1
|
Jones RM, Ruiz JH, Scaramuzza S, Nath S, Liu C, Henklewska M, Natsume T, Bristow RG, Romero F, Kanemaki MT, Gambus A. Characterizing replisome disassembly in human cells. iScience 2024; 27:110260. [PMID: 39055910 PMCID: PMC11269944 DOI: 10.1016/j.isci.2024.110260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/22/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024] Open
Abstract
To ensure timely duplication of the entire eukaryotic genome, thousands of replication machineries (replisomes) act on genomic DNA at any time during S phase. In the final stages of this process, replisomes are unloaded from chromatin. Unloading is driven by polyubiquitylation of MCM7, a subunit of the terminated replicative helicase, and processed by p97/VCP segregase. Most of our knowledge of replication termination comes from model organisms, and little is known about how this process is executed and regulated in human somatic cells. Here we show that replisome disassembly in this system requires CUL2LRR1-driven MCM7 ubiquitylation, p97, and UBXN7 for unloading and provide evidence for "backup" mitotic replisome disassembly, demonstrating conservation of such mechanisms. Finally, we find that small-molecule inhibitors against Cullin ubiquitin ligases (CULi) and p97 (p97i) affect replisome unloading but also lead to induction of replication stress in cells, which limits their usefulness to specifically target replisome disassembly processes.
Collapse
Affiliation(s)
- Rebecca M. Jones
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Joaquin Herrero Ruiz
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Shaun Scaramuzza
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Sarmi Nath
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Chaoyu Liu
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Marta Henklewska
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Robert G. Bristow
- Cancer Research UK – Manchester Institute, Manchester Cancer Research Center, Manchester, UK
| | - Francisco Romero
- Department of Microbiology, University of Seville, Seville, Spain
| | - Masato T. Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
- Department of Biological Science, The University of Tokyo, Tokyo, Japan
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| |
Collapse
|
2
|
Tang XH, Zhao TN, Guo L, Liu XY, Zhang WN, Zhang P. Cell-Cycle-related Protein Centromere Protein F Deficiency Inhibits Cervical Cancer Cell Growth by Inducing Ferroptosis Via Nrf2 Inactivation. Cell Biochem Biophys 2024; 82:997-1006. [PMID: 38536579 PMCID: PMC11344725 DOI: 10.1007/s12013-024-01251-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/12/2024] [Indexed: 08/25/2024]
Abstract
Cervical cancer (CC) is one of the severe cancers that pose a threat to women's health and result in death. CENPF, the centromere protein F, plays a crucial role in mitosis by regulating numerous cellular processes, such as chromosome segregation during mitosis. According to bioinformatics research, CENPF serves as a master regulator that is upregulated and activated in cervical cancer. Nevertheless, the precise biological mechanism that CENPF operates in CC remains unclear. The aim of this study was to analyze the function of CENPF on cervical cancer and its mechanism. We conducted immunohistochemistry and western blot analysis to examine the expression levels of CENPF in both cervical cancer tissues and cells. To explore the hidden biological function of CENPF in cell lines derived from CC, we applied lentivirus transfection to reduce CENPF manifestation. CENPF's main role is to regulate ferroptosis which was assessed by analyzing Reactive Oxygen Species (ROS), malonaldehyde (MDA), etc. The vitro findings were further validated through a subcutaneous tumorigenic nude mouse model. Our research finding indicates that there is an apparent upregulation of CENPF in not merely tumor tissues but also cell lines in the carcinomas of the cervix. In vitro and vivo experimental investigations have demonstrated that the suppression of CENPF can impede cellular multiplication, migration, and invasion while inducing ferroptosis. The ferroptosis induced by CENPF inhibition in cervical cancer cell lines is likely mediated through the Nrf2/HO-1 pathway. The data herein come up with the opinion that CENPF may have a crucial role in influencing anti-cervical cancer effects by inducing ferroptosis via the triggering of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Xin Hui Tang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011, China
- Department of Obstetrics and Gynecology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, 200060, China
| | - Tian Nan Zhao
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011, China
- Dalian Medical University, School of Graduate, Dalian, 116000, China
| | - Li Guo
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Xin Yue Liu
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011, China
- Department of Gynecology, Changzhi People's Hospital, Changzhi, 046000, China
| | - Wei Na Zhang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011, China.
| | - Ping Zhang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011, China.
| |
Collapse
|
3
|
Khurana S, Varma D, Foltz DR. Contribution of CENP-F to FOXM1-Mediated Discordant Centromere and Kinetochore Transcriptional Regulation. Mol Cell Biol 2024; 44:209-225. [PMID: 38779933 PMCID: PMC11204039 DOI: 10.1080/10985549.2024.2350543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Proper chromosome segregation is required to ensure chromosomal stability. The centromere (CEN) is a unique chromatin domain defined by CENP-A and is responsible for recruiting the kinetochore (KT) during mitosis, ultimately regulating microtubule spindle attachment and mitotic checkpoint function. Upregulation of many CEN/KT genes is commonly observed in cancer. Here, we show that although FOXM1 occupies promoters of many CEN/KT genes with MYBL2, FOXM1 overexpression alone is insufficient to drive the FOXM1-correlated transcriptional program. CENP-F is canonically an outer kinetochore component; however, it functions with FOXM1 to coregulate G2/M transcription and proper chromosome segregation. Loss of CENP-F results in altered chromatin accessibility at G2/M genes and reduced FOXM1-MBB complex formation. We show that coordinated CENP-FFOXM1 transcriptional regulation is a cancer-specific function. We observe a small subset of CEN/KT genes including CENP-C, that are not regulated by FOXM1. Upregulation of CENP-C in the context of CENP-A overexpression leads to increased chromosome missegregation and cell death suggesting that escape of CENP-C from FOXM1 regulation is a cancer survival mechanism. Together, we show that FOXM1 and CENP-F coordinately regulate G2/M genes, and this coordination is specific to a subset of genes to allow for maintenance of chromosome instability levels and subsequent cell survival.
Collapse
Affiliation(s)
- Sakshi Khurana
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dileep Varma
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Cellular and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel R. Foltz
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
4
|
Khurana S, Foltz DR. Contribution of CENP-F to FOXM1-mediated discordant centromere and kinetochore transcriptional regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573453. [PMID: 38234763 PMCID: PMC10793414 DOI: 10.1101/2023.12.27.573453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Proper chromosome segregation is required to ensure genomic and chromosomal stability. The centromere is a unique chromatin domain present throughout the cell cycle on each chromosome defined by the CENP-A nucleosome. Centromeres (CEN) are responsible for recruiting the kinetochore (KT) during mitosis, ultimately regulating spindle attachment and mitotic checkpoint function. Upregulation of many genes that encode the CEN/KT proteins is commonly observed in cancer. Here, we show although that FOXM1 occupies the promoters of many CEN/KT genes with MYBL2, occupancy is insufficient alone to drive the FOXM1 correlated transcriptional program. We show that CENP-F, a component of the outer kinetochore, functions with FOXM1 to coregulate G2/M transcription and proper chromosome segregation. Loss of CENP-F results in alteration of chromatin accessibility at G2/M genes, including CENP-A, and leads to reduced FOXM1-MBB complex formation. The FOXM1-CENP-F transcriptional coordination is a cancer-specific function. We observed that a few CEN/KT genes escape FOXM1 regulation such as CENP-C which when upregulated with CENP-A, leads to increased chromosome misegregation and cell death. Together, we show that the FOXM1 and CENP-F coordinately regulate G2/M gene expression, and this coordination is specific to a subset of genes to allow for proliferation and maintenance of chromosome stability for cancer cell survival.
Collapse
Affiliation(s)
- Sakshi Khurana
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Simpsom Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Daniel R. Foltz
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Simpsom Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
5
|
Simpson D, Ling J, Jing Y, Adamson B. Mapping the Genetic Interaction Network of PARP inhibitor Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.19.553986. [PMID: 37645833 PMCID: PMC10462155 DOI: 10.1101/2023.08.19.553986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Genetic interactions have long informed our understanding of the coordinated proteins and pathways that respond to DNA damage in mammalian cells, but systematic interrogation of the genetic network underlying that system has yet to be achieved. Towards this goal, we measured 147,153 pairwise interactions among genes implicated in PARP inhibitor (PARPi) response. Evaluating genetic interactions at this scale, with and without exposure to PARPi, revealed hierarchical organization of the pathways and complexes that maintain genome stability during normal growth and defined changes that occur upon accumulation of DNA lesions due to cytotoxic doses of PARPi. We uncovered unexpected relationships among DNA repair genes, including context-specific buffering interactions between the minimally characterized AUNIP and BRCA1-A complex genes. Our work thus establishes a foundation for mapping differential genetic interactions in mammalian cells and provides a comprehensive resource for future studies of DNA repair and PARP inhibitors.
Collapse
Affiliation(s)
- Danny Simpson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jia Ling
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Yangwode Jing
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Britt Adamson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
6
|
Zuppo DA, Missinato MA, Santana-Santos L, Li G, Benos PV, Tsang M. Foxm1 regulates cardiomyocyte proliferation in adult zebrafish after cardiac injury. Development 2023; 150:dev201163. [PMID: 36846912 PMCID: PMC10108034 DOI: 10.1242/dev.201163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
The regenerative capacity of the mammalian heart is poor, with one potential reason being that adult cardiomyocytes cannot proliferate at sufficient levels to replace lost tissue. During development and neonatal stages, cardiomyocytes can successfully divide under injury conditions; however, as these cells mature their ability to proliferate is lost. Therefore, understanding the regulatory programs that can induce post-mitotic cardiomyocytes into a proliferative state is essential to enhance cardiac regeneration. Here, we report that the forkhead transcription factor Foxm1 is required for cardiomyocyte proliferation after injury through transcriptional regulation of cell cycle genes. Transcriptomic analysis of injured zebrafish hearts revealed that foxm1 expression is increased in border zone cardiomyocytes. Decreased cardiomyocyte proliferation and expression of cell cycle genes in foxm1 mutant hearts was observed, suggesting it is required for cell cycle checkpoints. Subsequent analysis of a candidate Foxm1 target gene, cenpf, revealed that this microtubule and kinetochore binding protein is also required for cardiac regeneration. Moreover, cenpf mutants show increased cardiomyocyte binucleation. Thus, foxm1 and cenpf are required for cardiomyocytes to complete mitosis during zebrafish cardiac regeneration.
Collapse
Affiliation(s)
- Daniel A. Zuppo
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Maria A. Missinato
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
- Avidity Biosciences, 10578 Science Center Dr. Suite 125, San Diego, CA 92121, USA
| | - Lucas Santana-Santos
- Department of Computational and Systems Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Guang Li
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Panayiotis V. Benos
- Department of Computational and Systems Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
CENPF knockdown inhibits adriamycin chemoresistance in triple-negative breast cancer via the Rb-E2F1 axis. Sci Rep 2023; 13:1803. [PMID: 36720923 PMCID: PMC9889717 DOI: 10.1038/s41598-023-28355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/17/2023] [Indexed: 02/02/2023] Open
Abstract
Drug resistance occurs frequently in triple-negative breast cancer (TNBC) and leads to early relapse and short survival. Targeting the DNA damage response (DDR) has become an effective strategy for overcoming TNBC chemoresistance. CENPF (centromere protein) is a key regulator of cell cycle progression, but its role in TNBC chemotherapy resistance remains unclear. Here, we found that CENPF, which is highly expressed in TNBC, is associated with a poor prognosis in patients receiving chemotherapy. In addition, in vitro CENPF knockdown significantly increased adriamycin (ADR)-induced cytotoxicity in MDA-MB-231 cells and ADR-resistant cells (MDA-MB-231/ADR). Then, we demonstrated that CENPF targets Chk1-mediated G2/M phase arrest and binds to Rb to compete with E2F1 in TNBC. Considering the crucial role of E2F1 in the DNA damage response and DNA repair, a novel mechanism by which CENPF regulates the Rb-E2F1 axis will provide new horizons to overcome chemotherapy resistance in TNBC.
Collapse
|
8
|
Tarasenko TA, Koulintchenko MV. Heterogeneity of the Mitochondrial Population in Cells of Plants and Other Organisms. Mol Biol 2022. [DOI: 10.1134/s0026893322020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Zhang Y, Song C, Wang L, Jiang H, Zhai Y, Wang Y, Fang J, Zhang G. Zombies Never Die: The Double Life Bub1 Lives in Mitosis. Front Cell Dev Biol 2022; 10:870745. [PMID: 35646932 PMCID: PMC9136299 DOI: 10.3389/fcell.2022.870745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
When eukaryotic cells enter mitosis, dispersed chromosomes move to the cell center along microtubules to form a metaphase plate which facilitates the accurate chromosome segregation. Meanwhile, kinetochores not stably attached by microtubules activate the spindle assembly checkpoint and generate a wait signal to delay the initiation of anaphase. These events are highly coordinated. Disruption of the coordination will cause severe problems like chromosome gain or loss. Bub1, a conserved serine/threonine kinase, plays important roles in mitosis. After extensive studies in the last three decades, the role of Bub1 on checkpoint has achieved a comprehensive understanding; its role on chromosome alignment also starts to emerge. In this review, we summarize the latest development of Bub1 on supporting the two mitotic events. The essentiality of Bub1 in higher eukaryotic cells is also discussed. At the end, some undissolved questions are raised for future study.
Collapse
Affiliation(s)
- Yuqing Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chunlin Song
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Wang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongfei Jiang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yujing Zhai
- School of Public Health, Qingdao University, Qingdao, China
| | - Ying Wang
- School of Public Health, Qingdao University, Qingdao, China
| | - Jing Fang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang, ; Gang Zhang,
| | - Gang Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang, ; Gang Zhang,
| |
Collapse
|
10
|
Li X, Li Y, Xu A, Zhou D, Zhang B, Qi S, Chen Z, Wang X, Ou X, Cao B, Qu C, Huang J. Apoptosis-induced translocation of centromere protein F in its corresponding autoantibody production in hepatocellular carcinoma. Oncoimmunology 2021; 10:1992104. [PMID: 34676150 PMCID: PMC8525945 DOI: 10.1080/2162402x.2021.1992104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Serum autoantibodies against tumor-associated antigen have important value in the early diagnosis of hepatocellular carcinoma (HCC), but the mechanism of autoantibody production is poorly understood. We previously showed that autoantibodies against the centromere protein F (CENPF) may be useful as an early diagnostic marker for HCC. Here we explored the mechanism of cell apoptosis-based CENPF autoantibody production and verified the correlation of CENPF autoantibody level with HCC development. We demonstrated that CENPF was overexpressed and aberrantly localized throughout the nuclei and cytoplasm in human HCC cells compared with hepatic cells. CENPF overexpression promoted the production of CENPF autoantibodies in a manner that correlated with tumor growth of mouse HCC model. During apoptosis of HCC cells, CENPF protein translocated to apoptotic vesicles and relocalized at the cell surface. Through isolating apoptotic components, we found apoptotic body and blebs with lower CD31 and CD47 expression more effectively induced DC phagocytosis and maturation compared with apoptotic intact cells in vitro, and this DC response was independent of CENPF expression. Moreover, injection of mice with apoptotic bodies and blebs effectively induced an immune response and the production of CENPF-specific antibodies. Our findings provide a first elucidation of mechanisms underlying the CENPF autoantibody production via cell apoptosis-induced CENPF translocation, and demonstrate a direct correlation between CENPF autoantibody levels and HCC progression, suggesting the potential of CENPF autoantibody as an HCC diagnostic marker.
Collapse
Affiliation(s)
- Xiaojin Li
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanmeng Li
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Anjian Xu
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Donghu Zhou
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bei Zhang
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Saiping Qi
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhibin Chen
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoming Wang
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaojuan Ou
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunfeng Qu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Huang
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Navarro AP, Cheeseman IM. Kinetochore assembly throughout the cell cycle. Semin Cell Dev Biol 2021; 117:62-74. [PMID: 33753005 DOI: 10.1016/j.semcdb.2021.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/29/2022]
Abstract
The kinetochore plays an essential role in facilitating chromosome segregation during cell division. This massive protein complex assembles onto the centromere of chromosomes and enables their attachment to spindle microtubules during mitosis. The kinetochore also functions as a signaling hub to regulate cell cycle progression, and is crucial to ensuring the fidelity of chromosome segregation. Despite the fact that kinetochores are large and robust molecular assemblies, they are also highly dynamic structures that undergo structural and organizational changes throughout the cell cycle. This review will highlight our current understanding of kinetochore structure and function, focusing on the dynamic processes that underlie kinetochore assembly.
Collapse
Affiliation(s)
- Alexandra P Navarro
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
12
|
Zhao Y, Pi J, Liu L, Yan W, Ma S, Hong L. Identification of the Hub Genes Associated with the Prognosis of Ovarian Cancer Patients via Integrated Bioinformatics Analysis and Experimental Validation. Cancer Manag Res 2021; 13:707-721. [PMID: 33542655 PMCID: PMC7851396 DOI: 10.2147/cmar.s282529] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/04/2020] [Indexed: 12/31/2022] Open
Abstract
Background This study aimed to identify the hub genes associated with prognosis of patients with ovarian cancer by using integrated bioinformatics analysis and experimental validation. Methods Four microarray datasets (GSE12470, GSE14407, GSE18521 and GSE46169) were analyzed by the GEO2R tool to screen common differentially expressed genes (DEGs). Gene Ontology, the Kyoto Encyclopedia of Genes and Genomes, the (KEGG) pathway and Reactome pathway enrichment analysis, protein–protein interaction (PPI) construction, and the identification of hub genes were performed. Furthermore, we performed the survival and expression analysis of the hub genes. In vitro functional assays were performed to assess the effects of hub genes on ovarian cancer cell proliferation, caspase-3/7 activity and invasion. Results A total of 89 common DEGs were identified among these four datasets. The KEGG and Reactome pathway results showed that the DEGs were mainly associated with cell cycle, mitotic and p53 signaling pathway. A total of 20 hub genes were identified from the PPI network by using sub-module analysis. The survival analysis revealed that high expression of six hub genes (AURKA, BUB1B, CENPF, KIF11, KIF23 and TOP2A) were significantly correlated with shorter overall survival and progression-free survival of patients with ovarian cancer. Furthermore, the expression of the six hub genes were validated by the GEPIA database and Human Protein Atlas, and functional studies revealed that knockdown of KIF11 and KIF23 suppressed the SKOV3 cell proliferation, increased caspase-3/7 activity and attenuated invasive potentials of SKOV3 cells. In addition, knockdown of KIF11 and KIF23 up-regulated E-cadherin mRNA expression but down-regulated N-cadherin and vimentin mRNA expression in SKOV3 cells. Conclusion Our results showed that six hub genes were up-regulated in ovarian cancer tissues and may predict poor prognosis of patients with ovarian cancer. KIF11 and KIF23 may play oncogenic roles in ovarian cancer cell progression via promoting ovarian cancer cell proliferation and invasion.
Collapse
Affiliation(s)
- Yuzi Zhao
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jie Pi
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Lihua Liu
- Department of Gynaecology and Obstetrics, Huanggang Huangzhou Maternity and Child Health Care Hospital, Huanggang, People's Republic of China
| | - Wenjie Yan
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Shufang Ma
- Reproductive Medicine Center, Wuhan Kangjian Women and Infants Hospital, Wuhan, People's Republic of China
| | - Li Hong
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
13
|
Hexiao T, Yuquan B, Lecai X, Yanhong W, Li S, Weidong H, Ming X, Xuefeng Z, Gaofeng P, Li Z, Minglin Z, Zheng T, Zetian Y, Xiao Z, Yi C, Lanuti M, Jinping Z. Knockdown of CENPF inhibits the progression of lung adenocarcinoma mediated by ERβ2/5 pathway. Aging (Albany NY) 2021; 13:2604-2625. [PMID: 33428600 PMCID: PMC7880349 DOI: 10.18632/aging.202303] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/05/2020] [Indexed: 01/21/2023]
Abstract
Many studies have reported that estrogen (E2) promotes lung cancer by binding to nuclear estrogen receptors (ER), and altering ER related nuclear protein expressions. With the GEO database analysis, Human centromere protein F (CENPF) is highly expressed in lung adenocarcinoma (LUAD), and the co-expression of CENPF and ERβ was found in the nucleus of LUAD cells through immunofluorescence. We identified the nuclear protein CENPF and explored its relationship with the ER pathway. CENPF and ERβ2/5 were related with T stage and poor prognosis (P<0.05). CENPF knockout significantly inhibited LUAD cell growth, the tumor growth of mice and the expression of ERβ2/5 (P<0.05). The protein expression of CENPF and ERβ2/5 in the CENPF-Knockdown+Fulvestrant group was lower than CENPF- Negative Control +Fulvestrant group (P=0.002, 0.004, 0.001) in A549 cells. The tumor size and weight of the CENPF-Knockdown+Fulvestrant group were significantly lower than CENPF- Negative Control +Fulvestrant group (P=0.001, 0.039) in nude mice. All the results indicated that both CENPF and ERβ2/5 play important roles in the progression of LUAD, and knockdown CENPF can inhibit the progression of LUAD by inhibiting the expression of ER2/5. Thus, the development of inhibitors against ERβ2/5 and CENPF remained more effective in improving the therapeutic effect of LUAD.
Collapse
Affiliation(s)
- Tang Hexiao
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bai Yuquan
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiong Lecai
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Yanhong
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shen Li
- Division of Thoracic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hu Weidong
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xu Ming
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhou Xuefeng
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pan Gaofeng
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhang Li
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhu Minglin
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tang Zheng
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yang Zetian
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhou Xiao
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Cai Yi
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael Lanuti
- Division of Thoracic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zhao Jinping
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Wang Y, Zhang L, Chen Y, Li M, Ha M, Li S. Screening and identification of biomarkers associated with the diagnosis and prognosis of lung adenocarcinoma. J Clin Lab Anal 2020; 34:e23450. [PMID: 32672359 PMCID: PMC7595917 DOI: 10.1002/jcla.23450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In this study, we aimed to identify the pathogenesis and prognostic biomarkers of lung adenocarcinoma (LUAD). METHODS Differentially expressed mRNAs (DEmRNAs) and single nucleotide polymorphism (SNP) mutant genes were screened. In addition, enrichment and protein-protein interaction (PPI) network analyses of the SNP-mutated genes were performed. Thereafter, the correlation between gene mutation and expression was analyzed. Finally, the mutated genes associated with LUAD prognosis were validated on the basis of The Cancer Genome Atlas (TCGA) database. RESULTS A total of 2502 DEmRNAs were initially screened in this study. We identified 756 SNP-mutated genes from more than 30 cases. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the mutated genes involved in LUAD were mainly associated with the ECM-receptor interaction, focal adhesion, and calcium signaling pathways. Tumor protein p53 (TP53) and neurexin 1 (NRXN1) with the higher degree were chosen as the hub genes in the PPI network. In addition, the correlation analysis revealed six genes, including assembly factor for spindle microtubules (ASPM), centromere protein F (CENPF), contactin 3 (CNTN3), catenin delta 2 (CTNND2), PKHD1 like 1 (PKHD1L1), and semaphorin 6D (SEMA6D), and three SNP mutations at ASPM rs368020495, CENPF rs762653487, and PKHD1L1 rs768349010 sites that were found to be associated with LUAD prognosis. Further validation showed that among the aforementioned six mutated genes, CENPF was upregulated and SEMA6D was downregulated. CONCLUSION CENPF, SEMA6D, TP53, and NRXN1 were found to be closely associated with the development of LUAD.
Collapse
Affiliation(s)
| | - Lin Zhang
- Department of Medical OncologyThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Yitong Chen
- Department of Medical OncologyThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Man Li
- Department of Radiology and Medical ImagingThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Minwen Ha
- Department of Medical OncologyThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | | |
Collapse
|
15
|
Kops GJPL, Gassmann R. Crowning the Kinetochore: The Fibrous Corona in Chromosome Segregation. Trends Cell Biol 2020; 30:653-667. [PMID: 32386879 DOI: 10.1016/j.tcb.2020.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 01/30/2023]
Abstract
The kinetochore is at the heart of chromosome segregation in mitosis and meiosis. Rather than a static linker complex for chromatin and spindle microtubules, it is highly dynamic in composition, size, and shape. While known for decades that it can expand and grow a fibrous meshwork known as the corona, it was until recently unclear what constitutes this 'crown' and what its relevance is for kinetochore function. Here, we highlight recent discoveries in fibrous corona biology, and place them in the context of the processes that orchestrate high-fidelity chromosome segregation.
Collapse
Affiliation(s)
- Geert J P L Kops
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Centre Utrecht, Utrecht, 3584, CT, The Netherlands.
| | - Reto Gassmann
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
16
|
Auckland P, Roscioli E, Coker HLE, McAinsh AD. CENP-F stabilizes kinetochore-microtubule attachments and limits dynein stripping of corona cargoes. J Cell Biol 2020; 219:e201905018. [PMID: 32207772 PMCID: PMC7199848 DOI: 10.1083/jcb.201905018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/04/2019] [Accepted: 02/19/2020] [Indexed: 01/14/2023] Open
Abstract
Accurate chromosome segregation demands efficient capture of microtubules by kinetochores and their conversion to stable bioriented attachments that can congress and then segregate chromosomes. An early event is the shedding of the outermost fibrous corona layer of the kinetochore following microtubule attachment. Centromere protein F (CENP-F) is part of the corona, contains two microtubule-binding domains, and physically associates with dynein motor regulators. Here, we have combined CRISPR gene editing and engineered separation-of-function mutants to define how CENP-F contributes to kinetochore function. We show that the two microtubule-binding domains make distinct contributions to attachment stability and force transduction but are dispensable for chromosome congression. We further identify a specialized domain that functions to limit the dynein-mediated stripping of corona cargoes through a direct interaction with Nde1. This antagonistic activity is crucial for maintaining the required corona composition and ensuring efficient kinetochore biorientation.
Collapse
Affiliation(s)
- Philip Auckland
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Emanuele Roscioli
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Helena Louise Elvidge Coker
- Computing and Advanced Microscopy Development Unit, Warwick Medical School, University of Warwick, Coventry, UK
| | - Andrew D. McAinsh
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
17
|
Shi J, Zhang P, Liu L, Min X, Xiao Y. Weighted gene coexpression network analysis identifies a new biomarker of CENPF for prediction disease prognosis and progression in nonmuscle invasive bladder cancer. Mol Genet Genomic Med 2019; 7:e982. [PMID: 31566930 PMCID: PMC6825849 DOI: 10.1002/mgg3.982] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/23/2019] [Accepted: 08/29/2019] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The dreadful prognosis of nonmuscle invasive bladder cancer mainly results from the delay in recognition of individuals with a high risk of progression. Thus, the emphasis of this work lies in developing valuable biomarkers that is conducive to accurately predicting the progression of NMIBC. METHODS Microarray data from GSE32894 including 209 NMIBC samples were performed by weighted gene coexpression network analysis (WGCNA), which could find modules of highly correlated genes and relate modules to external sample traits. Besides, we constructed a protein-protein interaction to facilitate screening the hub gene. At last, we used RNA-seq and microarray data and clinical information from ArrayExpress (E-MTAB-4321) and GSE13507 to select and validate the candidate gene. RESULTS In current paper, blue module of 13 gene coexpression clusters we identified was selected as the key modules. Seven genes namely: CDCA8, CENPF, MCM6, MELK, PRC1, STIL, and TPX2 have been identified as candidate genes. Notably, among them, only elevated CENPF in NIMBC tissue was closely associated with low progression-free survival (PFS) and overall survival (OS) rate in three datasets and had a large area under receiver operating characteristic (ROC) curve. Finally, CENPF was identified as an effective biomarker in NMIBC. CONCLUSION Therefore, our findings submit a new progressive and prognostic molecular marker and therapeutic target for NMIBC. Moreover, these genes that deserve to be further researched may improve the comprehension about the occurrence and development of superficial bladder cancer.
Collapse
Affiliation(s)
- Jiawei Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pu Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lilong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Min
- Department of Hepatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajun Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Zhou CJ, Wang XY, Han Z, Wang DH, Ma YZ, Liang CG. Loss of CENPF leads to developmental failure in mouse embryos. Cell Cycle 2019; 18:2784-2799. [PMID: 31478449 DOI: 10.1080/15384101.2019.1661173] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Aneuploidy caused by abnormal chromosome segregation during early embryo development leads to embryonic death or congenital malformation. Centromere protein F (CENPF) is a member of centromere protein family that regulates chromosome segregation during mitosis. However, its necessity in early embryo development has not been fully investigated. In this study, expression and function of CENPF was investigated in mouse early embryogenesis. Detection of CENPF expression and localization revealed a cytoplasm, spindle and nuclear membrane related dynamic pattern throughout mitotic progression. Farnesyltransferase inhibitor (FTI) was employed to inhibit CENPF farnesylation in zygotes. The results showed that CENPF degradation was inhibited and its specific localization on nuclear membranes in morula and blastocyst vanished after FTI treatment. Also, CAAX motif mutation leads to failure of CENPF-C630 localization in morula and blastocyst. These results indicate that farnesylation plays a key role during CENPF degradation and localization in early embryos. To further assess CENPF function in parthenogenetic or fertilized embryos development, morpholino (MO) and Trim-Away were used to disturb CENPF function. CENPF knockdown in Metaphase II (MII) oocytes, zygotes or embryos with MO approach resulted in failure to develop into morulae and blastocysts, revealing its indispensable role in both parthenogenetic and fertilized embryos. Disturbing of CENPF with Trim-Away approach in zygotes resulted in impaired development of 2-cell and 4-cell, but did not affect the morula and blastocyst formation because of the recovered expression of CENPF. Taken together, our data suggest CENPF plays an important role during early embryonic development in mice. Abbreviation: CENPF: centromere protein F; MO: morpholino; FTI: Farnesyltransferase inhibitor; CENPE: centromere protein E; IVF: in vitro fertilization; MII: metaphase II; SAC: spindle assembly checkpoint; Mad1: mitotic arrest deficient 1; BUB1: budding uninhibited by benzimidazole 1; BUBR1: BUB1 mitotic checkpoint serine/threonine kinase B; Cdc20: cell division cycle 20.
Collapse
Affiliation(s)
- Cheng-Jie Zhou
- The Research Centre for Laboratory Animal Science, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University , Hohhot , People's Republic of China
| | - Xing-Yue Wang
- The Research Centre for Laboratory Animal Science, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University , Hohhot , People's Republic of China
| | - Zhe Han
- The Research Centre for Laboratory Animal Science, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University , Hohhot , People's Republic of China
| | - Dong-Hui Wang
- The Research Centre for Laboratory Animal Science, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University , Hohhot , People's Republic of China
| | - Yu-Zhen Ma
- Department of Obstetrics and Gynecology, Inner Mongolia People's Hospital , Hohhot , People's Republic of China
| | - Cheng-Guang Liang
- The Research Centre for Laboratory Animal Science, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University , Hohhot , People's Republic of China
| |
Collapse
|
19
|
Fritzler MJ, Brown RD, Zhang M. A Monoclonal Antibody to M-Phase Phosphoprotein 1/Kinesin-Like Protein KIF20B. Monoclon Antib Immunodiagn Immunother 2019; 38:162-170. [PMID: 31260385 PMCID: PMC6709729 DOI: 10.1089/mab.2019.0016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kinesin-like protein KIF20B, originally named M-phase phosphoprotein 1 (MPP1), is a plus-end-directed kinesin-related protein that exhibits in vitro microtubule-binding and -bundling properties as well as microtubule-stimulated ATPase activity. It has been characterized as a slow molecular motor that moves toward the plus-end of microtubules. Human autoantibodies directed against KIF20B have been described in up to 25% of patients with idiopathic ataxia and less commonly in other neuropathies and autoinflammatory conditions. One of the limitations of research into the structure and function of KIF20B has been a reliable monoclonal antibody that can be used in a variety of applications. To establish a reference standard for anti-KIF20B immunoassays and facilitate studies on the role of KIF20B in developmental cell biology, we developed an IgG1 monoclonal antibody, 10C7, which reacts with the cognate KIF20B protein in Western immunoblots and in addressable laser bead immunoassays. In HEp2 cells, leptomeningeal pericytes, and transfected HEK293T cells, indirect immunofluorescence studies showed that reactivity was mainly localized to a proportion of interphase nuclei, but during metaphase, it was redistributed throughout the cytoplasm and perichromatin mass. Later in telophase/anaphase, KIF20B was localized to the stem body and midzone of the midbody. 10C7 also showed remarkable staining of a subset of cells in the cerebellum, ovary, and testis tissues. KIF20B was shown to have extensive coiled-coil domains. The monoclonal antibody, 10C7, will be of value to diagnostic laboratory scientists interested in having a reliable reference standard for anti-KIF20B immunoassays as well as cell, molecular, and developmental biology researchers.
Collapse
Affiliation(s)
- Marvin J Fritzler
- 1Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rachael D Brown
- 2Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Meifeng Zhang
- 1Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
20
|
Abstract
Indirect immunofluorescence assay (IFA) has been used for detection of autoantibodies against cellular antigens for more than 50 years. Originally using rodent tissue as substrate, the method was optimized by using the human immortal HEp-2 cell line derived from a larynx epidermal carcinoma. The HEp-2/IFA platform allows for optimal visualization of several cellular domains recognized by autoantibodies in the samples being tested. Serial dilution allows for the estimation of the concentration (titer) of the autoantibodies in the sample. Judicious analysis of the topographic distribution of the immunofluorescence (pattern) provides useful hints on the most plausible autoantigens being recognized, vis-à-vis the cognate autoantibodies. The importance of the HEp-2/IFA pattern has been recently emphasized by the International Consensus on ANA Patterns (ICAP), an initiative that established a comprehensive classification of the most relevant and prevalent HEp-2/IFA patterns (designated anti-cell (AC) patterns) and harmonized its nomenclature. The former designation "antinuclear antibody test" has been progressively replaced by the term "anti-cell antibody test," due to the recognition that the HEp-2/IFA method in fact allows the detection of autoantibodies to several cellular domains, such as the cytoplasm and mitotic apparatus.The performance of the HEp-2/IFA test is strongly influenced by several technical details, including cell culture conditions, cell fixation and permeabilization methods, choice and titration of fluorochrome-conjugated secondary antibody, use and choice of blocking solutions, washing buffers, and antifading mounting medium. The several steps of the procedure must be carefully performed in order to avoid the formation of false positive fluorescent artifacts. The quality control of the assay involves the use of serum standards for negative, low positive and strongly positive reaction in each run of the assay. In addition, every new lot or new brand of HEp-2 slides should be evaluated by using a panel of standard sera yielding the most relevant AC patterns. Special attention should be dedicated to the training of personnel for the analysis of the slides at the microscope. These should be able to identify possible artifacts, recognize all relevant AC patterns, and formulate possible reflex tests according to the observed AC patterns.
Collapse
|
21
|
Peterka M, Kornmann B. Miro-dependent mitochondrial pool of CENP-F and its farnesylated C-terminal domain are dispensable for normal development in mice. PLoS Genet 2019; 15:e1008050. [PMID: 30856164 PMCID: PMC6428352 DOI: 10.1371/journal.pgen.1008050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/21/2019] [Accepted: 02/27/2019] [Indexed: 11/19/2022] Open
Abstract
CENP-F is a large, microtubule-binding protein that regulates multiple cellular processes including chromosome segregation and mitochondrial trafficking at cytokinesis. This multiplicity of functions is mediated through the binding of various partners, like Bub1 at the kinetochore and Miro at mitochondria. Due to the multifunctionality of CENP-F, the cellular phenotypes observed upon its depletion are difficult to interpret and there is a need to genetically separate its different functions by preventing binding to selected partners. Here we engineer a CENP-F point-mutant that is deficient in Miro binding and thus is unable to localize to mitochondria, but retains other localizations. We introduce this mutation in cultured human cells using CRISPR/Cas9 system and show it causes a defect in mitochondrial spreading similar to that observed upon Miro depletion. We further create a mouse model carrying this CENP-F variant, as well as truncated CENP-F mutants lacking the farnesylated C-terminus of the protein. Importantly, one of these truncations leads to ~80% downregulation of CENP-F expression. We observe that, despite the phenotypes apparent in cultured cells, mutant mice develop normally. Taken together, these mice will serve as important models to study CENP-F biology at organismal level. In addition, because truncations of CENP-F in humans cause a lethal disease termed Strømme syndrome, they might also be relevant disease models.
Collapse
Affiliation(s)
- Martin Peterka
- Institute of Biochemistry, ETH Zurich, Zürich, Switzerland
- Molecular Life Science Program, Zurich Life-Science Graduate School, Zürich, Switzerland
| | | |
Collapse
|
22
|
Rodriguez-Rodriguez JA, Lewis C, McKinley KL, Sikirzhytski V, Corona J, Maciejowski J, Khodjakov A, Cheeseman IM, Jallepalli PV. Distinct Roles of RZZ and Bub1-KNL1 in Mitotic Checkpoint Signaling and Kinetochore Expansion. Curr Biol 2018; 28:3422-3429.e5. [PMID: 30415700 DOI: 10.1016/j.cub.2018.10.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/30/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
Abstract
The Mad1-Mad2 heterodimer is the catalytic hub of the spindle assembly checkpoint (SAC), which controls M phase progression through a multi-subunit anaphase inhibitor, the mitotic checkpoint complex (MCC) [1, 2]. During interphase, Mad1-Mad2 generates MCC at nuclear pores [3]. After nuclear envelope breakdown (NEBD), kinetochore-associated Mad1-Mad2 catalyzes MCC assembly until all chromosomes achieve bipolar attachment [1, 2]. Mad1-Mad2 and other factors are also incorporated into the fibrous corona, a phospho-dependent expansion of the outer kinetochore that precedes microtubule attachment [4-6]. The factor(s) involved in targeting Mad1-Mad2 to kinetochores in higher eukaryotes remain controversial [7-12], and the specific phosphorylation event(s) that trigger corona formation remain elusive [5, 13]. We used genome editing to eliminate Bub1, KNL1, and the Rod-Zw10-Zwilch (RZZ) complex in human cells. We show that RZZ's sole role in SAC activation is to tether Mad1-Mad2 to kinetochores. Separately, Mps1 kinase triggers fibrous corona formation by phosphorylating two N-terminal sites on Rod. In contrast, Bub1 and KNL1 activate kinetochore-bound Mad1-Mad2 to produce a "wait anaphase" signal but are not required for corona formation. We also show that clonal lines isolated after BUB1 disruption recover Bub1 expression and SAC function through nonsense-associated alternative splicing (NAS). Our study reveals a fundamental division of labor in the mammalian SAC and highlights a transcriptional response to nonsense mutations that can reduce or eliminate penetrance in genome editing experiments.
Collapse
Affiliation(s)
| | - Clare Lewis
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kara L McKinley
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Vitali Sikirzhytski
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jennifer Corona
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Prasad V Jallepalli
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
23
|
Abstract
In metazoans, the assembly of kinetochores on centrometric chromatin and the dismantling of nuclear pore complexes are processes that have to be tightly coordinated to ensure the proper assembly of the mitotic spindle and a successful mitosis. It is therefore noteworthy that these two macromolecular assemblies share a subset of constituents. One of these multifaceted components is Cenp-F, a protein implicated in cancer and developmental pathologies. During the cell cycle, Cenp-F localizes in multiple cellular structures including the nuclear envelope in late G2/early prophase and kinetochores throughout mitosis. We recently characterized the molecular determinants of Cenp-F interaction with Nup133, a structural nuclear pore constituent. In parallel with two other independent studies, we further elucidated the mechanisms governing Cenp-F kinetochore recruitment that mainly relies on its interaction with Bub1, with redundant contribution of Cenp-E upon acute microtubule depolymerisation. Here we synthesize the current literature regarding the dual location of Cenp-F at nuclear pores and kinetochores and extend our discussion to the regulation of these NPC and kinetochore localizations by mitotic kinase and spindle microtubules.
Collapse
Affiliation(s)
- Alessandro Berto
- a Institut Jacques Monod , UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité , Paris , France.,b Ecole Doctorale Structure et Dynamique des Systèmes Vivants (#577) , Univ Paris Sud, Université Paris-Saclay , Orsay , France
| | - Valérie Doye
- a Institut Jacques Monod , UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité , Paris , France
| |
Collapse
|
24
|
Wynne CL, Vallee RB. Cdk1 phosphorylation of the dynein adapter Nde1 controls cargo binding from G2 to anaphase. J Cell Biol 2018; 217:3019-3029. [PMID: 29930206 PMCID: PMC6122996 DOI: 10.1083/jcb.201707081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 04/06/2018] [Accepted: 05/23/2018] [Indexed: 12/28/2022] Open
Abstract
Cytoplasmic dynein is involved in diverse cell cycle-dependent functions regulated by several accessory factors, including Nde1 and Ndel1. Little is known about the role of these proteins in dynein cargo binding, and less is known about their cell cycle--dependent dynein regulation. Using Nde1 RNAi, mutant cDNAs, and a phosphorylation site-specific antibody, we found a specific association of phospho-Nde1 with the late G2-M nuclear envelope and prophase to anaphase kinetochores, comparable to the pattern for the Nde1 interactor CENP-F. Phosphomutant-Nde1 associated only with prometaphase kinetochores and showed weaker CENP-F binding in in vitro assays. Nde1 RNAi caused severe delays in mitotic progression, which were substantially rescued by both phosphomimetic and phosphomutant Nde1. Expression of a dynein-binding-deficient Nde1 mutant reduced kinetochore dynein by half, indicating a major role for Nde1 in kinetochore dynein recruitment. These results establish CENP-F as the first well-characterized Nde1 cargo protein, and reveal phosphorylation control of Nde1 cargo binding throughout a substantial fraction of the cell cycle.
Collapse
Affiliation(s)
- Caitlin L Wynne
- Pathology and Cell Biology, Columbia University, New York, NY
| | | |
Collapse
|
25
|
Abstract
Accurate chromosome segregation critically depends on the formation of attachments between microtubule polymers and each sister chromatid. The kinetochore is the macromolecular complex that assembles at the centromere of each chromosome during mitosis and serves as the link between the DNA and the microtubules. In this Cell Science at a Glance article and accompanying poster, we discuss the activities and molecular players that are involved in generating kinetochore-microtubule attachments, including the initial stages of lateral kinetochore-microtubule interactions and maturation to stabilized end-on attachments. We additionally explore the features that contribute to the ability of the kinetochore to track with dynamic microtubules. Finally, we examine the contributions of microtubule-associated proteins to the organization and stabilization of the mitotic spindle and the control of microtubule dynamics.
Collapse
Affiliation(s)
- Julie K Monda
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
- Department of Biology, MIT, Cambridge, MA 02142, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
- Department of Biology, MIT, Cambridge, MA 02142, USA
| |
Collapse
|
26
|
Ciossani G, Overlack K, Petrovic A, Huis In 't Veld PJ, Koerner C, Wohlgemuth S, Maffini S, Musacchio A. The kinetochore proteins CENP-E and CENP-F directly and specifically interact with distinct BUB mitotic checkpoint Ser/Thr kinases. J Biol Chem 2018; 293:10084-10101. [PMID: 29748388 PMCID: PMC6028960 DOI: 10.1074/jbc.ra118.003154] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/27/2018] [Indexed: 01/23/2023] Open
Abstract
The segregation of chromosomes during cell division relies on the function of the kinetochores, protein complexes that physically connect chromosomes with microtubules of the spindle. The metazoan proteins, centromere protein E (CENP-E) and CENP-F, are components of a fibrous layer of mitotic kinetochores named the corona. Several of their features suggest that CENP-E and CENP-F are paralogs: they are very large (comprising ∼2700 and 3200 residues, respectively), contain abundant predicted coiled-coil structures, are C-terminally prenylated, and are endowed with microtubule-binding sites at their termini. Moreover, CENP-E contains an ATP-hydrolyzing motor domain that promotes microtubule plus end–directed motion. Here, we show that both CENP-E and CENP-F are recruited to mitotic kinetochores independently of the main corona constituent, the Rod/Zwilch/ZW10 (RZZ) complex. We identified specific interactions of CENP-F and CENP-E with budding uninhibited by benzimidazole 1 (BUB1) and BUB1-related (BUBR1) mitotic checkpoint Ser/Thr kinases, respectively, paralogous proteins involved in mitotic checkpoint control and chromosome alignment. Whereas BUBR1 was dispensable for kinetochore localization of CENP-E, BUB1 was stringently required for CENP-F localization. Through biochemical reconstitution, we demonstrated that the CENP-E/BUBR1 and CENP-F/BUB1 interactions are direct and require similar determinants, a dimeric coiled-coil in CENP-E or CENP-F and a kinase domain in BUBR1 or BUB1. Our findings are consistent with the existence of structurally similar BUB1/CENP-F and BUBR1/CENP-E complexes, supporting the notion that CENP-E and CENP-F are evolutionarily related.
Collapse
Affiliation(s)
- Giuseppe Ciossani
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and
| | - Katharina Overlack
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and
| | - Arsen Petrovic
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and
| | - Pim J Huis In 't Veld
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and
| | - Carolin Koerner
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and
| | - Sabine Wohlgemuth
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and
| | - Stefano Maffini
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and
| | - Andrea Musacchio
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and .,the Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, 45141 Essen, Germany
| |
Collapse
|
27
|
Cui H, Loftus KM, Noell CR, Solmaz SR. Identification of Cyclin-dependent Kinase 1 Specific Phosphorylation Sites by an In Vitro Kinase Assay. J Vis Exp 2018. [PMID: 29782014 DOI: 10.3791/57674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cyclin-dependent kinase 1 (Cdk1) is a master controller for the cell cycle in all eukaryotes and phosphorylates an estimated 8 - 13% of the proteome; however, the number of identified targets for Cdk1, particularly in human cells is still low. The identification of Cdk1-specific phosphorylation sites is important, as they provide mechanistic insights into how Cdk1 controls the cell cycle. Cell cycle regulation is critical for faithful chromosome segregation, and defects in this complicated process lead to chromosomal aberrations and cancer. Here, we describe an in vitro kinase assay that is used to identify Cdk1-specific phosphorylation sites. In this assay, a purified protein is phosphorylated in vitro by commercially available human Cdk1/cyclin B. Successful phosphorylation is confirmed by SDS-PAGE, and phosphorylation sites are subsequently identified by mass spectrometry. We also describe purification protocols that yield highly pure and homogeneous protein preparations suitable for the kinase assay, and a binding assay for the functional verification of the identified phosphorylation sites, which probes the interaction between a classical nuclear localization signal (cNLS) and its nuclear transport receptor karyopherin α. To aid with experimental design, we review approaches for the prediction of Cdk1-specific phosphorylation sites from protein sequences. Together these protocols present a very powerful approach that yields Cdk1-specific phosphorylation sites and enables mechanistic studies into how Cdk1 controls the cell cycle. Since this method relies on purified proteins, it can be applied to any model organism and yields reliable results, especially when combined with cell functional studies.
Collapse
Affiliation(s)
- Heying Cui
- Department of Chemistry, State University of New York at Binghamton
| | - Kyle M Loftus
- Department of Chemistry, State University of New York at Binghamton
| | - Crystal R Noell
- Department of Chemistry, State University of New York at Binghamton
| | - Sozanne R Solmaz
- Department of Chemistry, State University of New York at Binghamton;
| |
Collapse
|
28
|
Berto A, Yu J, Morchoisne-Bolhy S, Bertipaglia C, Vallee R, Dumont J, Ochsenbein F, Guerois R, Doye V. Disentangling the molecular determinants for Cenp-F localization to nuclear pores and kinetochores. EMBO Rep 2018; 19:embr.201744742. [PMID: 29632243 DOI: 10.15252/embr.201744742] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 11/09/2022] Open
Abstract
Cenp-F is a multifaceted protein implicated in cancer and developmental pathologies. The Cenp-F C-terminal region contains overlapping binding sites for numerous proteins that contribute to its functions throughout the cell cycle. Here, we focus on the nuclear pore protein Nup133 that interacts with Cenp-F both at nuclear pores in prophase and at kinetochores in mitosis, and on the kinase Bub1, known to contribute to Cenp-F targeting to kinetochores. By combining in silico structural modeling and yeast two-hybrid assays, we generate an interaction model between a conserved helix within the Nup133 β-propeller and a short leucine zipper-containing dimeric segment of Cenp-F. We thereby create mutants affecting the Nup133/Cenp-F interface and show that they prevent Cenp-F localization to the nuclear envelope, but not to kinetochores. Conversely, a point mutation within an adjacent leucine zipper affecting the kinetochore targeting of Cenp-F KT-core domain impairs its interaction with Bub1, but not with Nup133, identifying Bub1 as the direct KT-core binding partner of Cenp-F. Finally, we show that Cenp-E redundantly contributes together with Bub1 to the recruitment of Cenp-F to kinetochores.
Collapse
Affiliation(s)
- Alessandro Berto
- Institut Jacques Monod, UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Ecole Doctorale Structure et Dynamique des Systèmes Vivants (#577), Univ Paris Sud, Université Paris-Saclay, Orsay, France
| | - Jinchao Yu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette, France
| | | | - Chiara Bertipaglia
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Richard Vallee
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Julien Dumont
- Institut Jacques Monod, UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Francoise Ochsenbein
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Raphael Guerois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Valérie Doye
- Institut Jacques Monod, UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
29
|
Eisch V, Lu X, Gabriel D, Djabali K. Progerin impairs chromosome maintenance by depleting CENP-F from metaphase kinetochores in Hutchinson-Gilford progeria fibroblasts. Oncotarget 2017; 7:24700-18. [PMID: 27015553 PMCID: PMC5029735 DOI: 10.18632/oncotarget.8267] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/04/2016] [Indexed: 01/26/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS, OMIM 176670) is a rare premature aging disorder that leads to death at an average age of 14.7 years due to myocardial infarction or stroke. The most common mutation in HGPS is at position G608G (GGC>GGT) within exon 11 of the LMNA gene. This mutation results in the deletion of 50 amino acids at the carboxyl-terminal tail of prelamin A, producing a truncated farnesylated protein called progerin. Lamins play important roles in the organization and structure of the nucleus. The nuclear build-up of progerin causes severe morphological and functional changes in interphase HGPS cells. In this study, we investigated whether progerin elicits spatiotemporal deviations in mitotic processes in HGPS fibroblasts. We analyzed the nuclear distribution of endogenous progerin during mitosis in relation to components of the nuclear lamina, nuclear envelope (NE) and nuclear pores. We found that progerin caused defects in chromosome segregation as early as metaphase, delayed NE reformation and trapped lamina components and inner NE proteins in the endoplasmic reticulum at the end of mitosis. Progerin displaced the centromere protein F (CENP-F) from metaphase chromosome kinetochores, which caused increased chromatin lagging, binucleated cells and genomic instability. This accumulation of progerin-dependent defects with each round of mitosis predisposes cells to premature senescence.
Collapse
Affiliation(s)
- Veronika Eisch
- Epigenetics of Aging, Department of Dermatology, TUM School of Medicine, Technical University Munich (TUM), Garching-Munich, Germany
| | - Xiang Lu
- Epigenetics of Aging, Department of Dermatology, TUM School of Medicine, Technical University Munich (TUM), Garching-Munich, Germany
| | - Diana Gabriel
- Epigenetics of Aging, Department of Dermatology, TUM School of Medicine, Technical University Munich (TUM), Garching-Munich, Germany
| | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology, TUM School of Medicine, Technical University Munich (TUM), Garching-Munich, Germany
| |
Collapse
|
30
|
Horning AM, Wang Y, Lin CK, Louie AD, Jadhav RR, Hung CN, Wang CM, Lin CL, Kirma NB, Liss MA, Kumar AP, Sun L, Liu Z, Chao WT, Wang Q, Jin VX, Chen CL, Huang THM. Single-Cell RNA-seq Reveals a Subpopulation of Prostate Cancer Cells with Enhanced Cell-Cycle-Related Transcription and Attenuated Androgen Response. Cancer Res 2017; 78:853-864. [PMID: 29233929 DOI: 10.1158/0008-5472.can-17-1924] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/27/2017] [Accepted: 12/01/2017] [Indexed: 11/16/2022]
Abstract
Increasing evidence suggests the presence of minor cell subpopulations in prostate cancer that are androgen independent and poised for selection as dominant clones after androgen deprivation therapy. In this study, we investigated this phenomenon by stratifying cell subpopulations based on transcriptome profiling of 144 single LNCaP prostate cancer cells treated or untreated with androgen after cell-cycle synchronization. Model-based clustering of 397 differentially expressed genes identified eight potential subpopulations of LNCaP cells, revealing a previously unappreciable level of cellular heterogeneity to androgen stimulation. One subpopulation displayed stem-like features with a slower cell doubling rate, increased sphere formation capability, and resistance to G2-M arrest induced by a mitosis inhibitor. Advanced growth of this subpopulation was associated with enhanced expression of 10 cell-cycle-related genes (CCNB2, DLGAP5, CENPF, CENPE, MKI67, PTTG1, CDC20, PLK1, HMMR, and CCNB1) and decreased dependence upon androgen receptor signaling. In silico analysis of RNA-seq data from The Cancer Genome Atlas further demonstrated that concordant upregulation of these genes was linked to recurrent prostate cancers. Analysis of receiver operating characteristic curves implicates aberrant expression of these genes and could be useful for early identification of tumors that subsequently develop biochemical recurrence. Moreover, this single-cell approach provides a better understanding of how prostate cancer cells respond heterogeneously to androgen deprivation therapies and reveals characteristics of subpopulations resistant to this treatment.Significance: Illustrating the challenge in treating cancers with targeted drugs, which by selecting for drug resistance can drive metastatic progression, this study characterized the plasticity and heterogeneity of prostate cancer cells with regard to androgen dependence, defining the character or minor subpopulations of androgen-independent cells that are poised for clonal selection after androgen-deprivation therapy. Cancer Res; 78(4); 853-64. ©2017 AACR.
Collapse
Affiliation(s)
- Aaron M Horning
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Yao Wang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Che-Kuang Lin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Anna D Louie
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Rohit R Jadhav
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Chia-Nung Hung
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Chiou-Miin Wang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Chun-Lin Lin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Nameer B Kirma
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Michael A Liss
- Department of Urology, University of Texas Health Science Center, San Antonio at San Antonio, Texas
| | - Addanki P Kumar
- Department of Urology, University of Texas Health Science Center, San Antonio at San Antonio, Texas
| | - LuZhe Sun
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Zhijie Liu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Wei-Ting Chao
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Qianben Wang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Chun-Liang Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
| | - Tim H-M Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
| |
Collapse
|
31
|
Loftus KM, Cui H, Coutavas E, King DS, Ceravolo A, Pereiras D, Solmaz SR. Mechanism for G2 phase-specific nuclear export of the kinetochore protein CENP-F. Cell Cycle 2017; 16:1414-1429. [PMID: 28723232 DOI: 10.1080/15384101.2017.1338218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Centromere protein F (CENP-F) is a component of the kinetochore and a regulator of cell cycle progression. CENP-F recruits the dynein transport machinery and orchestrates several cell cycle-specific transport events, including transport of the nucleus, mitochondria and chromosomes. A key regulatory step for several of these functions is likely the G2 phase-specific export of CENP-F from the nucleus to the cytosol, where the cytoplasmic dynein transport machinery resides; however, the molecular mechanism of this process is elusive. Here, we have identified 3 phosphorylation sites within the bipartite classical nuclear localization signal (cNLS) of CENP-F. These sites are specific for cyclin-dependent kinase 1 (Cdk1), which is active in G2 phase. Phosphomimetic mutations of these residues strongly diminish the interaction of the CENP-F cNLS with its nuclear transport receptor karyopherin α. These mutations also diminish nuclear localization of the CENP-F cNLS in cells. Notably, the cNLS is phosphorylated in the -1 position, which is important to orient the adjacent major motif for binding into its pocket on karyopherin α. We propose that localization of CENP-F is regulated by a cNLS, and a nuclear export pathway, resulting in nuclear localization during most of interphase. In G2 phase, the cNLS is weakened by phosphorylation through Cdk1, likely resulting in nuclear export of CENP-F via the still active nuclear export pathway. Once CENP-F resides in the cytosol, it can engage in pathways that are important for cell cycle progression, kinetochore assembly and the faithful segregation of chromosomes into daughter cells.
Collapse
Affiliation(s)
- Kyle M Loftus
- a Department of Chemistry , State University of New York at Binghamton , New York , NY , USA
| | - Heying Cui
- a Department of Chemistry , State University of New York at Binghamton , New York , NY , USA
| | - Elias Coutavas
- b Laboratory of Cell Biology , The Rockefeller University , New York , NY , USA
| | - David S King
- c Howard Hughes Medical Institute, Mass Spectrometry Laboratory , University of California at Berkeley , Berkeley , CA , USA
| | - Amanda Ceravolo
- a Department of Chemistry , State University of New York at Binghamton , New York , NY , USA
| | - Dylan Pereiras
- a Department of Chemistry , State University of New York at Binghamton , New York , NY , USA
| | - Sozanne R Solmaz
- a Department of Chemistry , State University of New York at Binghamton , New York , NY , USA
| |
Collapse
|
32
|
Wang M, Zhao X, Zhu D, Liu T, Liang X, Liu F, Zhang Y, Dong X, Sun B. HIF-1α promoted vasculogenic mimicry formation in hepatocellular carcinoma through LOXL2 up-regulation in hypoxic tumor microenvironment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:60. [PMID: 28449718 PMCID: PMC5408450 DOI: 10.1186/s13046-017-0533-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/21/2017] [Indexed: 02/07/2023]
Abstract
Background The incidence and mortality rates of hepatocellular carcinoma (HCC) have steadily increased in recent years. A hypoxic microenvironment is one of the most important characteristics of solid tumors which has been shown to promote tumor metastasis, epithelial-mesenchymal transition and angiogenesis. Epithelial-mesenchymal transition and vasculogenic mimicry have been regarded as crucial contributing factors to cancer progression. HIF-1α functions as a master transcriptional regulator in the adaptive response to hypoxia. Lysyl oxidases like 2 (LOXL2) is a member of the lysyl oxidase family, which main function is to catalyze the covalent cross-linkages of collagen and elastin in the extracellular matrix. Recent work has demonstrated that HIF-1α promotes the expression of LOXL2, which is believed to amplify tumor aggressiveness. LOXL2 has shown to promote metastasis and is correlated with poor prognosis in hepatocellular carcinoma. The purpose of our study is to explore the role of HIF-1α in progression and metastasis of hepatocellular carcinoma by promoting the expression of LOXL2 as well as the potential regulatory mechanism. Methods HIF-1α, LOXL2 expression and CD31/periodic acid-Schiff double staining in HCC patient samples were examined by immunohistochemical staining. shRNA plasmids against HIF-1α was used to determine whether LOXL2 been increased by HIF-1α. We monitored a series of rescue assays to demonstrate our hypothesis that LOXL2 is required and sufficient for HIF-1α induced EMT and VM formation, which mediates cellular transformation and takes effect in cellular invasion. Then we performed GeneChip® Human Transcriptome Array (HTA) 2.0 in HepG2 cells, HepG2 cells overexpressed LOXL2 and HepG2 cells treated with CoCl2. Results In clinical HCC tissues, it confirmed a positive relationship between HIF-1α and LOXL2 protein. Importantly, HIF-1α and LOXL2 high expression and the presence of vasculogenic mimicry were correlated to poor prognosis. HIF-1α was found to induce EMT, HCC cell migration, invasion and VM formation by regulating LOXL2. The results of microarray assays were analyzed. Conclusion HIF-1α plays an important role in the development of HCC by promoting HCC metastasis, EMT and VM through up-regulating LOXL2. This study highlights the potential therapeutic value of targeting LOXL2 for suppression of HCC metastasis and progression. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0533-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meili Wang
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China. .,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China.
| | - Dongwang Zhu
- Department of Surgery, Stomatological Hospital of Tianjin Medical University, Tianjin, 300070, China
| | - Tieju Liu
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Xiaohui Liang
- Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Fang Liu
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Yanhui Zhang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China. .,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
33
|
Fang B, Zhang M, Fan X, Ren F. The targeted proteins in tumor cells treated with the α-lactalbumin–oleic acid complex examined by descriptive and quantitative liquid chromatography–tandem mass spectrometry. J Dairy Sci 2016; 99:5991-6004. [DOI: 10.3168/jds.2016-10971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/14/2016] [Indexed: 01/26/2023]
|
34
|
Abstract
During mitosis, cells undergo massive deformation and reorganization, impacting on all cellular structures. Mitochondria, in particular, are highly dynamic organelles, which constantly undergo events of fission, fusion and cytoskeleton-based transport. This plasticity ensures the proper distribution of the metabolism, and the proper inheritance of functional organelles. During cell cycle, mitochondria undergo dramatic changes in distribution. In this review, we focus on the dynamic events that target mitochondria during mitosis. We describe how the cell-cycle-dependent microtubule-associated protein centromeric protein F (Cenp-F) is recruited to mitochondria by the mitochondrial Rho GTPase (Miro) to promote mitochondrial transport and re-distribution following cell division.
Collapse
|
35
|
Xi Q, Wu Y, Li L, Cai B, Zhang J, Yang B, Wang L. Anti-Mitotic Spindle Apparatus Antoantibodies: Prevalence and Disease Association in Chinese Population. J Clin Lab Anal 2016; 30:702-8. [PMID: 26987702 DOI: 10.1002/jcla.21925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 11/21/2015] [Accepted: 12/09/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Mitotic spindle apparatus (MSA) antibodies are rare findings with undefined clinical significance in clinical research. We aimed at investigating the prevalence and clinical significance of anti-MSA antibodies in Chinese population. METHODS Between 2008 and 2013, a total of 180,180 patients were studied for the presence of anti-MSA antibodies. The clinical details and laboratory data of anti-MSA-positive patients were retrospectively collected and analyzed. RESULTS Of the 180,180 patients tested, 68,640 patients presented with positive antinuclear antibodies (ANAs, 38.10%), but only 32 patients with positive anti-MSA antibodies (0.018%). Diagnoses were established in 22 of 32 patients: 16 connective tissue diseases (CTDs), mainly Sjogren syndrome (SS, 5/16), rheumatoid arthritis (RA, 4/16), and systemic lupus erythematosus (SLE, 3/16), and 6 nonautoimmune conditions. The most frequent clinical symptoms of the anti-MSA-positive patients were arthralgia and eyes and mouth drying. Additionally, 70% of anti-MSA antibodies were not associated with other ANAs, however, when associated, the most frequent ANA was anti-SSA. CONCLUSIONS Anti-MSA antibodies have a low prevalence and female gender predominance. Anti-MSA antibodies are primarily associated with CTDs, mainly SS, RA, and SLE. The presence of anti-MSA antibodies might be the unique serological markers of the CTDs, especially when anti-SSA, SSB, and dsDNA antibodies are negative, or the level of RF is low.
Collapse
Affiliation(s)
- Qian Xi
- Department of Clinical Laboratory, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yongkang Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lixin Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lanlan Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
36
|
Moghaddas F, Joshua F, Taylor R, Fritzler MJ, Toh BH. Autoantibodies directed to centromere protein F in a patient with BRCA1 gene mutation. BMC Res Notes 2016; 9:84. [PMID: 26868636 PMCID: PMC4750191 DOI: 10.1186/s13104-016-1908-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 02/03/2016] [Indexed: 11/16/2022] Open
Abstract
Background Autoantibodies directed to centromere protein F were first reported in 1993 and their association with malignancy has been well documented. Case We present the case of a 48-year-old Caucasian female with a BRCA1 gene mutation associated with bilateral breast cancer. Antinuclear autoantibody immunofluorescence performed for workup of possible inflammatory arthropathy showed a high titre cell cycle related nuclear speckled pattern, with subsequent confirmation by addressable laser bead immunoassay of the target antigen as an immunodominant epitope at the C-terminus of centromere protein F. Conclusion Here we review the current literature on centromere protein F, its association with breast cancer and present the first case of this antibody being identified in a person with a BRCA1 gene mutation.
Collapse
Affiliation(s)
| | - Fredrick Joshua
- Department of Rheumatology, Prince of Wales Hospital, Sydney, Australia.
| | | | - Marvin J Fritzler
- Department of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Ban Hock Toh
- Australian Clinical Laboratories, Melbourne, Australia. .,Department of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
37
|
Lee YC, Huang CC, Lin DY, Chang WC, Lee KH. Overexpression of centromere protein K (CENPK) in ovarian cancer is correlated with poor patient survival and associated with predictive and prognostic relevance. PeerJ 2015; 3:e1386. [PMID: 26587348 PMCID: PMC4647587 DOI: 10.7717/peerj.1386] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer has a poor prognosis. Most patients are diagnosed with ovarian cancer when the disease has reached an advanced stage and cure rates are generally under 30%. Hence, early diagnosis of ovarian cancer is the best means to control the disease in the long term and abate mortality. So far, cancer antigen 125 (CA125) and human epididymis protein 4 (HE4) are the gold-standard tumor markers for ovarian cancer; however, these two markers can be elevated in a number of conditions unrelated to ovarian cancer, resulting in decreased specifically and positive predictive value. Therefore, it is urgent to identify novel biomarkers with high reliability and sensitivity for ovarian cancer. In this study for the first time, we identified a member of the centromere protein (CENP) family, CENPK, which was specifically upregulated in ovarian cancer tissues and cell lines and the overexpression of which was associated with poor prognoses in patients with ovarian cancer. In addition, the presence of CENPK significantly improved the sensitivity of CA125 or HE4 for predicting clinical outcomes of ovarian cancer patients. In conclusion, we identified that CENPK was specifically upregulated in ovarian cancer cells and can be used as a novel tumor marker of ovarian cancer.
Collapse
Affiliation(s)
- Yi-Chao Lee
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chi-Chen Huang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ding-Yen Lin
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuen-Haur Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
38
|
Waters AM, Asfahani R, Carroll P, Bicknell L, Lescai F, Bright A, Chanudet E, Brooks A, Christou-Savina S, Osman G, Walsh P, Bacchelli C, Chapgier A, Vernay B, Bader DM, Deshpande C, O' Sullivan M, Ocaka L, Stanescu H, Stewart HS, Hildebrandt F, Otto E, Johnson CA, Szymanska K, Katsanis N, Davis E, Kleta R, Hubank M, Doxsey S, Jackson A, Stupka E, Winey M, Beales PL. The kinetochore protein, CENPF, is mutated in human ciliopathy and microcephaly phenotypes. J Med Genet 2015; 52:147-56. [PMID: 25564561 PMCID: PMC4345935 DOI: 10.1136/jmedgenet-2014-102691] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 12/02/2022]
Abstract
BACKGROUND Mutations in microtubule-regulating genes are associated with disorders of neuronal migration and microcephaly. Regulation of centriole length has been shown to underlie the pathogenesis of certain ciliopathy phenotypes. Using a next-generation sequencing approach, we identified mutations in a novel centriolar disease gene in a kindred with an embryonic lethal ciliopathy phenotype and in a patient with primary microcephaly. METHODS AND RESULTS Whole exome sequencing data from a non-consanguineous Caucasian kindred exhibiting mid-gestation lethality and ciliopathic malformations revealed two novel non-synonymous variants in CENPF, a microtubule-regulating gene. All four affected fetuses showed segregation for two mutated alleles [IVS5-2A>C, predicted to abolish the consensus splice-acceptor site from exon 6; c.1744G>T, p.E582X]. In a second unrelated patient exhibiting microcephaly, we identified two CENPF mutations [c.1744G>T, p.E582X; c.8692 C>T, p.R2898X] by whole exome sequencing. We found that CENP-F colocalised with Ninein at the subdistal appendages of the mother centriole in mouse inner medullary collecting duct cells. Intraflagellar transport protein-88 (IFT-88) colocalised with CENP-F along the ciliary axonemes of renal epithelial cells in age-matched control human fetuses but did not in truncated cilia of mutant CENPF kidneys. Pairwise co-immunoprecipitation assays of mitotic and serum-starved HEKT293 cells confirmed that IFT88 precipitates with endogenous CENP-F. CONCLUSIONS Our data identify CENPF as a new centriolar disease gene implicated in severe human ciliopathy and microcephaly related phenotypes. CENP-F has a novel putative function in ciliogenesis and cortical neurogenesis.
Collapse
Affiliation(s)
- Aoife M Waters
- Institute of Child Health, University College London, London, UK Department of Nephrology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Rowan Asfahani
- Institute of Child Health, University College London, London, UK
| | - Paula Carroll
- Institute of Genetics & Molecular Medicine, Edinburgh, UK
| | | | - Francesco Lescai
- Institute of Child Health, University College London, London, UK
| | | | - Estelle Chanudet
- Institute of Child Health, University College London, London, UK
| | - Anthony Brooks
- Institute of Child Health, University College London, London, UK
| | | | - Guled Osman
- Institute of Child Health, University College London, London, UK
| | - Patrick Walsh
- Institute of Child Health, University College London, London, UK
| | - Chiara Bacchelli
- Institute of Child Health, University College London, London, UK
| | - Ariane Chapgier
- Institute of Child Health, University College London, London, UK
| | - Bertrand Vernay
- Institute of Child Health, University College London, London, UK
| | - David M Bader
- Department of Cell and Developmental Biology, Vanderbilt University, USA
| | - Charu Deshpande
- Department of Clinical Genetics, Evelina Children's Hospital, London, UK
| | - Mary O' Sullivan
- Institute of Child Health, University College London, London, UK
| | - Louise Ocaka
- Institute of Child Health, University College London, London, UK
| | - Horia Stanescu
- Centre for Nephrology, Royal Free Hospital, University College London, London, UK
| | - Helen S Stewart
- Department of Clinical Genetics, Oxford Radcliffe Hospitals NHS Trust, Churchill Hospital, Oxford, UK
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, USA
| | - Edgar Otto
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Colin A Johnson
- Department of Pediatrics, Leeds Institute of Biomedical and Clinical Sciences, Leeds, UK
| | - Katarzyna Szymanska
- Department of Pediatrics, Leeds Institute of Biomedical and Clinical Sciences, Leeds, UK
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Department of Cell Biology, Duke University Medical Center
| | - Erica Davis
- Center for Human Disease Modeling, Department of Cell Biology, Duke University Medical Center
| | - Robert Kleta
- Centre for Nephrology, Royal Free Hospital, University College London, London, UK
| | - Mike Hubank
- Institute of Child Health, University College London, London, UK
| | | | - Andrew Jackson
- Institute of Genetics & Molecular Medicine, Edinburgh, UK MRC Human Genetics, University of Edinburgh, Edinburgh, UK
| | - Elia Stupka
- Institute of Child Health, University College London, London, UK
| | - Mark Winey
- Molecular, Ceullular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Philip L Beales
- Institute of Child Health, University College London, London, UK
| |
Collapse
|
39
|
Zhuo YJ, Xi M, Wan YP, Hua W, Liu YL, Wan S, Zhou YL, Luo HW, Wu SL, Zhong WD, Wu CL. Enhanced expression of centromere protein F predicts clinical progression and prognosis in patients with prostate cancer. Int J Mol Med 2015; 35:966-72. [PMID: 25647485 DOI: 10.3892/ijmm.2015.2086] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/22/2015] [Indexed: 11/05/2022] Open
Abstract
Centromere protein F (CENPF) is a protein associated with the centromere-kinetochore complex and chromosomal segregation during mitosis. Previous studies have demonstrated that the upregulation of CENPF may be used as a proliferation marker of malignant cell growth in tumors. The overexpression of CENPF has also been reported to be associated with a poor prognosis in human cancers. However, the clinical significance of CENPF in prostate cancer (PCa) has not yet been fully elucidated. Thus, the aim of the present study was to determine the association of CENPF with tumor progression and prognosis in patients with PCa. The expression of CENPF at the protein level in human PCa and non-cancerous prostate tissues was detected by immunohistochemical analysis, which was further validated using a microarray-based dataset (NCBI GEO accession no: GSE21032) at the mRNA level. Subsequently, the association of CENPF expression with the clinicopathological characteristics of the patients with PCa was statistically analyzed. Immunohistochemistry and dataset analysis revealed that CENPF expression was significantly increased in the PCa tissues compared with the non-cancerous prostate tissues [immunoreactivity score (IRS): PCa, 177.98 ± 94.096 vs. benign, 121.30 ± 89.596, P < 0.001; mRNA expression in the dataset: PCa, 5.67 ± 0.47 vs. benign, 5.40 ± 0.11; P < 0.001]. Additionally, as revealed by the dataset, the upregulation of CENPF mRNA expression in the PCa tissues significantly correlated with a higher Gleason score (GS, P = 0.005), an advanced pathological stage (P = 0.008), the presence of metastasis (P < 0.001), a shorter overall survival (P=0.003) and prostate-specific antigen (PSA) failure (P < 0.001). Furthermore, both univariate and multivariate analyses revealed that the upregulation of CENPF was an independent predictor of poor biochemical recurrence (BCR)-free survival (P < 0.001 and P = 0.012, respectively). Our data suggest that the increased expression of CENPF plays an important role in the progression of PCa. More importantly, the increased expression of CENPF may efficiently predict poor BCR-free survival in patients with PCa.
Collapse
Affiliation(s)
- Yang-Jia Zhuo
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Ming Xi
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Yue-Ping Wan
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Wei Hua
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Yuan-Ling Liu
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Song Wan
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Yu-Lin Zhou
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Hong-Wei Luo
- Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shu-Lin Wu
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Wei-De Zhong
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
40
|
Beeharry N, Banina E, Hittle J, Skobeleva N, Khazak V, Deacon S, Andrake M, Egleston BL, Peterson JR, Astsaturov I, Yen TJ. Re-purposing clinical kinase inhibitors to enhance chemosensitivity by overriding checkpoints. Cell Cycle 2014; 13:2172-91. [PMID: 24955955 DOI: 10.4161/cc.29214] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Inhibitors of the DNA damage checkpoint kinase, Chk1, are highly effective as chemo- and radio-sensitizers in preclinical studies but are not well-tolerated by patients. We exploited the promiscuous nature of kinase inhibitors to screen 9 clinically relevant kinase inhibitors for their ability to sensitize pancreatic cancer cells to a sub-lethal concentration of gemcitabine. Bosutinib, dovitinib, and BEZ-235 were identified as sensitizers that abrogated the DNA damage checkpoint. We further characterized bosutinib, an FDA-approved Src/Abl inhibitor approved for chronic myelogenous leukemia. Unbeknownst to us, we used an isomer (Bos-I) that was unknowingly synthesized and sold to the research community as "authentic" bosutinib. In vitro and cell-based assays showed that both the authentic bosutinib and Bos-I inhibited DNA damage checkpoint kinases Chk1 and Wee1, with Bos-I showing greater potency. Imaging data showed that Bos-I forced cells to override gemcitabine-induced DNA damage checkpoint arrest and destabilized stalled replication forks. These inhibitors enhanced sensitivity to the DNA damaging agents' gemcitabine, cisplatin, and doxorubicin in pancreatic cancer cell lines. The in vivo efficacy of Bos-I was validated using cells derived directly from a pancreatic cancer patient's tumor. Notably, the xenograft studies showed that the combination of gemcitabine and Bos-I was significantly more effective in suppressing tumor growth than either agent alone. Finally, we show that the gatekeeper residue in Wee1 dictates its sensitivity to the 2 compounds. Our strategy to screen clinically relevant kinase inhibitors for off-target effects on cell cycle checkpoints is a promising approach to re-purpose drugs as chemosensitizers.
Collapse
Affiliation(s)
- Neil Beeharry
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA USA
| | - Eugenia Banina
- Program in Developmental Therapeutics; Fox Chase Cancer Center; Philadelphia, PA USA
| | - James Hittle
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA USA
| | - Natalia Skobeleva
- Program in Developmental Therapeutics; Fox Chase Cancer Center; Philadelphia, PA USA
| | - Vladimir Khazak
- Program in Developmental Therapeutics; Fox Chase Cancer Center; Philadelphia, PA USA
| | - Sean Deacon
- Reaction Biology Corporation; Malvern, PA USA
| | - Mark Andrake
- Molecular Modeling Facility; Fox Chase Cancer Center; Philadelphia, PA USA
| | - Brian L Egleston
- Biostatistics and Bioinformatics Facility; Fox Chase Cancer Center; Philadelphia, PA USA
| | | | - Igor Astsaturov
- Program in Developmental Therapeutics; Fox Chase Cancer Center; Philadelphia, PA USA
| | - Timothy J Yen
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA USA
| |
Collapse
|
41
|
Lee S, Park YY, Kim SH, Nguyen OTK, Yoo YS, Chan GK, Sun X, Cho H. Human mitochondrial Fis1 links to cell cycle regulators at G2/M transition. Cell Mol Life Sci 2014; 71:711-25. [PMID: 23907611 PMCID: PMC11113609 DOI: 10.1007/s00018-013-1428-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/27/2013] [Accepted: 07/15/2013] [Indexed: 01/10/2023]
Abstract
We have previously shown that prolonged mitochondrial elongation triggers cellular senescence. Here, we report that enforced mitochondrial elongation by hFis1 depletion caused a severe defect in cell cycle progression through G2/M phase (~3-fold reduction in mitotic index; p < 0.01). Reintroduction of Myc-hFis1 to these cells induced mitochondrial fragmentation and restored the cell cycle, indicating that morphodynamic changes of mitochondria closely link to the cell cycle. In hFis1-knockdown cells, cell cycle regulators governing the G2/M phase, including cyclin A, cyclin B1, cyclin-dependent kinase1 (Cdk1), polo-like kinase1 (Plk1), aurora kinase A and Mad2, were significantly suppressed (2- to 10-fold). Notably, however, when mitochondrial fragmentation was induced by double knockdown of hFis1 and Opa1, the cells regained their ability to enter mitosis, and cell cycle regulators were rebounded. Reconstitution of the cyclin B1/Cdk1 complex, a major regulator of the G2/M transition, failed to restore mitotic entry in hFis1-depleted cells. In contrast, expression of Plk1, an upstream regulator of the cyclin B1/Cdk1 complex, or FoxM1 (forkhead box M1), a master transcriptional factor for the cell cycle regulators of G2/M phase, restored the cell cycle in these cells. Our findings suggest that mitochondrial fission molecule hFis1 ensures the proper cell division by interplay with the cell cycle machinery.
Collapse
Affiliation(s)
- Seungmin Lee
- Department of Biochemistry, Ajou University School of Medicine, 5 Wonchon-dong, Yeongtong-gu, Suwon, 443-721 Korea
| | - Yong-Yea Park
- Department of Biochemistry, Ajou University School of Medicine, 5 Wonchon-dong, Yeongtong-gu, Suwon, 443-721 Korea
- Department of Biological Sciences, Graduate School of Ajou University, Suwon, 443-721 Korea
| | - Song-Hee Kim
- Department of Biochemistry, Ajou University School of Medicine, 5 Wonchon-dong, Yeongtong-gu, Suwon, 443-721 Korea
- Department of Biological Sciences, Graduate School of Ajou University, Suwon, 443-721 Korea
| | - Oanh T. Kim Nguyen
- Department of Biochemistry, Ajou University School of Medicine, 5 Wonchon-dong, Yeongtong-gu, Suwon, 443-721 Korea
- Department of Biological Sciences, Graduate School of Ajou University, Suwon, 443-721 Korea
| | - Young-Suk Yoo
- Department of Biochemistry, Ajou University School of Medicine, 5 Wonchon-dong, Yeongtong-gu, Suwon, 443-721 Korea
- Department of Biological Sciences, Graduate School of Ajou University, Suwon, 443-721 Korea
| | - Gordon K. Chan
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2 Canada
| | - Xuejun Sun
- Molecular Imaging Facility, Cross Cancer Institute, Edmonton, AB T6G 1Z2 Canada
| | - Hyeseong Cho
- Department of Biochemistry, Ajou University School of Medicine, 5 Wonchon-dong, Yeongtong-gu, Suwon, 443-721 Korea
- Department of Biological Sciences, Graduate School of Ajou University, Suwon, 443-721 Korea
| |
Collapse
|
42
|
Francescantonio PLC, Cruvinel WDM, Dellavance A, Andrade LEC, HurTaliberti B, Mühlen CAV, Bichara CDA, Bueno C, Mangueira CLP, Carvalho DG, Bonfá ESDO, Brito FDA, Araújo FIE, Rêgo J, Pereira KMC, Anjos LMED, Bissoli MDF, Santiago MB, Maluf NZ, Alvarenga RR, Neves SPF, Valim V, Santos WSD. IV Brazilian Guidelines for autoantibodies on HEp-2 cells. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.rbre.2014.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Francescantonio PLC, Cruvinel WDM, Dellavance A, Andrade LEC, HurTaliberti B, Mühlen CAV, Bichara CDA, Bueno C, Mangueira CLP, Carvalho DG, Bonfá ESDO, Brito FDA, Araújo FIE, Rêgo J, Pereira KMC, Anjos LMED, Bissoli MDF, Santiago MB, Maluf NZ, Alvarenga RR, Neves SPF, Valim V, Santos WSD. IV Consenso Brasileiro para pesquisa de autoanticorpos em células HEp-2. REVISTA BRASILEIRA DE REUMATOLOGIA 2014. [DOI: 10.1016/j.rbr.2013.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
44
|
Musinipally V, Howes S, Alushin GM, Nogales E. The microtubule binding properties of CENP-E's C-terminus and CENP-F. J Mol Biol 2013; 425:4427-41. [PMID: 23892111 DOI: 10.1016/j.jmb.2013.07.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/01/2013] [Accepted: 07/18/2013] [Indexed: 01/28/2023]
Abstract
CENP-E (centromere protein E) and CENP-F (centromere protein F), also known as mitosin, are large, multi-functional proteins associated with the outer kinetochore. CENP-E features a well-characterized kinesin motor domain at its N-terminus and a second microtubule-binding domain at its C-terminus of unknown function. CENP-F is important for the formation of proper kinetochore-microtubule attachment and, similar to CENP-E, contains two microtubule-binding domains at its termini. While the importance of these proteins is known, the details of their interactions with microtubules have not yet been investigated. We have biochemically and structurally characterized the microtubule-binding properties of the amino- and carboxyl-terminal domains of CENP-F as well as the carboxyl-terminal (non-kinesin) domain of CENP-E. CENP-E's C-terminus and CENP-F's N-terminus bind microtubules with similar affinity to the well-characterized Ndc80 complex, while CENP-F's C-terminus shows much lower affinity. Electron microscopy analysis reveals that all of these domains engage the microtubule surface in a disordered manner, suggesting that these factors have no favored binding geometry and may allow for initial side-on attachments early in mitosis.
Collapse
Affiliation(s)
- Vivek Musinipally
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
45
|
Perosa F, Favoino E, Cuomo G, Digiglio L, Dammacco F, Prete M, Valentini G, Racanelli V. Clinical correlates of a subset of anti-CENP-A antibodies cross-reacting with FOXE3p53-62 in systemic sclerosis. Arthritis Res Ther 2013; 15:R72. [PMID: 23837651 PMCID: PMC3978846 DOI: 10.1186/ar4249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 07/09/2013] [Indexed: 11/21/2022] Open
Abstract
Introduction In a subset of patients with limited cutaneous (lc) systemic sclerosis (SSc), anti-CENP-A antibodies (Ab) cross-react with a peptide (FOXE3p53-62) that presents striking homology with one of the two immunodominant epitopes of CENP-A (Ap17-30). We searched for clinical correlates of anti-FOXE3p53-62 Ab by measuring their levels along with those of Ab to Ap17-30 and to the second immunodominant epitope of CENP-A, namely Ap1-17. Methods Serum samples were obtained from 121 patients with SSc, 46 patients with systemic lupus erythematosus (SLE) and 25 healthy blood donors (HBD). The reactivity of serum IgG to Ap1-17, Ap17-30 and FOXE3p53-62 was measured by ELISA. The corresponding anti-peptide Ab were affinity-purified from pooled SSc sera and used to establish standard curves for quantifying these Ab in patients and HBD. Receiver operating characteristics (ROC) analysis, comparing SSc patients who were positive for anti-CENP Ab (ACA+) to those who were negative, was used to find cut-off points for dichotomizing the anti-peptide Ab levels into positive and negative. Clinical records were reviewed to extract demographic data and information about organ involvement and disease activity. Results Of 121 SSc sera, 75 were ACA+; 88.0% of these samples reacted with Ap1-17, 82.6% with Ap17-30 and 53.3% with FOXE3p53-62. Among the 46 ACA- SSc sera, 2.2% reacted with Ap1-17, 4.3% with Ap17-30 and 11% with FOXE3p53-62. The levels of these Ab were low in ACA-, SLE and HBD groups and not significantly different among them. When ACA+ SSc patients were divided into subgroups positive or negative for anti-FOXE3p53-62 Ab, the only variables that were significantly different between groups were the levels of anti-Ap17-30 Ab and disease activity index (DAI). There was a significant association between negativity for anti-FOXE3p53-62 Ab and active disease defined as either DAI ≥3 (Fisher exact test, P = 0.045) or less restrictive DAI≥2.5 (P = 0.009). Conclusions ACA+-Anti-FOXE3p53-62+Ab identifies a subgroup of patients with lcSSc who are less likely to develop active disease. In lc SSc patients at presentation, anti-FOXE3p53-62+ can be a marker with prognostic significance.
Collapse
|
46
|
Dai Y, Liu L, Zeng T, Zhu YH, Li J, Chen L, Li Y, Yuan YF, Ma S, Guan XY. Characterization of the oncogenic function of centromere protein F in hepatocellular carcinoma. Biochem Biophys Res Commun 2013; 436:711-8. [PMID: 23791740 DOI: 10.1016/j.bbrc.2013.06.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 11/26/2022]
Abstract
Centromere protein F (CENPF) is an essential nuclear protein associated with the centromere-kinetochore complex and plays a critical role in chromosome segregation during mitosis. Up-regulation of CENPF expression has previously been detected in several solid tumors. In this study, we aim to study the expression and functional role of CENPF in hepatocellular carcinoma (HCC). We found CENPF was frequently overexpressed in HCC as compared with non-tumor tissue. Up-regulated CENPF expression in HCC was positively correlated with serum AFP, venous invasion, advanced differentiation stage and a shorter overall survival. Cox regression analysis found that overexpression of CENPF was an independent prognosis factor in HCC. Functional studies found that silencing CENPF could decrease the ability of the cells to proliferate, form colonies and induce tumor formation in nude mice. Silencing CENPF also resulted in the cell cycle arrest at G2/M checkpoint by down-regulating cell cycle proteins cdc2 and cyclin B1. Our data suggest that CENPF is frequently overexpressed in HCC and plays a critical role in driving HCC tumorigenesis.
Collapse
Affiliation(s)
- Yongdong Dai
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Song G, Hu C, Zhu H, Wang L, Zhang F, Li Y, Wu L. New centromere autoantigens identified in systemic sclerosis using centromere protein microarrays. J Rheumatol 2013; 40:461-8. [PMID: 23418382 DOI: 10.3899/jrheum.120264] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To identify novel centromere protein (CENP) targets of anticentromere antibodies (ACA), and to investigate their association with clinical manifestations of systemic sclerosis (SSc). METHODS A CENP-focused protein microarray was fabricated by spotting 14 purified CENP. These microarrays were individually incubated with 35 ACA-positive SSc sera and 20 ACA-negative healthy control samples. Newly identified CENP autoantigens with high sensitivities were selected for validation and characterization. RESULTS Statistical analysis revealed 11 CENP are potential target antigens of ACA in patients with SSc. Of them, 5 [CENP-P, CENP-Q, CENP-M (isoform I), CENP-J, and CENP-T] are novel, among which CENP-P and CENP-Q showed high sensitivities in ACA-positive SSc sera of 34.3% and 28.6%, respectively. Subsequently, 186 SSc sera (35 ACA-positives and 151 negatives), 69 ACA-positive sera from other various autoimmune diseases (primary Sjögren syndrome, systemic lupus erythematosus, rheumatoid arthritis, and primary biliary cirrhosis), and 31 healthy sera were assayed for the presence of anti-CENP-P and -Q autoantibodies by ELISA followed by Western blotting analysis. CENP-P and -Q autoantibodies were detected in ACA-positive sera of various disease groups; among them, SSc showed the highest detection rate. Anti-CENP-P was also found in 9 of the 151 ACA-negative sera. Analyses of the correlation with clinical information showed anti-CENP-P-positive patients had higher levels of IgG, IgA, and erythrocyte sedimentation rate among the ACA-positive cohort and were more vulnerable to renal disease in the ACA-negative patients with SSc. Regardless of ACA status, anti-CENP-P or Q-negative patients seem to be predominantly affected by interstitial lung disease. CONCLUSION CENP-P and CENP-Q were identified as novel ACA autoantigens by CENP microarray assays followed by validation of ELISA and Western blotting. Both of them have prognostic utility for interstitial lung disease. CENP-P was associated with renal disease in an ACA-negative cohort.
Collapse
Affiliation(s)
- Guang Song
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
48
|
Richmond D, Rizkallah R, Liang F, Hurt MM, Wang Y. Slk19 clusters kinetochores and facilitates chromosome bipolar attachment. Mol Biol Cell 2013; 24:566-77. [PMID: 23283988 PMCID: PMC3583661 DOI: 10.1091/mbc.e12-07-0552] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Yeast kinetochore protein Slk19 is required for kinetochore clustering, and nocodazole exposure to slk19 mutant cells causes impaired kinetochore capture and delayed chromosome bipolar attachment after nocodazole washout. In all eukaryotic cells, DNA is packaged into multiple chromosomes that are linked to microtubules through a large protein complex called a kinetochore. Previous data show that the kinetochores are clustered together during most of the cell cycle, but the mechanism and the biological significance of kinetochore clustering are unknown. As a kinetochore protein in budding yeast, the role of Slk19 in the stability of the anaphase spindle has been well studied, but its function in chromosome segregation has remained elusive. Here we show that Slk19 is required for kinetochore clustering when yeast cells are treated with the microtubule-depolymerizing agent nocodazole. We further find that slk19Δ mutant cells exhibit delayed kinetochore capture and chromosome bipolar attachment after the disruption of the kinetochore–microtubule interaction by nocodazole, which is likely attributed to defective kinetochore clustering. In addition, we show that Slk19 interacts with itself, suggesting that the dimerization of Slk19 may mediate the interaction between kinetochores for clustering. Therefore Slk19 likely acts as kinetochore glue that clusters kinetochores to facilitate efficient and faithful chromosome segregation.
Collapse
Affiliation(s)
- Daniel Richmond
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | |
Collapse
|
49
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Guo Y, Kim C, Mao Y. New insights into the mechanism for chromosome alignment in metaphase. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:237-62. [PMID: 23445812 DOI: 10.1016/b978-0-12-407697-6.00006-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During mitosis, duplicated sister chromatids are properly aligned at the metaphase plate of the mitotic spindle before being segregated into two daughter cells. This requires a complex process to ensure proper interactions between chromosomes and spindle microtubules. The kinetochore, the proteinaceous complex assembled at the centromere region on each chromosome, serves as the microtubule attachment site and powers chromosome movement in mitosis. Numerous proteins/protein complexes have been implicated in the connection between kinetochores and dynamic microtubules. Recent studies have advanced our understanding on the nature of the interface between kinetochores and microtubule plus ends in promoting and maintaining their stable attachment. These efforts have demonstrated the importance of this process to ensure accurate chromosome segregation, an issue which has great significance for understanding and controlling abnormal chromosome segregation (aneuploidy) in human genetic diseases and in cancer progression.
Collapse
Affiliation(s)
- Yige Guo
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, NY, USA
| | | | | |
Collapse
|