1
|
Pérez-Soto M, Ramos-Soriano J, Peñalver P, Belmonte-Reche E, O'Hagan MP, Cucchiarini A, Mergny JL, Galán MC, López López MC, Thomas MDC, Morales JC. DNA G-quadruplexes in the genome of Trypanosoma cruzi as potential therapeutic targets for Chagas disease: Dithienylethene ligands as effective antiparasitic agents. Eur J Med Chem 2024; 276:116641. [PMID: 38971047 DOI: 10.1016/j.ejmech.2024.116641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Chagas disease is caused by the parasite Trypanosoma cruzi and affects over 7 million people worldwide. The two actual treatments, Benznidazole (Bzn) and Nifurtimox, cause serious side effects due to their high toxicity leading to treatment abandonment by the patients. In this work, we propose DNA G-quadruplexes (G4) as potential therapeutic targets for this infectious disease. We have found 174 PQS per 100,000 nucleotides in the genome of T. cruzi and confirmed G4 formation of three frequent motifs. We synthesized a family of 14 quadruplex ligands based in the dithienylethene (DTE) scaffold and demonstrated their binding to these identified G4 sequences. Several DTE derivatives exhibited micromolar activity against epimastigotes of four different strains of T. cruzi, in the same concentration range as Bzn. Compounds L3 and L4 presented remarkable activity against trypomastigotes, the active form in blood, of T. cruzi SOL strain (IC50 = 1.5-3.3 μM, SI = 25-40.9), being around 40 times more active than Bzn and displaying much better selectivity indexes.
Collapse
Affiliation(s)
- Manuel Pérez-Soto
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain
| | | | - Pablo Peñalver
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain
| | - Efres Belmonte-Reche
- GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada / Andalusian Regional Government, PTS Granada, Av. de La Ilustración, 114, 18016 Granada, Spain; Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Hospital Virgen de Las Nieves, Granada, Spain
| | - Michael P O'Hagan
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Anne Cucchiarini
- Laboratoire d'optique et Biosciences, Ecole Polytechnique, Inserm U1182, CNRS UMR7645, Institut Polytechnique de Paris, Palaiseau, France
| | - Jean-Louis Mergny
- Laboratoire d'optique et Biosciences, Ecole Polytechnique, Inserm U1182, CNRS UMR7645, Institut Polytechnique de Paris, Palaiseau, France
| | - M Carmen Galán
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.
| | - Manuel Carlos López López
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain.
| | - María Del Carmen Thomas
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain.
| | - Juan Carlos Morales
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain.
| |
Collapse
|
2
|
Egbewande FA, Schwartz BD, Duffy S, Avery VM, Davis RA. Synthesis and Antimalarial Evaluation of Halogenated Analogues of Thiaplakortone A. Mar Drugs 2023; 21:md21050317. [PMID: 37233511 DOI: 10.3390/md21050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
The incorporation of bromine, iodine or fluorine into the tricyclic core structure of thiaplakortone A (1), a potent antimalarial marine natural product, is reported. Although yields were low, it was possible to synthesise a small nine-membered library using the previously synthesised Boc-protected thiaplakortone A (2) as a scaffold for late-stage functionalisation. The new thiaplakortone A analogues (3-11) were generated using N-bromosuccinimide, N-iodosuccinimide or a Diversinate™ reagent. The chemical structures of all new analogues were fully characterised by 1D/2D NMR, UV, IR and MS data analyses. All compounds were evaluated for their antimalarial activity against Plasmodium falciparum 3D7 (drug-sensitive) and Dd2 (drug-resistant) strains. Incorporation of halogens at positions 2 and 7 of the thiaplakortone A scaffold was shown to reduce antimalarial activity compared to the natural product. Of the new compounds, the mono-brominated analogue (compound 5) displayed the best antimalarial activity with IC50 values of 0.559 and 0.058 μM against P. falciparum 3D7 and Dd2, respectively, with minimal toxicity against a human cell line (HEK293) observed at 80 μM. Of note, the majority of the halogenated compounds showed greater efficacy against the P. falciparum drug-resistant strain.
Collapse
Affiliation(s)
- Folake A Egbewande
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Brett D Schwartz
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Sandra Duffy
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
- Discovery Biology, Centre for Cellular Phenomics, Griffith University, Nathan, QLD 4111, Australia
| | - Vicky M Avery
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
- Discovery Biology, Centre for Cellular Phenomics, Griffith University, Nathan, QLD 4111, Australia
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
- NatureBank, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
3
|
Cox Holanda de Barros Dias M, Souza Barbalho M, Bezerra de Oliveira Filho G, Veríssimo de Oliveira Cardoso M, Lima Leite AC, da Silva Santos AC, Cristovão Silva AC, Accioly Brelaz de Castro MC, Maria Nascimento Moura D, Gomes Rebello Ferreira LF, Zaldini Hernandes M, de Freitas E Silva R, Rêgo Alves Pereira V. 1,3-Thiazole derivatives as privileged structures for anti-Trypanosoma cruzi activity: Rational design, synthesis, in silico and in vitro studies. Eur J Med Chem 2023; 257:115508. [PMID: 37267753 DOI: 10.1016/j.ejmech.2023.115508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
Chagas disease is a deadly and centenary neglected disease that is recently surging as a potential global threat. Approximately 30% of infected individuals develop chronic Chagas cardiomyopathy and current treatment with the reference benznidazole (BZN) is ineffective for this stage. We presently report the structural planning, synthesis, characterization, molecular docking prediction, cytotoxicity, in vitro bioactivity and mechanistic studies on the anti-T. cruzi activity of a series of 16 novel 1,3-thiazoles (2-17) derived from thiosemicarbazones (1a, 1b) in a two-step and reproducible Hantzsch-based synthesis approach. The anti-T. cruzi activity was evaluated in vitro against the epimastigote, amastigote and trypomastigote forms of the parasite. In the bioactivity assays, all thiazoles were more potent than BZN against epimastigotes. We found that the compounds presented an overall increased anti-tripomastigote selectivity (Cpd 8 was 24-fold more selective) than BZN, and they mostly presented anti-amastigote activity at very low doses (from 3.65 μM, cpd 15). Mechanistic studies on cell death suggested that the series of 1,3-thiazole compounds herein reported cause parasite cell death through apoptosis, but without compromising the mitochondrial membrane potential. In silico prediction of physicochemical properties and pharmacokinetic parameters showed promising drug-like results, being all the reported compounds in compliance with Lipinski and Veber rules. In summary, our work contributes towards a more rational design of potent and selective antitripanosomal drugs, using affordable methodology to yield industrially viable drug candidates.
Collapse
Affiliation(s)
- Mabilly Cox Holanda de Barros Dias
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, Pernambuco, Brazil.
| | - Mayara Souza Barbalho
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, 50670- 420, Recife, Pernambuco, Brazil
| | - Gevanio Bezerra de Oliveira Filho
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | | | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | | | | | | | | | - Luiz Felipe Gomes Rebello Ferreira
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Marcelo Zaldini Hernandes
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
4
|
Structural improvement of new thiazolyl-isatin derivatives produces potent and selective trypanocidal and leishmanicidal compounds. Chem Biol Interact 2021; 345:109561. [PMID: 34174251 DOI: 10.1016/j.cbi.2021.109561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 05/24/2021] [Accepted: 06/15/2021] [Indexed: 11/20/2022]
Abstract
Neglected diseases are a group of transmissible diseases that occur mostly in countries in tropical climates. Among this group, Chagas disease and leishmaniasis stand out, considered threats to global health. Treatment for these diseases is limited. Therefore, there is a need for new therapies against these diseases. In this sense, our proposal consisted of developing two series of compounds, using a molecular hybridization of the heterocyclic isatin and thiazole. The isatin and thiazole ring are important scaffold for several biological disorders, including antiparasitic ones. Herein, thiazolyl-isatin has been synthesized from respective thiosemicarbazone or phenyl-thiosemicarbazone, being some of these new thiazolyl-isatin toxic for trypomastigotes without affecting macrophages viability. From this series, compounds 2e (IC50 = 4.43 μM), 2j (IC50 = 2.05 μM), 2l (IC50 = 4.12 μM) and 2m (1.72 μM) showed the best anti-T. cruzi activity for trypomastigote form presenting a selectivity index higher than Benznidazole (BZN). Compounds 2j, 2l and 2m were able to induce a significantly labelling compatible with necrosis in trypomastigotes. Analysis by scanning electron microscopy showed that T. cruzi trypomastigote cells treated with the compound 2m from IC50 concentrations, promoted changes in the shape, flagella and surface of body causing of the parasite dead. Concerning leishmanicidal evaluation against L. amazonensis and L. infantum, compounds 2l (IC50 = 7.36 and 7.97 μM, respectively) and 2m (6.17 and 6.04 μM, respectively) showed the best activity for promastigote form, besides showed a higher selectivity than Miltefosine. Thus, compounds 2l and 2m showed dual in vitro trypanosomicidal and leishmanicidal activities. A structural activity relationship study showed that thiazolyl-isatin derivatives from phenyl-thiosemicarbazone (2a-m) were, in general, more active than thiazolyl-isatin derivatives from thiosemicarbazone (1a-g). Crystallography studies revealed a different configuration between series 1a-g and 2a-m. The configuration and spatial arrangement divergent between the two sub-series could explain the improved biological activity profile of 2a-m sub-series.
Collapse
|
5
|
Pang YT, Pavlova A, Tajkhorshid E, Gumbart JC. Parameterization of a drug molecule with a halogen σ-hole particle using ffTK: Implementation, testing, and comparison. J Chem Phys 2021; 153:164104. [PMID: 33138412 DOI: 10.1063/5.0022802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Halogen atoms are widely used in drug molecules to improve their binding affinity for the receptor proteins. Many of the examples involve "halogen bonding" between the molecule and the binding site, which is a directional interaction between a halogen atom and a nucleophilic atom. Such an interaction is induced by an electron cloud shift of the halogen atom toward its covalently bonded neighbor to form the σ-bond, leaving a small electrostatic positive region opposite to the bond called the "σ-hole." To mimic the effect of the σ-hole in the CHARMM non-polarizable force field, recently CGenFF added a positively charged massless particle to halogen atoms, positioned at the opposite side of the carbon-halogen bond. This particle is referred to as a lone pair (LP) particle because it uses the lone pair implementation in the CHARMM force field. Here, we have added support for LP particles to ffTK, an automated force field parameterization toolkit widely distributed as a plugin to the molecular visualization software VMD. We demonstrate the updated optimization process using an example halogenated drug molecule, AT130, which is a capsid assembly modulator targeting the hepatitis B virus. Our results indicate that parameterization with the LP particle significantly improves the accuracy of the electrostatic response of the molecule, especially around the halogen atom. Although the inclusion of the LP particle does not produce a prominent effect on the interactions between the molecule and its target protein, the protein-ligand binding performance is greatly improved by optimization of the parameters.
Collapse
Affiliation(s)
- Yui Tik Pang
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Anna Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
6
|
Schadich E, Kryshchyshyn-Dylevych A, Holota S, Polishchuk P, Džubak P, Gurska S, Hajduch M, Lesyk R. Assessing different thiazolidine and thiazole based compounds as antileishmanial scaffolds. Bioorg Med Chem Lett 2020; 30:127616. [PMID: 33091607 DOI: 10.1016/j.bmcl.2020.127616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 11/28/2022]
Abstract
The compounds from eight different thiazolidine and thiazole series were assessed as potential antileishmanial scaffolds. They were tested for antileishmanial activity against promastigotes of Leishmania major using in vitro primary screen and dose response assays. The compounds from six thiazolidine and thiazole series were identified as the hits with antileishmanial activity against L. major. However, the analyses of structure-activity relations (SARs) showed that the interpretable SARs were obtained only for phenyl-indole hybrids (compounds C1, C2, C3 and C5) as the most effective compounds against L. major promastigotes (IC50 < 10 µM) with low toxicity to human fibroblasts. For the scaffold of these compounds, the most significant SAR patterns were: free N3 position of thiazolidinone core, absence of big fragments at the C5 position of thiazolidinone core and presence of halogen atoms or nitro group in the phenyl ring of phenyl-indole fragment. As previous studies showed that these compounds also have activity against the two Trypanosoma species, Trypanosoma brucei and Trypanosoma gambiense, their scaffold could be associated with a broader antiparasitic activity.
Collapse
Affiliation(s)
- Ermin Schadich
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Anna Kryshchyshyn-Dylevych
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Serhiy Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Pavel Polishchuk
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Petr Džubak
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Sona Gurska
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine; Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| |
Collapse
|
7
|
Haroon M, Akhtar T, S. Santos AC, Pereira VRA, Ferreira LFGR, Hernandes MZ, Rocha REO, Ferreira RS, M. Gomes PAT, Sousa FA, B. Dias MCH, Tahir MN, Hameed S, Leite ACL. Design, Synthesis and In Vitro Trypanocidal and Leishmanicidal Activities of 2‐(2‐Arylidene)hydrazono‐4‐oxothiazolidine‐5‐acetic Acid Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201902561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Muhammad Haroon
- Department of ChemistryMirpur University of Science and Technology (MUST) 10250-Mirpur (AJK) Pakistan
| | - Tashfeen Akhtar
- Department of ChemistryMirpur University of Science and Technology (MUST) 10250-Mirpur (AJK) Pakistan
| | - Aline C. S. Santos
- Centro de Pesquisas Aggeu MagalhãesFundação Oswaldo Cruz 50670-420 Recife, PE Brazil
| | - Valéria R. A. Pereira
- Centro de Pesquisas Aggeu MagalhãesFundação Oswaldo Cruz 50670-420 Recife, PE Brazil
| | - Luiz F. G. R. Ferreira
- Departamento de Ciências FarmacêuticasCentro de Ciências da SaúdeUniversidade Federal de Pernambuco 50740-520 Recife, PE Brazil
| | - Marcelo Z. Hernandes
- Departamento de Ciências FarmacêuticasCentro de Ciências da SaúdeUniversidade Federal de Pernambuco 50740-520 Recife, PE Brazil
| | - Rafael E. O. Rocha
- Departamento de Bioquímica and ImunologiaUniversidade Federal de Minas Gerais CEP 31270–901 Belo Horizonte, MG Brazil
| | - Rafaela S. Ferreira
- Departamento de Bioquímica and ImunologiaUniversidade Federal de Minas Gerais CEP 31270–901 Belo Horizonte, MG Brazil
| | - Paulo A. T. M. Gomes
- Departamento de Ciências FarmacêuticasCentro de Ciências da SaúdeUniversidade Federal de Pernambuco 50740-520 Recife, PE Brazil
| | - Fabiano A. Sousa
- Departamento de Ciências FarmacêuticasCentro de Ciências da SaúdeUniversidade Federal de Pernambuco 50740-520 Recife, PE Brazil
| | - Mabilly C. H. B. Dias
- Departamento de Ciências FarmacêuticasCentro de Ciências da SaúdeUniversidade Federal de Pernambuco 50740-520 Recife, PE Brazil
| | - Muhammad N. Tahir
- Department of PhysicsUniversity of Sargodha, Sargodha Punjab Pakistan
| | - Shahid Hameed
- Department of ChemistryQuaid-i-Azam University Islamabad- 45320 Pakistan
| | - Ana C. L. Leite
- Departamento de Ciências FarmacêuticasCentro de Ciências da SaúdeUniversidade Federal de Pernambuco 50740-520 Recife, PE Brazil
| |
Collapse
|
8
|
Leite ACL, Espíndola JWP, de Oliveira Cardoso MV, de Oliveira Filho GB. Privileged Structures in the Design of Potential Drug Candidates for Neglected Diseases. Curr Med Chem 2019; 26:4323-4354. [DOI: 10.2174/0929867324666171023163752] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 11/22/2022]
Abstract
Background:
Privileged motifs are recurring in a wide range of biologically
active compounds that reach different pharmaceutical targets and pathways and could represent
a suitable start point to access potential candidates in the neglected diseases field.
The current therapies to treat these diseases are based in drugs that lack of the desired effectiveness,
affordable methods of synthesis and allow a way to emergence of resistant
strains. Due the lack of financial return, only few pharmaceutical companies have been
investing in research for new therapeutics for neglected diseases (ND).
Methods:
Based on the literature search from 2002 to 2016, we discuss how six privileged
motifs, focusing phthalimide, isatin, indole, thiosemicarbazone, thiazole, and thiazolidinone
are particularly recurrent in compounds active against some of neglected diseases.
Results:
It was observed that attention was paid particularly for Chagas disease, malaria,
tuberculosis, schistosomiasis, leishmaniasis, dengue, African sleeping sickness (Human
African Trypanosomiasis - HAT) and toxoplasmosis. It was possible to verify that, among
the ND, antitrypanosomal and antiplasmodial activities were between the most searched.
Besides, thiosemicarbazone moiety seems to be the most versatile and frequently explored
scaffold. As well, phthalimide, isatin, thiazole, and thiazolidone nucleus have been also
explored in the ND field.
Conclusion:
Some described compounds, appear to be promising drug candidates, while
others could represent a valuable inspiration in the research for new lead compounds.
Collapse
Affiliation(s)
- Ana Cristina Lima Leite
- Departamento de Ciencias Farmaceuticas, Centro de Ciencias da Saude, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - José Wanderlan Pontes Espíndola
- Departamento de Ciencias Farmaceuticas, Centro de Ciencias da Saude, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | | | - Gevanio Bezerra de Oliveira Filho
- Departamento de Ciencias Farmaceuticas, Centro de Ciencias da Saude, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| |
Collapse
|
9
|
Cardoso MVDO, Oliveira Filho GBD, Siqueira LRPD, Espíndola JWP, Silva EBD, Mendes APDO, Pereira VRA, Castro MCABD, Ferreira RS, Villela FS, Costa FMRD, Meira CS, Moreira DRM, Soares MBP, Leite ACL. 2-(phenylthio)ethylidene derivatives as anti-Trypanosoma cruzi compounds: Structural design, synthesis and antiparasitic activity. Eur J Med Chem 2019; 180:191-203. [DOI: 10.1016/j.ejmech.2019.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/06/2019] [Indexed: 12/16/2022]
|
10
|
Discovery of Potent and Selective Halogen-Substituted Imidazole-Thiosemicarbazides for Inhibition of Toxoplasma gondii Growth In Vitro via Structure-Based Design. Molecules 2019; 24:molecules24081618. [PMID: 31022878 PMCID: PMC6514996 DOI: 10.3390/molecules24081618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/19/2023] Open
Abstract
Employing a simple synthetic protocol, a series of highly effective halogen-substituted imidazole-thiosemicarbazides with anti-Toxoplasma gondii effects against the RH tachyzoites, much better than sulfadiazine, were obtained (IC50s 10.30—113.45 µg/mL vs. ~2721.45 µg/mL). The most potent of them, 12, 13, and 15, blocked the in vitro proliferation of T. gondii more potently than trimethoprim (IC50 12.13 µg/mL), as well. The results of lipophilicity studies collectively suggest that logP would be a rate-limiting factor for the anti-Toxoplasma activity of this class of compounds.
Collapse
|
11
|
Kryshchyshyn A, Kaminskyy D, Karpenko O, Gzella A, Grellier P, Lesyk R. Thiazolidinone/thiazole based hybrids - New class of antitrypanosomal agents. Eur J Med Chem 2019; 174:292-308. [PMID: 31051403 DOI: 10.1016/j.ejmech.2019.04.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/22/2022]
Abstract
Different compounds have been investigated as potent drugs for trypanosomiasis treatment, but no new drug has been marketed in the past 3 decades. 4-Thiazolidinone/thiazole as privileged structures and thiosemicarbazides cyclic analogs are well known scaffolds in novel antitrypanosomal agent design. We present here the design and synthesis of new hybrid molecules bearing thiazolidinone/thiazole cores linked by the hydrazone group with various molecular fragments. Structure optimization led to compounds with phenyl-indole or phenyl-imidazo[2,1-b][1,3,4]thiadiazole moieties showing excellent antitrypanosomal activity towards Trypanosoma brucei brucei and Trypanosoma brucei gambiense. Biological study allowed identifying compounds with the submicromolar levels of IC50, good selectivity indexes and relatively low cytotoxicity upon human primary fibroblasts as well as low acute toxicity.
Collapse
Affiliation(s)
- Anna Kryshchyshyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | | | - Andrzej Gzella
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, Poznan, 60-780, Poland
| | - Philippe Grellier
- National Museum of Natural History, UMR 7245 CNRS-MNHN, Team BAMEE, CP 52, 57 Rue Cuvier, 75005, Paris, France
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine; Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| |
Collapse
|
12
|
Ong YC, Roy S, Andrews PC, Gasser G. Metal Compounds against Neglected Tropical Diseases. Chem Rev 2018; 119:730-796. [DOI: 10.1021/acs.chemrev.8b00338] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yih Ching Ong
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Saonli Roy
- Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Philip C. Andrews
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Gilles Gasser
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
13
|
Kryshchyshyn A, Kaminskyy D, Nektegayev I, Grellier P, Lesyk R. Isothiochromenothiazoles-A Class of Fused Thiazolidinone Derivatives with Established Anticancer Activity That Inhibits Growth of Trypanosoma brucei brucei. Sci Pharm 2018; 86:scipharm86040047. [PMID: 30347722 DOI: 10.3390/scipharm86040047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/15/2022] Open
Abstract
Recently, thiazolidinone derivatives have been widely studied as antiparasitic agents. Previous investigations showed that fused 4-thiazolidinone derivatives (especially thiopyranothiazoles) retain pharmacological activity of their synthetic precursors-simple 5-ene-4-thiazolidinones. A series of isothiochromeno[4a,4-d][1,3] thiazoles was investigated in an in vitro assay towards bloodstream forms of Trypanosoma brucei brucei. All compounds inhibited parasite growth at concentrations in the micromolar range. The established low acute toxicity of this class of compounds along with a good trypanocidal profile indicates that isothiochromenothiazole derivatives may be promising for designing new antitrypanosomal drugs.
Collapse
Affiliation(s)
- Anna Kryshchyshyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv-10, Ukraine.
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv-10, Ukraine.
| | - Igor Nektegayev
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv-10, Ukraine.
| | - Philippe Grellier
- UMR 7245 CNRS MCAM, Muséum National d'Histoire Naturelle, Sorbonne Universités, CP 52, 57 rue Cuvier, Paris 75005, France.
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv-10, Ukraine.
| |
Collapse
|
14
|
Kryshchyshyn A, Devinyak O, Kaminskyy D, Grellier P, Lesyk R. Development of Predictive QSAR Models of 4-Thiazolidinones Antitrypanosomal Activity Using Modern Machine Learning Algorithms. Mol Inform 2017; 37:e1700078. [PMID: 29134756 DOI: 10.1002/minf.201700078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/30/2017] [Indexed: 01/24/2023]
Abstract
This paper presents novel QSAR models for the prediction of antitrypanosomal activity among thiazolidines and related heterocycles. The performance of four machine learning algorithms: Random Forest regression, Stochastic gradient boosting, Multivariate adaptive regression splines and Gaussian processes regression have been studied in order to reach better levels of predictivity. The results for Random Forest and Gaussian processes regression are comparable and outperform other studied methods. The preliminary descriptor selection with Boruta method improved the outcome of machine learning methods. The two novel QSAR-models developed with Random Forest and Gaussian processes regression algorithms have good predictive ability, which was proved by the external evaluation of the test set with corresponding Q2ext =0.812 and Q2ext =0.830. The obtained models can be used further for in silico screening of virtual libraries in the same chemical domain in order to find new antitrypanosomal agents. Thorough analysis of descriptors influence in the QSAR models and interpretation of their chemical meaning allows to highlight a number of structure-activity relationships. The presence of phenyl rings with electron-withdrawing atoms or groups in para-position, increased number of aromatic rings, high branching but short chains, high HOMO energy, and the introduction of 1-substituted 2-indolyl fragment into the molecular structure have been recognized as trypanocidal activity prerequisites.
Collapse
Affiliation(s)
- Anna Kryshchyshyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska str. 69, 79010, Lviv, Ukraine
| | - Oleg Devinyak
- Department of Pharmaceutical Disciplines, Uzhgorod National University, Narodna sq. 1, 88000, Uzhgorod, Ukraine
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska str. 69, 79010, Lviv, Ukraine
| | - Philippe Grellier
- National Museum of Natural History, UMR 7245 CNRS MCAM, Sorbonne Universités, CP 52, 57 Rue Cuvier, Paris, 75005, France
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska str. 69, 79010, Lviv, Ukraine
| |
Collapse
|
15
|
de Oliveira Filho GB, Cardoso MVDO, Espíndola JWP, Oliveira E Silva DA, Ferreira RS, Coelho PL, Anjos PSD, Santos EDS, Meira CS, Moreira DRM, Soares MBP, Leite ACL. Structural design, synthesis and pharmacological evaluation of thiazoles against Trypanosoma cruzi. Eur J Med Chem 2017; 141:346-361. [PMID: 29031078 DOI: 10.1016/j.ejmech.2017.09.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/29/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
Abstract
Chagas disease is one of the most significant health problems in the American continent. benznidazole (BDZ) and nifurtimox (NFX) are the only drugs approved for treatment and exhibit strong side effects and ineffectiveness in the chronic stage, besides different susceptibility among T. cruzi DTUs (Discrete Typing Units). Therefore, new drugs to treat this disease are necessary. Thiazole compounds have been described as potent trypanocidal agents. Here we report the structural planning, synthesis and anti-T. cruzi evaluation of a new series of 1,3-thiazoles (7-28), which were designed by placing this heterocycle instead of thiazolidin-4-one ring. The synthesis was conducted in an ultrasonic bath with 2-propanol as solvent at room temperature. By varying substituents attached to the phenyl and thiazole rings, substituents were observed to retain, enhance or greatly increase their anti-T. cruzi activity. In some cases, methyl at position 5 of the thiazole (compounds 9, 12 and 23) increased trypanocidal property. The exchange of phenyl for pyridinyl heterocycle resulted in increased activity, giving rise to the most potent compound against the trypomasigote form (14, IC50trypo = 0.37 μM). Importantly, these new thiazoles were toxic for trypomastigotes without affecting macrophages and cardiomyoblast viability. The compounds were also evaluated against cruzain, and five of the most active compounds against trypomastigotes (7, 9, 12, 16 and 23) inhibited more than 70% of enzymatic activity at 10 μM, among which compound 7 had an IC50 in the submicromolar range, suggesting a possible mechanism of action. In addition, examination of T. cruzi cell death showed that compound 14 induces apoptosis. We also examined the activity against intracellular parasites, revealing that compound 14 inhibited T. cruzi infection with potency similar to benznidazole. The antiparasitic effect of 14 and benznidazole in combination was also investigated against trypomastigotes and revealed that they have synergistic effects, showing a promising profile for drug combination. Finally, in mice acutely-infected with T. cruzi,14 treatment significanty reduced the blood parasitaemia and had a protective effect on mortality. In conclusion, we report the identification of compounds (7), (12), (15), (23) and (26) with similar trypanocidal activity of benznidazole; compounds (9) and (21) as trypanocidal agents equipotent with BDZ, and compound 14 with potency 28 times better than the reference drug without affecting macrophages and cardiomyoblast viability. Mechanistically, the compounds inhibit cruzain, and 14 induces T. cruzi cell death by an apoptotic process, being considered a good starting point for the development of new anti-Chagas drug candidates.
Collapse
Affiliation(s)
- Gevanio Bezerra de Oliveira Filho
- Laboratório de Planejamento em Química Medicinal - LpQM, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco - UFPE, 50740-520, Recife, PE, Brazil; Faculdade de Integração do Sertão - FIS, Rua João Luiz de Melo, 2110, COHAB, Serra Talhada, PE, Brazil.
| | | | - José Wanderlan Pontes Espíndola
- Laboratório de Planejamento em Química Medicinal - LpQM, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco - UFPE, 50740-520, Recife, PE, Brazil
| | - Dayane Albuquerque Oliveira E Silva
- Laboratório de Planejamento em Química Medicinal - LpQM, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco - UFPE, 50740-520, Recife, PE, Brazil
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Pollyanne Lacerda Coelho
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | | | | | - Cássio Santana Meira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, CEP 40296-710, Salvador, BA, Brazil
| | | | - Milena Botelho Pereira Soares
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, CEP 40296-710, Salvador, BA, Brazil; Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador, BA, Brazil
| | - Ana Cristina Lima Leite
- Laboratório de Planejamento em Química Medicinal - LpQM, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco - UFPE, 50740-520, Recife, PE, Brazil.
| |
Collapse
|
16
|
Synthesis, molecular docking, antimycobacterial and antimicrobial evaluation of new pyrrolo[3,2-c]pyridine Mannich bases. Eur J Med Chem 2017; 131:275-288. [PMID: 28340368 DOI: 10.1016/j.ejmech.2017.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/05/2017] [Accepted: 03/10/2017] [Indexed: 11/23/2022]
Abstract
In this report, we describe the synthesis and biological evaluation of a new series of pyrrolo[3,2-c]pyridine Mannich bases (7a-v). The Mannich bases were obtained in good yields by one-pot three component condensation of pyrrolo[3,2-c]pyridine scaffold (6a-c) with secondary amines and excess of formaldehyde solution in AcOH. The chemical structures of the compounds were characterized by 1H NMR, 13C NMR, LC/MS and elemental analysis. Single crystal X-ray diffraction has been recorded for compound 7k ([C23H29ClN4]+2, H2O). The in vitro antimicrobial activities of the compounds were evaluated against various bacterial and fungal strains using Agar diffusion method and Broth micro dilution method. Compounds 7e, 7f, 7r, 7t, and 7u were showed good Gram-positive antibacterial activity against S. aureus, B. flexus, C. sporogenes and S. mutans. Furthermore, in vitro antimycobacterial activity was evaluated against Mycobacterium tuberculosis H37Rv (ATCC 27294) using MABA. Compounds 7r, 7t, and 7u were showed good antitubercular activity against Mtb (MIC ≥6.25 μg/mL). Among the tested compounds, 1-((4-chloro-2-(cyclohexylmethyl)-1H-pyrrolo[3,2-c]pyridin-3-yl)methyl)piperidine-3-carboxamide (7t) was showed excellent antimycobacterial activity against Mtb (MIC <0.78 μg/mL) and low cytotoxicity against the HEK-293T cell line (SI >>25). Molecular docking of the active compounds against glutamate racemase (MurI) and Mtb glutamine synthetase were explained the structure-activity observed in vitro.
Collapse
|
17
|
Soteras Gutiérrez I, Lin FY, Vanommeslaeghe K, Lemkul JA, Armacost KA, Brooks CL, MacKerell AD. Parametrization of halogen bonds in the CHARMM general force field: Improved treatment of ligand-protein interactions. Bioorg Med Chem 2016; 24:4812-4825. [PMID: 27353885 DOI: 10.1016/j.bmc.2016.06.034] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 01/26/2023]
Abstract
A halogen bond is a highly directional, non-covalent interaction between a halogen atom and another electronegative atom. It arises due to the formation of a small region of positive electrostatic potential opposite the covalent bond to the halogen, called the 'sigma hole.' Empirical force fields in which the electrostatic interactions are represented by atom-centered point charges cannot capture this effect because halogen atoms usually carry a negative charge and therefore interact unfavorably with other electronegative atoms. A strategy to overcome this problem is to attach a positively charged virtual particle to the halogen. In this work, we extend the additive CHARMM General Force Field (CGenFF) to include such interactions in model systems of phenyl-X, with X being Cl, Br or I including di- and trihalogenated species. The charges, Lennard-Jones parameters, and halogen-virtual particle distances were optimized to reproduce the orientation dependence of quantum mechanical interaction energies with water, acetone, and N-methylacetamide as well as experimental pure liquid properties and relative hydration free energies with respect to benzene. The resulting parameters were validated in molecular dynamics simulations on small-molecule crystals and on solvated protein-ligand complexes containing halogenated compounds. The inclusion of positive virtual sites leads to better agreement across experimental observables, including preservation of ligand binding poses as a direct result of the improved representation of halogen bonding.
Collapse
Affiliation(s)
| | - Fang-Yu Lin
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, United States
| | - Kenno Vanommeslaeghe
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, United States; Department of Analytical Chemistry and Pharmaceutical Technology (FABI), Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Justin A Lemkul
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, United States
| | - Kira A Armacost
- Department of Chemistry and Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, United States
| | - Charles L Brooks
- Department of Chemistry and Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, United States
| | - Alexander D MacKerell
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, United States.
| |
Collapse
|
18
|
de Moraes Gomes PAT, de Oliveira Barbosa M, Farias Santiago E, de Oliveira Cardoso MV, Capistrano Costa NT, Hernandes MZ, Moreira DRM, da Silva AC, Dos Santos TAR, Pereira VRA, Brayner Dos Santosd FA, do Nascimento Pereira GA, Ferreira RS, Leite ACL. New 1,3-thiazole derivatives and their biological and ultrastructural effects on Trypanosoma cruzi. Eur J Med Chem 2016; 121:387-398. [PMID: 27295485 DOI: 10.1016/j.ejmech.2016.05.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/05/2016] [Accepted: 05/22/2016] [Indexed: 12/27/2022]
Abstract
In previous studies, the compound 3-(bromopropiophenone) thiosemicarbazone was described as a potent anti-Trypanosoma cruzi and cruzain inhibitor. In view to optimize this activity, 1,3-thiazole core was used as building-block strategy to access new lead generation of anti T. cruzi agents. In this way a series of thiazole derivatives were synthesized and most of these derivatives exhibited antiparasitic activity similar to benznidazole (Bzd). Among them, compounds (1c) and (1g) presented better selective index (SI) than Bzd. In addition, compounds showed inhibitory activity against the cruzain protease. As observed by electron microscopy, compound (1c) treatment caused irreversible and specific morphological changes on ultrastructure organization of T. cruzi, demonstrating that this class of compounds is killing parasites.
Collapse
Affiliation(s)
| | - Miria de Oliveira Barbosa
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - Edna Farias Santiago
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | | | - Natáli Tereza Capistrano Costa
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - Marcelo Zaldini Hernandes
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | | | - Aline Caroline da Silva
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, CEP 50670-420, Recife, PE, Brazil
| | | | | | | | - Glaécia Aparecida do Nascimento Pereira
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil; Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil.
| |
Collapse
|
19
|
Costa LB, Cardoso MVDO, de Oliveira Filho GB, de Moraes Gomes PAT, Espíndola JWP, de Jesus Silva TG, Torres PHM, Silva FP, Martin J, de Figueiredo RCBQ, Leite ACL. Compound profiling and 3D-QSAR studies of hydrazone derivatives with activity against intracellular Trypanosoma cruzi. Bioorg Med Chem 2016; 24:1608-18. [DOI: 10.1016/j.bmc.2016.02.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/15/2016] [Accepted: 02/21/2016] [Indexed: 12/20/2022]
|
20
|
Gomes PATDM, Oliveira AR, Cardoso MVDO, Santiago EDF, Barbosa MDO, de Siqueira LRP, Moreira DRM, Bastos TM, Brayner FA, Soares MBP, Mendes APDO, de Castro MCAB, Pereira VRA, Leite ACL. Phthalimido-thiazoles as building blocks and their effects on the growth and morphology of Trypanosoma cruzi. Eur J Med Chem 2016; 111:46-57. [DOI: 10.1016/j.ejmech.2016.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/21/2015] [Accepted: 01/09/2016] [Indexed: 11/28/2022]
|
21
|
de Oliveira Filho GB, de Oliveira Cardoso MV, Espíndola JWP, Ferreira LFGR, de Simone CA, Ferreira RS, Coelho PL, Meira CS, Magalhaes Moreira DR, Soares MBP, Lima Leite AC. Structural design, synthesis and pharmacological evaluation of 4-thiazolidinones against Trypanosoma cruzi. Bioorg Med Chem 2015; 23:7478-86. [DOI: 10.1016/j.bmc.2015.10.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/20/2015] [Accepted: 10/31/2015] [Indexed: 01/03/2023]
|
22
|
Jose G, Suresha Kumara T, Nagendrappa G, Sowmya H, Jasinski JP, Millikan SP, More SS, Janardhan B, Harish B, Chandrika N. Synthesis, crystal structure, molecular docking and antimicrobial evaluation of new pyrrolo[3,2-c]pyridine derivatives. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Kryshchyshyn A, Kaminskyy D, Grellier P, Lesyk R. Trends in research of antitrypanosomal agents among synthetic heterocycles. Eur J Med Chem 2014; 85:51-64. [DOI: 10.1016/j.ejmech.2014.07.092] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/18/2022]
|
24
|
Havrylyuk D, Zimenkovsky B, Karpenko O, Grellier P, Lesyk R. Synthesis of pyrazoline–thiazolidinone hybrids with trypanocidal activity. Eur J Med Chem 2014; 85:245-54. [DOI: 10.1016/j.ejmech.2014.07.103] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 07/26/2014] [Accepted: 07/28/2014] [Indexed: 10/25/2022]
|
25
|
Cardoso MVDO, de Siqueira LRP, da Silva EB, Costa LB, Hernandes MZ, Rabello MM, Ferreira RS, da Cruz LF, Moreira DRM, Pereira VRA, de Castro MCAB, Bernhardt PV, Leite ACL. 2-Pyridyl thiazoles as novel anti-Trypanosoma cruzi agents: structural design, synthesis and pharmacological evaluation. Eur J Med Chem 2014; 86:48-59. [PMID: 25147146 DOI: 10.1016/j.ejmech.2014.08.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 11/30/2022]
Abstract
The present work reports on the synthesis, anti-Trypanosoma cruzi activities and docking studies of a novel series of 2-(pyridin-2-yl)-1,3-thiazoles derived from 2-pyridine thiosemicarbazone. The majority of these compounds are potent cruzain inhibitors and showed excellent inhibition on the trypomastigote form of the parasite, and the resulting structure-activity relationships are discussed. Together, these data present a novel series of thiazolyl hydrazones with potential effects against Chagas disease and they could be important leads in continuing development against Chagas disease.
Collapse
Affiliation(s)
| | | | - Elany Barbosa da Silva
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520 Recife, PE, Brazil
| | - Lívia Bandeira Costa
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520 Recife, PE, Brazil
| | - Marcelo Zaldini Hernandes
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520 Recife, PE, Brazil
| | - Marcelo Montenegro Rabello
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520 Recife, PE, Brazil
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Luana Faria da Cruz
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, CEP 31270-901 Belo Horizonte, MG, Brazil
| | | | | | | | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520 Recife, PE, Brazil
| |
Collapse
|
26
|
New polyfunctional imidazo[4,5-C]pyridine motifs: Synthesis, crystal studies, docking studies and antimicrobial evaluation. Eur J Med Chem 2014; 77:288-97. [DOI: 10.1016/j.ejmech.2014.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 02/12/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
|
27
|
Moreira DRM, Lima Leite AC, Cardoso MVO, Srivastava RM, Hernandes MZ, Rabello MM, da Cruz LF, Ferreira RS, de Simone CA, Meira CS, Guimaraes ET, da Silva AC, dos Santos TAR, Pereira VRA, Pereira Soares MB. Structural Design, Synthesis and Structure-Activity Relationships of Thiazolidinones with Enhanced Anti-Trypanosoma cruziActivity. ChemMedChem 2013; 9:177-88. [DOI: 10.1002/cmdc.201300354] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Indexed: 12/14/2022]
|
28
|
Havrylyuk D, Zimenkovsky B, Vasylenko O, Day CW, Smee DF, Grellier P, Lesyk R. Synthesis and biological activity evaluation of 5-pyrazoline substituted 4-thiazolidinones. Eur J Med Chem 2013; 66:228-37. [PMID: 23811085 PMCID: PMC7115615 DOI: 10.1016/j.ejmech.2013.05.044] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/23/2013] [Accepted: 05/29/2013] [Indexed: 11/24/2022]
Abstract
A series of novel 5-pyrazoline substituted 4-thiazolidinones have been synthesized. Target compounds were evaluated for their anticancer activity in vitro within DTP NCI protocol. Among the tested compounds, the derivatives 4d and 4f were found to be the most active, which demonstrated certain sensitivity profile toward the leukemia subpanel cell lines with GI50 value ranges of 2.12–4.58 μM (4d) and 1.64–3.20 μM (4f). The screening of antitrypanosomal and antiviral activities of 5-(3-naphthalen-2-yl-5-aryl-4,5-dihydropyrazol-1-yl)-thiazolidine-2,4-diones was carried out with the promising influence of the mentioned compounds on Trypanosoma brucei, but minimal effect on SARS coronavirus and influenza types A and B viruses. Synthesis of novel 5-pyrazoline substituted 4-thiazolidinones was performed. Compounds 4d and 4f showed promising activity on the leukemia subpanel cell lines. Compounds were evaluated for antitrypanosomal and antiviral properties.
Collapse
Affiliation(s)
- Dmytro Havrylyuk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine
| | - Borys Zimenkovsky
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine
| | - Olexandr Vasylenko
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska 1, Kyiv 02094, Ukraine
| | - Craig W. Day
- Institute for Antiviral Research, Utah State University, 5600 Old Main Hill, Logan, UT 84322-5600, USA
| | - Donald F. Smee
- Institute for Antiviral Research, Utah State University, 5600 Old Main Hill, Logan, UT 84322-5600, USA
| | - Philippe Grellier
- National Museum of Natural History, UMR 7245 CNRS-MNHN, Team APE, CP 52, 57 Rue Cuvier, 75005 Paris, France
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine
- Corresponding author. Tel.: +380 322 75 59 66; fax: +380 322 75 77 34.
| |
Collapse
|
29
|
Noh SK, Jeon JH, Jang WJ, Kim H, Lee SH, Lee MW, Lee J, Han S, Kahng SJ. Supramolecular Cl⋅⋅⋅H and O⋅⋅⋅H interactions in self-assembled 1,5-dichloroanthraquinone layers on Au(111). Chemphyschem 2013; 14:1177-81. [PMID: 23460473 DOI: 10.1002/cphc.201201061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Indexed: 11/11/2022]
Abstract
The role of halogen bonds in self-assembled networks for systems with Br and I ligands has recently been studied with scanning tunneling microscopy (STM), which provides physical insight at the atomic scale. Here, we study the supramolecular interactions of 1,5-dichloroanthraquinone molecules on Au(111), including Cl ligands, by using STM. Two different molecular structures of chevron and square networks are observed, and their molecular models are proposed. Both molecular structures are stabilized by intermolecular Cl⋅⋅⋅H and O⋅⋅⋅H hydrogen bonds with marginal contributions from Cl-related halogen bonds, as revealed by density functional theory calculations. Our study shows that, in contrast to Br- and I-related halogen bonds, Cl-related halogen bonds weakly contribute to the molecular structure due to a modest positive potential (σ hole) of the Cl ligands.
Collapse
Affiliation(s)
- Seung-Kyun Noh
- Department of Physics, Korea University, 1-5 Anam-dong, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chohan ZH, Hernandes MZ, Sensato FR, Moreira DRM, Pereira VRA, Neves JKDAL, de Oliveira AP, de Oliveira BC, Leite ACL. Sulfonamide-metal complexes endowed with potent anti-Trypanosoma cruzi activity. J Enzyme Inhib Med Chem 2013; 29:230-6. [PMID: 23432595 DOI: 10.3109/14756366.2013.766608] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In this article, we describe that mononuclear complexes composed of (5-chloro-2-hydroxybenzylidene)aminobenzenesulfonamides (L1-3) of general formula (L2(M)2H2O, where M is Co, Cu, Zn, Ni or Mn) reduced epimastigote proliferation and were found cidal for trypomastigotes of Trypanosoma cruzi Y strain. Complexes C5 and C11 have IC50 of 2.7 ± 0.27 and 4.8 ± 0.47 µM, respectively, for trypomastigotes, when the positive control Nifurtimox, which is also an approved drug for Chagas disease, showed IC50 of 2.7 ± 0.25 µM. We tested whether these complexes inhibit the enzyme T. cruzi trypanothione reductase or acting as DNA binders. While none of these complexes inhibited trypanothione reductase, we observed some degree of DNA binding, albeit less pronounced than observed for cisplatin in this assay. Unfortunately, most of these complexes were also toxic for mouse splenocytes. Along with the present studies, we discuss a number of interesting structure-activity relationships and chemical features for these metal complexes, including computational calculations.
Collapse
Affiliation(s)
- Zahid H Chohan
- Department of Chemistry, Bahauddin Zakariya University , Multan , Pakistan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Moreira DRM, Costa SPM, Hernandes MZ, Rabello MM, de Oliveira Filho GB, de Melo CML, da Rocha LF, de Simone CA, Ferreira RS, Fradico JRB, Meira CS, Guimarães ET, Srivastava RM, Pereira VRA, Soares MBP, Leite ACL. Structural Investigation of Anti-Trypanosoma cruzi 2-Iminothiazolidin-4-ones Allows the Identification of Agents with Efficacy in Infected Mice. J Med Chem 2012; 55:10918-36. [DOI: 10.1021/jm301518v] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Diogo Rodrigo Magalhaes Moreira
- Departamento de Química
Fundamental, Centro de Ciências Exatas and da Natureza, Universidade Federal de Pernambuco, 50670-901, Recife,
PE, Brazil
- Departamento
de Ciências
Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife,
PE, Brazil
| | - Salvana Priscylla Manso Costa
- Departamento
de Ciências
Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife,
PE, Brazil
| | - Marcelo Zaldini Hernandes
- Departamento
de Ciências
Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife,
PE, Brazil
| | - Marcelo Montenegro Rabello
- Departamento
de Ciências
Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife,
PE, Brazil
| | - Gevanio Bezerra de Oliveira Filho
- Departamento
de Ciências
Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife,
PE, Brazil
| | | | - Lucas Ferreira da Rocha
- Centro de Pesquisas Aggeu Magalhaes, Fundação Oswaldo Cruz,
CEP, 50670-420, Salvador-PE, Brazil
| | - Carlos Alberto de Simone
- Departamento de Física
and Informática, Instituto de Física, Universidade de São Paulo, CEP 13560-970, São Carlos,
SP, Brazil
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica
and
Imunologia, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | | | - Cássio Santana Meira
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo
Cruz, CEP 40296-710, Salvador, BA, Brazil
| | - Elisalva Teixeira Guimarães
- Departamento de Ciências da
Vida, Universidade Estadual da Bahia, CEP
41150-000, Salvador, BA, Brazil
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo
Cruz, CEP 40296-710, Salvador, BA, Brazil
| | - Rajendra Mohan Srivastava
- Departamento de Química
Fundamental, Centro de Ciências Exatas and da Natureza, Universidade Federal de Pernambuco, 50670-901, Recife,
PE, Brazil
| | | | - Milena Botelho Pereira Soares
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo
Cruz, CEP 40296-710, Salvador, BA, Brazil
- Centro de Biotecnologia and
Terapia Celular, Hospital São Rafael, CEP 41253-190, Salvador, BA, Brazil
| | - Ana Cristina Lima Leite
- Departamento
de Ciências
Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife,
PE, Brazil
| |
Collapse
|
32
|
Jin YZ, Fu DX, Ma N, Li ZC, Liu QH, Xiao L, Zhang RH. Synthesis and biological evaluation of 3-substituted-indolin-2-one derivatives containing chloropyrrole moieties. Molecules 2011; 16:9368-85. [PMID: 22068619 PMCID: PMC6264549 DOI: 10.3390/molecules16119368] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/03/2011] [Accepted: 11/03/2011] [Indexed: 11/16/2022] Open
Abstract
Eighteen novel 3-substituted-indolin-2-ones containing chloropyrroles were synthesized and their biological activities were evaluated. The presence of a chlorine atom on the pyrrole ring was crucial to reduce cardiotoxicity. The presence of a 2-(ethyl-amino)ethylcarbamoyl group as a substituent at the C-4′ position of the pyrrole enhanced the antitumor activities notably. IC50 values as low as 0.32, 0.67, 1.19 and 1.22 μM were achieved against non-small cell lung cancer (A549), oral epithelial (KB), melanoma (K111) and large cell lung cancer cell lines (NCI-H460), respectively.
Collapse
Affiliation(s)
- Yun-Zhou Jin
- Department of Chemistry, Tongji University, Shanghai, 200092, China
| | - Da-Xu Fu
- Department of Chemistry, Tongji University, Shanghai, 200092, China
| | - Nan Ma
- Department of Chemistry, Tongji University, Shanghai, 200092, China
| | - Zhan-Cheng Li
- Department of Chemistry, Tongji University, Shanghai, 200092, China
| | - Quan-Hai Liu
- Department of Pharmacology, Shanghai Institute of Pharmaceutical Industry, Shanghai, 200434, China
| | - Lin Xiao
- Department of Pharmacology, Shanghai Institute of Pharmaceutical Industry, Shanghai, 200434, China
| | - Rong-Hua Zhang
- Department of Chemistry, Tongji University, Shanghai, 200092, China
- Author to whom correspondence should be addressed; ; Tel.: +86-021-65988570-8542
| |
Collapse
|
33
|
Studies toward the structural optimization of novel thiazolylhydrazone-based potent antitrypanosomal agents. Bioorg Med Chem 2010; 18:7826-35. [DOI: 10.1016/j.bmc.2010.09.056] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/16/2010] [Accepted: 09/22/2010] [Indexed: 11/24/2022]
|
34
|
Pessoa C, Ferreira PM, Lotufo LV, de Moraes M, Cavalcanti SM, Coêlho LC, Hernandes M, Leite AC, De Simone C, Costa VM, Souza VM. Discovery of Phthalimides as Immunomodulatory and Antitumor Drug Prototypes. ChemMedChem 2010; 5:523-8. [DOI: 10.1002/cmdc.200900525] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Cerecetto H, González M. Synthetic Medicinal Chemistry in Chagas' Disease: Compounds at The Final Stage of "Hit-To-Lead" Phase. Pharmaceuticals (Basel) 2010; 3:810-838. [PMID: 27713281 PMCID: PMC4034012 DOI: 10.3390/ph3040810] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/15/2010] [Accepted: 03/19/2010] [Indexed: 11/16/2022] Open
Abstract
Chagas' disease, or American trypanosomosiasis, has been the most relevant illness produced by protozoa in Latin America. Synthetic medicinal chemistry efforts have provided an extensive number of chemodiverse hits at the "active-to-hit" stage. However, only a more limited number of these have been studied in vivo in models of Chagas' disease. Herein, we survey some of the cantidates able to surpass the "hit-to-lead" stage discussing their limitations or merit to enter in clinical trials in the short term.
Collapse
Affiliation(s)
- Hugo Cerecetto
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| | - Mercedes González
- Laboratorio de Química Orgánica, Instituto de Química Biológica-Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| |
Collapse
|
36
|
dos Santos Filho JM, Leite ACL, de Oliveira BG, Moreira DRM, Lima MS, Soares MBP, Leite LFCC. Design, synthesis and cruzain docking of 3-(4-substituted-aryl)-1,2,4-oxadiazole-N-acylhydrazones as anti-Trypanosoma cruzi agents. Bioorg Med Chem 2009; 17:6682-91. [PMID: 19683450 DOI: 10.1016/j.bmc.2009.07.068] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/22/2009] [Accepted: 07/26/2009] [Indexed: 10/20/2022]
Abstract
Research in recent years has demonstrated that the Trypanosoma cruzi cysteine protease cruzain (TCC) is a valid chemotherapeutic target, since inhibitors of this protease affect the pathology appropriately. By exploring the N-acylhydrazones (NAH) as privileged structures usually present in antiparasitic agents, we investigated a library of 16 NAH bearing the 3-(4-substituted-aryl)-1,2,4-oxadiazole scaffold (NAH 3a-h, 4a-h). The in vitro bioactivity against epimastigote and trypomastigote forms of T. cruzi was evaluated, and some NAH under study exhibited antitrypanosomal activity at concentrations that are not toxic to mammalian cells. The series of compounds based on the 3-(4-substituted-aryl)-1,2,4-oxadiazole scaffold revealed the remarkable importance of each substituent at the phenyl's 4-position for the inhibitory activity. Non-nitrated compounds 3a and 4e were found to be as potent as the reference drug, Benznidazole. In addition, the molecular origin of the antitrypanosomal properties for these series was investigated using docking studies of the TCC structure.
Collapse
Affiliation(s)
- José Mauricio dos Santos Filho
- Departamento de Engenharia Química, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Rua Prof. Artur Sá S/N, Cidade Universitária, 50740-521 Recife, PE, Brazil.
| | | | | | | | | | | | | |
Collapse
|
37
|
Ruthenium complexes endowed with potent anti-Trypanosoma cruzi activity: Synthesis, biological characterization and structure–activity relationships. Bioorg Med Chem 2009; 17:5038-43. [DOI: 10.1016/j.bmc.2009.05.071] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/25/2009] [Accepted: 05/27/2009] [Indexed: 01/07/2023]
|
38
|
A theoretical study of red-shifting and blue-shifting hydrogen bonds occurring between imidazolidine derivatives and PEG/PVP polymers. J Mol Model 2009; 16:119-27. [PMID: 19517145 DOI: 10.1007/s00894-009-0525-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 04/09/2009] [Indexed: 10/20/2022]
Abstract
A theoretical study is presented with the aim to investigate the molecular properties of intermolecular complexes formed by the monomeric units of polyvinylpyrrolidone (PVP) or polyethyleneglycol (PEG) polymers and a set of four imidazolidine (hydantoine) derivatives. The substitution of the carbonyl groups for thiocarbonyl in the hydantoin scaffold was taken into account when analyzing the effect of the hydrogen bonds on imidazolidine derivatives. B3LYP/6-31G(d,p) calculations and topological integrations derived from the quantum theory of atoms in molecules (QTAIM) were applied with the purpose of examining the N-H···O hydrogen bond strengths formed between the amide group of the hydantoine ring and the oxygen atoms of PVP and PEG polymers. The effects caused by the N-H···O interaction fit the typical evidence for hydrogen bonds, which includes a variation in the stretch frequencies of the N-H bonds. These frequencies were identified as being vibrational red-shifts because their values decreased. Although the values of such calculated interaction energies are between 12 and 33 kJ mol(-1), secondary intermolecular interactions were also identified. One of these secondary interactions is formed through the interaction of the benzyl hydrogen atoms with the oxygen atoms of the PVP and PEG structures. As such, we have analyzed the stretch frequencies on the C-H bonds of the benzyl groups, and blue-shifts were identified on these bonds. In this sense, the intermolecular systems formed by hydantoine derivatives and PVP/PEG monomers were characterized as a mix of red-shifting and blue-shifting hydrogen-bonded complexes.
Collapse
|
39
|
Dolle RE, Bourdonnec BL, Goodman AJ, Morales GA, Thomas CJ, Zhang W. Comprehensive Survey of Chemical Libraries for Drug Discovery and Chemical Biology: 2007. ACTA ACUST UNITED AC 2008; 10:753-802. [PMID: 18991466 DOI: 10.1021/cc800119z] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Roland E. Dolle
- Adolor Corporation, 700 Pennsylvania Drive, Exton, Pennsylvania 19341, Semafore Pharmaceuticals Inc., 8496 Georgetown Road, Indianapolis, Indiana 46268, NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, and Department of Chemistry, University of Massachusetts, 100 Morrissey Boulevard, Boston, Massachusetts 02125
| | - Bertrand Le Bourdonnec
- Adolor Corporation, 700 Pennsylvania Drive, Exton, Pennsylvania 19341, Semafore Pharmaceuticals Inc., 8496 Georgetown Road, Indianapolis, Indiana 46268, NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, and Department of Chemistry, University of Massachusetts, 100 Morrissey Boulevard, Boston, Massachusetts 02125
| | - Allan J. Goodman
- Adolor Corporation, 700 Pennsylvania Drive, Exton, Pennsylvania 19341, Semafore Pharmaceuticals Inc., 8496 Georgetown Road, Indianapolis, Indiana 46268, NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, and Department of Chemistry, University of Massachusetts, 100 Morrissey Boulevard, Boston, Massachusetts 02125
| | - Guillermo A. Morales
- Adolor Corporation, 700 Pennsylvania Drive, Exton, Pennsylvania 19341, Semafore Pharmaceuticals Inc., 8496 Georgetown Road, Indianapolis, Indiana 46268, NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, and Department of Chemistry, University of Massachusetts, 100 Morrissey Boulevard, Boston, Massachusetts 02125
| | - Craig J. Thomas
- Adolor Corporation, 700 Pennsylvania Drive, Exton, Pennsylvania 19341, Semafore Pharmaceuticals Inc., 8496 Georgetown Road, Indianapolis, Indiana 46268, NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, and Department of Chemistry, University of Massachusetts, 100 Morrissey Boulevard, Boston, Massachusetts 02125
| | - Wei Zhang
- Adolor Corporation, 700 Pennsylvania Drive, Exton, Pennsylvania 19341, Semafore Pharmaceuticals Inc., 8496 Georgetown Road, Indianapolis, Indiana 46268, NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, and Department of Chemistry, University of Massachusetts, 100 Morrissey Boulevard, Boston, Massachusetts 02125
| |
Collapse
|