1
|
Sinclair AN, de Graffenried CL. More than Microtubules: The Structure and Function of the Subpellicular Array in Trypanosomatids. Trends Parasitol 2019; 35:760-777. [PMID: 31471215 PMCID: PMC6783356 DOI: 10.1016/j.pt.2019.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
Abstract
The subpellicular microtubule array defines the wide range of cellular morphologies found in parasitic kinetoplastids (trypanosomatids). Morphological studies have characterized array organization, but little progress has been made towards identifying the molecular mechanisms that are responsible for array differentiation during the trypanosomatid life cycle, or the apparent stability and longevity of array microtubules. In this review, we outline what is known about the structure and biogenesis of the array, with emphasis on Trypanosoma brucei, Trypanosoma cruzi, and Leishmania, which cause life-threatening diseases in humans and livestock. We highlight unanswered questions about this remarkable cellular structure that merit new consideration in light of our recently improved understanding of how the 'tubulin code' influences microtubule dynamics to generate complex cellular structures.
Collapse
Affiliation(s)
- Amy N Sinclair
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
2
|
Tracking the biogenesis and inheritance of subpellicular microtubule in Trypanosoma brucei with inducible YFP-α-tubulin. BIOMED RESEARCH INTERNATIONAL 2014; 2014:893272. [PMID: 24800253 PMCID: PMC3988969 DOI: 10.1155/2014/893272] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/19/2014] [Indexed: 11/30/2022]
Abstract
The microtubule cytoskeleton forms the most prominent structural system in Trypanosoma brucei, undergoing extensive modifications during the cell cycle. Visualization of tyrosinated microtubules leads to a semiconservative mode of inheritance, whereas recent studies employing microtubule plus end tracking proteins have hinted at an asymmetric pattern of cytoskeletal inheritance. To further the knowledge of microtubule synthesis and inheritance during T. brucei cell cycle, the dynamics of the microtubule cytoskeleton was visualized by inducible YFP-α-tubulin expression. During new flagellum/flagellum attachment zone (FAZ) biogenesis and cell growth, YFP-α-tubulin was incorporated mainly between the old and new flagellum/FAZ complexes. Cytoskeletal modifications at the posterior end of the cells were observed with EB1, a microtubule plus end binding protein, particularly during mitosis. Additionally, the newly formed microtubules segregated asymmetrically, with the daughter cell inheriting the new flagellum/FAZ complex retaining most of the new microtubules. Together, our results suggest an intimate connection between new microtubule formation and new FAZ assembly, consequently leading to asymmetric microtubule inheritance and cell division.
Collapse
|
3
|
Cytokinesis in bloodstream stage Trypanosoma brucei requires a family of katanins and spastin. PLoS One 2012; 7:e30367. [PMID: 22279588 PMCID: PMC3261199 DOI: 10.1371/journal.pone.0030367] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 12/19/2011] [Indexed: 11/19/2022] Open
Abstract
Microtubule severing enzymes regulate microtubule dynamics in a wide range of organisms and are implicated in important cell cycle processes such as mitotic spindle assembly and disassembly, chromosome movement and cytokinesis. Here we explore the function of several microtubule severing enzyme homologues, the katanins (KAT80, KAT60a, KAT60b and KAT60c), spastin (SPA) and fidgetin (FID) in the bloodstream stage of the African trypanosome parasite, Trypanosoma brucei. The trypanosome cytoskeleton is microtubule based and remains assembled throughout the cell cycle, necessitating its remodelling during cytokinesis. Using RNA interference to deplete individual proteins, we show that the trypanosome katanin and spastin homologues are non-redundant and essential for bloodstream form proliferation. Further, cell cycle analysis revealed that these proteins play essential but discrete roles in cytokinesis. The KAT60 proteins each appear to be important during the early stages of cytokinesis, while downregulation of KAT80 specifically inhibited furrow ingression and SPA depletion prevented completion of abscission. In contrast, RNA interference of FID did not result in any discernible effects. We propose that the stable microtubule cytoskeleton of T. brucei necessitates the coordinated action of a family of katanins and spastin to bring about the cytoskeletal remodelling necessary to complete cell division.
Collapse
|
4
|
|
5
|
Uezu A, Horiuchi A, Kanda K, Kikuchi N, Umeda K, Tsujita K, Suetsugu S, Araki N, Yamamoto H, Takenawa T, Nakanishi H. SGIP1α Is an Endocytic Protein That Directly Interacts with Phospholipids and Eps15. J Biol Chem 2007; 282:26481-9. [PMID: 17626015 DOI: 10.1074/jbc.m703815200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
SGIP1 has been shown to be an endophilin-interacting protein that regulates energy balance, but its function is not fully understood. Here, we identified its splicing variant of SGIP1 and named it SGIP1alpha. SGIP1alpha bound to phosphatidylserine and phosphoinositides and deformed the plasma membrane and liposomes into narrow tubules, suggesting the involvement in vesicle formation during endocytosis. SGIP1alpha furthermore bound to Eps15, an important adaptor protein of clathrin-mediated endocytic machinery. SGIP1alpha was colocalized with Eps15 and the AP-2 complex. Upon epidermal growth factor (EGF) stimulation, SGIP1alpha was colocalized with EGF at the plasma membrane, indicating the localization of SGIP1alpha at clathrin-coated pits/vesicles. SGIP1alpha overexpression reduced transferrin and EGF endocytosis. SGIP1alpha knockdown reduced transferrin endocytosis but not EGF endocytosis; this difference may be due to the presence of redundant pathways in EGF endocytosis. These results suggest that SGIP1alpha plays an essential role in clathrin-mediated endocytosis by interacting with phospholipids and Eps15.
Collapse
Affiliation(s)
- Akiyoshi Uezu
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Srinivasan S, Baszler T, Vonlaufen N, Leepin A, Sanderson SJ, Wastling JM, Hemphill A. Monoclonal antibody directed against Neospora caninum tachyzoite carbohydrate epitope reacts specifically with apical complex-associated sialylated beta tubulin. J Parasitol 2007; 92:1235-43. [PMID: 17304800 DOI: 10.1645/ge-889r.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Monoclonal antibodies (mabs) were generated against whole sonicated Neospora caninum tachyzoites as immunogen. Initial ELISA screening of the reactivity of hybridoma culture supernatants using the same antigen and antigen treated with sodium periodate prior to antibody binding resulted in the identification of 8 supernatants with reactivity against putative carbohydrate epitopes. Following immunoblotting, mab6D12 (IgG1), binding a 52/48-kDa doublet, and mab6C6 (IgM), binding a 190/180-kDa doublet, were selected for further studies. Immunofluorescence of tachyzoite-infected cultures localized the corresponding epitopes not to the surface, but to interior epitopes at the apical part of N. caninum tachyzoites. During in vitro tachyzoite to bradyzoite stage conversion, mab6C6 labeling translocated toward the cyst periphery, while for mab6D12 no changes in localization were noted. Upon extraction of tachyzoites with the nonionic detergent Triton-X-100, the 52-kDa band recognized by mab6D12 was present exclusively in the insoluble, cytoskeletal fraction of both N. caninum and Toxoplasma gondii tachyzoites. Tandem mass spectrometry analysis identified this protein as N. caninum beta tubulin. The 48-kDa band labeled by mab6D12 was a Vero cell protein contamination. The protein(s) reacting with mab6C6 could not be conclusively identified by mass spectrometry. Immunofluorescence consistently failed to label T. gondii tachyzoites, indicating that beta tubulin in T. gondii and N. caninum could be differentially modified or that the reactive epitope in T. gondii is masked. Immunogold TEM of isolated apical cytoskeletal preparations and dual immunofluorescence with antibody to tubulin confirmed that mab6D12 binds to the anterior part of apical complex-associated microtubules. The sodium periodate sensitivity of the beta tubulin associated epitope was confirmed by immunoblotting and ELISA, and treatment of N. caninum cytoskeletal proteins with sialidase prior to mab6D12 labeling resulted in a profound loss of antibody binding, suggesting that mab6D12 reacts with sialylated beta tubulin.
Collapse
|
7
|
Yang C, Suo X, Huang X, Zhang G, Jia Y, Wang Q, Shen J. Protection of mice against homologous or heterologous infections with antiserum mixture to the predominant variable antigen type repertoire of Trypanosoma evansi YNB stock. Exp Parasitol 2007; 116:53-8. [PMID: 17223107 DOI: 10.1016/j.exppara.2006.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 10/10/2006] [Accepted: 11/20/2006] [Indexed: 11/21/2022]
Abstract
The objective of this study was to test a hypothesis that the predominant variable antigen type (VAT) repertoire of a single stock of Trypanosoma evansi was limited and small. It was further assumed that six rabbits could produce all antibodies against the predominant VAT repertoire of a stock of T. evansi and the antiserum mixture from the six rabbits containing all the antibodies could completely protect mice against any homologous stock infections and partially protect mice against some heterologous stock infections. Mice were each intraperitoneally infected with 100 parasites of clone-derived and non-clone-derived populations of the YNB stock, Kazakhstan strain or Vietnam strain of T. evansi, and treated with the antiserum mixture when trypanosomes had been detected in the blood. All of the 10 mice infected with either non-clone-derived or clone-derived populations of the YNB stock survived, and some (4/10) of mice infected with the heterologous Kazakhstan strain survived, while all those (10/10) infected with the heterologous Vietnam strain died. These results support the hypothesis that the predominant VAT repertoire of a single stock of T. evansi was limited and small, and have important implications in the consideration of treating human trypanosomosis due to drug resistant strains with antiserum mixture.
Collapse
Affiliation(s)
- Chunjiang Yang
- Parasitology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Chuong SDX, Good AG, Taylor GJ, Freeman MC, Moorhead GBG, Muench DG. Large-scale identification of tubulin-binding proteins provides insight on subcellular trafficking, metabolic channeling, and signaling in plant cells. Mol Cell Proteomics 2004; 3:970-83. [PMID: 15249590 DOI: 10.1074/mcp.m400053-mcp200] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubules play an essential role in the growth and development of plants and are known to be involved in regulating many cellular processes ranging from translation to signaling. In this article, we describe the proteomic characterization of Arabidopsis tubulin-binding proteins that were purified using tubulin affinity chromatography. Microtubule co-sedimentation assays indicated that most, if not all, of the proteins in the tubulin-binding protein fraction possessed microtubule-binding activity. Two-dimensional gel electrophoresis of the tubulin-binding protein fraction was performed, and 86 protein spots were excised and analyzed for protein identification. A total of 122 proteins were identified with high confidence using LC-MS/MS. These proteins were grouped into six categories based on their predicted functions: microtubule-associated proteins, translation factors, RNA-binding proteins, signaling proteins, metabolic enzymes, and proteins with other functions. Almost one-half of the proteins identified in this fraction were related to proteins that have previously been reported to interact with microtubules. This study represents the first large-scale proteomic identification of eukaryotic cytoskeleton-binding proteins, and provides insight on subcellular trafficking, metabolic channeling, and signaling in plant cells.
Collapse
Affiliation(s)
- Simon D X Chuong
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Rasooly R, Balaban N. Trypanosome microtubule-associated protein p15 as a vaccine for the prevention of African sleeping sickness. Vaccine 2004; 22:1007-15. [PMID: 15161078 DOI: 10.1016/j.vaccine.2003.08.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Revised: 07/10/2003] [Accepted: 08/25/2003] [Indexed: 11/30/2022]
Abstract
Trypanosomes cause African sleeping sickness, affecting millions of humans and animals. We tested trypanosome microtubule-associate protein (MAP p15) as a vaccine in mice, and show that p15 (native or recombinant) generated up to 100% protection from an otherwise lethal challenge of a heterologous strain of Trypanosoma brucei. We also tested the adenovirus as a vaccine delivery system and show that both adenoviral vector containing p15 gene or control adenovirus containing lacZ gene generated a protective response and exhibited strong CD8+ T-cell proliferation. These results suggest that the p15 protein itself is an effective vaccine and that the adenovirus may be used to mount a non-specific cellular immune response.
Collapse
Affiliation(s)
- Reuven Rasooly
- Department of Nutrition, University of California, One Shields Avenue, Meyer Hall, Room 3135, Davis, CA 95616, USA.
| | | |
Collapse
|
10
|
Vedrenne C, Giroud C, Robinson DR, Besteiro S, Bosc C, Bringaud F, Baltz T. Two related subpellicular cytoskeleton-associated proteins in Trypanosoma brucei stabilize microtubules. Mol Biol Cell 2002; 13:1058-70. [PMID: 11907282 PMCID: PMC99619 DOI: 10.1091/mbc.01-06-0298] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The subpellicular microtubules of the trypanosome cytoskeleton are cross-linked to each other and the plasma membrane, creating a cage-like structure. We have isolated, from Trypanosoma brucei, two related low-molecular-weight cytoskeleton-associated proteins (15- and 17-kDa), called CAP15 and CAP17, which are differentially expressed during the life cycle. Immunolabeling shows a corset-like colocalization of both CAPs and tubulin. Western blot and electron microscope analyses show CAP15 and CAP17 labeling on detergent-extracted cytoskeletons. However, the localization of both proteins is restricted to the anterior, microtubule minus, and less dynamic half of the corset. CAP15 and CAP17 share properties of microtubule-associated proteins when expressed in heterologous cells (Chinese hamster ovary and HeLa), colocalization with their microtubules, induction of microtubule bundle formation, cold resistance, and insensitivity to nocodazole. When overexpressed in T. brucei, both CAP15 and CAP17 cover the whole subpellicular corset and induce morphological disorders, cell cycle-based abnormalities, and subsequent asymmetric cytokinesis.
Collapse
Affiliation(s)
- Cécile Vedrenne
- Laboratoire de Parasitologie Moléculaire, Université Victor Segalen de Bordeaux II, Unité Mixte Recherche-5016 Centre National de la Recherche Scientifique, 33076 Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Bouck GB, Ngô H. Cortical structure and function in euglenoids with reference to trypanosomes, ciliates, and dinoflagellates. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 169:267-318. [PMID: 8843656 DOI: 10.1016/s0074-7696(08)61988-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The membrane skeletal complex (cortex) of euglenoids generates and maintains cell form. In this review we summarize structural, biochemical, physiological, and molecular studies on the euglenoid membrane skeleton, focusing specifically on four principal components: the plasma membrane, a submembrane layer (epiplasm), cisternae of the endoplasmic reticulum, and microtubules. The data from euglenoids are compared with findings from representative organisms of three other protist groups: the trypanosomes, ciliates, and dinoflagellates. Although there are significant differences in cell form and phylogenetic affinities among these groups, there are also many similarities in the organization and possibly the function of their cortical components. For example, an epiplasmic (membrane skeletal) layer is widely used for adding strength and rigidity to the cell surface. The ER/alveolus/amphiesmal vesicle may function in calcium storage and regulation, and in mediating assembly of surface plates. GPI-linked variable surface antigens are characteristic of both ciliates and the unrelated trypanosomatids. Microtubules are ubiquitous, and cortices in trypanosomes may relay exclusively on microtubules and microtubule-associated proteins for maintaining cell form. Also, in agreement with previous suggestions, there is an apparent preservation of many cortical structures during cell duplication. In three of the four groups there is convincing evidence that part or all of the parental cortex persists during cytokinesis, thereby producing mosaics or chimeras consisting of both inherited and newly synthesized cortical components.
Collapse
Affiliation(s)
- G B Bouck
- Department of Biological Sciences (M/C 066), University of Illinois at Chicago 60607, USA
| | | |
Collapse
|