatal movement. They are involved in stomatal movement, probably by controlling plasmalemma ion-channel activities. Radial MT arrays also persist in mature GCs, but a role in stomatal function cannot yet be attributed to them. Contents Summary 613 I. Introduction 614 II. Cytoskeleton and development of the stomatal complexes 614 III. Cytoskeleton and stomatal cell shaping 620 IV. Stomatal pore formation 624 V. Substomatal cavity formation 625 VI. Stomatal complex morphogenesis in mutants 626 VII. Cytoskeleton dynamics in functioning stomata 628 VIII. Mechanisms of microtubule organization in stomatal cells 631 IX. Conclusions-perspectives 634 References 635.
Collapse
Affiliation(s)
- Basil Galatis
- Department of Botany, Faculty of Biology, University of Athens, Athens 157 81 Greece
| | | |
Collapse
|
21
|
Dammann C, Ichida A, Hong B, Romanowsky SM, Hrabak EM, Harmon AC, Pickard BG, Harper JF. Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis. PLANT PHYSIOLOGY 2003; 132:1840-8. [PMID: 12913141 PMCID: PMC181270 DOI: 10.1104/pp.103.020008] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2003] [Revised: 02/05/2003] [Accepted: 04/21/2003] [Indexed: 05/17/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are specific to plants and some protists. Their activation by calcium makes them important switches for the transduction of intracellular calcium signals. Here, we identify the subcellular targeting potentials for nine CDPK isoforms from Arabidopsis, as determined by expression of green fluorescent protein (GFP) fusions in transgenic plants. Subcellular locations were determined by fluorescence microscopy in cells near the root tip. Isoforms AtCPK3-GFP and AtCPK4-GFP showed a nuclear and cytosolic distribution similar to that of free GFP. Membrane fractionation experiments confirmed that these isoforms were primarily soluble. A membrane association was observed for AtCPKs 1, 7, 8, 9, 16, 21, and 28, based on imaging and membrane fractionation experiments. This correlates with the presence of potential N-terminal acylation sites, consistent with acylation as an important factor in membrane association. All but one of the membrane-associated isoforms targeted exclusively to the plasma membrane. The exception was AtCPK1-GFP, which targeted to peroxisomes, as determined by covisualization with a peroxisome marker. Peroxisome targeting of AtCPK1-GFP was disrupted by a deletion of two potential N-terminal acylation sites. The observation of a peroxisome-located CDPK suggests a mechanism for calcium regulation of peroxisomal functions involved in oxidative stress and lipid metabolism.
Collapse
Affiliation(s)
- Christian Dammann
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Cheng SH, Willmann MR, Chen HC, Sheen J. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. PLANT PHYSIOLOGY 2002; 129:469-85. [PMID: 12068094 PMCID: PMC1540234 DOI: 10.1104/pp.005645] [Citation(s) in RCA: 503] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In plants, numerous Ca(2+)-stimulated protein kinase activities occur through calcium-dependent protein kinases (CDPKs). These novel calcium sensors are likely to be crucial mediators of responses to diverse endogenous and environmental cues. However, the precise biological function(s) of most CDPKs remains elusive. The Arabidopsis genome is predicted to encode 34 different CDPKs. In this Update, we analyze the Arabidopsis CDPK gene family and review the expression, regulation, and possible functions of plant CDPKs. By combining emerging cellular and genomic technologies with genetic and biochemical approaches, the characterization of Arabidopsis CDPKs provides a valuable opportunity to understand the plant calcium-signaling network.
Collapse
Affiliation(s)
- Shu-Hua Cheng
- Department of Genetics, Harvard Medical School, MA 02114, USA
| | | | | | | |
Collapse
|
23
|
Lu SX, Hrabak EM. An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum. PLANT PHYSIOLOGY 2002; 128:1008-21. [PMID: 11891256 PMCID: PMC152213 DOI: 10.1104/pp.010770] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2001] [Revised: 10/08/2001] [Accepted: 12/05/2001] [Indexed: 05/20/2023]
Abstract
Arabidopsis contains 34 genes that are predicted to encode calcium-dependent protein kinases (CDPKs). CDPK enzymatic activity previously has been detected in many locations in plant cells, including the cytosol, the cytoskeleton, and the membrane fraction. However, little is known about the subcellular locations of individual CDPKs or the mechanisms involved in targeting them to those locations. We investigated the subcellular location of one Arabidopsis CDPK, AtCPK2, in detail. Membrane-associated AtCPK2 did not partition with the plasma membrane in a two-phase system. Sucrose gradient fractionation of microsomes demonstrated that AtCPK2 was associated with the endoplasmic reticulum (ER). AtCPK2 does not contain transmembrane domains or known ER-targeting signals, but does have predicted amino-terminal acylation sites. AtCPK2 was myristoylated in a cell-free extract and myristoylation was prevented by converting the glycine at the proposed site of myristate attachment to alanine (G2A). In plants, the G2A mutation decreased AtCPK2 membrane association by approximately 50%. A recombinant protein, consisting of the first 10 amino acids of AtCPK2 fused to the amino-terminus of beta-glucuronidase, was also targeted to the ER, indicating that the amino terminus of AtCPK2 can specify ER localization of a soluble protein. These results indicate that AtCPK2 is localized to the ER, that myristoylation is likely to be involved in the membrane association of AtCPK2, and that the amino terminal region of AtCPK2 is sufficient for correct membrane targeting.
Collapse
Affiliation(s)
- Sheen X Lu
- Department of Plant Biology, University of New Hampshire, 46 College Road, Durham, New Hampshire 03824, USA
| | | |
Collapse
|
24
|
Abstract
Molecular motors that hydrolyze ATP and use the derived energy to generate force are involved in a variety of diverse cellular functions. Genetic, biochemical, and cellular localization data have implicated motors in a variety of functions such as vesicle and organelle transport, cytoskeleton dynamics, morphogenesis, polarized growth, cell movements, spindle formation, chromosome movement, nuclear fusion, and signal transduction. In non-plant systems three families of molecular motors (kinesins, dyneins, and myosins) have been well characterized. These motors use microtubules (in the case of kinesines and dyneins) or actin filaments (in the case of myosins) as tracks to transport cargo materials intracellularly. During the last decade tremendous progress has been made in understanding the structure and function of various motors in animals. These studies are yielding interesting insights into the functions of molecular motors and the origin of different families of motors. Furthermore, the paradigm that motors bind cargo and move along cytoskeletal tracks does not explain the functions of some of the motors. Relatively little is known about the molecular motors and their roles in plants. In recent years, by using biochemical, cell biological, molecular, and genetic approaches a few molecular motors have been isolated and characterized from plants. These studies indicate that some of the motors in plants have novel features and regulatory mechanisms. The role of molecular motors in plant cell division, cell expansion, cytoplasmic streaming, cell-to-cell communication, membrane trafficking, and morphogenesis is beginning to be understood. Analyses of the Arabidopsis genome sequence database (51% of genome) with conserved motor domains of kinesin and myosin families indicates the presence of a large number (about 40) of molecular motors and the functions of many of these motors remain to be discovered. It is likely that many more motors with novel regulatory mechanisms that perform plant-specific functions are yet to be discovered. Although the identification of motors in plants, especially in Arabidopsis, is progressing at a rapid pace because of the ongoing plant genome sequencing projects, only a few plant motors have been characterized in any detail. Elucidation of function and regulation of this multitude of motors in a given species is going to be a challenging and exciting area of research in plant cell biology. Structural features of some plant motors suggest calcium, through calmodulin, is likely to play a key role in regulating the function of both microtubule- and actin-based motors in plants.
Collapse
Affiliation(s)
- A S Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
25
|
Ebel C, Gómez LG, Schmit AC, Neuhaus-Url G, Boller T. Differential mRNA degradation of two beta-tubulin isoforms correlates with cytosolic Ca2+ changes in glucan-elicited soybean cells. PLANT PHYSIOLOGY 2001; 126:87-96. [PMID: 11351073 PMCID: PMC102284 DOI: 10.1104/pp.126.1.87] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2001] [Accepted: 01/18/2001] [Indexed: 05/23/2023]
Abstract
Transgenic soybean (Glycine max) culture cells expressing apoaequorin, a Ca2+ indicator, were exposed to glucan fragments derived from Phytophthora sojae or to chitin oligomers. The effects of these elicitors on cytosolic Ca2+ concentrations and on mRNA levels of two beta-tubulin isoforms, tubB1 and tubB2, were investigated. The glucan elicitors, to which the cells are known to react with a biphasic cytosolic Ca2+ increase, induced a down-regulation of the tubB1 mRNA levels while the tubB2 mRNA level remained constant. The decrease of tubB1 mRNA level was observed after 1 hour of glucan treatment. In contrast, chitin oligomers, known to provoke a monophasic Ca2+ increase of short duration, did not affect the tubB1 mRNA level. Pre-incubation with 10 mM 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, an extracellular Ca2+ chelator, blocked the cytosolic Ca2+ increase as well as the decrease of tubB1 mRNA levels induced by glucan elicitors. Likewise, pre-incubation with 1 mM neomycin, which reduced only the second glucan-induced Ca2+ peak, blocked the decrease of tubB1 mRNA level. Experiments with cordycepin, a transcription inhibitor, indicated that glucan fragments induced the degradation of tubB1 mRNA. In conclusion, the glucan-induced cytosolic Ca2+ changes are correlated with a strong increase in tubB1 mRNA degradation.
Collapse
Affiliation(s)
- C Ebel
- Friedrich Miescher-Institut, P.O. Box 2543, CH-4002 Basel, Switzerland.
| | | | | | | | | |
Collapse
|
26
|
Reddy AS. Calcium: silver bullet in signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2001; 160:381-404. [PMID: 11166425 DOI: 10.1016/s0168-9452(00)00386-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Accumulating evidence suggests that Ca(2+) serves as a messenger in many normal growth and developmental process and in plant responses to biotic and abiotic stresses. Numerous signals have been shown to induce transient elevation of [Ca(2+)](cyt) in plants. Genetic, biochemical, molecular and cell biological approaches in recent years have resulted in significant progress in identifying several Ca(2+)-sensing proteins in plants and in understanding the function of some of these Ca(2+)-regulated proteins at the cellular and whole plant level. As more and more Ca(2+)-sensing proteins are identified it is becoming apparent that plants have several unique Ca(2+)-sensing proteins and that the downstream components of Ca(2+) signaling in plants have novel features and regulatory mechanisms. Although the mechanisms by which Ca(2+) regulates diverse biochemical and molecular processes and eventually physiological processes in response to diverse signals are beginning to be understood, recent studies have raised many interesting questions. Despite the fact that Ca(2+) sensing proteins are being identified at a rapid pace, progress on the function(s) of many of them is limited. Studies on plant 'signalome' - the identification of all signaling components in all messengers mediated transduction pathways, analysis of their function and regulation, and cross talk among these components - should help in understanding the inner workings of plant cell responses to diverse signals. New functional genomics approaches such as reverse genetics, microarray analyses coupled with in vivo protein-protein interaction studies and proteomics should not only permit functional analysis of various components in Ca(2+) signaling but also enable identification of a complex network of interactions.
Collapse
Affiliation(s)
- A S.N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, 80523, Fort Collins, CO, USA
| |
Collapse
|
27
|
Davletova S, Mészáros T, Miskolczi P, Oberschall A, Török K, Magyar Z, Dudits D, Deák M. Auxin and heat shock activation of a novel member of the calmodulin like domain protein kinase gene family in cultured alfalfa cells. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:215-221. [PMID: 11283165 DOI: 10.1093/jexbot/52.355.215] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A calmodulin like domain protein kinase (CPK) homologue was identified in alfalfa and termed MsCPK3. The full-length sequence of cDNA encoded a 535 amino acid polypeptide with a molecular weight of 60.2 kDa. The deduced amino acid sequence showed all the conserved motifs that define other members of this kinase family, such as serine-threonine kinase domain, a junction region and four potential Ca2+ -binding EF sites. The recombinant MsCPK3 protein purified from E. coli was activated by Ca2+ and inhibited by calmodulin antagonist (W-7) in in vitro phosphorylation assays. The expression of MsCPK3 gene increased in the early phase of the 2,4-D induced alfalfa somatic embryogenesis. Heat shock also activated this gene while kinetin, ABA and NaCl treatment did not result in MsCPK3 mRNA accumulation. The data presented suggest that the new alfalfa CPK differs in stress responses from the previously described homologues and in its potential involvement in hormone and stress-activated reprogramming of developmental pathways during somatic embryogenesis.
Collapse
Affiliation(s)
- S Davletova
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences H-6701 Szeged, POB 521, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Patharkar OR, Cushman JC. A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 24:679-91. [PMID: 11123806 DOI: 10.1046/j.1365-313x.2000.00912.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
McCDPK1 is a salinity- and drought-induced calcium-dependent protein kinase (CDPK) isolated from the common ice plant, Mesembryanthemum crystallinum. A yeast two-hybrid experiment was performed, using full-length McCDPK1 and truncated forms of McCDPK1 as baits, to identify interacting proteins. A catalytically impaired bait isolated a cDNA clone encoding a novel protein, CDPK substrate protein 1 (CSP1). CSP1 interacted with McCDPK1 in a substrate-like fashion in both yeast two-hybrid assays and wheat germ interaction assays. Furthermore, McCDPK1 was capable of phosphorylating CSP1 in vitro in a calcium-dependent manner. Our results demonstrate that the use of catalytically impaired and unregulated CDPKs with the yeast two-hybrid system can accelerate the discovery of CDPK substrates. The deduced CSP1 amino acid sequence indicated that it is a novel member of a class of pseudo-response regulator-like proteins that have a highly conserved helix-loop-helix DNA binding domain and a C-terminal activation domain. McCDPK1 and CSP1 co-localized to nuclei of NaCl-stressed ice plants. Csp1 transcript accumulation was not regulated by NaCl or dehydration stress. Our results strongly suggest that McCDPK1 may regulate the function of CSP1 by reversible phosphorylation.
Collapse
Affiliation(s)
- O R Patharkar
- Department of Biochemistry/MS200, 311B Fleischmann Agriculture, University of Nevada, Reno, NV 89557-0014, USA
| | | |
Collapse
|
29
|
Yang G, Komatsu S. Involvement of calcium-dependent protein kinase in rice (Oryza sativa L.) lamina inclination caused by brassinolide. PLANT & CELL PHYSIOLOGY 2000; 41:1243-50. [PMID: 11092909 DOI: 10.1093/pcp/pcd050] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Promotive effect of brassinolide (BL) on green lamina inclination was concentration-dependent when excised rice (Oryza sativa L.) lamina was floated on BL solution under continuous light conditions. Protein kinase inhibitor staurosporine and Ca2+ channel blocker LaCl3 could completely, while Ca2+ chelator EGTA could partially inhibit the lamina inclination caused by BL. Two protein kinases with apparent molecular masses of 45 and 54 kDa were detected using an in-gel kinase assay with histone III-S as a substrate. In particular, the changes in 45 kDa protein kinase activity correlated with lamina inclination caused by BL. The 45 kDa kinase activity was inhibited by Ca2+ chelator EGTA, protein kinase inhibitor, staurosporine and calmodulin antagonist W-7. Therefore, this 45 kDa protein kinase was identified as a Ca2+ -dependent protein kinase (CDPK). Patterns of 2-dimensional PAGE after in vitro phosphorylation of crude extracts showed that the phosphorylation of 56 and 41 kDa proteins, which was Ca2+ -dependent, was strongly increased by BL treatment. These results suggested that CDPK and Ca2+ -dependent protein phosphorylation are involved in BL-induced rice lamina inclination.
Collapse
Affiliation(s)
- G Yang
- Department of Molecular Genetics, National Institute of Agrobiological Resources, Tsukuba, 305-8602 Japan
| | | |
Collapse
|
30
|
Abstract
The past year has seen considerable advances in our understanding of signaling in pollen tubes. Evidence suggesting that lipids are involved in pollen tube guidance has opened up new avenues. Major advances have been made in understanding the roles of Rho-like GTPases and protein kinases in regulating pollen tube growth. Light is being shed on how signals may be integrated. It is becoming clear that the role of Ca(2+) in pollen tube growth is perhaps more complex than originally anticipated.
Collapse
Affiliation(s)
- V E Franklin-Tong
- Wolfson Laboratory for Plant Molecular Biology, School of Biological Sciences, University of Birmingham, Edgbaston, B15 2TT, UK. V.E.
| |
Collapse
|
31
|
Abstract
Tip growth is an extreme form of polar growth modulated by both intrinsic and extrinsic spatial cues. Pollen tubes and root hairs have been used as model systems to investigate tip growth signaling in higher plants. Recent studies have focused on tip-localized Ca2+ gradients and Rho GTPases in pollen tubes and a series of mutants affecting root hair tip growth. These molecular and genetic markers will serve as stepping stones towards uncovering tip growth pathways in plants.
Collapse
Affiliation(s)
- Z Yang
- Plant Biotechnology Center, The Ohio State University, 1060 Carmack Road, Columbus, OH 43210, USA.
| |
Collapse
|
32
|
Dunn PP, Bumstead JM, Tomley FM. Sequence, expression and localization of calmodulin-domain protein kinases in Eimeria tenella and Eimeria maxima. Parasitology 1996; 113 ( Pt 5):439-48. [PMID: 8893529 DOI: 10.1017/s0031182000081506] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have isolated and sequenced cDNA clones from Eimeria tenella and Eimeria maxima which encode proteins that share homology with a recently described family of calmodulin-domain protein kinases. The primary sequence data show that each of the protein kinases can be divided into 2 main functional domains-an amino-terminal catalytic domain typical of serine/threonine protein kinases and a carboxy-terminal domain homologous to calmodulin, which is capable of binding calcium ions at 4 'EF-hand' motifs. Expression of the E. tenella calmodulin-domain protein kinase (EtCDPK) increased towards the end of oocyst sporulation, as judged by Northern and Western blotting, and indirect immunofluorescent antibody labelling showed that within a few minutes of adding sporozoites to target host cells in in vitro culture EtCDPK was found to be specifically associated with a filament-like structure that converges at the apical end of the parasite. Once the parasite entered the host cell EtCDPK appeared to be left on the host cell membrane at the point of entry, indicating a brief yet specific role for this molecule in the invasion of host cells by E. tenella.
Collapse
Affiliation(s)
- P P Dunn
- Institute for Animal Health, Compton, Newbury, Berkshire, UK
| | | | | |
Collapse
|
33
|
|
34
|
The plant cytoskeleton. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1874-6020(96)80016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
|
35
|
Lindzen E, Choi JH. A carrot cDNA encoding an atypical protein kinase homologous to plant calcium-dependent protein kinases. PLANT MOLECULAR BIOLOGY 1995; 28:785-797. [PMID: 7640352 DOI: 10.1007/bf00042065] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) in plants typically contain a C-terminal calmodulin-like domain with four EF-hand calcium-binding motifs. We have isolated a carrot somatic embryo cDNA clone which encodes a new, divergent isoform of this family, designated CRK (CDPK-related kinase). The catalytic domain of CRK shares a high degree of homology with the catalytic domains of plant CDPKs (53.5% average identity with its two closest phylogenetic relatives, CDPK431 (carrot) and AK1 (Arabidopsis). However, the C-terminal domain of CRK bears significantly less homology to calmodulin (22.0% identity to barley calmodulin) than other plant CDPKs (38.0% average identity between barley calmodulin and the C-terminal domains of CDPK431 and AK1). This degeneracy also involves the EF-hand motifs of CRK, which have diverged to varying extents. The predicted structure of CRK also contains an extended N-terminal domain 145 amino acids in length possessing a consensus N-myristoylation signal. CRK transcripts are most abundant in somatic embryos, with lesser accumulations in flowers and leaves and lowest levels in roots. Homologous genomic DNA sequences that hybridize with CRK cDNA but not with a carrot CDPK probe have been detected in a variety of higher plant taxa, including monocotyledonous species, suggesting that this CDPK-related kinase is widely conserved among angiosperms.
Collapse
Affiliation(s)
- E Lindzen
- School of Biology, Georgia Institute of Technology, Atlanta 30332, USA
| | | |
Collapse
|
36
|
Breviario D, Morello L, Giani S. Molecular cloning of two novel rice cDNA sequences encoding putative calcium-dependent protein kinases. PLANT MOLECULAR BIOLOGY 1995; 27:953-967. [PMID: 7766885 DOI: 10.1007/bf00037023] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have isolated, from a cDNA library constructed from rice coleoptiles, two sequences, OSCPK2 and OSCPK11, that encode for putative calcium-dependent protein kinase (CDPK) proteins. OSCPK2 and OSCPK11 cDNAs are related to SPK, another gene encoding a rice CDPK that is specifically expressed in developing seeds [20]. OSCPK2 and OSCPK11-predicted protein sequences are 533 and 542 amino acids (aa) long with a corresponding molecular mass of 59436 and 61079 Da respectively. Within their polypeptide chain, they all contain those conserved features that define a plant CDPK; kinase catalytic sequences are linked to a calmodulin-like regulatory domain through a junction region. The calmodulin-like regulatory domain of the predicted OSCPK2 protein contains 4 EF-hand calcium-binding sites while OSCPK11 has conserved just one canonical EF-hand motif. In addition, OSCPK2- and OSCPK11-predicted proteins contain, at their N-terminal region preceding the catalytic domain, a stretch of 80 or 74 residues highly rich in hydrophilic amino acids. Comparison of the NH2-terminal sequence of all three rice CDPKs so far identified (OSCPK2, OSCPK11 and SPK) indicates the presence of a conserved MGxxC(S/Q)xxT motif that may define a consensus signal for N-myristoylation. OSCPK2 and OSCPK11 proteins are both encoded by a single-copy gene and their polyadenylated transcripts are 2.4 and 3.5 kb long respectively. OSCPK2 and OSCPK11 mRNAs are equally abundant in rice roots and coleoptiles. A 12 h white light treatment of the coleoptiles reduces the amount of OSCPK2 mRNA with only a slight effect on the level of OSCPK11 transcript. With anoxic treatments, OSCPK2 mRNA level declined significantly and promptly while the amount of OSCPK11 transcript remained constant.
Collapse
Affiliation(s)
- D Breviario
- Istituto Biosintesi Vegetali, C.N.R., Milan, Italy
| | | | | |
Collapse
|
37
|
Liu B, Joshi HC, Palevitz BA. Experimental manipulation of gamma-tubulin distribution in Arabidopsis using anti-microtubule drugs. CELL MOTILITY AND THE CYTOSKELETON 1995; 31:113-29. [PMID: 7553905 DOI: 10.1002/cm.970310204] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
gamma-Tubulin-specific antibodies stain the microtubule (Mt) arrays of Arabidopsis suspension cells in a punctate or patchy manner. During division, staining of kinetochore fibers and the phragmoplast is extensive, except in the vicinity of the plus ends at the metaphase plate and cell plate. gamma-Tubulin localization responds to low levels of colchicine, with staining receding farther toward the minus (pole) ends of kinetochore fibers. At higher drug concentrations, gamma-tubulin also associates with abnormal Mt foci as well as with the surface of the daughter nuclei facing the phragmoplast. During UV-induced recovery from colchicine, gamma-tubulin increases along the presumptive minus ends of mitotic Mts as well as the phragmoplast near the daughter nuclei. With CIPC, immunostaining is concentrated around the centers of focal Mt arrays in multipolar spindles. In the presence of taxol, Mts are more prominent but the mitotic apparatus and phragmoplast are abnormal. As with CIPC, gamma-tubulin is concentrated at focal arrays. Increased punctate staining is also present in interphase arrays, with fluorescent dots often located at the ends of Mts. These results support a preferential association between gamma-tubulin and Mt minus ends, but are also consistent with more general binding along the walls of Mts. Thus, minus ends (and Mt nucleation sites) may be present throughout plant Mt arrays, but gamma-tubulin may also serve another function, such as in structural stabilization.
Collapse
Affiliation(s)
- B Liu
- Department of Botany, University of Georgia, Athens 30602-7271, USA
| | | | | |
Collapse
|
38
|
Regulation of phosphatidylinositol 4-kinase by the protein activator PIK-A49. Activation requires phosphorylation of PIK-A49. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41938-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Biermann B, Feldman LJ. Physiological, biochemical and molecular processes associated with gravitropism in roots of maize. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1994; 14:331-340. [PMID: 11537936 DOI: 10.1016/0273-1177(94)90420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This research aims to characterize regulation of the principal cytosolic protein kinases in maize, cultivar 'Merit' root tips, since much evidence indicates that stimuli which modulate the gravitropic response in this system act through regulation of activity of these enzymes. To this end, we have cloned a maize protein kinase belonging to a group of plant protein kinases with a catalytic domain similar in primary structure to the second messenger-regulated protein kinases known in animal and fungal systems. However, both the unique structural features conserved among plant protein kinases in this group, and lack of evidence for cyclic nucleotide signalling in plants point to operation of a novel protein kinase regulatory mechanism in plants. In order to test effects of possible regulators on protein kinase activity, we developed a sensitive method for detecting regulation of autophosphoryl labelling of protein kinases in unfractionated maize protein extracts. Regulation of protein kinase autophosphorylation in these extracts was different from that known in animals and fungi, further suggesting operation of unique protein kinase regulatory mechanisms in plants. Previous research has shown that light, or factors modulated by light, regulate plant protein kinase activity. We found that protein kinase activity was co-immunoprecipitated with the plant photoreceptor phytochrome, and was associated with phytochrome by high-affinity chemical interactions. Far-red reversibility of red-light regulation of phytochrome phosphorylation by the associated protein kinase indicates that it may modulate or transduce the light signals which lead to gravitropic sensitivity in 'Merit' maize.
Collapse
Affiliation(s)
- B Biermann
- Department of Plant Biology, University of California, Berkeley 94720
| | | |
Collapse
|
40
|
Schnepf E. Spitzenwachstum: Moosprotonemen als Modell f�r die Bildung von Zellw�nden. Naturwissenschaften 1993. [DOI: 10.1007/bf01141900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Harper JF, Binder BM, Sussman MR. Calcium and lipid regulation of an Arabidopsis protein kinase expressed in Escherichia coli. Biochemistry 1993; 32:3282-90. [PMID: 7916621 DOI: 10.1021/bi00064a010] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) represent a new family of protein kinases which are proposed to contain, in a single polypeptide, both a kinase domain and an adjoining calmodulin-like domain with four calcium-binding EF-hand motifs [Harper, J.F., Sussman, M.R., Schaller, G.E., Putnam-Evans, C., Charbonneau, H., & Harmon, A.C. (1991) Science 252, 951-954]. DNA cloning and Western blot analysis indicate that multiple CDPK isoforms are present in the model plant system Arabidopsis thaliana. One CDPK gene called AK1 was isolated from Arabidopsis as a full-length cDNA. The predicted AK1 protein has a M(r) of 72,645 and is 116 amino acid residues longer at the amino terminus than the prototype CDPK alpha gene previously identified in soybean. The most highly conserved region between these two CDPKs is a region of 31 amino acids that joins the kinase and calmodulin-like domains. To verify the kinase activity of the enzyme encoded by AK1, a fusion of an amino-terminally truncated AK1 to the C-terminus of glutathione S-transferase was expressed in Escherichia coli. The fusion protein was purified and displayed a maximum kinase activity of 40 nmol of phosphate/(min.mg), using histone IIIs as a substrate. The enzyme activity was stimulated 3-6-fold by calcium and 2-5-fold by crude lipid. However, a synergistic stimulation of 16-30-fold was observed by the addition of both calcium and crude lipid. Lipid stimulation was specific for lysophosphatidylcholine and phosphatidylinositol and did not occur with the addition of phosphatidylserine or phosphatidylcholine.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J F Harper
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037
| | | | | |
Collapse
|
42
|
Roberts DM. Protein kinases with calmodulin-like domains: novel targets of calcium signals in plants. Curr Opin Cell Biol 1993; 5:242-6. [PMID: 8507496 DOI: 10.1016/0955-0674(93)90110-c] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently, a novel calcium-dependent protein kinase has been identified that is structurally distinguished by the localization of a calcium-binding regulatory domain fused to a serine/threonine catalytic domain. The regulatory domain is homologous to calmodulin and contains four helix-loop-helix calcium-binding sites. As a result, the kinase is directly activated by calcium without a requirement for other effector molecules.
Collapse
Affiliation(s)
- D M Roberts
- Department of Biochemistry, University of Tennessee, Knoxville 37996-0840
| |
Collapse
|
43
|
Son M, Gundersen R, Nelson D. A second member of the novel Ca(2+)-dependent protein kinase family from Paramecium tetraurelia. Purification and characterization. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53410-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
44
|
|
45
|
Braun M, Sievers A. Centrifugation causes adaptation of microfilaments: studies on the transport of statoliths in gravity sensing Chara rhizoids. PROTOPLASMA 1993; 174:50-61. [PMID: 11541080 DOI: 10.1007/bf01404042] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The actin cytoskeleton is involved in the positioning of statoliths in tip growing Chara rhizoids. The balance between the acropetally acting gravity force and the basipetally acting net outcome of cytoskeletal force results in the dynamically stable position of the statoliths 10-30 micrometers above the cell tip. A change of the direction and/or the amount of one of these forces in a vertically growing rhizoid results in a dislocation of statoliths. Centrifugation was used as a tool to study the characteristics of the interaction between statoliths and microfilaments (MFs). Acropetal and basipetal accelerations up to 6.5 g were applied with the newly constructed slow-rotating-centrifuge-microscope (NIZEMI). Higher accelerations were applied by means of a conventional centrifuge, namely acropetally 10-200 g and basipetally 10-70 g. During acropetal accelerations (1.4-6g), statoliths were displaced to a new stable position nearer to the cell vertex (12-6.5 micrometers distance to the apical cell wall, respectively), but they did not sediment on the apical cell wall. The original position of the statoliths was reestablished within 30 s after centrifugation. Sedimentation of statoliths and reduction of the growth rates of the rhizoids were observed during acropetal accelerations higher than 50 g. When not only the amount but also the direction of the acceleration were changed in comparison to the natural condition, i.e., during basipetal accelerations (1.0-6.5 g), statoliths were displaced into the subapical zone (up to 90 micrometers distance to the apical cell wall); after 15-20 min the retransport of statoliths to the apex against the direction of acceleration started. Finally, the natural position in the tip was reestablished against the direction of continuous centrifugation. Retransport was observed during accelerations up to 70 g. Under the 1 g condition that followed the retransported statoliths showed an up to 5-fold increase in sedimentation time onto the lateral cell wall when placed horizontally. During basipetal centrifugations > or = 70 g all statoliths entered the basal vacuolar part of the rhizoid where they were cotransported in the streaming cytoplasm. It is concluded that the MF system is able to adapt to higher mass accelerations and that the MF system of the polarly growing rhizoid is polarly organized.
Collapse
Affiliation(s)
- M Braun
- Botanisches Institut, Universitat Bonn
| | | |
Collapse
|
46
|
Yuasa T, Muto S. Ca(2+)-dependent protein kinase from the halotolerant green alga Dunaliella tertiolecta: partial purification and Ca(2+)-dependent association of the enzyme to the microsomes. Arch Biochem Biophys 1992; 296:175-82. [PMID: 1318689 DOI: 10.1016/0003-9861(92)90560-j] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ca(2+)-dependent protein kinase (CDPK) was purified 900-fold from the soluble fraction of Dunaliella tertiolecta cells by ammonium sulfate precipitation, DEAE-Toyopearl, phenyl-Sepharose, and hydroxylapatite column chromatography. The CDPK was activated by micromolar concentration of Ca2+ and required neither calmodulin nor phospholipids for its activation. The enzyme phosphorylated casein, myosin light chain, and histone type III-S (histone H-1), but did not phosphorylate protamine and phosvitin. The Km values for ATP and casein were 11 microM and 300 micrograms/ml, respectively. Phosphorylation of casein was inhibited by calmodulin antagonists, calmidazolium, trifluoperazine, and compound 48/80, but not affected by calmodulin. CDPK bound to phenyl-Sepharose in the presence of Ca2+ and was eluted by ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid (EGTA). This suggests that hydrophobicity of the enzyme was increased by Ca2+. CDPK was also bound to the microsomes isolated from Dunaliella cells in the presence of micromolar concentration of Ca2+ and released in the presence of EGTA, suggesting the possibility of in vivo Ca(2+)-dependent association of the enzyme. The enzyme phosphorylated many proteins in the microsomes but few in the cytosol, if at all.
Collapse
Affiliation(s)
- T Yuasa
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | |
Collapse
|
47
|
Schaller GE, Harmon AC, Sussman MR. Characterization of a calcium- and lipid-dependent protein kinase associated with the plasma membrane of oat. Biochemistry 1992; 31:1721-7. [PMID: 1737026 DOI: 10.1021/bi00121a020] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A protein kinase that is activated by calcium and lipid has been partially purified from the plasma membrane of oat roots. This protein kinase cross-reacts with four monoclonal antibodies directed against a soluble calcium-dependent protein kinase from soybean described previously [Putman-Evans, C. L., Harmon, A. C., & Cormier, M. J. (1990) Biochemistry 29, 2488-2495; Harper, J. F., Sussman, M. R., Schaller, G. E., Putnam-Evans, C., Charbonneau, H., & Harmon, A. C. (1991) Science 252, 951-954], indicating that the oat enzyme is a member of this calcium-dependent protein kinase family. Immunoblots demonstrate that the membrane-derived protein kinase is slightly larger than that observed in the cytosolic fraction of oat. Limited digestion of the membrane-derived kinase with trypsin generates a smaller water-soluble kinase that is still activated by calcium but is no longer activated by lipid. When posthomogenization proteolysis is minimized, the bulk of the immunoreactive kinase material is localized in the membrane. These results suggest that a calcium-dependent protein kinase observed in the supernatant fraction of oat extracts may originate in situ from a calcium- and lipid-dependent protein kinase which is associated with the oat plasma membrane. They further indicate that, in contrast to animal cells, the predominant calcium- and lipid-dependent protein kinase associated with the plasma membrane of plant cells has biochemical properties and amino acid sequence unlike protein kinase C.
Collapse
Affiliation(s)
- G E Schaller
- Department of Horticulture, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
48
|
Feng XH, Bottino PJ, Kung SD. Molecular identification of a soybean protein kinase gene family by using PCR. PLANT MOLECULAR BIOLOGY 1992; 18:581-4. [PMID: 1371408 DOI: 10.1007/bf00040673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
In this study we report identification of six members of a protein kinase gene family from soybean (Glycine max L.). Two fully degenerate oligonucleotide primers corresponding to two conserved motifs (DLK-PENV and GTHEYLAPE) in the catalytic domains of eukaryotic protein serine/threonine kinases were used in a polymerase chain reaction (PCR) to amplify soybean cDNA. Sequence analysis showed that 28 of the PCR sequences represented six different putative protein serine/threonine kinases. These results not only demonstrate that catalytic domains of protein kinases are highly conserved between plants and other eukaryotes but also suggest that there are multiple genes encoding protein kinases in plants.
Collapse
Affiliation(s)
- X H Feng
- Center for Agricultural Biotechnology, University of Maryland, College Park 20742-5815
| | | | | |
Collapse
|
49
|
Cytoskeleton and Cytoplasmic Organization of Pollen and Pollen Tubes. INTERNATIONAL REVIEW OF CYTOLOGY 1992. [DOI: 10.1016/s0074-7696(08)61094-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
50
|
|