1
|
Shekhar, Roquet-Banères F, Anand A, Kremer L, Kumar V. Rational design and microwave-promoted synthesis of triclosan-based dimers: targeting InhA for anti-mycobacterial profiling. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240676. [PMID: 39392739 PMCID: PMC11461061 DOI: 10.1098/rsos.240676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/02/2024] [Accepted: 08/06/2024] [Indexed: 10/13/2024]
Abstract
A set of alkyl-/1H-1,2,3-triazole-based dimers was strategically designed and synthesized to evaluate their in vitro anti-mycobacterial activities against Mycobacterium tuberculosis and the non-tuberculous Mycobacterium abscessus strains. Systematic variations in the nature (alkyl/1H-1,2,3-triazole) and positioning of the linker were implemented based on the docking scores observed in the binding sites identified in the crystal structures of InhA from M. tuberculosis and M. abscessus. However, the in vitro evaluation results revealed that the synthesized compounds did not exhibit inhibitory effects on the growth of mycobacteria, even at the highest tested concentrations. The elevated lipophilicity values determined through ADMET studies for these synthesized dimers might be a contributing factor to their poor activity profiles.
Collapse
Affiliation(s)
- Shekhar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab143005, India
| | - Francoise Roquet-Banères
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Amit Anand
- Department of Chemistry, Khalsa College, Amritsar, Punjab143005, India
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab143005, India
| |
Collapse
|
2
|
Joaquim AR, Lopes MS, Fortes IS, de Bem Gentz C, de Matos Czeczot A, Perelló MA, Roth CD, Vainstein MH, Basso LA, Bizarro CV, Machado P, de Andrade SF. Identification of antimycobacterial 8-hydroxyquinoline derivatives as in vitro enzymatic inhibitors of Mycobacterium tuberculosis enoyl-acyl carrier protein reductase. Bioorg Chem 2024; 151:107705. [PMID: 39137600 DOI: 10.1016/j.bioorg.2024.107705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
The increasing prevalence of drug-resistant Mycobacterium tuberculosis strains stimulates the discovery of new drug candidates. Among them are 8-hydroxyquinoline (8HQ) derivatives that exhibited antimicrobial properties. Unfortunately, there is a lack of data assessing possible targets for this class mainly against Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (MtInhA), a validated target in this field. Thus, the main purpose of this study was to identify 8HQ derivatives that are active against M. tuberculosis and MtInhA. Initially, the screening against the microorganism of a small antimicrobial library and its new derivatives that possess some structural similarity with MtInhA inhibitors identified four 7-substituted-8HQ (series 5 - 5a, 5c, 5d and 5i) and four 5-substituted-8HQ active derivatives (series 7 - 7a, 7c, 7d and 7j). In general, the 7-substituted 8-HQs were more potent and, in the enzymatic assay, were able to inhibit MtInhA at low micromolar range. However, the 5-substituted-8-HQs that presented antimycobacterial activity were not able to inhibit MtInhA. These findings indicate the non-promiscuous nature of 8-HQ derivatives and emphasize the significance of selecting appropriate substituents to achieve in vitro enzyme inhibition. Finally, 7-substituted-8HQ series are promising new derivatives for structure-based drug design and further development.
Collapse
Affiliation(s)
- Angélica Rocha Joaquim
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil.
| | - Marcela Silva Lopes
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Isadora Serraglio Fortes
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Caroline de Bem Gentz
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - Alexia de Matos Czeczot
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil
| | - Marcia Alberton Perelló
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil
| | - Candida Deves Roth
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil
| | | | - Luiz Augusto Basso
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil
| | - Cristiano Valim Bizarro
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil
| | - Pablo Machado
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil.
| | - Saulo Fernandes de Andrade
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil.
| |
Collapse
|
3
|
Hoffmann P, Azéma-Despeyroux J, Goncalves F, Stamilla A, Saffon-Merceron N, Rodriguez F, Degiacomi G, Pasca MR, Lherbet C. Imidazoquinoline Derivatives as Potential Inhibitors of InhA Enzyme and Mycobacterium tuberculosis. Molecules 2024; 29:3076. [PMID: 38999028 PMCID: PMC11243711 DOI: 10.3390/molecules29133076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Tuberculosis is a serious public health problem worldwide. The search for new antibiotics has become a priority, especially with the emergence of resistant strains. A new family of imidazoquinoline derivatives, structurally analogous to triazolophthalazines, which had previously shown good antituberculosis activity, were designed to inhibit InhA, an essential enzyme for Mycobacterium tuberculosis survival. Over twenty molecules were synthesized and the results showed modest inhibitory efficacy against the protein. Docking experiments were carried out to show how these molecules could interact with the protein's substrate binding site. Disappointingly, unlike triazolophthlazines, these imidazoquinoline derivatives showed an absence of inhibition on mycobacterial growth.
Collapse
Affiliation(s)
- Pascal Hoffmann
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR5068, CNRS, Université Paul Sabatier Toulouse III, 31062 Toulouse, France
| | - Joëlle Azéma-Despeyroux
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR5068, CNRS, Université Paul Sabatier Toulouse III, 31062 Toulouse, France
| | - Fernanda Goncalves
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR5068, CNRS, Université Paul Sabatier Toulouse III, 31062 Toulouse, France
| | - Alessandro Stamilla
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse, ICT-UAR2599, Université Paul Sabatier Toulouse III, 31062 Toulouse, France
| | - Frédéric Rodriguez
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR5068, CNRS, Université Paul Sabatier Toulouse III, 31062 Toulouse, France
| | - Giulia Degiacomi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Christian Lherbet
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR5068, CNRS, Université Paul Sabatier Toulouse III, 31062 Toulouse, France
| |
Collapse
|
4
|
Tamhaev R, Grosjean E, Ahamed H, Chebaiki M, Rodriguez F, Recchia D, Degiacomi G, Pasca MR, Maveyraud L, Mourey L, Lherbet C. Exploring the plasticity of the InhA substrate-binding site using new diaryl ether inhibitors. Bioorg Chem 2024; 143:107032. [PMID: 38128204 DOI: 10.1016/j.bioorg.2023.107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a worldwide scourge with more than 10 million people affected yearly. Among the proteins essential for the survival of Mtb, InhA has been and is still clinically validated as a therapeutic target. A new family of direct diaryl ether inhibitors, not requiring prior activation by the catalase peroxidase enzyme KatG, has been designed with the ambition of fully occupying the InhA substrate-binding site. Thus, eleven compounds, featuring three pharmacophores within the same molecule, were synthesized. One of them, 5-(((4-(2-hydroxyphenoxy)benzyl)(octyl)amino)methyl)-2-phenoxyphenol (compound 21), showed good inhibitory activity against InhA with IC50 of 0.70 µM. The crystal structure of compound 21 in complex with InhA/NAD+ showed how the molecule fills the substrate-binding site as well as the minor portal of InhA. This study represents a further step towards the design of new inhibitors of InhA.
Collapse
Affiliation(s)
- Rasoul Tamhaev
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Emeline Grosjean
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Hikmat Ahamed
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Mélina Chebaiki
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Frédéric Rodriguez
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Deborah Recchia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Giulia Degiacomi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Laurent Maveyraud
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| | - Christian Lherbet
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
5
|
Singha B, Murmu S, Nair T, Rawat RS, Sharma AK, Soni V. Metabolic Rewiring of Mycobacterium tuberculosis upon Drug Treatment and Antibiotics Resistance. Metabolites 2024; 14:63. [PMID: 38248866 PMCID: PMC10820029 DOI: 10.3390/metabo14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge, further compounded by the issue of antimicrobial resistance (AMR). AMR is a result of several system-level molecular rearrangements enabling bacteria to evolve with better survival capacities: metabolic rewiring is one of them. In this review, we present a detailed analysis of the metabolic rewiring of Mtb in response to anti-TB drugs and elucidate the dynamic mechanisms of bacterial metabolism contributing to drug efficacy and resistance. We have discussed the current state of AMR, its role in the prevalence of the disease, and the limitations of current anti-TB drug regimens. Further, the concept of metabolic rewiring is defined, underscoring its relevance in understanding drug resistance and the biotransformation of drugs by Mtb. The review proceeds to discuss the metabolic adaptations of Mtb to drug treatment, and the pleiotropic effects of anti-TB drugs on Mtb metabolism. Next, the association between metabolic changes and antimycobacterial resistance, including intrinsic and acquired drug resistance, is discussed. The review concludes by summarizing the challenges of anti-TB treatment from a metabolic viewpoint, justifying the need for this discussion in the context of novel drug discovery, repositioning, and repurposing to control AMR in TB.
Collapse
Affiliation(s)
- Biplab Singha
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Sumit Murmu
- Regional Centre of Biotechnology, Faridabad 121001, India;
| | - Tripti Nair
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA;
| | - Rahul Singh Rawat
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi 110067, India;
| | - Aditya Kumar Sharma
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
6
|
Zhang Q, Han J, Zhu Y, Yu F, Hu X, Tong HHY, Liu H. Discovery of novel and potent InhA direct inhibitors by ensemble docking-based virtual screening and biological assays. J Comput Aided Mol Des 2023; 37:695-706. [PMID: 37642861 DOI: 10.1007/s10822-023-00530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) continues to spread worldwide and remains one of the leading causes of death among infectious diseases. The enoyl-acyl carrier protein reductase (InhA) belongs to FAS-II family and is essential for the formation of the Mycobacterium tuberculosis cell wall. Recent years, InhA direct inhibitors have been extensively studied to overcome MDR-TB. However, there are still no inhibitors that have entered clinical research. Here, the ensemble docking-based virtual screening along with biological assay were used to identify potent InhA direct inhibitors from Chembridge, Chemdiv, and Specs. Ultimately, 34 compounds were purchased and first assayed for the binding affinity, of which four compounds can bind InhA well with KD values ranging from 48.4 to 56.2 µM. Among them, compound 9,222,034 has the best inhibitory activity against InhA enzyme with an IC50 value of 18.05 µM. In addition, the molecular dynamic simulation and binding free energy calculation indicate that the identified compounds bind to InhA with "extended" conformation. Residue energy decomposition shows that residues such as Tyr158, Met161, and Met191 have higher energy contributions in the binding of compounds. By analyzing the binding modes, we found that these compounds can bind to a hydrophobic sub-pocket formed by residues Tyr158, Phe149, Ile215, Leu218, etc., resulting in extensive van der Waals interactions. In summary, this study proposed an efficient strategy for discovering InhA direct inhibitors through ensemble docking-based virtual screening, and finally identified four active compounds with new skeletons, which can provide valuable information for the discovery and optimization of InhA direct inhibitors.
Collapse
Affiliation(s)
- Qianqian Zhang
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Jianting Han
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Yongchang Zhu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Fansen Yu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xiaopeng Hu
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China
| | - Henry H Y Tong
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China
| | - Huanxiang Liu
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China.
| |
Collapse
|
7
|
Chebaiki M, Delfourne E, Tamhaev R, Danoun S, Rodriguez F, Hoffmann P, Grosjean E, Goncalves F, Azéma-Despeyroux J, Pál A, Korduláková J, Preuilh N, Britton S, Constant P, Marrakchi H, Maveyraud L, Mourey L, Lherbet C. Discovery of new diaryl ether inhibitors against Mycobacterium tuberculosis targeting the minor portal of InhA. Eur J Med Chem 2023; 259:115646. [PMID: 37482022 DOI: 10.1016/j.ejmech.2023.115646] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) affects 10 million people each year and the emergence of resistant TB augurs for a growing incidence. In the last 60 years, only three new drugs were approved for TB treatment, for which resistances are already emerging. Therefore, there is a crucial need for new chemotherapeutic agents capable of eradicating TB. Enzymes belonging to the type II fatty acid synthase system (FAS-II) are involved in the biosynthesis of mycolic acids, cell envelope components essential for mycobacterial survival. Among them, InhA is the primary target of isoniazid (INH), one of the most effective compounds to treat TB. INH acts as a prodrug requiring activation by the catalase-peroxidase KatG, whose mutations are the major cause for INH resistance. Herein, a new series of direct InhA inhibitors were designed based on a molecular hybridization approach. They exhibit potent inhibitory activities of InhA and, for some of them, good antitubercular activities. Moreover, they display a low toxicity on human cells. A study of the mechanism of action of the most effective molecules shows that they inhibit the biosynthesis of mycolic acids. The X-ray structures of two InhA/NAD+/inhibitor complexes have been obtained showing a binding mode of a part of the molecule in the minor portal, rarely seen in the InhA structures reported so far.
Collapse
Affiliation(s)
- Mélina Chebaiki
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Evelyne Delfourne
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Rasoul Tamhaev
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Saïda Danoun
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Frédéric Rodriguez
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Pascal Hoffmann
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Emeline Grosjean
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Fernanda Goncalves
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Joëlle Azéma-Despeyroux
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Adrián Pál
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Jana Korduláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Nadège Preuilh
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Patricia Constant
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Hedia Marrakchi
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Laurent Maveyraud
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| | - Christian Lherbet
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
8
|
Yang J, Zhang L, Qiao W, Luo Y. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e353. [PMID: 37674971 PMCID: PMC10477518 DOI: 10.1002/mco2.353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Tuberculosis (TB) remains a significant public health concern in the 21st century, especially due to drug resistance, coinfection with diseases like immunodeficiency syndrome (AIDS) and coronavirus disease 2019, and the lengthy and costly treatment protocols. In this review, we summarize the pathogenesis of TB infection, therapeutic targets, and corresponding modulators, including first-line medications, current clinical trial drugs and molecules in preclinical assessment. Understanding the mechanisms of Mycobacterium tuberculosis (Mtb) infection and important biological targets can lead to innovative treatments. While most antitubercular agents target pathogen-related processes, host-directed therapy (HDT) modalities addressing immune defense, survival mechanisms, and immunopathology also hold promise. Mtb's adaptation to the human host involves manipulating host cellular mechanisms, and HDT aims to disrupt this manipulation to enhance treatment effectiveness. Our review provides valuable insights for future anti-TB drug development efforts.
Collapse
Affiliation(s)
- Jiaxing Yang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Laiying Zhang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Wenliang Qiao
- Department of Thoracic Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Lung Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Youfu Luo
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
9
|
Khalifa A, Khalil A, Abdel-Aziz MM, Albohy A, Mohamady S. Isatin-pyrimidine hybrid derivatives as enoyl acyl carrier protein reductase (InhA) inhibitors against Mycobacterium tuberculosis. Bioorg Chem 2023; 138:106591. [PMID: 37201321 DOI: 10.1016/j.bioorg.2023.106591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Tuberculosis is a worldwide problem that impose a burden on the economy due to continuous development of resistant strains. The development of new antitubercular drugs is a need and can be achieved through inhibition of druggable targets. Mycobacterium tuberculosis enoyl acyl carrier protein (ACP) reductase (InhA) is an important enzyme for Mycobacterium tuberculosis survival. In this study, we report the synthesis of isatin derivatives that could treat TB through inhibition of this enzyme. Compound 4l showed IC50 value (0.6 ± 0.94 µM) similar to isoniazid but is also effective against MDR and XDR Mycobacterium tuberculosis strains (MIC of 0.48 and 3.9 µg/mL, respectively). Molecular docking studies suggest that this compound binds through the use of relatively unexplored hydrophobic pocket in the active site. Molecular dynamics was used to investigate and support the stability of 4l complex with the target enzyme. This study paves the way for the design and synthesis of novel antitubercular drugs.
Collapse
Affiliation(s)
- Abdalrahman Khalifa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt; Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Amira Khalil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| | - Marwa M Abdel-Aziz
- The Regional Center for Mycology & Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt.
| | - Samy Mohamady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt.
| |
Collapse
|
10
|
Bieri C, Esmel A, Keita M, Owono LCO, Dali B, Megnassan E, Miertus S, Frecer V. Structure-Based Design and Pharmacophore-Based Virtual Screening of Combinatorial Library of Triclosan Analogues Active against Enoyl-Acyl Carrier Protein Reductase of Plasmodium falciparum with Favourable ADME Profiles. Int J Mol Sci 2023; 24:ijms24086916. [PMID: 37108083 PMCID: PMC10139228 DOI: 10.3390/ijms24086916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Cost-effective therapy of neglected and tropical diseases such as malaria requires everlasting drug discovery efforts due to the rapidly emerging drug resistance of the plasmodium parasite. We have carried out computational design of new inhibitors of the enoyl-acyl carrier protein reductase (ENR) of Plasmodium falciparum (PfENR) using computer-aided combinatorial and pharmacophore-based molecular design. The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) complexation QSAR model was developed for triclosan-based inhibitors (TCL) and a significant correlation was established between the calculated relative Gibbs free energies of complex formation (∆∆Gcom) between PfENR and TCL and the observed inhibitory potencies of the enzyme (IC50exp) for a training set of 20 known TCL analogues. Validation of the predictive power of the MM-PBSA QSAR model was carried out with the generation of 3D QSAR pharmacophore (PH4). We obtained a reasonable correlation between the relative Gibbs free energy of complex formation ∆∆Gcom and IC50exp values, which explained approximately 95% of the PfENR inhibition data: pIC50exp=-0.0544×∆∆Gcom+6.9336,R2=0.95. A similar agreement was established for the PH4 pharmacophore model of the PfENR inhibition (pIC50exp=0.9754×pIC50pre+0.1596, R2=0.98). Analysis of enzyme-inhibitor binding site interactions suggested suitable building blocks to be used in a virtual combinatorial library of 33,480 TCL analogues. Structural information derived from the complexation model and the PH4 pharmacophore guided us through in silico screening of the virtual combinatorial library of TCL analogues to finally identify potential new TCL inhibitors effective at low nanomolar concentrations. Virtual screening of the library by PfENR-PH4 led to a predicted IC50pre value for the best inhibitor candidate as low as 1.9 nM. Finally, the stability of PfENR-TCLx complexes and the flexibility of the active conformation of the inhibitor for selected top-ranking TCL analogues were checked with the help of molecular dynamics. This computational study resulted in a set of proposed new potent inhibitors with predicted antimalarial effects and favourable pharmacokinetic profiles that act on a novel pharmacological target, PfENR.
Collapse
Affiliation(s)
- Cecile Bieri
- Laboratoire de Physique Fondamentale et Appliquée (LPFA), University of Abobo Adjamé (Now Nangui Abrogoua), Abidjan 02, Côte d'Ivoire
| | - Akori Esmel
- Laboratoire de Physique Fondamentale et Appliquée (LPFA), University of Abobo Adjamé (Now Nangui Abrogoua), Abidjan 02, Côte d'Ivoire
| | - Melalie Keita
- Laboratoire de Physique Fondamentale et Appliquée (LPFA), University of Abobo Adjamé (Now Nangui Abrogoua), Abidjan 02, Côte d'Ivoire
| | - Luc Calvin Owono Owono
- Department of Physics, Ecole Normale Supérieure, University of Yaoundé I, P.O. Box 47, Yaoundé 1, Cameroon
- International Centre for Applied Research and Sustainable Technology, SK-84104 Bratislava, Slovakia
| | - Brice Dali
- Laboratoire de Physique Fondamentale et Appliquée (LPFA), University of Abobo Adjamé (Now Nangui Abrogoua), Abidjan 02, Côte d'Ivoire
| | - Eugene Megnassan
- Laboratoire de Physique Fondamentale et Appliquée (LPFA), University of Abobo Adjamé (Now Nangui Abrogoua), Abidjan 02, Côte d'Ivoire
- International Centre for Applied Research and Sustainable Technology, SK-84104 Bratislava, Slovakia
- International Centre for Theoretical Physics, Strada Costiera 11, I-34151 Trieste, Italy
- Laboratoire de Cristallographie-Physique Moléculaire, Université De Cocody, Abidjan 22, Côte d'Ivoire
- Laboratoire de Chimie Organique Structurale et Théorique, Université De Cocody, Abidjan 22, Côte d'Ivoire
| | - Stanislav Miertus
- International Centre for Applied Research and Sustainable Technology, SK-84104 Bratislava, Slovakia
- Department of Biotechnologies, Faculty of Natural Sciences, University of SS. Cyril and Methodius, SK-91701 Trnava, Slovakia
| | - Vladimir Frecer
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, SK-83232 Bratislava, Slovakia
| |
Collapse
|
11
|
Yan W, Zheng Y, Dou C, Zhang G, Arnaout T, Cheng W. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. MOLECULAR BIOMEDICINE 2022; 3:48. [PMID: 36547804 PMCID: PMC9780415 DOI: 10.1186/s43556-022-00106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a tenacious pathogen that has latently infected one third of the world's population. However, conventional TB treatment regimens are no longer sufficient to tackle the growing threat of drug resistance, stimulating the development of innovative anti-tuberculosis agents, with special emphasis on new protein targets. The Mtb genome encodes ~4000 predicted proteins, among which many enzymes participate in various cellular metabolisms. For example, more than 200 proteins are involved in fatty acid biosynthesis, which assists in the construction of the cell envelope, and is closely related to the pathogenesis and resistance of mycobacteria. Here we review several essential enzymes responsible for fatty acid and nucleotide biosynthesis, cellular metabolism of lipids or amino acids, energy utilization, and metal uptake. These include InhA, MmpL3, MmaA4, PcaA, CmaA1, CmaA2, isocitrate lyases (ICLs), pantothenate synthase (PS), Lysine-ε amino transferase (LAT), LeuD, IdeR, KatG, Rv1098c, and PyrG. In addition, we summarize the role of the transcriptional regulator PhoP which may regulate the expression of more than 110 genes, and the essential biosynthesis enzyme glutamine synthetase (GlnA1). All these enzymes are either validated drug targets or promising target candidates, with drugs targeting ICLs and LAT expected to solve the problem of persistent TB infection. To better understand how anti-tuberculosis drugs act on these proteins, their structures and the structure-based drug/inhibitor designs are discussed. Overall, this investigation should provide guidance and support for current and future pharmaceutical development efforts against mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Weizhu Yan
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Yanhui Zheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Chao Dou
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Guixiang Zhang
- grid.13291.380000 0001 0807 1581Division of Gastrointestinal Surgery, Department of General Surgery and Gastric Cancer center, West China Hospital, Sichuan University, No. 37. Guo Xue Xiang, Chengdu, 610041 China
| | - Toufic Arnaout
- Kappa Crystals Ltd., Dublin, Ireland ,MSD Dunboyne BioNX, Co. Meath, Ireland
| | - Wei Cheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| |
Collapse
|
12
|
Xu X, Dong B, Peng L, Gao C, He Z, Wang C, Zeng J. Anti-tuberculosis drug development via targeting the cell envelope of Mycobacterium tuberculosis. Front Microbiol 2022; 13:1056608. [PMID: 36620019 PMCID: PMC9810820 DOI: 10.3389/fmicb.2022.1056608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis possesses a dynamic cell envelope, which consists of a peptidoglycan layer, a mycolic acid layer, and an arabinogalactan polysaccharide. This envelope possesses a highly complex and unique structure representing a barrier that protects and assists the growth of M. tuberculosis and allows its adaptation to the host. It regulates the immune response of the host cells, causing their damage. Therefore, the cell envelope of M. tuberculosis is an attractive target for vaccine and drug development. The emergence of multidrug-resistant as well as extensively drug resistant tuberculosis and co-infection with HIV prevented an effective control of this disease. Thus, the discovery and development of new drugs is a major keystone for TB treatment and control. This review mainly summarizes the development of drug enzymes involved in the biosynthesis of the cell wall in M. tuberculosis, and other potential drug targets in this pathway, to provide more effective strategies for the development of new drugs.
Collapse
Affiliation(s)
- Xinyue Xu
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Baoyu Dong
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lijun Peng
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chao Gao
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.,Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiqun He
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chuan Wang
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Ntui TN, Oyo-Ita EE, Agwupuye JA, Benjamin I, Eko IJ, Ubana EI, Etiowo KM, Eluwa EC, Imojara A. Synthesis, Spectroscopic, DFT Study, and Molecular Modeling of Thiophene-Carbonitrile Against Enoyl-ACP Reductase Receptor. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00544-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Ofem MI, Louis H, Agwupuye JA, Ameuru US, Apebende GC, Gber TE, Odey JO, Musa N, Ayi AA. Synthesis, spectral characterization, and theoretical investigation of the photovoltaic properties of (E)-6-(4-(dimethylamino)phenyl)diazenyl)-2-octyl-benzoisoquinoline-1, 3-dione. BMC Chem 2022; 16:109. [PMID: 36463218 PMCID: PMC9719173 DOI: 10.1186/s13065-022-00896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/04/2022] [Indexed: 12/04/2022] Open
Abstract
This research work focuses on the synthesis, characterization through spectra (FT-IR, UV-vis, and 1H-NMR) investigations, and the use of density functional theory (DFT) along with time-dependent density functional theory (TD-DFT) to investigate the electronic, structural, reactivity, photophysical properties, and the photovoltaic properties of a novel (E)-6-(4-(dimethylamino)phenyl)diazenyl)-2-octyl-benzoisoquinoline-1,3-dione. The structure of the synthesized compound was modeled using the Gaussian09W and GaussView6.0.16 softwares employing B3LYP and 6-31 + G(d) basis set. The DFT studies was performed in order to investigate the Frontier Molecular Orbital (FMO), Natural Bond Orbital (NBO), charge distribution, Nonlinear Optics (NLO), and stability of the titled molecule. The HOMO-LUMO energy gap which corresponds to the difference between HOMO and LUMO energies of the studied compound was found to be 2.806 eV indicating stiff and smooth nature of the titled molecule. This accounts for the less stability and high chemical reactivity of the compound. The photovoltaic properties were conducted to evaluate the light harvesting efficiency (LHE), short circuit current density (JSC), Gibbs free energy of injection ([Formula: see text]), open cycled voltage (VOC) and Gibbs free energy regeneration ([Formula: see text]) and solar cell conversion efficiency. Interestingly, the results obtained were found to be in good agreement with other experimental and computational findings.
Collapse
Affiliation(s)
- Mbang I. Ofem
- grid.411933.d0000 0004 1808 0571Department of Chemistry, Faculty of Physical Sciences, Cross River University of Technology, Calabar, Nigeria ,grid.413097.80000 0001 0291 6387Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Hitler Louis
- grid.413097.80000 0001 0291 6387Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria ,grid.413097.80000 0001 0291 6387Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - John A. Agwupuye
- grid.413097.80000 0001 0291 6387Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria ,grid.413097.80000 0001 0291 6387Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Umar S. Ameuru
- grid.411225.10000 0004 1937 1493Department of Polymer and Textile Engineering, Ahmadu Bello University, Zaria, Nigeria
| | - Gloria C. Apebende
- grid.413097.80000 0001 0291 6387Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria ,grid.413097.80000 0001 0291 6387Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Terkumbur E. Gber
- grid.413097.80000 0001 0291 6387Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria ,grid.413097.80000 0001 0291 6387Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Joseph O. Odey
- grid.413097.80000 0001 0291 6387Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria ,grid.413097.80000 0001 0291 6387Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Neksumi Musa
- grid.412552.50000 0004 1764 278XDepartment of Environmnetal Sciences, Sharda University, Greater Noida, India
| | - Ayi A. Ayi
- grid.413097.80000 0001 0291 6387Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria ,grid.413097.80000 0001 0291 6387Inorganic Materials Research Laboratory, Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
15
|
Othman DI, Hamdi A, Abdel-Aziz MM, Elfeky SM. Novel 2-arylthiazolidin-4-one-thiazole hybrids with potent activity against Mycobacterium tuberculosis. Bioorg Chem 2022; 124:105809. [DOI: 10.1016/j.bioorg.2022.105809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022]
|
16
|
Prasad MS, Bhole RP, Khedekar PB, Chikhale RV. Mycobacterium enoyl acyl carrier protein reductase (InhA): A key target for antitubercular drug discovery. Bioorg Chem 2021; 115:105242. [PMID: 34392175 DOI: 10.1016/j.bioorg.2021.105242] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Enoyl acyl carrier protein reductase (InhA) is a key enzyme involved in fatty acid synthesis mainly mycolic acid biosynthesis that is a part of NADH dependent acyl carrier protein reductase family. The aim of the present literature is to underline the different scaffolds or enzyme inhibitors that inhibit mycolic acid biosynthesis mainly cell wall synthesis by inhibiting enzyme InhA. Various scaffolds were identified based on the screening technologies like high throughput screening, encoded library technology, fragment-based screening. The compounds studied include indirect inhibitors (Isoniazid, Ethionamide, Prothionamide) and direct inhibitors (Triclosan/Diphenyl ethers, Pyrrolidine Carboxamides, Pyrroles, Acetamides, Thiadiazoles, Triazoles) with better efficacy against drug resistance. Out of the several scaffolds studied, pyrrolidine carboxamides were found to be the best molecules targeting InhA having good bioavailability properties and better MIC. This review provides with a detailed information, analysis, structure activity relationship and useful insight on various scaffolds as InhA inhibitors.
Collapse
Affiliation(s)
- Mayuri S Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, MS, India
| | - Ritesh P Bhole
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, Maharashtra, India
| | - Pramod B Khedekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, MS, India.
| | - Rupesh V Chikhale
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
17
|
Venugopala KN, Deb PK, Pillay M, Chopra D, Chandrashekharappa S, Morsy MA, Aldhubiab BE, Attimarad M, Nair AB, Sreeharsha N, Kandeel M, Venugopala R, Mohanlall V. 4-Aryl-1,4-Dihydropyridines as Potential Enoyl-Acyl Carrier Protein Reductase Inhibitors: Antitubercular Activity and Molecular Docking Study. Curr Top Med Chem 2021; 21:295-306. [PMID: 33138763 DOI: 10.2174/1568026620666201102121606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tuberculosis remains one of the most deadly infectious diseases worldwide due to the emergence of multi-drug resistance (MDR) and extensively drug resistance (XDR) strains of Mycobacterium tuberculosis (MTB). AIMS Currently, available drugs are getting resistant and toxic. Hence, there is an urgent need for the development of potent molecules to treat tuberculosis. MATERIALS AND METHODS Herein, the screening of a total of eight symmetrical 1,4-dihydropyridine (1,4- DHP) derivatives (4a-4h) was carried out for whole-cell anti-TB activity against the susceptible H37Rv and MDR strains of MTB. RESULTS AND DISCUSSION Most of the compounds exhibited moderate to excellent activity against the susceptible H37Rv. Moreover, the most promising compound 4f (against H37Rv) having paratrifluoromethyl phenyl group at 4-position and bis para-methoxy benzyl ester group at 3- and 5- positions of 1,4-dihydropyridine pharmacophore, exhibited no toxicity, but demonstrated weak activity against MTB strains resistant to isoniazid and rifampicin. In light of the inhibitory profile of the title compounds, enoyl-acyl carrier protein reductase (InhA) appeared to be the appropriate molecular target. A docking study of these derivatives against InhA receptor revealed favorable binding interactions. Further, in silico predicted ADME properties of these compounds 4a-4h were found to be in the acceptable ranges, including satisfactory Lipinski's rule of five, thereby indicating their potential as drug-like molecules. CONCLUSION In particular, the 1,4-DHP derivative 4f can be considered an attractive lead molecule for further exploration and development of more potent anti-TB agents as InhA inhibitors.
Collapse
Affiliation(s)
- Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan
| | - Melendhran Pillay
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | | | - Mohamed A Morsy
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Bandar E Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Rashmi Venugopala
- Department of Public Health Medicine, University of KwaZulu-Natal, Howard College Campus, Durban 4001, South Africa
| | - Viresh Mohanlall
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
| |
Collapse
|
18
|
New InhA Inhibitors Based on Expanded Triclosan and Di-Triclosan Analogues to Develop a New Treatment for Tuberculosis. Pharmaceuticals (Basel) 2021; 14:ph14040361. [PMID: 33919737 PMCID: PMC8070701 DOI: 10.3390/ph14040361] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 11/16/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) has reinforced the need for the development of new anti-TB drugs. The first line drug isoniazid inhibits InhA. This is a prodrug requiring activation by the enzyme KatG. Mutations in KatG have largely contributed to clinical isoniazid resistance. We aimed to design new 'direct' InhA inhibitors that obviate the need for activation by KatG, circumventing pre-existing resistance. In silico molecular modelling was used as part of a rational structure-based drug-design approach involving inspection of protein crystal structures of InhA:inhibitor complexes, including the broad spectrum antibiotic triclosan (TCS). One crystal structure exhibited the unusual presence of two triclosan molecules within the Mycobacterium tuberculosis InhA binding site. This became the basis of a strategy for the synthesis of novel inhibitors. A series of new, flexible ligands were designed and synthesised, expanding on the triclosan structure. Low Minimum Inhibitory Concentrations (MICs) were obtained for benzylphenyl compounds (12, 43 and 44) and di-triclosan derivative (39), against Mycobacterium bovis BCG although these may also be inhibiting other enzymes. The ether linked di-triclosan derivative (38) displayed excellent in vitro isolated enzyme inhibition results comparable with triclosan, but at a higher MIC (125 µg mL-1). These compounds offer good opportunities as leads for further optimisation.
Collapse
|
19
|
Kuldeep J, Sharma SK, Sharma T, Singh BN, Siddiqi MI. Targeting Mycobacterium Tuberculosis Enoyl-Acyl Carrier Protein Reductase Using Computational Tools for Identification of Potential Inhibitor and their Biological Activity. Mol Inform 2020; 40:e2000211. [PMID: 33283460 DOI: 10.1002/minf.202000211] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/18/2020] [Indexed: 01/07/2023]
Abstract
Enoyl-acyl carrier protein reductase (InhA) of type II fatty acid synthase system is involved in the synthesis of mycolic acids which is a major component of the bacterial cell wall. Since they are the key enzymes playing a very significant role in the FASII pathway of the bacterium. In this study, we have developed a workflow for identification of InhA inhibitors by utilizing in silico virtual screening approaches based on various machine learning algorithms followed by pharmacophore based virtual screening. The hits screened from the models were further subjected to molecular docking. Further, based on the XP docking score best twenty compounds were subjected to molecular dynamics study. Finally, nine compounds were shortlisted on the basis of best stable ligand RMSD, c-alpha RMSD, and RMSF plot for biological evaluation studies. Experimental validation of the shortlisted compounds identified one compound JFD01724 having potent inhibitory activity and was able to inhibit the growth of mycobacterium tuberculosis. Further medicinal chemistry efforts may help to improve the inhibitory potency of the identified compound.
Collapse
Affiliation(s)
- Jitendra Kuldeep
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India, 226031
| | - Sandeep K Sharma
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India, 226031
| | - Tanuj Sharma
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India, 226031
| | - Bhupendra N Singh
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India, 226031
| | - Mohammad Imran Siddiqi
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India, 226031
| |
Collapse
|
20
|
Puhl AC, Lane TR, Vignaux PA, Zorn KM, Capodagli GC, Neiditch MB, Freundlich JS, Ekins S. Computational Approaches to Identify Molecules Binding to Mycobacterium tuberculosis KasA. ACS OMEGA 2020; 5:29935-29942. [PMID: 33251429 PMCID: PMC7689923 DOI: 10.1021/acsomega.0c04271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/07/2020] [Indexed: 05/05/2023]
Abstract
Tuberculosis is caused by Mycobacterium tuberculosis (Mtb) and is a deadly disease resulting in the deaths of approximately 1.5 million people with 10 million infections reported in 2018. Recently, a key condensation step in the synthesis of mycolic acids was shown to require β-ketoacyl-ACP synthase (KasA). A crystal structure of KasA with the small molecule DG167 was recently described, which provided a starting point for using computational structure-based approaches to identify additional molecules binding to this protein. We now describe structure-based pharmacophores, docking and machine learning studies with Assay Central as a computational tool for the identification of small molecules targeting KasA. We then tested these compounds using nanoscale differential scanning fluorimetry and microscale thermophoresis. Of note, we identified several molecules including the Food and Drug Administration (FDA)-approved drugs sildenafil and flubendazole with K d values between 30-40 μM. This may provide additional starting points for further optimization.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Thomas R. Lane
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Patricia A. Vignaux
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Kimberley M. Zorn
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Glenn C. Capodagli
- Department
of Microbiology, Biochemistry, and Molecular Genetics, Rutgers University − New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Matthew B. Neiditch
- Department
of Microbiology, Biochemistry, and Molecular Genetics, Rutgers University − New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Joel S. Freundlich
- Department
of Pharmacology, Physiology, and Neuroscience, Rutgers University − New Jersey Medical School, Newark, New Jersey 07103, United States
- Division
of Infectious Disease, Department of Medicine and the Ruy V. Lourenço
Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
- . Tel.: +1 215-687-1320
| |
Collapse
|
21
|
Fernández de Luco J, Recio-Balsells AI, Ghiano DG, Bortolotti A, Belardinelli JM, Liu N, Hoffmann P, Lherbet C, Tonge PJ, Tekwani B, Morbidoni HR, Labadie GR. Exploring the chemical space of 1,2,3-triazolyl triclosan analogs for discovery of new antileishmanial chemotherapeutic agents. RSC Med Chem 2020; 12:120-128. [PMID: 34046604 DOI: 10.1039/d0md00291g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/13/2020] [Indexed: 01/02/2023] Open
Abstract
Triclosan and isoniazid are known antitubercular compounds that have proven to be also active against Leishmania parasites. On these grounds, a collection of 37 diverse 1,2,3-triazoles based on the antitubercular molecules triclosan and 5-octyl-2-phenoxyphenol (8PP) were designed in search of novel structures with leishmanicidal activity and prepared using different alkynes and azides. The 37 compounds were assayed against Leishmania donovani, the etiological agent of leishmaniasis, yielding some analogs with activity at micromolar concentrations and against M. tuberculosis H37Rv resulting in scarce active compounds with an MIC of 20 μM. To study the mechanism of action of these catechols, we analyzed the inhibition activity of the library on the M. tuberculosis enoyl-ACP reductase (ENR) InhA, obtaining poor inhibition of the enzyme. The cytotoxicity against Vero cells was also tested, resulting in none of the compounds being cytotoxic at concentrations of up to 20 μM. Derivative 5f could be considered a valuable starting point for future antileishmanial drug development. The validation of a putative leishmanial InhA orthologue as a therapeutic target needs to be further investigated.
Collapse
Affiliation(s)
- Julia Fernández de Luco
- Instituto de Química Rosario, UNR, CONICET Suipacha 531 S2002LRK Rosario Argentina +54 341 4370477 +54 341 4370477
| | - Alejandro I Recio-Balsells
- Instituto de Química Rosario, UNR, CONICET Suipacha 531 S2002LRK Rosario Argentina +54 341 4370477 +54 341 4370477
| | - Diego G Ghiano
- Instituto de Química Rosario, UNR, CONICET Suipacha 531 S2002LRK Rosario Argentina +54 341 4370477 +54 341 4370477
| | - Ana Bortolotti
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario Santa Fe 3100 S2002KTR Rosario Argentina
| | - Juán Manuel Belardinelli
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario Santa Fe 3100 S2002KTR Rosario Argentina
| | - Nina Liu
- Department of Chemistry, Institute of Chemical Biology & Drug Discovery, Stony Brook University Stony Brook NY 11794 USA
| | - Pascal Hoffmann
- LSPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Christian Lherbet
- LSPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Peter J Tonge
- Department of Chemistry, Institute of Chemical Biology & Drug Discovery, Stony Brook University Stony Brook NY 11794 USA
| | - Babu Tekwani
- National Center for Natural Products Research & Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi MS 38677 USA
| | - Héctor R Morbidoni
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario Santa Fe 3100 S2002KTR Rosario Argentina .,Consejo de Investigaciones, Universidad Nacional de Rosario Argentina
| | - Guillermo R Labadie
- Instituto de Química Rosario, UNR, CONICET Suipacha 531 S2002LRK Rosario Argentina +54 341 4370477 +54 341 4370477.,Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina
| |
Collapse
|
22
|
Tiwari AP, Sridhar B, Boshoff HI, Arora K, Gautham Shenoy G, Vandana KE, Varadaraj Bhat G. Design, synthesis, in silico and in vitro evaluation of novel diphenyl ether derivatives as potential antitubercular agents. Mol Divers 2020; 24:1265-1279. [PMID: 31506871 PMCID: PMC11177332 DOI: 10.1007/s11030-019-09990-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/24/2019] [Indexed: 11/28/2022]
Abstract
Diphenyl ether derivatives inhibit mycobacterial cell wall synthesis by inhibiting an enzyme, enoyl-acyl carrier protein reductase (InhA), which catalyses the last step in the fatty acid synthesis cycle of genus Mycobacterium. To select and validate a protein crystal structure of enoyl-acyl carrier protein reductase of Mycobacterium tuberculosis for designing inhibitors using molecular modelling, a cross-docking and correlation study was performed. A series of novel 1-(3-(3-hydroxy-4-phenoxyphenyl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl) ethan-1-ones were synthesized from this model and screened for their antitubercular activity against M. tuberculosis H37Rv. Compound PYN-8 showed good antitubercular activity on M. tuberculosis H37Rv (MIC = 4-7 µM) and Mycobacterium bovis (% inhibition at 10 µM = 95.91%). Cytotoxicity of all the synthesized derivatives was assessed using various cell lines, and they were found to be safe. Structure of PYN-8 was also confirmed by single-crystal X-ray diffraction. The molecular modelling studies also corroborated the biological activity of the compounds. Further, in silico findings revealed that all these tested compounds exhibited good ADME properties and drug likeness and thus may be considered as potential candidates for further drug development.
Collapse
Affiliation(s)
- Ashutosh Prasad Tiwari
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - B Sridhar
- X-ray Crystallography Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500607, India
| | - Helena I Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kriti Arora
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - G Gautham Shenoy
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - K E Vandana
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - G Varadaraj Bhat
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
23
|
Ibrahim TS, Taher ES, Samir E, M. Malebari A, Khayyat AN, Mohamed MFA, Bokhtia RM, AlAwadh MA, Seliem IA, Asfour HZ, Alhakamy NA, Panda SS, AL-Mahmoudy AMM. In Vitro Antimycobacterial Activity and Physicochemical Characterization of Diaryl Ether Triclosan Analogues as Potential InhA Reductase Inhibitors. Molecules 2020; 25:molecules25143125. [PMID: 32650556 PMCID: PMC7397076 DOI: 10.3390/molecules25143125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 11/29/2022] Open
Abstract
Two sets of diphenyl ether derivatives incorporating five-membered 1,3,4-oxadiazoles, and their open-chain aryl hydrazone analogs were synthesized in good yields. Most of the synthesized compounds showed promising in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv. Three diphenyl ether derivatives, namely hydrazide 3, oxadiazole 4 and naphthylarylidene 8g exhibited pronounced activity with minimum inhibitory concentrations (MICs) of 0.61, 0.86 and 0.99 μg/mL, respectively compared to triclosan (10 μg/mL) and isoniazid (INH) (0.2 μg/mL). Compounds 3, 4, and 8g showed the InhA reductase enzyme inhibition with higher IC50 values (3.28–4.23 µM) in comparison to triclosan (1.10 µM). Correlation between calculated physicochemical parameters and biological activity has been discussed which justifies a strong correlation with respect to the inhibition of InhA reductase enzyme. Molecular modeling and drug-likeness studies showed good agreement with the obtained biological evaluation. The structural and experimental information concerning these three InhA inhibitors will likely contribute to the lead optimization of new antibiotics for M. tuberculosis.
Collapse
Affiliation(s)
- Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.M.); (A.N.K.); (M.A.A.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (I.A.S.); (A.M.M.A.-M.)
- Correspondence: (T.S.I.); (S.S.P.)
| | - Ehab S. Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt;
| | - Ebtihal Samir
- Physical Chemistry, Department of Analytical Chemistry, Faculty of Pharmacy, Deraya University, New Minia 61519, Egypt;
| | - Azizah M. Malebari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.M.); (A.N.K.); (M.A.A.)
| | - Ahdab N. Khayyat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.M.); (A.N.K.); (M.A.A.)
| | - Mamdouh F. A. Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Riham M. Bokhtia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (I.A.S.); (A.M.M.A.-M.)
- Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, USA
| | - Mohammed A. AlAwadh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.M.); (A.N.K.); (M.A.A.)
| | - Israa A. Seliem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (I.A.S.); (A.M.M.A.-M.)
- Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, USA
| | - Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Siva S. Panda
- Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, USA
- Correspondence: (T.S.I.); (S.S.P.)
| | - Amany M. M. AL-Mahmoudy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (I.A.S.); (A.M.M.A.-M.)
| |
Collapse
|
24
|
Verma R, Boshoff HIM, Arora K, Bairy I, Tiwari M, Varadaraj BG, Shenoy GG. Synthesis, evaluation, molecular docking, and molecular dynamics studies of novel N-(4-[pyridin-2-yloxy]benzyl)arylamine derivatives as potential antitubercular agents. Drug Dev Res 2020; 81:315-328. [PMID: 31782209 PMCID: PMC11382352 DOI: 10.1002/ddr.21623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 01/23/2023]
Abstract
A new series of novel triclosan (2,4,4'-trichloro-2'-hydroxydiphenylether) analogues were designed, synthesized, and screened for their in vitro antimycobacterial and antibacterial activities. Most of the compounds showed significant activity against Mycobacterium tuberculosis H37Rv strain with minimum inhibitory concentration (MIC) values in 20-40 μM range in GAST/Fe medium when compared with triclosan (43 μM) in the first week of assay, and after additional incubation, seven compounds, that is, 2a, 2c, 2g, 2h, 2i, 2j, and 2m, exhibited MIC values at the concentration of 20-40 μM. The compounds also showed more significant activity against Bacillus subtilis and Staphylococcus aureus. The synthesized compounds showed druggable properties, and the predicted ADME (absorption, distribution, metabolism, and excretion) properties were within the acceptable limits. The in silico studies predicted better interactions of compounds with target protein residues and a higher dock score in comparison with triclosan. Molecular dynamics simulation study of the most active compound 2i was performed in order to further explore the stability of the protein-ligand complex and the protein-ligand interaction in detail.
Collapse
Affiliation(s)
- Ruchi Verma
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kriti Arora
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Indira Bairy
- Department of Microbiology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mradul Tiwari
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Bhat G Varadaraj
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - G Gautham Shenoy
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
25
|
de Ávila MB, Bitencourt-Ferreira G, de Azevedo WF. Structural Basis for Inhibition of Enoyl-[Acyl Carrier Protein] Reductase (InhA) from Mycobacterium tuberculosis. Curr Med Chem 2020; 27:745-759. [DOI: 10.2174/0929867326666181203125229] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/26/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022]
Abstract
Background::
The enzyme trans-enoyl-[acyl carrier protein] reductase (InhA) is a central
protein for the development of antitubercular drugs. This enzyme is the target for the pro-drug
isoniazid, which is catalyzed by the enzyme catalase-peroxidase (KatG) to become active.
Objective::
Our goal here is to review the studies on InhA, starting with general aspects and focusing on
the recent structural studies, with emphasis on the crystallographic structures of complexes involving
InhA and inhibitors.
Method::
We start with a literature review, and then we describe recent studies on InhA crystallographic
structures. We use this structural information to depict protein-ligand interactions. We also analyze the
structural basis for inhibition of InhA. Furthermore, we describe the application of computational
methods to predict binding affinity based on the crystallographic position of the ligands.
Results::
Analysis of the structures in complex with inhibitors revealed the critical residues responsible
for the specificity against InhA. Most of the intermolecular interactions involve the hydrophobic residues
with two exceptions, the residues Ser 94 and Tyr 158. Examination of the interactions has shown
that many of the key residues for inhibitor binding were found in mutations of the InhA gene in the
isoniazid-resistant Mycobacterium tuberculosis. Computational prediction of the binding affinity for
InhA has indicated a moderate uphill relationship with experimental values.
Conclusion::
Analysis of the structures involving InhA inhibitors shows that small modifications on
these molecules could modulate their inhibition, which may be used to design novel antitubercular
drugs specific for multidrug-resistant strains.
Collapse
Affiliation(s)
- Maurício Boff de Ávila
- Laboratory of Computational Systems Biology, School of Sciences - Pontifical Catholic University of Rio, Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre-RS 90619-900, Brazil
| | - Gabriela Bitencourt-Ferreira
- Laboratory of Computational Systems Biology, School of Sciences - Pontifical Catholic University of Rio, Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre-RS 90619-900, Brazil
| | - Walter Filgueira de Azevedo
- Laboratory of Computational Systems Biology, School of Sciences - Pontifical Catholic University of Rio, Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre-RS 90619-900, Brazil
| |
Collapse
|
26
|
Wang X, Inoyama D, Russo R, Li SG, Jadhav R, Stratton TP, Mittal N, Bilotta JA, Singleton E, Kim T, Paget SD, Pottorf RS, Ahn YM, Davila-Pagan A, Kandasamy S, Grady C, Hussain S, Soteropoulos P, Zimmerman MD, Ho HP, Park S, Dartois V, Ekins S, Connell N, Kumar P, Freundlich JS. Antitubercular Triazines: Optimization and Intrabacterial Metabolism. Cell Chem Biol 2020; 27:172-185.e11. [PMID: 31711854 PMCID: PMC7035970 DOI: 10.1016/j.chembiol.2019.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/02/2019] [Accepted: 10/22/2019] [Indexed: 01/13/2023]
Abstract
The triazine antitubercular JSF-2019 was of interest due to its in vitro efficacy and the nitro group shared with the clinically relevant delamanid and pretomanid. JSF-2019 undergoes activation requiring F420H2 and one or more nitroreductases in addition to Ddn. An intrabacterial drug metabolism (IBDM) platform was leveraged to demonstrate the system kinetics, evidencing formation of NO⋅ and a des-nitro metabolite. Structure-activity relationship studies focused on improving the solubility and mouse pharmacokinetic profile of JSF-2019 and culminated in JSF-2513, relying on the key introduction of a morpholine. Mechanistic studies with JSF-2019, JSF-2513, and other triazines stressed the significance of achieving potent in vitro efficacy via release of intrabacterial NO⋅ along with inhibition of InhA and, more generally, the FAS-II pathway. This study highlights the importance of probing IBDM and its potential to clarify mechanism of action, which in this case is a combination of NO⋅ release and InhA inhibition.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Daigo Inoyama
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Riccardo Russo
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Shao-Gang Li
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Ravindra Jadhav
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Thomas P Stratton
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Nisha Mittal
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Joseph A Bilotta
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Eric Singleton
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Thomas Kim
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Steve D Paget
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Richard S Pottorf
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Yong-Mo Ahn
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Alejandro Davila-Pagan
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Srinivasan Kandasamy
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Courtney Grady
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Seema Hussain
- Genomics Center, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Patricia Soteropoulos
- Genomics Center, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Matthew D Zimmerman
- Public Health Research Institute, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | - Hsin Pin Ho
- Public Health Research Institute, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | - Steven Park
- Public Health Research Institute, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | - Véronique Dartois
- Public Health Research Institute, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | - Sean Ekins
- Collaborations in Chemistry Inc., Raleigh, NC 27606, USA
| | - Nancy Connell
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Pradeep Kumar
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Joel S Freundlich
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA; Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
27
|
Wang X, Perryman AL, Li SG, Paget SD, Stratton TP, Lemenze A, Olson AJ, Ekins S, Kumar P, Freundlich JS. Intrabacterial Metabolism Obscures the Successful Prediction of an InhA Inhibitor of Mycobacterium tuberculosis. ACS Infect Dis 2019; 5:2148-2163. [PMID: 31625383 DOI: 10.1021/acsinfecdis.9b00295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (M. tuberculosis), kills 1.6 million people annually. To bridge the gap between structure- and cell-based drug discovery strategies, we are pioneering a computer-aided discovery paradigm that merges structure-based virtual screening with ligand-based, machine learning methods trained with cell-based data. This approach successfully identified N-(3-methoxyphenyl)-7-nitrobenzo[c][1,2,5]oxadiazol-4-amine (JSF-2164) as an inhibitor of purified InhA with whole-cell efficacy versus in vitro cultured M. tuberculosis. When the intrabacterial drug metabolism (IBDM) platform was leveraged, mechanistic studies demonstrated that JSF-2164 underwent a rapid F420H2-dependent biotransformation within M. tuberculosis to afford intrabacterial nitric oxide and two amines, identified as JSF-3616 and JSF-3617. Thus, metabolism of JSF-2164 obscured the InhA inhibition phenotype within cultured M. tuberculosis. This study demonstrates a new docking/Bayesian computational strategy to combine cell- and target-based drug screening and the need to probe intrabacterial metabolism when clarifying the antitubercular mechanism of action.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University−New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Alexander L. Perryman
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University−New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Shao-Gang Li
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University−New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Steve D. Paget
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University−New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Thomas P. Stratton
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University−New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Alex Lemenze
- Division of Infectious Disease, Department of Medicine, and the Ruy V. Lourenço Center for the Study of Emerging and Reemerging Pathogens, Rutgers University−New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Arthur J. Olson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Room MB112/Mail Drop MB5, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sean Ekins
- Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, North Carolina 27526, United States
| | - Pradeep Kumar
- Division of Infectious Disease, Department of Medicine, and the Ruy V. Lourenço Center for the Study of Emerging and Reemerging Pathogens, Rutgers University−New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Joel S. Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University−New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
- Division of Infectious Disease, Department of Medicine, and the Ruy V. Lourenço Center for the Study of Emerging and Reemerging Pathogens, Rutgers University−New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| |
Collapse
|
28
|
First triclosan-based macrocyclic inhibitors of InhA enzyme. Bioorg Chem 2019; 95:103498. [PMID: 31855823 DOI: 10.1016/j.bioorg.2019.103498] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023]
Abstract
Two macrocyclic derivatives based on the triclosan frame were designed and synthesized as inhibitors of Mycobacterium tuberculosis InhA enzyme. One of the two molecules M02 displayed promising inhibitory activity against InhA enzyme with an IC50 of 4.7 μM. Molecular docking studies of these two compounds were performed and confirmed that M02 was more efficient as inhibitor of InhA activity. These molecules are the first macrocyclic direct inhibitors of InhA enzyme able to bind into the substrate pocket. Furthermore, these biaryl ether compounds exhibited antitubercular activities comparable to that of triclosan against M. tuberculosis H37Rv strain.
Collapse
|
29
|
Kouman KC, Keita M, Kre N’Guessan R, Owono Owono LC, Megnassan E, Frecer V, Miertus S. Structure-Based Design and in Silico Screening of Virtual Combinatorial Library of Benzamides Inhibiting 2-trans Enoyl-Acyl Carrier Protein Reductase of Mycobacterium tuberculosis with Favorable Predicted Pharmacokinetic Profiles. Int J Mol Sci 2019; 20:ijms20194730. [PMID: 31554227 PMCID: PMC6802012 DOI: 10.3390/ijms20194730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 01/24/2023] Open
Abstract
Background: During the previous decade a new class of benzamide-based inhibitors of 2-trans enoyl-acyl carrier protein reductase (InhA) of Mycobacterium tuberculosis (Mt) with unusual binding mode have emerged. Here we report in silico design and evaluation of novel benzamide InhA-Mt inhibitors with favorable predicted pharmacokinetic profiles. Methods: By using in situ modifications of the crystal structure of N-benzyl-4-((heteroaryl)methyl) benzamide (BHMB)-InhA complex (PDB entry 4QXM), 3D models of InhA-BHMBx complexes were prepared for a training set of 19 BHMBs with experimentally determined inhibitory potencies (half-maximal inhibitory concentrations IC50exp). In the search for active conformation of the BHMB1-19, linear QSAR model was prepared, which correlated computed gas phase enthalpies of formation (∆∆HMM) of InhA-BHMBx complexes with the IC50exp. Further, taking into account the solvent effect and entropy changes upon ligand, binding resulted in a superior QSAR model correlating computed complexation Gibbs free energies (∆∆Gcom). The successive pharmacophore model (PH4) generated from the active conformations of BHMBs served as a virtual screening tool of novel analogs included in a virtual combinatorial library (VCL) of compounds containing benzamide scaffolds. The VCL filtered by Lipinski’s rule-of-five was screened by the PH4 model to identify new BHMB analogs. Results: Gas phase QSAR model: −log10(IC50exp) = pIC50exp = −0.2465 × ∆∆HMM + 7.95503, R2 = 0.94; superior aqueous phase QSAR model: pIC50exp = −0.2370 × ∆∆Gcom + 7.8783, R2 = 0.97 and PH4 pharmacophore model: pIC50exp = 1.0013 × pIC50exp − 0.0085, R2 = 0.95. The VCL of more than 114 thousand BHMBs was filtered down to 73,565 analogs Lipinski’s rule. The five-point PH4 screening retained 90 new and potent BHMBs with predicted inhibitory potencies IC50pre up to 65 times lower than that of BHMB1 (IC50exp = 20 nM). Predicted pharmacokinetic profile of the new analogs showed enhanced cell membrane permeability and high human oral absorption compared to current anti-tuberculotics. Conclusions: Combined use of QSAR models that considered binding of the BHMBs to InhA, pharmacophore model, and ADME properties helped to recognize bound active conformation of the benzamide inhibitors, permitted in silico screening of VCL of compounds sharing benzamide scaffold and identification of new analogs with predicted high inhibitory potencies and favorable pharmacokinetic profiles.
Collapse
Affiliation(s)
- Koffi Charles Kouman
- Laboratoire de Physique Fondamentale et Appliquée (LPFA), University of Abobo Adjamé (now Nangui Abrogoua), Abidjan 02, Côte d’Ivoire; (K.C.K.); (M.K.)
| | - Melalie Keita
- Laboratoire de Physique Fondamentale et Appliquée (LPFA), University of Abobo Adjamé (now Nangui Abrogoua), Abidjan 02, Côte d’Ivoire; (K.C.K.); (M.K.)
| | - Raymond Kre N’Guessan
- Laboratoire de Physique Fondamentale et Appliquée (LPFA), University of Abobo Adjamé (now Nangui Abrogoua), Abidjan 02, Côte d’Ivoire; (K.C.K.); (M.K.)
| | - Luc Calvin Owono Owono
- International Centre for Theoretical Physics, ICTP-UNESCO, Strada Costiera 11, I-34151 Trieste, Italy;
- Department of Physics, Ecole Normale Supérieure, University of Yaoundé I, P.O. Box 47, Yaoundé 1, Cameroon
- International Centre for Applied Research and Sustainable Technology, SK-84104 Bratislava, Slovakia; (V.F.); (S.M.)
| | - Eugene Megnassan
- Laboratoire de Physique Fondamentale et Appliquée (LPFA), University of Abobo Adjamé (now Nangui Abrogoua), Abidjan 02, Côte d’Ivoire; (K.C.K.); (M.K.)
- International Centre for Theoretical Physics, ICTP-UNESCO, Strada Costiera 11, I-34151 Trieste, Italy;
- International Centre for Applied Research and Sustainable Technology, SK-84104 Bratislava, Slovakia; (V.F.); (S.M.)
- Laboratoire de Cristallographie—Physique Moléculaire, University of Cocody (now Felix Houphouët-Boigny), Abidjan 22, Côte d’Ivoire
- Laboratoire de Chimie Organique Structurale et Théorique, University of Cocody (now Felix Houphouët-Boigny), Abidjan 22, Côte d’Ivoire
- Correspondence: ; Tel.: +225-02-36-30-08
| | - Vladimir Frecer
- International Centre for Applied Research and Sustainable Technology, SK-84104 Bratislava, Slovakia; (V.F.); (S.M.)
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, SK-83232 Bratislava, Slovakia
| | - Stanislav Miertus
- International Centre for Applied Research and Sustainable Technology, SK-84104 Bratislava, Slovakia; (V.F.); (S.M.)
- Department of Biotechnologies, Faculty of Natural Sciences, University of SS. Cyril and Methodius, SK-91701 Trnava, Slovakia
| |
Collapse
|
30
|
|
31
|
Vasava MS, Bhoi MN, Rathwa SK, Shetty SS, Patel RD, Rajani DP, Rajani SD, Patel A, Pandya HA, Patel HD. Novel 1,4-dihydropyrano[2,3-c]pyrazole derivatives: Synthesis, characterization, biological evaluation and in silico study. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Duca G, Pogrebnoi S, Boldescu V, Aksakal F, Uncu A, Valica V, Uncu L, Negres S, Nicolescu F, Macaev F. Tryptanthrin Analogues as Inhibitors of Enoyl-acyl Carrier Protein Reductase: Activity against Mycobacterium tuberculosis, Toxicity, Modeling of Enzyme Binding. Curr Top Med Chem 2019; 19:609-619. [PMID: 30834838 DOI: 10.2174/1568026619666190304125740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/01/2018] [Accepted: 11/01/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND High numbers of infection with resistant forms of Micobacterium tuberculosis (Mtb) contribute to a constant growing demand in new highly active and effective therapeutics. Current drug discovery efforts directed towards new antituberculosis agents include the development of new inhibitors of enoyl-acyl carrier protein reductase (InhA) that do not require activation by the specific enzymes. Tryptanthrin is a known inhibitor of Mtb InhA and its analogues are investigated as potential agents with antimycobacterial efficiency. OBJECTIVE The main objective of the presented research was to develop a new group of tryptanthrin analogues with good inhibition properties against Mtb. METHODS Synthesis of new derivatives of 5H-[1,3,4]thiadiazolo[2,3- b]quinazolin-5-one and evaluation of their activity against Mtb, as well as acute and chronic toxicity studies were carried out. Molecular modeling studies were performed to investigate the binding mechanisms of the synthesized ligands with InhA. Binding energies and non-covalent interactions stabilizing the ligand-receptor complexes were obtained from the results of molecular docking. RESULTS The most active compound in the obtained series, 2-(propylthio)-5H-[1,3,4]thiadiazolo[2,3- b]quinazolin-5-one, exhibited the superior inhibition activity (up to 100%) against mycobacterial growth at MIC 6.5 µg/mL, showed good affinity to the InhA enzyme in docking studies and demonstrated a very low per oral toxicity in animals falling under the category 5 according to GHS classification. CONCLUSION 2-(propylthio)-5H-[1,3,4]thiadiazolo[2,3-b]quinazolin-5-one can be further explored for the development of a new series of compounds active against Mtb.
Collapse
Affiliation(s)
- Gheorghe Duca
- Laboratory of Organic Synthesis and Biopharmaceuticals, Institute of Chemistry, Chisinau, Moldova, Republic of
| | - Serghei Pogrebnoi
- Laboratory of Organic Synthesis and Biopharmaceuticals, Institute of Chemistry, Chisinau, Moldova, Republic of
| | - Veaceslav Boldescu
- Laboratory of Organic Synthesis and Biopharmaceuticals, Institute of Chemistry, Chisinau, Moldova, Republic of
| | - Fatma Aksakal
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | - Andrei Uncu
- Scientific Center for Drug Research, "Nicolae Testemitanu" State University of Medicine and Pharmacy, Chisinau, Moldova, Republic of
| | - Vladimir Valica
- Scientific Center for Drug Research, "Nicolae Testemitanu" State University of Medicine and Pharmacy, Chisinau, Moldova, Republic of
| | - Livia Uncu
- Scientific Center for Drug Research, "Nicolae Testemitanu" State University of Medicine and Pharmacy, Chisinau, Moldova, Republic of
| | - Simona Negres
- Department of Pharmacology and Clinical Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Florica Nicolescu
- Department of Pharmacology and Clinical Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Fliur Macaev
- Laboratory of Organic Synthesis and Biopharmaceuticals, Institute of Chemistry, Chisinau, Moldova, Republic of.,Scientific Center for Drug Research, "Nicolae Testemitanu" State University of Medicine and Pharmacy, Chisinau, Moldova, Republic of
| |
Collapse
|
33
|
Functional screening for triclosan resistance in a wastewater metagenome and isolates of Escherichia coli and Enterococcus spp. from a large Canadian healthcare region. PLoS One 2019; 14:e0211144. [PMID: 30677104 PMCID: PMC6345445 DOI: 10.1371/journal.pone.0211144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/07/2019] [Indexed: 01/31/2023] Open
Abstract
The biocide triclosan is in many consumer products and is a frequent contaminant of wastewater (WW) such that there is concern that triclosan promotes resistance to important antibiotics. This study identified functional mechanisms of triclosan resistance (TCSR) in WW metagenomes, and assessed the frequency of TCSR in WW-derived and clinical isolates of Escherichia coli and Enterococcus spp. Metagenomic DNA extracted from WW was used to profile the microbiome and construct large-insert cosmid libraries, which were screened for TCSR. Resistant cosmids were sequenced and the TCSR determinant identified by transposon mutagenesis. Wastewater Enterococcus spp. (N = 94) and E. coli (N = 99) and clinical Enterococcus spp. (N = 146) and vancomycin-resistant E. faecium (VRE; N = 149) were collected and tested for resistance to triclosan and a comprehensive drug panel. Functional metagenomic screening revealed diverse FabV homologs as major WW TCSR determinants. Resistant clones harboured sequences likely originating from Aeromonas spp., a common WW microbe. The triclosan MIC90s for E. coli, E. faecalis, and E. faecium isolates were 0.125, 32, and 32 mg/L, respectively. For E. coli, there was no correlation between the triclosan MIC and any drug tested. Negative correlations were detected between the triclosan MIC and levofloxacin resistance for E. faecalis, and between triclosan and vancomycin, teicoplanin, and ampicillin resistance for E. faecium. Thus, FabV homologs were the major contributor to the WW triclosan resistome and high-level TCSR was not observed in WW or clinical isolates. Elevated triclosan MICs were not positively correlated with antimicrobial resistance to any drug tested.
Collapse
|
34
|
Campaniço A, Moreira R, Lopes F. Drug discovery in tuberculosis. New drug targets and antimycobacterial agents. Eur J Med Chem 2018; 150:525-545. [DOI: 10.1016/j.ejmech.2018.03.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 01/24/2023]
|
35
|
Vosátka R, Krátký M, Vinšová J. Triclosan and its derivatives as antimycobacterial active agents. Eur J Pharm Sci 2018; 114:318-331. [DOI: 10.1016/j.ejps.2017.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/06/2017] [Accepted: 12/17/2017] [Indexed: 12/16/2022]
|
36
|
An overview on crystal structures of InhA protein: Apo-form, in complex with its natural ligands and inhibitors. Eur J Med Chem 2018; 146:318-343. [PMID: 29407960 DOI: 10.1016/j.ejmech.2018.01.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 11/23/2022]
Abstract
The enoyl-ACP reductase InhA from the mycobacterial fatty acid biosynthesis pathway has become a target of interest for the development of new anti-tubercular drugs. This protein has been identified as essential for the survival of Mycobacterium tuberculosis, the causative agent of tuberculosis, and as the main target of two pro-drugs: isoniazid, the frontline anti-tubercular drug, and ethionamide, a second-line medicine. Since most cases of resistance to isoniazid and ethionamide result from mutations in the mycobacterial activating enzyme (KatG for isoniazid and EthA for ethionamide), research of direct InhA inhibitors, avoiding the activation step, has emerged as a promising strategy for combating tuberculosis. Thereby, InhA is drawing much attention and its three-dimensional structure has been particularly studied. A better understanding of key sites of interactions responsible for InhA inhibition arises thus as an essential tool for the rational design of new potent inhibitors. In this paper, we propose an overview of the 80 available crystal structures of wild-type and mutant InhA, in its apo form, in complex with its cofactor, with an analogue of its natural ligands (C16 fatty acid and/or NADH) or with inhibitors. We will first discuss structural and mechanistic aspects in order to highlight key features of the protein before delivering thorough inventory of structures of InhA in the presence of synthetic ligands to underline the key interactions implicated in high affinity inhibition.
Collapse
|
37
|
Al-Humadi HW, Al-Saigh RJ, Al-Humadi AW. Addressing the Challenges of Tuberculosis: A Brief Historical Account. Front Pharmacol 2017; 8:689. [PMID: 29033842 PMCID: PMC5626940 DOI: 10.3389/fphar.2017.00689] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 09/14/2017] [Indexed: 02/04/2023] Open
Abstract
Tuberculosis (TB) is a highly contagious disease that still poses a threat to human health. Mycobacterium tuberculosis (MTB), the pathogen responsible for TB, uses diverse ways in order to survive in a variety of host lesions and to subsequently evade immune surveillance; as a result, fighting TB and its associated multidrug resistance has been an ongoing challenge. The aim of this review article is to summarize the historical sequence of drug development and use in the fight against TB, with a particular emphasis on the decades between World War II and the dawn of the twenty first century (2000).
Collapse
Affiliation(s)
- Hussam W. Al-Humadi
- Department of Pharmacology and Toxicology, Pharmacy College, University of Babylon, Babylon, Iraq
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Rafal J. Al-Saigh
- Department of Pharmacology and Toxicology, Pharmacy College, University of Babylon, Babylon, Iraq
| | - Ahmed W. Al-Humadi
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
38
|
Neckles C, Eltschkner S, Cummings JE, Hirschbeck M, Daryaee F, Bommineni GR, Zhang Z, Spagnuolo L, Yu W, Davoodi S, Slayden RA, Kisker C, Tonge PJ. Rationalizing the Binding Kinetics for the Inhibition of the Burkholderia pseudomallei FabI1 Enoyl-ACP Reductase. Biochemistry 2017; 56:1865-1878. [PMID: 28225601 DOI: 10.1021/acs.biochem.6b01048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is growing awareness of the link between drug-target residence time and in vivo drug activity, and there are increasing efforts to determine the molecular factors that control the lifetime of a drug-target complex. Rational alterations in the drug-target residence time require knowledge of both the ground and transition states on the inhibition reaction coordinate, and we have determined the structure-kinetic relationship for 22 ethyl- or hexyl-substituted diphenyl ethers that are slow-binding inhibitors of bpFabI1, the enoyl-ACP reductase FabI1 from Burkholderia pseudomallei. Analysis of enzyme inhibition using a two-dimensional kinetic map demonstrates that the ethyl and hexyl diphenyl ethers fall into two distinct clusters. Modifications to the ethyl diphenyl ether B ring result in changes to both on and off rates, where residence times of up to ∼700 min (∼11 h) are achieved by either ground state stabilization (PT444) or transition state destabilization (slower on rate) (PT404). By contrast, modifications to the hexyl diphenyl ether B ring result in residence times of 300 min (∼5 h) through changes in only ground state stabilization (PT119). Structural analysis of nine enzyme:inhibitor complexes reveals that the variation in structure-kinetic relationships can be rationalized by structural rearrangements of bpFabI1 and subtle changes to the orientation of the inhibitor in the binding pocket. Finally, we demonstrate that three compounds with residence times on bpFabI1 from 118 min (∼2 h) to 670 min (∼11 h) have in vivo efficacy in an acute B. pseudomallei murine infection model using the virulent B. pseudomallei strain Bp400.
Collapse
Affiliation(s)
- Carla Neckles
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| | - Sandra Eltschkner
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg , D-97080 Würzburg, Germany
| | - Jason E Cummings
- Rocky Mountain Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research and Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, Colorado 80523-0922, United States
| | - Maria Hirschbeck
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg , D-97080 Würzburg, Germany
| | - Fereidoon Daryaee
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| | - Gopal R Bommineni
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| | - Zhuo Zhang
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| | - Lauren Spagnuolo
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| | - Weixuan Yu
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| | - Shabnam Davoodi
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| | - Richard A Slayden
- Rocky Mountain Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research and Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, Colorado 80523-0922, United States
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg , D-97080 Würzburg, Germany
| | - Peter J Tonge
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| |
Collapse
|
39
|
Spagnuolo LA, Eltschkner S, Yu W, Daryaee F, Davoodi S, Knudson SE, Allen EKH, Merino J, Pschibul A, Moree B, Thivalapill N, Truglio JJ, Salafsky J, Slayden RA, Kisker C, Tonge PJ. Evaluating the Contribution of Transition-State Destabilization to Changes in the Residence Time of Triazole-Based InhA Inhibitors. J Am Chem Soc 2017; 139:3417-3429. [PMID: 28151657 DOI: 10.1021/jacs.6b11148] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A critical goal of lead compound selection and optimization is to maximize target engagement while minimizing off-target binding. Since target engagement is a function of both the thermodynamics and kinetics of drug-target interactions, it follows that the structures of both the ground states and transition states on the binding reaction coordinate are needed to rationally modulate the lifetime of the drug-target complex. Previously, we predicted the structure of the rate-limiting transition state that controlled the time-dependent inhibition of the enoyl-ACP reductase InhA. This led to the discovery of a triazole-containing diphenyl ether with an increased residence time on InhA due to transition-state destabilization rather than ground-state stabilization. In the present work, we evaluate the inhibition of InhA by 14 triazole-based diphenyl ethers and use a combination of enzyme kinetics and X-ray crystallography to generate a structure-kinetic relationship for time-dependent binding. We show that the triazole motif slows the rate of formation for the final drug-target complex by up to 3 orders of magnitude. In addition, we identify a novel inhibitor with a residence time on InhA of 220 min, which is 3.5-fold longer than that of the INH-NAD adduct formed by the tuberculosis drug, isoniazid. This study provides a clear example in which the lifetime of the drug-target complex is controlled by interactions in the transition state for inhibitor binding rather than the ground state of the enzyme-inhibitor complex, and demonstrates the important role that on-rates can play in drug-target residence time.
Collapse
Affiliation(s)
- Lauren A Spagnuolo
- Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Sandra Eltschkner
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg , 97080 Würzburg, Germany
| | - Weixuan Yu
- Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Fereidoon Daryaee
- Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Shabnam Davoodi
- Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Susan E Knudson
- Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, Colorado 80523-2025, United States
| | - Eleanor K H Allen
- Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Jonathan Merino
- Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Annica Pschibul
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg , 97080 Würzburg, Germany
| | - Ben Moree
- Biodesy, Inc. , 384 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Neil Thivalapill
- Great Neck South High School , 341 Lakeville Road, Great Neck, New York 11020, United States
| | - James J Truglio
- Great Neck South High School , 341 Lakeville Road, Great Neck, New York 11020, United States
| | - Joshua Salafsky
- Biodesy, Inc. , 384 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Richard A Slayden
- Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, Colorado 80523-2025, United States
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg , 97080 Würzburg, Germany
| | - Peter J Tonge
- Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| |
Collapse
|
40
|
Saharan VD, Mahajan SS. Development of gallic acid formazans as novel enoyl acyl carrier protein reductase inhibitors for the treatment of tuberculosis. Bioorg Med Chem Lett 2017; 27:808-815. [PMID: 28117201 DOI: 10.1016/j.bmcl.2017.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/09/2016] [Accepted: 01/10/2017] [Indexed: 01/16/2023]
Abstract
The enoyl acyl carrier protein reductase (InhA) of Mycobacterium tuberculosis (MTB) is an attractive target for developing novel antitubercular agents. A series of gallic acid formazans, were computationally designed and docked into the active site of InhA to understand their binding mode and potential to inhibit InhA. Nine compounds from the designed series were identified as potential InhA inhibitors, on the basis of good Glide score. These compounds were synthesized in the laboratory and evaluated for in vitro antitubercular activity against drug-sensitive and multi-drug resistant strains of MTB. Out of nine compounds, three compounds exhibited the most promising MIC of <2μM against the sensitive strain of MTB, H37Rv. The compounds were evaluated against five resistant strains of MTB. Most of the compounds exhibited activity superior to the standard, linezolid, against all these resistant strains. The mechanism of action of these compounds was concluded to be InhA inhibition, through InhA enzyme inhibition study. Insignificant cytotoxicity of these compounds was observed on RAW 264.7 cell line. Inactivity of all these compounds against gram positive and gram negative bacteria indicated their specificity against MTB. The compounds were further analyzed for ADME properties and showed potential as good oral drug candidates. The results clearly identified some novel, selective and specific InhA inhibitors against sensitive and resistant strains of MTB.
Collapse
Affiliation(s)
- Vanita D Saharan
- Department of Pharmaceutical Chemistry, C.U. Shah College of Pharmacy, S.N.D.T. Women's University, Sir Vithaldas Vidyavihar, Juhu Tara Road, Santacruz (West), Mumbai 400049, India.
| | - Supriya S Mahajan
- Department of Pharmaceutical Chemistry, C.U. Shah College of Pharmacy, S.N.D.T. Women's University, Sir Vithaldas Vidyavihar, Juhu Tara Road, Santacruz (West), Mumbai 400049, India
| |
Collapse
|
41
|
Inturi B, Pujar GV, Purohit MN. Recent Advances and Structural Features of Enoyl-ACP Reductase Inhibitors of Mycobacterium tuberculosis. Arch Pharm (Weinheim) 2016; 349:817-826. [PMID: 27775177 DOI: 10.1002/ardp.201600186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis enoyl-ACP reductase (InhA) has been validated as a promising target for antitubercular agents. Isoniazid (INH), the most prescribed drug to treat tuberculosis (TB), inhibits a NADH-dependent InhA that provides precursors of mycolic acids, which are components of the mycobacterial cell wall. It is a pro-drug that needs activation to form the inhibitory INH-NAD adduct by KatG coding for catalase-peroxidase. The INH resistance of M. tuberculosis is caused by mutations in KatG, which may lead to multidrug-resistant TB (MDR-TB). Hence, there is a need for new drugs that can combat MDR-TB. The rationale for the development of new drugs to combat MDR-TB strains is the design of InhA inhibitors that can bypass bioactivation by KatG. In the present review, special attention was paid to discuss the chemical nature and recent developments of direct InhA inhibitors. The InhA inhibitors reported here have significant inhibitory effects against Mtb InhA. The diphenyl ether derivatives have shown slow onset, a tight-binding mechanism, and high affinity at the InhA active site. However, some of the diphenyl ethers have significant in vitro efficacy, which fails to transform into in vivo efficacy. Among the InhA inhibitors, 4-hydroxy-2-pyridones have emerged as a new chemical class with significant InhA inhibitory activity and better pharmacokinetic parameters when compared to diphenyl ethers.
Collapse
Affiliation(s)
- Bharathkumar Inturi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Jagadguru Sri Shivarathreeshwara University, Mysore, Karnataka, India
| | - Gurubasavaraj V Pujar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Jagadguru Sri Shivarathreeshwara University, Mysore, Karnataka, India.
| | - Madhusudhan N Purohit
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Jagadguru Sri Shivarathreeshwara University, Mysore, Karnataka, India
| |
Collapse
|
42
|
Olaniyan LWB, Mkwetshana N, Okoh AI. Triclosan in water, implications for human and environmental health. SPRINGERPLUS 2016; 5:1639. [PMID: 27722057 PMCID: PMC5031584 DOI: 10.1186/s40064-016-3287-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/11/2016] [Indexed: 01/08/2023]
Abstract
Triclosan (TCS) is a broad spectrum antibacterial agent present as an active ingredient in some personal care products such as soaps, toothpastes and sterilizers. It is an endocrine disrupting compound and its increasing presence in water resources as well as in biosolid-amended soils used in farming, its potential for bioaccumulation in fatty tissues and toxicity in aquatic organisms are a cause for concern to human and environmental health. TCS has also been detected in blood, breast milk, urine and nails of humans. The significance of this is not precisely understood. Data on its bioaccumulation in humans are also lacking. Cell based studies however showed that TCS is a pro-oxidant and may be cytotoxic via a number of mechanisms. Uncoupling of oxidative phosphorylation appears to be prevailing as a toxicity mechanism though the compound's role in apoptosis has been cited. TCS is not known to be carcinogenic per se in vitro but has been reported to promote tumourigenesis in the presence of a carcinogen, in mice. Recent laboratory reports appear to support the view that TCS oestrogenicity as well as its anti-oestrogenicity play significant role in cancer progression. Results from epidemiological studies on the effect of TCS on human health have implicated the compound as responsible for certain allergies and reproductive defects. Its presence in chlorinated water also raises toxicity concern for humans as carcinogenic metabolites such as chlorophenols may be generated in the presence of the residual chlorine. In this paper, we carried out a detailed overview of TCS pollution and the implications for human and environmental health.
Collapse
Affiliation(s)
- L. W. B. Olaniyan
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape 5700 South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700 South Africa
| | - N. Mkwetshana
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700 South Africa
| | - A. I. Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape 5700 South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700 South Africa
| |
Collapse
|
43
|
Zitko J, Doležal M. Enoyl acyl carrier protein reductase inhibitors: an updated patent review (2011 – 2015). Expert Opin Ther Pat 2016; 26:1079-94. [DOI: 10.1080/13543776.2016.1211112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
44
|
Kumar V, Sobhia ME. Molecular dynamics-based investigation of InhA substrate binding loop for diverse biological activity of direct InhA inhibitors. J Biomol Struct Dyn 2016; 34:2434-52. [DOI: 10.1080/07391102.2015.1118410] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Vivek Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| | - M. Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| |
Collapse
|
45
|
Triclosan-induced genes Rv1686c-Rv1687c and Rv3161c are not involved in triclosan resistance in Mycobacterium tuberculosis. Sci Rep 2016; 6:26221. [PMID: 27193696 PMCID: PMC4872132 DOI: 10.1038/srep26221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/28/2016] [Indexed: 11/08/2022] Open
Abstract
A key issue towards developing new chemotherapeutic approaches to fight Mycobacterium tuberculosis is to understand the mechanisms underlying drug resistance. Previous studies have shown that genes Rv1686c-Rv1687c and Rv3161c, predicted to encode an ATP-binding cassette transporter and a dioxygenase respectively, are induced in the presence of triclosan and other antimicrobial compounds. Therefore a possible role in drug resistance has been suggested for the products of these genes although no functional studies have been done. The aim of the present study was to clarify the role of Rv1686c-Rv1687c and Rv3161c in M. tuberculosis resistance to triclosan and other drugs. To this end, deficient mutants and overproducing strains for both systems were constructed and their minimal inhibitory concentration (MIC) against over 20 compounds, including triclosan, was evaluated. Unexpectedly, no differences between the MIC of these strains and the wild-type H37Rv were observed for any of the compounds tested. Moreover the MIC of triclosan was not affected by efflux pump inhibitors that inhibit the activity of transporters similar to the one encoded by Rv1686c-Rv1687c. These results suggest that none of the two systems is directly involved in M. tuberculosis resistance to triclosan or to any of the antimicrobials tested.
Collapse
|
46
|
Guardia A, Gulten G, Fernandez R, Gómez J, Wang F, Convery M, Blanco D, Martínez M, Pérez-Herrán E, Alonso M, Ortega F, Rullás J, Calvo D, Mata L, Young R, Sacchettini JC, Mendoza-Losana A, Remuiñán M, Ballell Pages L, Castro-Pichel J. N-Benzyl-4-((heteroaryl)methyl)benzamides: A New Class of Direct NADH-Dependent 2-trans Enoyl-Acyl Carrier Protein Reductase (InhA) Inhibitors with Antitubercular Activity. ChemMedChem 2016; 11:687-701. [PMID: 26934341 DOI: 10.1002/cmdc.201600020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/12/2016] [Indexed: 12/14/2022]
Abstract
Isoniazid (INH) remains one of the cornerstones of antitubercular chemotherapy for drug-sensitive strains of M. tuberculosis bacteria. However, the increasing prevalence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains containing mutations in the KatG enzyme, which is responsible for the activation of INH into its antitubercular form, have rendered this drug of little or no use in many cases of drug-resistant tuberculosis. Presented herein is a novel family of antitubercular direct NADH-dependent 2-trans enoyl-acyl carrier protein reductase (InhA) inhibitors based on an N-benzyl-4-((heteroaryl)methyl)benzamide template; unlike INH, these do not require prior activation by KatG. Given their direct InhA target engagement, these compounds should be able to circumvent KatG-related resistance in the clinic. The lead molecules were shown to be potent inhibitors of InhA and showed activity against M. tuberculosis bacteria. This new family of inhibitors was found to be chemically tractable, as exemplified by the facile synthesis of analogues and the establishment of structure-activity relationships. Furthermore, a co-crystal structure of the initial hit with the enzyme is disclosed, providing valuable information toward the design of new InhA inhibitors for the treatment of MDR/XDR tuberculosis.
Collapse
Affiliation(s)
- Ana Guardia
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain.
| | - Gulcin Gulten
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard College Station, TX, 77843-2128, USA
| | - Raquel Fernandez
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Jesus Gómez
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Feng Wang
- California Institute for Biomedical Research (Calibr), 11119 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Maire Convery
- Molecular Discovery Research, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Delia Blanco
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - María Martínez
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Esther Pérez-Herrán
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Marta Alonso
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Fátima Ortega
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Joaquín Rullás
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - David Calvo
- Centro de Investigación Básica, Platform Technologies and Science, GlaxoSmithKline, Parque Tecnológico de Madrid, 28760 Tres Cantos, Madrid, Spain
| | - Lydia Mata
- Centro de Investigación Básica, Platform Technologies and Science, GlaxoSmithKline, Parque Tecnológico de Madrid, 28760 Tres Cantos, Madrid, Spain
| | - Robert Young
- Molecular Discovery Research, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard College Station, TX, 77843-2128, USA
| | - Alfonso Mendoza-Losana
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Modesto Remuiñán
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Lluís Ballell Pages
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Julia Castro-Pichel
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| |
Collapse
|
47
|
Abstract
The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.
Collapse
Affiliation(s)
- Gabriella Cavallo
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| | - Pierangelo Metrangolo
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
- VTT-Technical
Research Centre of Finland, Biologinkuja 7, 02150 Espoo, Finland
| | - Roberto Milani
- VTT-Technical
Research Centre of Finland, Biologinkuja 7, 02150 Espoo, Finland
| | - Tullio Pilati
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| | - Arri Priimagi
- Department
of Chemistry and Bioengineering, Tampere
University of Technology, Korkeakoulunkatu 8, FI-33101 Tampere, Finland
| | - Giuseppe Resnati
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| | - Giancarlo Terraneo
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| |
Collapse
|
48
|
Ertan-Bolelli T, Yildiz İ, Ozgen-Ozgacar S. Synthesis, molecular docking and antimicrobial evaluation of novel benzoxazole derivatives. Med Chem Res 2016. [DOI: 10.1007/s00044-015-1499-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
Giuliano CA, Rybak MJ. Efficacy of triclosan as an antimicrobial hand soap and its potential impact on antimicrobial resistance: a focused review. Pharmacotherapy 2016; 35:328-36. [PMID: 25809180 DOI: 10.1002/phar.1553] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Triclosan is a synthetic biocide found in many household products, including antimicrobial hand soap. Levels of triclosan have been found throughout the environment and in human urine, blood, and even breast milk. Increasing levels of exposure to triclosan have led to concerns over the development of resistance to triclosan and cross-resistance to other antimicrobials. We performed a literature search to assess whether the widespread use of triclosan displays a favorable benefit: risk ratio, defined by evaluation of triclosan's efficacy as an antimicrobial hand soap and its potential effect on the development of antimicrobial resistance. Data from laboratory-based studies regarding the efficacy of triclosan are conflicting, although well-designed studies suggest no significant difference in efficacy over nonantimicrobial soap. In addition, when triclosan was introduced in a community setting, no beneficial effects were observed on the reduction of infections over nonantimicrobial soap. Resistance to triclosan and cross-resistance to antimicrobials have been consistently demonstrated in laboratory settings, although overall resistance rates and cross-resistance rates in the community setting are low. Based on the available evidence, the risk of potential antimicrobial resistance outweighs the benefit of widespread triclosan use in antimicrobial soaps.
Collapse
Affiliation(s)
- Christopher A Giuliano
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | | |
Collapse
|
50
|
Inturi B, Pujar GV, Purohit MN, Iyer VB, G. S. S, Kulkarni M. Design, synthesis and evaluation of diphenyl ether analogues as antitubercular agents. RSC Adv 2016. [DOI: 10.1039/c6ra19821j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We herein report the investigation of new diphenyl ethers asMycobacterium tuberculosisenoyl-acyl carrier protein reductase (InhA) inhibitors by structure-based drug design approach.
Collapse
Affiliation(s)
- Bharathkumar Inturi
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- Jagadguru Sri Shivarathreeshwara University
- Mysore-570015
- India
| | - Gurubasavaraj V. Pujar
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- Jagadguru Sri Shivarathreeshwara University
- Mysore-570015
- India
| | - Madhusudhan N. Purohit
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- Jagadguru Sri Shivarathreeshwara University
- Mysore-570015
- India
| | - Viswanathan B. Iyer
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- Jagadguru Sri Shivarathreeshwara University
- Mysore-570015
- India
| | - Sowmya G. S.
- Department of Microbiology
- JSS Medical College and Hospital
- Jagadguru Sri Shivarathreeshwara University
- Mysore-570015
- India
| | - Madhuri Kulkarni
- Department of Microbiology
- JSS Medical College and Hospital
- Jagadguru Sri Shivarathreeshwara University
- Mysore-570015
- India
| |
Collapse
|