1
|
Day CA, Langfald A, Lukes T, Middlebrook H, Vaughan KT, Daniels D, Hinchcliffe EH. Commitment to cytokinetic furrowing requires the coordinate activity of microtubules and Plk1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.612913. [PMID: 39345392 PMCID: PMC11429772 DOI: 10.1101/2024.09.16.612913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
At anaphase, spindle microtubules (MTs) position the cleavage furrow and trigger actomyosin assembly by localizing the small GTPase RhoA and the scaffolding protein anillin to a narrow band along the equatorial cortex [1-6]. Using vertebrate somatic cells we examined the temporal control of furrow assembly. Although its positioning commences at anaphase onset, furrow maturation is not complete until ∼10-11 min later. The maintenance of the RhoA/anillin scaffold initially requires continuous signaling from the spindle; loss of either MTs or polo-like kinase 1 (Plk1) activity prevents proper RhoA/anillin localization to the equator, thereby disrupting furrowing. However, we find that at ∼6 min post-anaphase, the cortex becomes "committed to furrowing"; loss of either MTs or Plk1 after this stage does not prevent eventual furrowing, even though at this point the contractile apparatus has not fully matured. Also at this stage, the RhoA/anillin scaffold at the equator becomes permanent. Surprisingly, concurrent loss of both MTs and Plk1 activity following the "commitment to furrowing" stage results in persistent, asymmetric "half-furrows", with only one cortical hemisphere retaining RhoA/anillin, and undergoing ingression. This phenotype is reminiscent of asymmetric furrows caused by a physical block between spindle and cortex [7-9], or by acentric spindle positioning [10-12]. The formation of these persistent "half-furrows" suggests a potential feedback mechanism between the spindle and the cortex that maintains cortical competency along the presumptive equatorial region prior to the "commitment to furrowing" stage of cytokinesis, thereby ensuring the eventual ingression of a symmetric cleavage furrow.
Collapse
|
2
|
Wen G, Lycas MD, Jia Y, Leen V, Sauer M, Hofkens J. Trifunctional Linkers Enable Improved Visualization of Actin by Expansion Microscopy. ACS NANO 2023; 17:20589-20600. [PMID: 37787755 DOI: 10.1021/acsnano.3c07510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Expansion microscopy (ExM) revolutionized the field of super-resolution microscopy by allowing for subdiffraction resolution fluorescence imaging on standard fluorescence microscopes. However, it has been found that it is hard to visualize actin filaments efficiently using ExM. To improve actin imaging, multifunctional molecules have been designed with moderate success. Here, we present optimized methods for phalloidin conjugate grafting that have a high efficiency for both cellular and tissue samples. Our optimized strategy improves anchoring and signal retention by ∼10 times. We demonstrate the potential of optimized trifunctional linkers (TRITON) for actin imaging in combination with immunolabeling using different ExM protocols. 10X ExM of actin labeled with optimized TRITON enabled us to visualize the periodicity of actin rings in cultured hippocampal neurons and brain slices by Airyscan confocal microscopy. Thus, TRITON linkers provide an efficient grafting method, especially in cases in which the concentration of target-bound monomers is insufficient for high-quality ExM.
Collapse
Affiliation(s)
- Gang Wen
- Department of Chemistry, KU Leuven, Leuven, 3001, Belgium
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Matthew Domenic Lycas
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Yuqing Jia
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, Netherlands
| | - Volker Leen
- Chrometra Scientific, Kortenaken 3470, Belgium
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Leuven, 3001, Belgium
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
3
|
Li YR, Zhong A, Dong H, Ni LH, Tan FQ, Yang WX. Myosin Va plays essential roles in maintaining normal mitosis, enhancing tumor cell motility and viability. Oncotarget 2017; 8:54654-54671. [PMID: 28903372 PMCID: PMC5589611 DOI: 10.18632/oncotarget.17920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
Myosin Va, a member of Class V myosin, functions in organelle motility, spindle formation, nuclear morphogenesis and cell motility. The purpose of this study is to explore the expression and localization of myosin Va in testicular cancer and prostate cancer, and its specific roles in tumor progression including cell division, migration and proliferation. We detected myosin Va in testicular and prostate tumor tissues using sqRT-PCR, western blot, and immunofluorescence. Tumor samples showed an increased expression of myosin Va, abnormal actin and myosin Va distribution. Immunofluorescence images during the cell cycle showed that myosin Va tended to gather at cytoplasm during anaphase but co-localized with nucleus during other phases, suggesting the roles of myosin Va in disassembly of spindle microtubule, movement of chromosomes and normal cytokinesis. In addition, multi-nucleation and aberrant nuclear morphology were observed in myosin Va-knockdown cells. Wounding assay and CCK-8-based cell counting were conducted to explore myosin Va roles in cell migration, viability and proliferation. Our results suggest that myosin Va plays essential roles in maintaining normal mitosis, enhancing tumor cell motility and viability, and these properties are the hallmark of tumor progression and metastasis development. Therefore, an increased understanding of myosin Va expression and function will assist in the development of future oncodiagnosis and -therapy.
Collapse
Affiliation(s)
- Yan-Ruide Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ai Zhong
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Han Dong
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lu-Han Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Schuh AL, Audhya A. The ESCRT machinery: from the plasma membrane to endosomes and back again. Crit Rev Biochem Mol Biol 2014; 49:242-61. [PMID: 24456136 DOI: 10.3109/10409238.2014.881777] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The manipulation and reorganization of lipid bilayers are required for diverse cellular processes, ranging from organelle biogenesis to cytokinetic abscission, and often involves transient membrane disruption. A set of membrane-associated proteins collectively known as the endosomal sorting complex required for transport (ESCRT) machinery has been implicated in membrane scission steps, which transform a single, continuous bilayer into two distinct bilayers, while simultaneously segregating cargo throughout the process. Components of the ESCRT pathway, which include 5 distinct protein complexes and an array of accessory factors, each serve discrete functions. This review focuses on the molecular mechanisms by which the ESCRT proteins facilitate cargo sequestration and membrane remodeling and highlights their unique roles in cellular homeostasis.
Collapse
Affiliation(s)
- Amber L Schuh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health , Madison, WI , USA
| | | |
Collapse
|
5
|
Charnley M, Anderegg F, Holtackers R, Textor M, Meraldi P. Effect of Cell Shape and Dimensionality on Spindle Orientation and Mitotic Timing. PLoS One 2013; 8:e66918. [PMID: 23825020 PMCID: PMC3688943 DOI: 10.1371/journal.pone.0066918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/13/2013] [Indexed: 01/13/2023] Open
Abstract
The formation and orientation of the mitotic spindle is a critical feature of mitosis. The morphology of the cell and the spatial distribution and composition of the cells' adhesive microenvironment all contribute to dictate the position of the spindle. However, the impact of the dimensionality of the cells' microenvironment has rarely been studied. In this study we present the use of a microwell platform, where the internal surfaces of the individual wells are coated with fibronectin, enabling the three-dimensional presentation of adhesive ligands to single cells cultured within the microwells. This platform was used to assess the effect of dimensionality and cell shape in a controlled microenvironment. Single HeLa cells cultured in circular microwells exhibited greater tilting of the mitotic spindle, in comparison to cells cultured in square microwells. This correlated with an increase in the time required to align the chromosomes at the metaphase plate due to prolonged activation of the spindle checkpoint in an actin dependent process. The comparison to 2D square patterns revealed that the dimensionality of cell adhesions alone affected both mitotic timings and spindle orientation; in particular the role of actin varied according to the dimensionality of the cells' microenvironment. Together, our data revealed that cell shape and the dimensionality of the cells' adhesive environment impacted on both the orientation of the mitotic spindle and progression through mitosis.
Collapse
Affiliation(s)
- Mirren Charnley
- Laboratory for Surface Science and Technology, ETH Zurich, Zurich, Switzerland
- * E-mail:
| | - Fabian Anderegg
- Laboratory for Surface Science and Technology, ETH Zurich, Zurich, Switzerland
| | | | - Marcus Textor
- Laboratory for Surface Science and Technology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
6
|
Sheykhani R, Baker N, Gomez-Godinez V, Liaw LH, Shah J, Berns MW, Forer A. The role of actin and myosin in PtK2 spindle length changes induced by laser microbeam irradiations across the spindle. Cytoskeleton (Hoboken) 2013; 70:241-59. [PMID: 23475753 DOI: 10.1002/cm.21104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 02/07/2013] [Accepted: 02/20/2013] [Indexed: 11/08/2022]
Abstract
This study investigates spindle biomechanical properties to better understand how spindles function. In this report, laser microbeam cutting across mitotic spindles resulted in movement of spindle poles toward the spindle equator. The pole on the cut side moved first, the other pole moved later, resulting in a shorter but symmetric spindle. Intervening spindle microtubules bent and buckled during the equatorial movement of the poles. Because of this and because there were no detectable microtubules within the ablation zone, other cytoskeletal elements would seem to be involved in the equatorial movement of the poles. One possibility is actin and myosin since pharmacological poisoning of the actin-myosin system altered the equatorial movements of both irradiated and unirradiated poles. Immunofluorescence microscopy confirmed that actin, myosin and monophosphorylated myosin are associated with spindle fibers and showed that some actin and monophosphorylated myosin remained in the irradiated regions. Overall, our experiments suggest that actin, myosin and microtubules interact to control spindle length. We suggest that actin and myosin, possibly in conjunction with the spindle matrix, cause the irradiated pole to move toward the equator and that cross-talk between the two half spindles causes the unirradiated pole to move toward the equator until a balanced length is obtained.
Collapse
Affiliation(s)
- Rozhan Sheykhani
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
7
|
Sheykhani R, Shirodkar PV, Forer A. The role of myosin phosphorylation in anaphase chromosome movement. Eur J Cell Biol 2013; 92:175-86. [PMID: 23566798 DOI: 10.1016/j.ejcb.2013.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 01/26/2013] [Accepted: 02/22/2013] [Indexed: 11/29/2022] Open
Abstract
This work deals with the role of myosin phosphorylation in anaphase chromosome movement. Y27632 and ML7 block two different pathways for phosphorylation of the myosin regulatory light chain (MRLC). Both stopped or slowed chromosome movement when added to anaphase crane-fly spermatocytes. To confirm that the effects of the pharmacological agents were on the presumed targets, we studied cells stained with antibodies against mono- or bi-phosphorylated myosin. For all chromosomes whose movements were affected by a drug, the corresponding spindle fibres of the affected chromosomes had reduced levels of 1P- and 2P-myosin. Thus the drugs acted on the presumed target and myosin phosphorylation is involved in anaphase force production. Calyculin A, an inhibitor of MRLC dephosphorylation, reversed and accelerated the altered movements caused by Y27632 and ML-7, suggesting that another phosphorylation pathway is involved in phosphorylation of spindle myosin. Staurosporine, a more general phosphorylation inhibitor, also reduced the levels of MRLC phosphorylation and caused anaphase chromosomes to stop or slow. The effects of staurosporine on chromosome movements were not reversed by Calyculin A, confirming that another phosphorylation pathway is involved in phosphorylation of spindle myosin.
Collapse
Affiliation(s)
- Rozhan Sheykhani
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | |
Collapse
|
8
|
Sanger JM, Sanger JW. Insights into cell division using Listeria monocytogenes infections of PtK2 renal epithelial cells. Cytoskeleton (Hoboken) 2012; 69:992-9. [PMID: 23027717 DOI: 10.1002/cm.21076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/11/2012] [Indexed: 12/18/2022]
Abstract
The assembly of actin into a cleavage furrow is accompanied by disassembly of the interphase actin cytoskeleton. A variation of this actin filament disassembly/assembly cycle is seen during cell division in PtK2 cells infected with the intracellular pathogen, Listeria monocytogenes, where F-actin associates with the bacteria either as a halo surrounding nonmoving bacteria, or as an array of filaments that encases the sides of moving baceteria and extends behind them like a tail. The moving Listeria are found both in the cytoplasm and in the distal ends of undulating filopodia. When infected cells enter mitosis, the distribution of moving and stationary bacteria changes. In the transition from prophase to metaphase, there is a decrease in the number of bacteria with tails of actin in the cytoplasm. The nonmoving bacteria surrounded with F-actin are excluded from the mitotic spindle and moving bacteria are seldom seen in the cytoplasm during mitosis, although small thin filopodia cluster at the edges of the cells. After completion of cytokinesis, strong tail reformation first becomes obvious in the filopodia with Listeria moving back into the cytoplasm as the daughter cells spread. In summary, the disassembly and reassembly of actin tails extending from Listeria in dividing cells is a variation of the changes in actin organization produced by stress fiber and myofibril disassembly/assembly cycles during cell division. We suggest that the same unknown factors that regulate the disassembly/assembly of stress fibers and myofibrils during mitosis and post cytokinesis also affect the movement of Listeria inside mitotic cells.
Collapse
Affiliation(s)
- Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
9
|
Guizetti J, Gerlich DW. Cytokinetic abscission in animal cells. Semin Cell Dev Biol 2010; 21:909-16. [PMID: 20708087 DOI: 10.1016/j.semcdb.2010.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/27/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
Abstract
Cytokinesis leads to the separation of dividing cells, which in animal cells involves the contraction of an actin-myosin ring and subsequent fission during abscission. Abscission requires a series of dynamic events, including midbody-targeted vesicle secretion, specialization of plasma membrane domains, disassembly of midbody-associated microtubule bundles and plasma membrane fission. A large number of molecular factors required for abscission have been identified through localization, loss-of-function and proteomics studies, but their coordinate function in abscission is still poorly understood. Here, we review the structural elements and molecular factors known to contribute to abscission, and discuss their potential role in the context of proposed models for the abscission mechanism.
Collapse
Affiliation(s)
- Julien Guizetti
- Institute of Biochemistry, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, Switzerland
| | | |
Collapse
|
10
|
Kim HR, Leavis PC, Graceffa P, Gallant C, Morgan KG. A new method for direct detection of the sites of actin polymerization in intact cells and its application to differentiated vascular smooth muscle. Am J Physiol Cell Physiol 2010; 299:C988-93. [PMID: 20686075 DOI: 10.1152/ajpcell.00210.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Here we report and validate a new method, suitable broadly, for use in differentiated cells and tissues, for the direct visualization of actin polymerization under physiological conditions. We have designed and tested different versions of fluorescently labeled actin, reversibly attached to the protein transduction tag TAT, and have introduced this novel reagent into intact differentiated vascular smooth muscle cells (dVSMCs). A thiol-reactive version of the TAT peptide was synthesized by adding the amino acids glycine and cysteine to its NH(2)-terminus and forming a thionitrobenzoate adduct: viz. TAT-Cys-S-STNB. This peptide reacts readily with G-actin, and the complex is rapidly taken up by freshly enzymatically isolated dVSMC, as indicated by the fluorescence of a FITC tag on the TAT peptide. By comparing different versions of the construct, we determined that the optimal construct for biological applications is a nonfluorescently labeled TAT peptide conjugated to rhodamine-labeled actin. When TAT-Cys-S-STNB-tagged rhodamine actin (TSSAR) was added to live, freshly enzymatically isolated cells, we observed punctae of incorporated actin at the cortex of the cell. The punctae are indistinguishable from those we have previously reported to occur in the same cell type when rhodamine G-actin is added to permeabilized cells. Thus this new method allows the delivery of labeled G-actin into intact cells without disrupting the native state and will allow its further use to study the effect of physiological intracellular Ca(2+) concentration transients and signal transduction on actin dynamics in intact cells.
Collapse
Affiliation(s)
- Hak Rim Kim
- Department of Health Sciences, Boston University, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
11
|
Du A, Sanger JM, Sanger JW. Cardiac myofibrillogenesis inside intact embryonic hearts. Dev Biol 2008; 318:236-46. [PMID: 18455713 DOI: 10.1016/j.ydbio.2008.03.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2007] [Revised: 03/06/2008] [Accepted: 03/07/2008] [Indexed: 01/27/2023]
Abstract
How proteins assemble into sarcomeric arrays to form myofibrils is controversial. Immunostaining and transfections of cultures of cardiomyocytes from 10-day avian embryos led us to propose that assembly proceeded in three stages beginning with the formation of premyofibrils followed by nascent myofibrils and culminating in mature myofibrils. However, premyofibril and nascent myofibril arrays have not been detected in early cardiomyocytes examined in situ in the forming avian heart suggesting that the mechanism for myofibrillogenesis differs in cultured and uncultured cells. To address this question of in situ myofibrillogenesis, we applied non-enzymatic procedures and deconvolution imaging techniques to examine early heart forming regions in situ at 2- to 13-somite stages (beating begins at the 9-somite stage), a time span of about 23 h. These approaches enabled us to detect the three myofibril stages in developing hearts supporting a three-step model of myofibrillogenesis in cardiomyocytes, whether they are present in situ, in organ cultures or in tissue culture. We have also discovered that before titin is organized the first muscle myosin filaments are about half the length of the 1.6 mum filaments present in mature A-bands. This supports the proposal that titin may play a role in length determination of myosin filaments.
Collapse
Affiliation(s)
- Aiping Du
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | | |
Collapse
|
12
|
Deng M, Mohanan S, Polyak E, Chacko S. Caldesmon is necessary for maintaining the actin and intermediate filaments in cultured bladder smooth muscle cells. ACTA ACUST UNITED AC 2008; 64:951-65. [PMID: 17868135 DOI: 10.1002/cm.20236] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Caldesmon (CaD), a component of microfilaments in all cells and thin filaments in smooth muscle cells, is known to bind to actin, tropomyosin, calmodulin, and myosin and to inhibit actin-activated ATP hydrolysis by smooth muscle myosin. Thus, it is believed to regulate smooth muscle contraction, cell motility and the cytoskeletal structure. Using bladder smooth muscle cell cultures and RNA interference (RNAi) technique, we show that the organization of actin into microfilaments in the cytoskeleton is diminished by siRNA-mediated CaD silencing. CaD silencing significantly decreased the amount of polymerized actin (F-actin), but the expression of actin was not altered. Additionally, we find that CaD is associated with 10 nm intermediate-sized filaments (IF) and in vitro binding assay reveals that it binds to vimentin and desmin proteins. Assembly of vimentin and desmin into IF is also affected by CaD silencing, although their expression is not significantly altered when CaD is silenced. Electronmicroscopic analyses of the siRNA-treated cells showed the presence of myosin filaments and a few surrounding actin filaments, but the distribution of microfilament bundles was sparse. Interestingly, the decrease in CaD expression had no effect on tubulin expression and distribution of microtubules in these cells. These results demonstrate that CaD is necessary for the maintenance of actin microfilaments and intermediate-sized filaments in the cytoskeletal structure. This finding raises the possibility that the cytoskeletal structure in smooth muscle is affected when CaD expression is altered, as in smooth muscle de-differentiation and hypertrophy seen in certain pathological conditions.
Collapse
Affiliation(s)
- Maoxian Deng
- Division of Urology, Department of Surgery, University of Pennsylvania, Glenolden, Pennsylvania 19036, USA
| | | | | | | |
Collapse
|
13
|
Fabian L, Forer A. Possible roles of actin and myosin during anaphase chromosome movements in locust spermatocytes. PROTOPLASMA 2007; 231:201-213. [PMID: 17922265 DOI: 10.1007/s00709-007-0262-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 12/20/2006] [Indexed: 05/25/2023]
Abstract
We tested whether the mechanisms of chromosome movement during anaphase in locust (Locusta migratoria L.) spermatocytes might be similar to those described for crane-fly spermatocytes. Actin and myosin have been implicated in anaphase chromosome movements in crane-fly spermatocytes, as indicated by the effects of inhibitors and by the localisations of actin and myosin in spindles. In this study, we tested whether locust spermatocyte spindles also utilise actin and myosin, and whether actin is involved in microtubule flux. Living locust spermatocytes were treated with inhibitors of actin (latrunculin B and cytochalasin D), myosin (BDM), or myosin phosphorylation (Y-27632 and ML-7). We added drugs (individually) during anaphase. Actin inhibitors alter anaphase: chromosomes either completely stop moving, slow, or sometimes accelerate. The myosin inhibitor, BDM, also alters anaphase: in most cases, the chromosomes drastically slow or stop. ML-7, an inhibitor of MLCK, causes chromosomes to stop, slow, or sometimes accelerate, similar to actin inhibitors. Y-27632, an inhibitor of Rho-kinase, drastically slows or stops anaphase chromosome movements. The effects of the drugs on anaphase movement are reversible: most of the half-bivalents resumed movement at normal speed after these drugs were washed out. Actin and myosin were present in the spindles in locations consistent with their possible involvement in force production. Microtubule flux along kinetochore fibres is an actin-dependent process, since LatB completely removes or drastically reduces the gap in microtubule acetylation at the kinetochore. These results suggest that actin and myosin are involved in anaphase chromosome movements in locust spermatocytes.
Collapse
|
14
|
Potocky TB, Silvius J, Menon AK, Gellman SH. HeLa Cell Entry by Guanidinium-Rich β-Peptides: Importance of Specific Cation–Cell Surface Interactions. Chembiochem 2007; 8:917-26. [PMID: 17503427 DOI: 10.1002/cbic.200600563] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Short cationic oligomers, including arginine-rich peptides and analogous beta-amino acid oligomers ("beta-peptides"), can enter the cytoplasm and nucleus of a living cell from the extracellular medium. It seems increasingly clear that multiple entry pathways are possible, depending upon the structure of the guanidinium-rich molecule, the type of cell, and other factors. We have previously shown that conformational stability and spatial clustering of guanidinium groups increase the HeLa cell entry efficiency of short helical beta-peptides bearing six guanidinium groups, results that suggest that these beta-peptides could be useful tools for studying the entry process. Here we describe studies intended to identify the point in the entry process at which helix stability and spatial arrangement of guanidinium groups exert their effect. Our results suggest that key distinctions involve the mode of interaction between different guanidinium-rich beta-peptides and the HeLa cell surface. A specific guanidinium display appears to be required for proper engagement of cell-surface heparan sulfate proteoglycans and concomitant induction of endocytic uptake.
Collapse
Affiliation(s)
- Terra B Potocky
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
15
|
Abstract
The "conventional" isoform of myosin that polymerizes into filaments (myosin II) is the molecular motor powering contraction in all three types of muscle. Considerable attention has been paid to the developmental progression, isoform distribution, and mutations that affect myocardial development, function, and adaptation. Optical trap (laser tweezer) experiments and various types of high-resolution fluorescence microscopy, capable of interrogating individual protein motors, are revealing novel and detailed information about their functionally relevant nanometer motions and pico-Newton forces. Single-molecule laser tweezer studies of cardiac myosin isoforms and their mutants have helped to elucidate the pathogenesis of familial hypertrophic cardiomyopathies. Surprisingly, some disease mutations seem to enhance myosin function. More broadly, the myosin superfamily includes more than 20 nonfilamentous members with myriad cellular functions, including targeted organelle transport, endocytosis, chemotaxis, cytokinesis, modulation of sensory systems, and signal transduction. Widely varying genetic, developmental and functional disorders of the nervous, pigmentation, and immune systems have been described in accordance with these many roles. Compared to the collective nature of myosin II, some myosin family members operate with only a few partners or even alone. Individual myosin V and VI molecules can carry cellular vesicular cargoes much farther distances than their own size. Laser tweezer mechanics, single-molecule fluorescence polarization, and imaging with nanometer precision have elucidated the very different mechano-chemical properties of these isoforms. Critical contributions of nonsarcomeric myosins to myocardial development and adaptation are likely to be discovered in future studies, so these techniques and concepts may become important in cardiovascular research.
Collapse
Affiliation(s)
- Jody A Dantzig
- University of Pennsylvania School of Medicine, Pennsylvania Muscle Institute, 3700 Hamilton Walk, D700 Richards Building, Philadelphia, PA 19104-6083, USA
| | | | | |
Collapse
|
16
|
Fabian L, Troscianczuk J, Forer A. Calyculin A, an enhancer of myosin, speeds up anaphase chromosome movement. CELL & CHROMOSOME 2007; 6:1. [PMID: 17381845 PMCID: PMC1847834 DOI: 10.1186/1475-9268-6-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 03/24/2007] [Indexed: 12/23/2022]
Abstract
Actin and myosin inhibitors often blocked anaphase movements in insect spermatocytes in previous experiments. Here we treat cells with an enhancer of myosin, Calyculin A, which inhibits myosin-light-chain phosphatase from dephosphorylating myosin; myosin thus is hyperactivated. Calyculin A causes anaphase crane-fly spermatocyte chromosomes to accelerate poleward; after they reach the poles they often move back toward the equator. When added during metaphase, chromosomes at anaphase move faster than normal. Calyculin A causes prometaphase chromosomes to move rapidly up and back along the spindle axis, and to rotate. Immunofluorescence staining with an antibody against phosphorylated myosin regulatory light chain (p-squash) indicated increased phosphorylation of cleavage furrow myosin compared to control cells, indicating that calyculin A indeed increased myosin phosphorylation. To test whether the Calyculin A effects are due to myosin phosphatase or to type 2 phosphatases, we treated cells with okadaic acid, which inhibits protein phosphatase 2A at concentrations similar to Calyculin A but requires much higher concentrations to inhibit myosin phosphatase. Okadaic acid had no effect on chromosome movement. Backward movements did not require myosin or actin since they were not affected by 2,3-butanedione monoxime or LatruculinB. Calyculin A affects the distribution and organization of spindle microtubules, spindle actin, cortical actin and putative spindle matrix proteins skeletor and titin, as visualized using immunofluorescence. We discuss how accelerated and backwards movements might arise.
Collapse
Affiliation(s)
- Lacramioara Fabian
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| | | | - Arthur Forer
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
17
|
Théry M, Bornens M. Cell shape and cell division. Curr Opin Cell Biol 2006; 18:648-57. [PMID: 17046223 DOI: 10.1016/j.ceb.2006.10.001] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 10/02/2006] [Indexed: 01/04/2023]
Abstract
The correlation between cell shape elongation and the orientation of the division axis described by early cell biologists is still used as a paradigm in developmental studies. However, analysis of early embryo development and tissue morphogenesis has highlighted the role of the spatial distribution of cortical cues able to guide spindle orientation. In vitro studies of cell division have revealed similar mechanisms. Recent data support the possibility that the orientation of cell division in mammalian cells is dominated by cell adhesion and the associated traction forces developed in interphase. Cell shape is a manifestation of these adhesive and tensional patterns. These patterns control the spatial distribution of cortical signals and thereby guide spindle orientation and daughter cell positioning. From these data, cell division appears to be a continuous transformation ensuring the maintenance of tissue mechanical integrity.
Collapse
Affiliation(s)
- Manuel Théry
- CEA, DSV, DRDC, Laboratoire Biopuces, Grenoble, F38054 France
| | | |
Collapse
|
18
|
Shannon KB, Canman JC, Ben Moree C, Tirnauer JS, Salmon ED. Taxol-stabilized microtubules can position the cytokinetic furrow in mammalian cells. Mol Biol Cell 2005; 16:4423-36. [PMID: 15975912 PMCID: PMC1196349 DOI: 10.1091/mbc.e04-11-0974] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 06/03/2005] [Accepted: 06/14/2005] [Indexed: 12/20/2022] Open
Abstract
How microtubules act to position the plane of cell division during cytokinesis is a topic of much debate. Recently, we showed that a subpopulation of stable microtubules extends past chromosomes and interacts with the cell cortex at the site of furrowing, suggesting that these stabilized microtubules may stimulate contractility. To test the hypothesis that stable microtubules can position furrows, we used taxol to rapidly suppress microtubule dynamics during various stages of mitosis in PtK1 cells. Cells with stabilized prometaphase or metaphase microtubule arrays were able to initiate furrowing when induced into anaphase by inhibition of the spindle checkpoint. In these cells, few microtubules contacted the cortex. Furrows formed later than usual, were often aberrant, and did not progress to completion. Images showed that furrowing correlated with the presence of one or a few stable spindle microtubule plus ends at the cortex. Actin, myosin II, and anillin were all concentrated in these furrows, demonstrating that components of the contractile ring can be localized by stable microtubules. Inner centromere protein (INCENP) was not found in these ingressions, confirming that INCENP is dispensable for furrow positioning. Taxol-stabilization of the numerous microtubule-cortex interactions after anaphase onset delayed furrow initiation but did not perturb furrow positioning. We conclude that taxol-stabilized microtubules can act to position the furrow and that loss of microtubule dynamics delays the timing of furrow onset and prevents completion. We discuss our findings relative to models for cleavage stimulation.
Collapse
Affiliation(s)
- Katie B Shannon
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| | | | | | | | | |
Collapse
|
19
|
Ahuja P, Perriard E, Perriard JC, Ehler E. Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes. J Cell Sci 2004; 117:3295-306. [PMID: 15226401 DOI: 10.1242/jcs.01159] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The contractile tissue of the heart is composed of individual cardiomyocytes. During mammalian embryonic development, heart growth is achieved by cell division while at the same time the heart is already exerting its essential pumping activity. There is still some debate whether the proliferative activity is carried out by a less differentiated, stem cell-like type of cardiomyocytes or whether embryonic cardiomyocytes are able to perform both of these completely different dynamic tasks, contraction and cell division. Our analysis of triple-stained specimen of cultured embryonic cardiomyocytes and of whole mount preparations of embryonic mouse hearts by confocal microscopy revealed that differentiated cardiomyocytes are indeed able to proliferate. However, to go through cell division, a disassembly of the contractile elements, the myofibrils, has to take place. This disassembly occurs in two steps with Z-disk and thin (actin)-filament-associated proteins getting disassembled before disassembly of the M-bands and the thick (myosin) filaments happens. After cytokinesis reassembly of the myofibrillar proteins to their mature cross-striated pattern can be seen. Another interesting observation was that the cell-cell contacts remain seemingly intact during division, probably reflecting the requirement of intact integration sites of the individual cells in the contractile tissue. Our results suggest that embryonic cardiomyocytes have developed an interesting strategy to deal with their major cytoskeletal elements, the myofibrils, during mitosis. The complex disassembly-reassembly process might also provide a mechanistic explanation, why cardiomyocytes cede to divide postnatally.
Collapse
Affiliation(s)
- Preeti Ahuja
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH Hönggerberg, 8093 Zurich
| | | | | | | |
Collapse
|
20
|
Uyeda TQP, Nagasaki A, Yumura S. Multiple Parallelisms in Animal Cytokinesis. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:377-432. [PMID: 15548417 DOI: 10.1016/s0074-7696(04)40004-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The process of cytokinesis in animal cells is usually presented as a relatively simple picture: A cleavage plane is first positioned in the equatorial region by the astral microtubules of the anaphase mitotic apparatus, and a contractile ring made up of parallel filaments of actin and myosin II is formed and encircles the cortex at the division site. Active sliding between the two filament systems constricts the perimeter of the cortex, leading to separation of two daughter cells. However, recent studies in both animal cells and lower eukaryotic model organisms have demonstrated that cytokinesis is actually far more complex. It is now obvious that the three key processes of cytokinesis, cleavage plane determination, equatorial furrowing, and scission, are driven by different mechanisms in different types of cells. In some cases, moreover, multiple pathways appear to have redundant functions in a single cell type. In this review, we present a novel hypothesis that incorporates recent observations on the activities of mitotic microtubules and the biochemistry of Rho-type GTPase proteins and postulates that two different sets of microtubules are responsible for the two known mechanisms of cleavage plane determination and also for two distinct mechanisms of equatorial furrowing.
Collapse
Affiliation(s)
- Taro Q P Uyeda
- Gene Function Research Center, National Institute for Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | | | | |
Collapse
|
21
|
Forer A, Spurck T, Pickett-Heaps JD, Wilson PJ. Structure of kinetochore fibres in crane-fly spermatocytes after irradiation with an ultraviolet microbeam: Neither microtubules nor actin filaments remain in the irradiated region. ACTA ACUST UNITED AC 2003; 56:173-92. [PMID: 14569597 DOI: 10.1002/cm.10144] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We studied chromosome movement after kinetochore microtubules were severed. Severing a kinetochore fibre in living crane-fly spermatocytes with an ultraviolet microbeam creates a kinetochore stub, a birefringent remnant of the spindle fibre connected to the kinetochore and extending only to the edge of the irradiated region. After the irradiation, anaphase chromosomes either move poleward led by their stubs or temporarily stop moving. We examined actin and/or microtubules in irradiated cells by means of confocal fluorescence microscopy or serial-section reconstructions from electron microscopy. For each cell thus examined, chromosome movement had been recorded continuously until the moment of fixation. Kinetochore microtubules were completely severed by the ultraviolet microbeam in cells in which chromosomes continued to move poleward after the irradiation: none were seen in the irradiated regions. Similarly, actin filaments normally present in kinetochore fibres were severed by the ultraviolet microbeam irradiations: the irradiated regions contained no actin filaments and only local spots of non-filamentous actin. There was no difference in irradiated regions when the associated chromosomes continued to move versus when they stopped moving. Thus, one cannot explain motion with severed kinetochore microtubules in terms of either microtubules or actin-filaments bridging the irradiated region. The data seem to negate current models for anaphase chromosome movement and support a model in which poleward chromosome movement results from forces generated within the spindle matrix that propel kinetochore fibres or kinetochore stubs poleward.
Collapse
Affiliation(s)
- Arthur Forer
- Biology Department, York University, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
22
|
Dabiri GA, Ayoob JC, Turnacioglu KK, Sanger JM, Sanger JW. Use of green fluorescent proteins linked to cytoskeletal proteins to analyze myofibrillogenesis in living cells. Methods Enzymol 2003; 302:171-86. [PMID: 12876770 DOI: 10.1016/s0076-6879(99)02017-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Once the appropriate site has been selected for the attachment of GFP to the sarcomeric protein, it is quite remarkable that the large size of the GFP molecule does not appear to interfere with the localization of the fluorescent sarcomeric proteins into the sarcomeric regions of the myofibrils. A similar approach using truncated parts of sarcomeric proteins linked to GFP should allow studies of the targeting properties of other sarcomeric domains for localization and assembly studies.
Collapse
Affiliation(s)
- G A Dabiri
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA
| | | | | | | | | |
Collapse
|
23
|
Silverman-Gavrila RV, Forer A. Myosin localization during meiosis I of crane-fly spermatocytes gives indications about its role in division. CELL MOTILITY AND THE CYTOSKELETON 2003; 55:97-113. [PMID: 12740871 DOI: 10.1002/cm.10112] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We showed previously that in crane-fly spermatocytes myosin is required for tubulin flux [Silverman-Gavrila and Forer, 2000a: J Cell Sci 113:597-609], and for normal anaphase chromosome movement and contractile ring contraction [Silverman-Gavrila and Forer, 2001: Cell Motil Cytoskeleton 50:180-197]. Neither the identity nor the distribution of myosin(s) were known. In the present work, we used immunofluorescence and confocal microscopy to study myosin during meiosis-I of crane-fly spermatocytes compared to tubulin, actin, and skeletor, a spindle matrix protein, in order to further understand how myosin might function during cell division. Antibodies to myosin II regulatory light chain and myosin II heavy chain gave similar staining patterns, both dependent on stage: myosin is associated with nuclei, asters, centrosomes, chromosomes, spindle microtubules, midbody microtubules, and contractile rings. Myosin and actin colocalization along kinetochore fibers from prometaphase to anaphase are consistent with suggestions that acto-myosin forces in these stages propel kinetochore fibres poleward and trigger tubulin flux in kinetochore fibres, contributing in this way to poleward chromosome movement. Myosin and actin colocalization at the cell equator in cytokinesis, similar to studies in other cells [e.g., Fujiwara and Pollard, 1978: J Cell Biol 77:182-195], supports a role of actin-myosin interactions in contractile ring function. Myosin and skeletor colocalization in prometaphase spindles is consistent with a role of these proteins in spindle formation. After microtubules or actin were disrupted, myosin remained in spindles and contractile rings, suggesting that the presence of myosin in these structures does not require the continued presence of microtubules or actin. BDM (2,3 butanedione, 2 monoxime) treatment that inhibits chromosome movement and cytokinesis also altered myosin distributions in anaphase spindles and contractile rings, consistent with the physiological effects, suggesting also that myosin needs to be active in order to be properly distributed.
Collapse
|
24
|
Du A, Sanger JM, Linask KK, Sanger JW. Myofibrillogenesis in the first cardiomyocytes formed from isolated quail precardiac mesoderm. Dev Biol 2003; 257:382-94. [PMID: 12729566 DOI: 10.1016/s0012-1606(03)00104-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
De novo assembly of myofibrils was investigated in explants of precardiac mesoderm from quail embryos to address a controversy about different models of myofibrillogenesis. The sequential expression of sarcomeric components was visualized in double- and triple-stained explants before, during, and just after the first cardiomyocytes began to beat. In explants from stage 6 embryos, cultured for 10 h, ectoderm, endoderm, and the precardiac mesoderm displayed arrays of stress fibers with alternating bands of the nonmuscle isoforms of alpha-actinin and myosin IIB. With increasing time in culture, mesoderm cells contained fibrils composed of actin, nonmuscle myosin IIB, and sarcomeric alpha-actinin. Several hours later, before beating occurred, both nonmuscle and muscle myosin II localized in some of the fibrils in the cells. Concentrations of muscle myosin began as thin bundles, dispersed in the cytoplasm, often overlapping one another, and progressed to small, aligned A-band-sized aggregates. The amount of nonmuscle myosin decreased dramatically when Z-bands formed, the muscle myosin became organized into A-bands, and the cells began beating. The sequential changes in protein composition of the fibrils in the developing muscle cells supports the model of myofibrillogenesis in which assembly begins with premyofibrils and progresses through nascent myofibrils to mature myofibrils.
Collapse
Affiliation(s)
- Aiping Du
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Mitotic cell rounding is the process of cell shape change in which a flat interphase cell becomes spherical at the onset of mitosis. Rearrangement of the actin cytoskeleton, de-adhesion, and an increase in cortical rigidity accompany mitotic cell rounding. The molecular mechanisms that contribute to this process have not been defined. We show that RhoA is required for cortical retraction but not de-adhesion during mitotic cell rounding. The mitotic increase in cortical rigidity also requires RhoA, suggesting that increases in cortical rigidity and cortical retraction are linked processes. Rho-kinase is also required for mitotic cortical retraction and rigidity, indicating that the effects of RhoA on cell rounding are mediated through this effector. Consistent with a role for RhoA during mitotic entry, RhoA activity is elevated in rounded, preanaphase mitotic cells. The activity of the RhoA inhibitor p190RhoGAP is decreased due to its serine/threonine phosphorylation at this time. Cumulatively, these results suggest that the mitotic increase in RhoA activity leads to rearrangements of the cortical actin cytoskeleton that promote cortical rigidity, resulting in mitotic cell rounding.
Collapse
Affiliation(s)
- Amy Shaub Maddox
- Department of Cell and Developmental Biology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
26
|
Silverman-Gavrila RV, Forer A. Effects of anti-myosin drugs on anaphase chromosome movement and cytokinesis in crane-fly primary spermatocytes. CELL MOTILITY AND THE CYTOSKELETON 2001; 50:180-97. [PMID: 11807939 DOI: 10.1002/cm.10006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To investigate whether myosin is involved in crane-fly primary spermatocyte division, we studied the effects of myosin inhibitors on chromosome movement and on cytokinesis. With respect to chromosome movement, the myosin ATPase inhibitor 2,3-butanedione 2-monoxime (BDM) added during autosomal anaphase reversibly perturbed the movements of all autosomes: autosomes stopped, slowed, or moved backwards during treatment. BDM added before anaphase onset altered chromosome movement less than when BDM was added during anaphase: chromosome movements only rarely were stopped. They often were normal initially and then, if altered at all, were slowed. To confirm that the effects of BDM were due to myosin inhibition, we treated cells with ML-7, a drug that inhibits myosin light chain kinase (MLCK), an enzyme necessary to activate myosin. ML-7 affected anaphase movement only when added in early prometaphase: this treatment prevented chromosome attachment to the spindle. We treated cells with H-7 as a control for possible non-myosin effects of ML-7. H-7, which has a lower affinity than ML-7 for MLCK but a higher affinity than ML-7 for other potential targets, had no effect. These data confirm that the BDM effect is on myosin and indicate that the myosin used for chromosome movement is activated near the start of prometaphase. With respect to cytokinesis, BDM did not block furrow initiation but did block subsequent contraction of the contractile ring. When BDM was added after initiation of the furrow, the contractile ring either stalled or relaxed. ML-7 blocked contractile ring contraction when added at all stages after autosomal anaphase onset, including when added during cytokinesis. H-7 had no effect. These results confirm that the effects of BDM are on myosin and indicate that the myosin used for cytokinesis is activated starting from autosomal anaphase and continuing throughout cytokinesis.
Collapse
|
27
|
Sanger JW, Ayoob JC, Chowrashi P, Zurawski D, Sanger JM. Assembly of myofibrils in cardiac muscle cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 481:89-102; discussion 103-5. [PMID: 10987068 DOI: 10.1007/978-1-4615-4267-4_6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
How do myofibrils assemble in cardiac muscle cells? When does titin first assemble into myofibrils? What is the role of titin in the formation of myofibrils in cardiac muscle cells? This chapter reviews when titin is first detected in cultured cardiomyocytes that have been freshly isolated from embryonic avian hearts. Our results support a model for myofibrillogenesis that involves three stages of assembly: premyofibrils, nascent myofibrils and mature myofibrils. Titin and muscle thick filaments were first detected associated with the nascent myofibrils. The Z-band targeting site for titin is localized in the N-terminus of titin. This region of titin binds alpha-actinin and less avidly vinculin. Thus the N-terminus of titin via its binding to alpha-actinin, and vinculin could also help mediate the costameric attachment of the Z-bands of mature myofibrils to the nearest cell surfaces.
Collapse
Affiliation(s)
- J W Sanger
- Department of Cell and Developmental Biology, University of Pennsylvania, School of Medicine, Philadelphia, USA
| | | | | | | | | |
Collapse
|
28
|
Manandhar G, Moreno RD, Simerly C, Toshimori K, Schatten G. Contractile apparatus of the normal and abortive cytokinetic cells during mouse male meiosis. J Cell Sci 2000; 113 Pt 23:4275-86. [PMID: 11069772 DOI: 10.1242/jcs.113.23.4275] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse male meiotic cytokinesis was studied using immunofluorescent probes against various elements of cytokinetic apparatus and electron microscopy. In normal mice, some spermatocytes fail to undergo cytokinesis after meiotic I or II nuclear divisions, forming syncytial secondary spermatocytes and spermatids. Abnormal cytokinetic cells develop sparse and dispersed midzone spindles during the early stage. However, during late stages, single and compact midzone spindles are formed as in normal cells, but localize asymmetrically and attach to the cortex. Myosin and f-actin were observed in the midzone spindle and midbody regions of normally cleaving cells as well as in those cells that failed to develop a cytokinetic furrow, implying that cytokinetic failure is unlikely to be due to defect in myosin or actin assembly. Depolymerization of microtubules by nocodazole resulted in the loss of the midbody-associated f-actin and myosin. These observations suggest that actin-myosin localization in the midbody could be a microtubule-dependent process that may not play a direct role in cytokinetic furrowing. Anti-centrin antibody labels the putative centrioles while anti-(gamma)-tubulin antibody labels the minus-ends of the midzone spindles of late-stage normal and abnormal cytokinetic cells, suggesting that the centrosome and midzone spindle nucleation in abnormal cytokinetic cells is not different from those of normally cleaving cells. Possible use of mouse male meiotic cells as a model system to study cytokinesis has been discussed.
Collapse
Affiliation(s)
- G Manandhar
- Departments of Obstetrics & Gynecology and Cell & Developmental Biology, Oregon Regional Primate Research Center, Oregon Health Sciences University, Beaverton, OR 97006, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Actin-depolymerizing factor (ADF) and cofilin define a family of actin-binding proteins essential for the rapid turnover of filamentous actin in vivo. Here we present the 2.0 A crystal structure of Arabidopsis thaliana ADF1 (AtADF1), the first plant crystal structure from the ADF/cofilin (AC) family. Superposition of the four AC isoform structures permits an accurate sequence alignment that differs from previously reported data for the location of vertebrate-specific inserts and reveals a contiguous, vertebrate-specific surface opposite the putative actin-binding surface. Extending the structure-based sequence alignment to include 30 additional isoforms indicates three major groups: vertebrates, plants, and "other eukaryotes." Within these groups, several structurally conserved residues that are not conserved throughout the entire AC family have been identified. Residues that are highly conserved among all isoforms tend to cluster around the tryptophan at position 90 and a structurally conserved kink in alpha-helix 3. Analysis of surface character shows the presence of a hydrophobic patch and a highly conserved acidic cluster, both of which include several residues previously implicated in actin binding.
Collapse
Affiliation(s)
- G D Bowman
- Department of Molecular Biology, Lewis Thomas Laboratories, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | | | |
Collapse
|
30
|
Komatsu S, Yano T, Shibata M, Tuft RA, Ikebe M. Effects of the regulatory light chain phosphorylation of myosin II on mitosis and cytokinesis of mammalian cells. J Biol Chem 2000; 275:34512-20. [PMID: 10944522 DOI: 10.1074/jbc.m003019200] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin plays an important role in mitosis, especially during cytokinesis. Although it has been assumed that phosphorylation of regulatory light chain of myosin (RLC) controls motility of mammalian non-muscle cells, the functional significance of RLC phosphorylation remains uninvestigated. To address this problem, we have produced unphosphorylatable RLC (T18A/S19A RLC) and overexpressed it in COS-7 cells and normal rat kidney cells. Overexpression of T18A/S19A RLC but not wild type RLC almost completely abolished concanavalin A-induced receptor cap formation. The results indicate that myosin phosphorylation is critical for concanavalin A-induced gathering of surface receptors. T18A/S19A RLC overexpression resulted in the production of multinucleated cells, suggesting the failure of proper cell division in these cells. Video microscopic observation revealed that cells expressing T18A/S19A RLC showed abnormalities during mitosis in two respects. One is that the cells produced abnormal cleavage furrows, resulting in incomplete cytokinesis, which suggests that myosin phosphorylation is important for the normal recruitment of myosin molecules into the contractile ring structure. The other is that separation of chromosomes from the metaphase plate is disrupted in T18A/S19A RLC expressing cells, thus preventing proper transition from metaphase to anaphase. These results suggest that, in addition to cytokinesis, myosin and myosin phosphorylation play a role in the karyokinetic process.
Collapse
Affiliation(s)
- S Komatsu
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | |
Collapse
|
31
|
Sanger JM, Dome JS, Sanger JW. Unusual cleavage furrows in vertebrate tissue culture cells: insights into the mechanisms of cytokinesis. CELL MOTILITY AND THE CYTOSKELETON 2000; 39:95-106. [PMID: 9484952 DOI: 10.1002/(sici)1097-0169(1998)39:2<95::aid-cm1>3.0.co;2-f] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In cultures of the epithelial cell lines, PtK2 and LLC-PK, some cells assume unusually large flattened morphologies and, during cell division, produce unusual cleavage furrows. We have microinjected some of these large cells with fluorescent actin and myosin probes to determine how the cell's shape and the position of its mitotic spindle affect the deposition of actin and myosin in the forming cleavage furrow. In cells with two spindles, contractile proteins were recruited not only to the cortex bordering the former metaphase plates but also to the cortex midway between each pair of adjacent nondaughter poles or centrosomes. The furrowing between adjacent poles seen in these cultured epithelial cells conformed to the furrows seen when echinoderm eggs were manipulated into a torus shape so that the poles of two mitotic spindles were adjacent to one another [Rappaport, 1961]. The recruitment of contractile proteins and the formation of furrows between adjacent centrosomes was a function of the distances between them. When adjacent centrosomes were positioned too close together neither contractile protein recruitment nor furrow formation occurred. If a normal-sized spindle was present in a very large cell, fibers of contractile protein assembled in the cortex above the former metaphase plate but they did not extend to the cell periphery, resulting in an inhibition of cytokinesis. In all injected cells, the recruitment of actin and myosin to the cell surfaces could first be detected at mid-anaphase before there was any visible sign of furrowing. Our results suggest that vertebrate cells share common mechanisms for the establishment of the cleavage furrow with echinoderm cells. The results are consistent with a model in which (1) the positions of the centrosomes and their linearly connected microtubules determine the position for the assembly of the cleavage furrow, and (2) the signal arrives at the surface within a few minutes after the initiation of anaphase. We speculate that an interaction of the ends of microtubules from adjacent centrosomes with the cell surface promotes a clustering of integral membrane protein(s) that interact with and target contractile proteins to a position midway between centrosomes where furrowing occurs.
Collapse
Affiliation(s)
- J M Sanger
- Department of Cell and Developmental Biology, University of Pennsylvania, School of Medicine, Philadelphia 19104-6058, USA.
| | | | | |
Collapse
|
32
|
Wu X, Kocher B, Wei Q, Hammer JA. Myosin Va associates with microtubule-rich domains in both interphase and dividing cells. CELL MOTILITY AND THE CYTOSKELETON 2000; 40:286-303. [PMID: 9678671 DOI: 10.1002/(sici)1097-0169(1998)40:3<286::aid-cm7>3.0.co;2-b] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Class V unconventional myosins are two-headed, nonfilamentous, actin-based mechanoenzymes that appear to be expressed ubiquitously. Mice possess at least two myosin V heavy chain genes (dilute and myr6) whose approximately 190 kDa protein products are referred to as myosin Va and Vb, respectively. Using antibodies that are specific for the Va isoform and immunofluorescence microscopy, we show here that myosin Va localizes to the microtubule organizing center (MTOC) in interphase cells, and to the mitotic asters, spindle, and midbody of dividing cells. These associations, which in the case of mitotic cells are characterized by the concentration of myosin Va in the immediate vicinity of the microtubules, were observed in a variety of cell types, including primary and immortal mouse melanocytes and fibroblasts, Hela cells, and Cos cells. Importantly, these associations were not observed in melanocytes and fibroblasts cultured from dilute null mice, indicating that the staining of these microtubule-rich domains was due to the presence of myosin Va, as opposed to another protein(s) containing a shared epitope(s) with myosin Va. When cells were extracted with detergent prior to fixation, myosin Va remained associated with each of these microtubule-rich domains, suggesting that these associations are not due to the possible presence of membranes at these sites. This fact, and our observation that these microtubule-rich domains contain little if any F-actin (based on phalloidin staining), suggest that myosin Va may bind to microtubules either directly or through a microtubule-associated protein. Finally, we found that dilute null fibroblasts in primary culture are twice as likely to be binucleate as wild type fibroblasts of the same genetic background (35% vs. 17%). Together, these results indicate that myosin Va associates with microtubule-rich domains in both interphase and dividing cells, and plays a role in the efficiency of cell division in culture.
Collapse
Affiliation(s)
- X Wu
- Laboratory of Cell Biology, Section on Molecular Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-0301, USA
| | | | | | | |
Collapse
|
33
|
Turnacioglu KK, Sanger JW, Sanger JM. Sites of monomeric actin incorporation in living PtK2 and REF-52 cells. CELL MOTILITY AND THE CYTOSKELETON 2000; 40:59-70. [PMID: 9605972 DOI: 10.1002/(sici)1097-0169(1998)40:1<59::aid-cm6>3.0.co;2-a] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The purpose of this study was to analyze where monomeric actin first becomes incorporated into the sarcomeric units of the stress fibers. We microinjected fluorescently labeled actin monomers into two cell lines that differ in the sarcomeric spacings of alpha-actinin and nonmuscle myosin II along their stress fibers: REF-52, a fibroblast cell line, and PtK2, an epithelial cell line. The cells were fixed at selected times after microinjection (30 s and longer) and then stained with an alpha-actinin antibody. Localization of the labeled actin and alpha-actinin antibody were recorded with low level light cameras. In both cell types, the initial sites of incorporation were in focal contacts, lamellipodia and in punctate regions of the stress fibers that corresponded to the alpha-actinin rich dense bodies. The adherent junctions between the epithelial PtK2 cells were also initial sites of incorporation. At longer times of incorporation, the actin fluorescence extended along the stress fibers and became almost uniform. We saw no difference in the pattern of incorporation in peripheral and perinuclear regions of the stress fibers. We propose that rapid incorporation of monomeric actin occurs at the cellular sites where the barbed ends of actin filaments are concentrated: at the edges of lamellipodia, the adherens junctions, the attachment plaques and in the dense bodies that mark out the sarcomeric subunits of the stress fibers.
Collapse
Affiliation(s)
- K K Turnacioglu
- Department of Cell and Developmental Biology, Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia 19104-6058, USA
| | | | | |
Collapse
|
34
|
Abstract
We review results obtained after fluorescent actin and myosin II probes were microinjected into interphase and prophase PtK2 and LLC-PK tissue culture cells to follow the changing distribution of these cytoskeletal proteins in the live cells during division. The fluorescent probes first begin to assemble into the future furrow region during mid-anaphase before any sign of initial contractions. The total concentrations of F-actin and myosin in the cleavage furrow begin to decrease a few minutes after the onset of furrow contraction. The cell's shape and the position of its mitotic spindle affect the deposition of cytoskeletal proteins in the forming cleavage furrow. In cells with two spindles, contractile proteins were recruited not only to the cortex bordering the former metaphase plates but also to the cortex midway between each pair of adjacent non-daughter poles or centrosomes. The furrowing between adjacent poles seen in these cultured cells are similar to the furrows observed by Rappaport [(1961) J Exp Zool 148:81-89] when echinoderm eggs were manipulated into a torus shape so that the poles of two mitotic spindles were adjacent to one another. These observations on injected tissue culture cells suggest that vertebrate cells share common mechanisms for the establishment of the cleavage furrow with echinoderm cells.
Collapse
Affiliation(s)
- J M Sanger
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA.
| | | |
Collapse
|
35
|
Abstract
Recent studies suggested that a Ca(2+) signal is involved in the regulation of cell division. For example, using a confocal imaging technique, we have shown that a localized Ca(2+) elevation was clearly associated with the onset of cytokinesis in zebrafish embryo [Chang and Meng (1995) J. Cell Biol. 131:1539-1545]. This finding was later confirmed in studies using aequorin as a Ca(2+) probe. Here, we used a 4-D confocal measurement technique to further characterize the properties of the Ca(2+) signal associated with cell division. We found evidence that there were three types of Ca(2+) signals associated with different stages of cell cleavage in embryonic cell. The first type was repetitive Ca(2+) spikes that emerged several minutes before the first cell cleavage began. These Ca(2+) spikes were first distributed broadly over the central region of the blastodisc and then gradually localized in the equatorial region; they appeared to play the role of determining the position of the first cleavage plane. The second type was a calcium wave that propagated along the cleavage furrow and appeared to guide the furrow extension during the progression of cytokinesis. The third type was a group of post-cleavage calcium spikes that appeared to be responsible for furrow deepening and maintenance of the contractile band. When this type of Ca(2+) transient was blocked by injecting BAPTA or heparin, cell cleavage regressed and the structure of the contractile band could no longer be maintained.
Collapse
Affiliation(s)
- D C Chang
- Department of Biology, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | | |
Collapse
|
36
|
Drees BE, Andrews KM, Beckerle MC. Molecular dissection of zyxin function reveals its involvement in cell motility. J Cell Biol 1999; 147:1549-60. [PMID: 10613911 PMCID: PMC2174240 DOI: 10.1083/jcb.147.7.1549] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spatially controlled actin filament assembly is critical for numerous processes, including the vectorial cell migration required for wound healing, cell- mediated immunity, and embryogenesis. One protein implicated in the regulation of actin assembly is zyxin, a protein concentrated at sites where the fast growing ends of actin filaments are enriched. To evaluate the role of zyxin in vivo, we developed a specific peptide inhibitor of zyxin function that blocks its interaction with alpha-actinin and displaces it from its normal subcellular location. Mislocalization of zyxin perturbs cell migration and spreading, and affects the behavior of the cell edge, a structure maintained by assembly of actin at sites proximal to the plasma membrane. These results support a role for zyxin in cell motility, and demonstrate that the correct positioning of zyxin within the cell is critical for its physiological function. Interestingly, the mislocalization of zyxin in the peptide-injected cells is accompanied by disturbances in the distribution of Ena/VASP family members, proteins that have a well-established role in promoting actin assembly. In concert with previous work, our findings suggest that zyxin promotes the spatially restricted assembly of protein complexes necessary for cell motility.
Collapse
Affiliation(s)
- Beth E. Drees
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-5550
| | - Katy M. Andrews
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-5550
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112-5550
| | - Mary C. Beckerle
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-5550
| |
Collapse
|
37
|
Nodelman IM, Bowman GD, Lindberg U, Schutt CE. X-ray structure determination of human profilin II: A comparative structural analysis of human profilins. J Mol Biol 1999; 294:1271-85. [PMID: 10600384 DOI: 10.1006/jmbi.1999.3318] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human profilins are multifunctional, single-domain proteins which directly link the actin microfilament system to a variety of signalling pathways via two spatially distinct binding sites. Profilin binds to monomeric actin in a 1:1 complex, catalyzes the exchange of the actin-bound nucleotide and regulates actin filament barbed end assembly. Like SH3 domains, profilin has a surface-exposed aromatic patch which binds to proline-rich peptides. Various multidomain proteins including members of the Ena/VASP and formin families localize profilin:actin complexes through profilin:poly-L-proline interactions to particular cytoskeletal locations (e.g. focal adhesions, cleavage furrows). Humans express a basic (I) and an acidic (II) isoform of profilin which exhibit different affinities for peptides and proteins rich in proline residues. Here, we report the crystallization and X-ray structure determination of human profilin II to 2.2 A. This structure reveals an aromatic extension of the previously defined poly-L-proline binding site for profilin I. In contrast to serine 29 of profilin I, tyrosine 29 in profilin II is capable of forming an additional stacking interaction and a hydrogen bond with poly-L-proline which may account for the increased affinity of the second isoform for proline-rich peptides. Differential isoform specificity for proline-rich proteins may be attributed to the differences in charged and hydrophobic residues in and proximal to the poly-L-proline binding site. The actin-binding face remains nearly identical with the exception of five amino acid differences. These observations are important for the understanding of the functional and structural differences between these two classes of profilin isoforms.
Collapse
Affiliation(s)
- I M Nodelman
- Department of Molecular Biology, Henry H. Hoyt Laboratory, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
38
|
Geisler JG, Palmer RJ, Stubbs LJ, Mucenski ML. Nspl1, a new Z-band-associated protein. J Muscle Res Cell Motil 1999; 20:661-8. [PMID: 10672514 DOI: 10.1023/a:1005533013926] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Molecular characterization of a novel gene designated Neuroendocrine-Specific Protein-Like-1 (Nspl1) had revealed that this gene is expressed as two transcripts, a 1.2 kb transcript found predominantly in skeletal muscle and a 2.1 kb transcript expressed in the brain. The exceptionally high level of skeletal muscle expression prompted us to determine where the protein is localized to skeletal muscle. In vitro studies were performed using two plasmid constructs that generate full-length Nspl1 muscle-specific protein fused to the green fluorescent protein (GFP). In one construct, the GFP cDNA was fused to the N-terminus of the Nspl1 cDNA while in the second construct, the GFP cDNA was fused to the C-terminus of the Nspl1 cDNA. Transfection of either plasmid into mononucleated myoblasts showed that the Nspl1-GFP chimeric protein was associated with intermediate filaments. This was confirmed by using an antibody to stain desmin and finding that GFP-Nspl1 colocalizes with desmin. Chick primary myoblasts were transfected with the chimeric cDNAs and allowed to differentiate into mature myotubes. Results from this analysis and the use of monoclonal antibody to stain alpha-actinin, further localized the Nspl1 protein to the Z-band of mature myotubes. Confocal microscopy of the myotubes containing Nspl1-GFP demonstrates that Nspl1 is distributed continuously throughout the Z-disks.
Collapse
Affiliation(s)
- J G Geisler
- University of Tennessee Graduate School of Biomedical Sciences, Knoxville 37932, USA.
| | | | | | | |
Collapse
|
39
|
Okubo MA, Chiba S, Nishikata T, Matsuno A, Hosoya H. Generation and characterization of a monoclonal antibody, mH1, raised against mitotic HeLa cells. Dev Growth Differ 1999; 41:381-9. [PMID: 10466925 DOI: 10.1046/j.1440-169x.1999.00438.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hybridoma cell lines were prepared from spleen cells of mouse immunized with mitotic HeLa cells. A monoclonal antibody (mH1), which intensively reacted with cleavage furrows of dividing HeLa cells in immunofluorescence, was obtained. In interphase, this antibody diffusely stained whole HeLa cells. Immunoelectron microscopy showed that mH1 antigens were localized at microvillus projections at the surface of dividing HeLa cells, but definite localization of that antigen was not observed in interphasic cells. Immunoblot analysis showed that mH1 is reactive to 42-kDa and 130-kDa components. Further, the 42-kDa component was identified as a gamma-actin homolog by N-terminal amino acid sequence analysis.
Collapse
Affiliation(s)
- M A Okubo
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | |
Collapse
|
40
|
Rappaport R. Absence of furrowing activity following regional cortical tension reduction in sand dollar blastomere and fertilized egg fragment surfaces. Dev Growth Differ 1999; 41:441-7. [PMID: 10466931 DOI: 10.1046/j.1440-169x.1999.00439.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purpose of the present investigation was to test experimentally the possibility that division mechanism establishment at the equator of sand dollar eggs may be a consequence of cortical tension gradients between the equator and the poles. Cytochalasin has been shown to decrease tension at the sea urchin egg surface. The concave ends of cytochalasin D-containing agarose cylinders were held against regions of the surface of Echinarachnius parma blastomeres and enucleated fertilized egg fragments. The ability to interfere with normal furrowing activity was used as a biological indicator of the effectiveness of cytochalasin. When agarose containing 2 microg/mL cytochalasin contacted the equatorial region of the blastomeres resulting from the first cleavage, or the equatorial surfaces of nucleated fertilized egg halves, furrowing was blocked, stalled or delayed, indicating that the concentration of cytochalasin was effective. When the same concentration of cytochalasin was applied to the poles, the cells and nucleated fertilized egg fragments divided in the same way as the controls, indicating that the effectiveness of the cytochalasin did not spread from the poles to the equator and that bisection did not interfere with the division of nucleated fertilized egg fragments. When the same concentration of cytochalasin was applied to diametrically opposed surfaces of enucleated, spherical egg fragments, there was no evidence of furrowing activity between the areas that contacted the cytochalasin or in any other part of the surface. Because of the tension-reducing effect of cytochalasin, a tension gradient existed between the regions affected and unaffected by cytochalasin. The results strongly suggest that establishment of the division mechanism by simple gradients of tension at the surface is unlikely.
Collapse
Affiliation(s)
- R Rappaport
- The Mount Desert Island Biological Laboratory, Salsbury Cove, ME 04672, USA.
| |
Collapse
|
41
|
Dabiri GA, Turnacioglu KK, Ayoob JC, Sanger JM, Sanger JW. Transfections of primary muscle cell cultures with plasmids coding for GFP linked to full-length and truncated muscle proteins. Methods Cell Biol 1999; 58:239-60. [PMID: 9891385 DOI: 10.1016/s0091-679x(08)61959-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- G A Dabiri
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
42
|
Simerly C, Nowak G, de Lanerolle P, Schatten G. Differential expression and functions of cortical myosin IIA and IIB isotypes during meiotic maturation, fertilization, and mitosis in mouse oocytes and embryos. Mol Biol Cell 1998; 9:2509-25. [PMID: 9725909 PMCID: PMC25518 DOI: 10.1091/mbc.9.9.2509] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To explore the role of nonmuscle myosin II isoforms during mouse gametogenesis, fertilization, and early development, localization and microinjection studies were performed using monospecific antibodies to myosin IIA and IIB isotypes. Each myosin II antibody recognizes a 205-kDa protein in oocytes, but not mature sperm. Myosin IIA and IIB demonstrate differential expression during meiotic maturation and following fertilization: only the IIA isoform detects metaphase spindles or accumulates in the mitotic cleavage furrow. In the unfertilized oocyte, both myosin isoforms are polarized in the cortex directly overlying the metaphase-arrested second meiotic spindle. Cortical polarization is altered after spindle disassembly with Colcemid: the scattered meiotic chromosomes initiate myosin IIA and microfilament assemble in the vicinity of each chromosome mass. During sperm incorporation, both myosin II isotypes concentrate in the second polar body cleavage furrow and the sperm incorporation cone. In functional experiments, the microinjection of myosin IIA antibody disrupts meiotic maturation to metaphase II arrest, probably through depletion of spindle-associated myosin IIA protein and antibody binding to chromosome surfaces. Conversely, the microinjection of myosin IIB antibody blocks microfilament-directed chromosome scattering in Colcemid-treated mature oocytes, suggesting a role in mediating chromosome-cortical actomyosin interactions. Neither myosin II antibody, alone or coinjected, blocks second polar body formation, in vitro fertilization, or cytokinesis. Finally, microinjection of a nonphosphorylatable 20-kDa regulatory myosin light chain specifically blocks sperm incorporation cone disassembly and impedes cell cycle progression, suggesting that interference with myosin II phosphorylation influences fertilization. Thus, conventional myosins break cortical symmetry in oocytes by participating in eccentric meiotic spindle positioning, sperm incorporation cone dynamics, and cytokinesis. Although murine sperm do not express myosin II, different myosin II isotypes may have distinct roles during early embryonic development.
Collapse
Affiliation(s)
- C Simerly
- Division of Reproductive Sciences, Oregon Regional Primate Research Center, Departments of Cell and Developmental Biology, Oregon Health Sciences University, Portland, Oregon 97006, USA
| | | | | | | |
Collapse
|
43
|
Kolega J. Cytoplasmic dynamics of myosin IIA and IIB: spatial ‘sorting’ of isoforms in locomoting cells. J Cell Sci 1998; 111 ( Pt 15):2085-95. [PMID: 9664030 DOI: 10.1242/jcs.111.15.2085] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Different isoforms of non-muscle myosin II have different distributions in vivo, even within individual cells. In order to understand how these different distributions arise, the distribution and dynamics of non-muscle myosins IIA and myosin IIB were examined in cultured cells using immunofluorescence staining and time-lapse imaging of fluorescent analogs. Cultured bovine aortic endothelia contained both myosins IIA and IIB. Both isoforms distributed along stress fibers, in linear or punctate aggregates within lamellipodia, and diffusely around the nucleus. However, the A isoform was preferentially located toward the leading edge of migrating cells when compared with myosin IIB by double immunofluorescence staining. Conversely, the B isoform was enriched in structures at the cells' trailing edges. When fluorescent analogs of the two isoforms were co-injected into living cells, the injected myosins distributed with the same disparate localizations as endogenous myosins IIA and IIB. This indicated that the ability of the myosins to ‘sort’ within the cytoplasm is intrinsic to the proteins themselves, and not a result of localized synthesis or degradation. Furthermore, time-lapse imaging of injected analogs in living cells revealed differences in the rates at which the two isoforms rearranged during cell movement. The A isoform appeared in newly formed structures more rapidly than the B isoform, and was also lost more rapidly when structures disassembled. These observations suggest that the different localizations of myosins IIA and IIB reflect different rates at which the isoforms transit through assembly, movement and disassembly within the cell. The relative proportions of different myosin II isoforms within a particular cell type may determine the lifetimes of various myosin II-based structures in that cell.
Collapse
Affiliation(s)
- J Kolega
- Department of Anatomy and Cell Biology, State University of New York at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York, USA.
| |
Collapse
|
44
|
Song J, Rolfe BE, Campbell JH, Campbell GR. Changes in three-dimensional architecture of microfilaments in cultured vascular smooth muscle cells during phenotypic modulation. Tissue Cell 1998; 30:324-33. [PMID: 10091337 DOI: 10.1016/s0040-8166(98)80045-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To investigate changes in the three-dimensional microfilament architecture of vascular smooth muscle cells (SMC) during the process of phenotypic modulation, rabbit aortic SMCs cultured under different conditions and at different time points were either labelled with fluorescein-conjugated probes to cytoskeletal and contractile proteins for observation by confocal laser scanning microscopy, or extracted with Triton X-100 for scanning electron microscopy. Densely seeded SMCs in primary culture, which maintain a contractile phenotype, display prominent linear myofilament bundles (stress fibres) that are present throughout the cytoplasm with alpha-actin filaments predominant in the central part and beta-actin filaments in the periphery of the cell. Intermediate filaments form a meshed network interconnecting the stress fibres and linking directly to the nucleus. Moderately and sparsely seeded SMCs, which modulate toward the synthetic phenotype during the first 5 days of culture, undergo a gradual redistribution of intermediate filaments from the perinuclear region toward the peripheral cytoplasm and a partial disassembly of stress fibres in the central part of the upper cortex of the cytoplasm, with an obvious decrease in alpha-actin and myosin staining. These changes are reversed in moderately seeded SMCs by day 8 of culture when they have reached confluence. The results reveal two changes in microfilament architecture in SMCs as they undergo a change in phenotype: the redistribution of intermediate filaments probably due to an increase in synthetic organelles in the perinuclear area, and the partial disassembly of stress fibres which may reflect a degradation of contractile components.
Collapse
Affiliation(s)
- J Song
- Department of Anatomical Sciences, University of Queensland, Brisbane, Australia
| | | | | | | |
Collapse
|
45
|
Abstract
Fluorescently labeled smooth muscle myosin II is often used to study myosin II dynamics in non-muscle cells. In order to provide more specific tools for tracking non-muscle myosin II in living cytoplasm, fluorescent analogues of non-muscle myosin IIA and IIB were prepared and characterized. In addition, smooth and non-muscle myosin II were labeled with both cy5 and rhodamine so that comparative, dynamic studies may be performed. Non-muscle myosin IIA was purified from bovine platelets, non-muscle myosin IIB from bovine brain, and smooth muscle myosin II from turkey gizzards. After being fluorescently labeled with tetramethylrhodamine-5-iodoacetamide or with a succinimidyl ester of cy5, they retained the following properties: (1) reversible assembly into thick filaments, (2) actin-activatable MgATPase, (3) phosphorylation by myosin light chain kinase, (4) increased MgATPase upon light-chain phosphorylation, (5) interconversion between 6S and 10S conformations, and (6) distribution into endogenous myosin II-containing structures when microinjected into cultured cells. These fluorescent analogues can be used to visualize isoform-specific dynamics of myosin II in living cells.
Collapse
Affiliation(s)
- J Kolega
- Department of Anatomy and Cell Biology, State University of New York at Buffalo School of Medicine and Biomedical Sciences, 14214, USA.
| |
Collapse
|
46
|
Abstract
During mitosis, not only the genetic material stored in the nucleus but also the constituents of the cytoplasm should be equally partitioned between the daughter cells. For this sake, the dividing cell goes through an extensive structural reorganization and transport along the endocytic and exocytic pathways is temporarily arrested. Early in prophase, the radiating array of cytoplasmic microtubules disassembles and the membrane systems of the secretory apparatus start to split up. In metaphase, the nuclear envelope fragments and the condensing chromosomes associate with the forming mitotic spindle. The cisternal and tubular elements of the endoplasmic reticulum and the Golgi complex break down into small vesicles, presumably as the result of an imbalance between vesicle budding and fusion. In anaphase, the two sets of chromosomes are pulled apart and a cleavage furrow forms halfway between the spindle poles. Since most organelles occur in multiple and widely dispersed copies at this stage, they will be evenly distributed between the daughter cells. During telophase and cytokinesis, the preceding fragmentation process is reversed. A nuclear envelope reappears around the chromosomes and cytoplasmic microtubules reassemble. The endoplasmic reticulum is rebuilt as a continuous system of flattened cisternae and tubules. Stacks of Golgi cisternae arise from small vesicles and are rearranged in an interconnected network. In parallel, the biosynthetic functions of the cell are normalized and intracellular membrane traffic is resumed.
Collapse
Affiliation(s)
- J Thyberg
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
47
|
Matsumura F, Ono S, Yamakita Y, Totsukawa G, Yamashiro S. Specific localization of serine 19 phosphorylated myosin II during cell locomotion and mitosis of cultured cells. J Cell Biol 1998; 140:119-29. [PMID: 9425160 PMCID: PMC2132597 DOI: 10.1083/jcb.140.1.119] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/1997] [Revised: 11/06/1997] [Indexed: 02/05/2023] Open
Abstract
Phosphorylation of the regulatory light chain of myosin II (RMLC) at Serine 19 by a specific enzyme, MLC kinase, is believed to control the contractility of actomyosin in smooth muscle and vertebrate nonmuscle cells. To examine how such phosphorylation is regulated in space and time within cells during coordinated cell movements, including cell locomotion and cell division, we generated a phosphorylation-specific antibody. Motile fibroblasts with a polarized cell shape exhibit a bimodal distribution of phosphorylated myosin along the direction of cell movement. The level of myosin phosphorylation is high in an anterior region near membrane ruffles, as well as in a posterior region containing the nucleus, suggesting that the contractility of both ends is involved in cell locomotion. Phosphorylated myosin is also concentrated in cortical microfilament bundles, indicating that cortical filaments are under tension. The enrichment of phosphorylated myosin in the moving edge is shared with an epithelial cell sheet; peripheral microfilament bundles at the leading edge contain a higher level of phosphorylated myosin. On the other hand, the phosphorylation level of circumferential microfilament bundles in cell-cell contacts is low. These observations suggest that peripheral microfilaments at the edge are involved in force production to drive the cell margin forward while microfilaments in cell-cell contacts play a structural role. During cell division, both fibroblastic and epithelial cells exhibit an increased level of myosin phosphorylation upon cytokinesis, which is consistent with our previous biochemical study (Yamakita, Y., S. Yamashiro, and F. Matsumura. 1994. J. Cell Biol. 124:129-137). In the case of the NRK epithelial cells, phosphorylated myosin first appears in the midzones of the separating chromosomes during late anaphase, but apparently before the formation of cleavage furrows, suggesting that phosphorylation of RMLC is an initial signal for cytokinesis.
Collapse
Affiliation(s)
- F Matsumura
- Department of Molecular Biology and Biochemistry, Rutgers University, Nelson Labs, Busch Campus, Piscataway, New Jersey 08855, USA.
| | | | | | | | | |
Collapse
|
48
|
Zang JH, Cavet G, Sabry JH, Wagner P, Moores SL, Spudich JA. On the role of myosin-II in cytokinesis: division of Dictyostelium cells under adhesive and nonadhesive conditions. Mol Biol Cell 1997; 8:2617-29. [PMID: 9398680 PMCID: PMC25732 DOI: 10.1091/mbc.8.12.2617] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have investigated the role of myosin in cytokinesis in Dictyostelium cells by examining cells under both adhesive and nonadhesive conditions. On an adhesive surface, both wild-type and myosin-null cells undergo the normal processes of mitotic rounding, cell elongation, polar ruffling, furrow ingression, and separation of daughter cells. When cells are denied adhesion through culturing in suspension or on a hydrophobic surface, wild-type cells undergo these same processes. However, cells lacking myosin round up and polar ruffle, but fail to elongate, furrow, or divide. These differences show that cell division can be driven by two mechanisms that we term Cytokinesis A, which requires myosin, and Cytokinesis B, which is cell adhesion dependent. We have used these approaches to examine cells expressing a myosin whose two light chain-binding sites were deleted (DeltaBLCBS-myosin). Although this myosin is a slower motor than wild-type myosin and has constitutively high activity due to the abolition of regulation by light-chain phosphorylation, cells expressing DeltaBLCBS-myosin were previously shown to divide in suspension (Uyeda et al., 1996). However, we suspected their behavior during cytokinesis to be different from wild-type cells given the large alteration in their myosin. Surprisingly, DeltaBLCBS-myosin undergoes relatively normal spatial and temporal changes in localization during mitosis. Furthermore, the rate of furrow progression in cells expressing a DeltaBLCBS-myosin is similar to that in wild-type cells.
Collapse
Affiliation(s)
- J H Zang
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
49
|
McManus MJ, Lingle WL, Salisbury JL, Maihle NJ. A transformation-associated complex involving tyrosine kinase signal adapter proteins and caldesmon links v-erbB signaling to actin stress fiber disassembly. Proc Natl Acad Sci U S A 1997; 94:11351-6. [PMID: 9326613 PMCID: PMC23463 DOI: 10.1073/pnas.94.21.11351] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The avian erythroblastosis viral oncogene (v-erbB) encodes a receptor tyrosine kinase that possesses sarcomagenic and leukemogenic potential. We have expressed transforming and nontransforming mutants of v-erbB in fibroblasts to detect transformation-associated signal transduction events. Coimmunoprecipitation and affinity chromatography have been used to identify a transformation-associated, tyrosine phosphorylated, multiprotein complex. This complex consists of Src homologous collagen protein (Shc), growth factor receptor binding protein 2 (Grb2), son of sevenless (Sos), and a novel tyrosine phosphorylated form of the cytoskeletal regulatory protein caldesmon. Immunofluorescence localization studies further reveal that, in contrast to the distribution of caldesmon along actin stress fibers in normal fibroblasts, caldesmon colocalizes with Shc in plasma membrane blebs in transformed fibroblasts. This colocalization of caldesmon and Shc correlates with actin stress fiber disassembly and v-erbB-mediated transformation. The tyrosine phosphorylation of caldesmon, and its association with the Shc-Grb2-Sos signaling complex directly links tyrosine kinase oncogenic signaling events with cytoskeletal regulatory processes, and may define one mechanism regulating actin stress fiber disassembly in transformed cells.
Collapse
Affiliation(s)
- M J McManus
- Division of Pediatric Hematology/Oncology, The Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
50
|
Komatsu S, Murai N, Totsukawa G, Abe M, Akasaka K, Shimada H, Hosoya H. Identification of MAPKAPK homolog (MAPKAPK-4) as a myosin II regulatory light-chain kinase in sea urchin egg extracts. Arch Biochem Biophys 1997; 343:55-62. [PMID: 9210646 DOI: 10.1006/abbi.1997.9966] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We identified and cloned a homolog of mammalian mitogen-activated protein kinase-activated protein kinase (MAPKAPK)-2 and -3 from sea urchin, Hemicentrotus pulcherrimus. The obtained cDNA clone was composed of 350 amino acid residues which contain MAPK phosphorylation sites and the bipartite nuclear localization signal sites in its C-terminal domain. The clone showed 65.4 and 66.7% amino acid residue identity to human MAPKAPK-2 and -3, respectively. Phylogenetic analysis revealed that the homolog can be classified into a distinct group of MAPKAPK and, therefore, the identified homolog was designated as MAPKAPK-4. Biochemical characterization was performed using recombinant glutathione S-transferase (GST)-MAPKAPK-4 fusion protein. The protein kinase activity of GST-MAPKAPK-4 was activated by MAPK and this enabled the kinase to phosphorylate both glycogen synthase N-terminal peptide and the regulatory light chain of myosin II in vitro. Northern blot analysis showed that MAPKAPK-4 was expressed throughout the development of sea urchin embryos. These observations suggest that MAPKAPK-4 may play an important role in the regulation of myosin II activity during the development of sea urchin.
Collapse
Affiliation(s)
- S Komatsu
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | | | | | |
Collapse
|