1
|
Zhang LY, Zhang SY, Wen R, Zhang TN, Yang N. Role of histone deacetylases and their inhibitors in neurological diseases. Pharmacol Res 2024; 208:107410. [PMID: 39276955 DOI: 10.1016/j.phrs.2024.107410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Histone deacetylases (HDACs) are zinc-dependent deacetylases that remove acetyl groups from lysine residues of histones or form protein complexes with other proteins for transcriptional repression, changing chromatin structure tightness, and inhibiting gene expression. Recent in vivo and in vitro studies have amply demonstrated the critical role of HDACs in the cell biology of the nervous system during both physiological and pathological processes and have provided new insights into the conduct of research on neurological disease targets. In addition, in vitro and in vivo studies on HDAC inhibitors show promise for the treatment of various diseases. This review summarizes the regulatory mechanisms of HDAC and the important role of its downstream targets in nervous system diseases, and summarizes the therapeutic mechanisms and efficacy of HDAC inhibitors in various nervous system diseases. Additionally, the current pharmacological situation, problems, and developmental prospects of HDAC inhibitors are described. A better understanding of the pathogenic mechanisms of HDACs in the nervous system may reveal new targets for therapeutic interventions in diseases and help to relieve healthcare pressure through preventive measures.
Collapse
Affiliation(s)
- Li-Ying Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Sen-Yu Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ri Wen
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Ni Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
2
|
Li Y, Bai H, Liu W, Zhou W, Gu H, Zhao P, Zhu M, Li Y, Yan X, Zhao N, Huang X. Intergenerational epigenetic inheritance mediated by MYS-2/MOF in the pathogenesis of Alzheimer's disease. iScience 2024; 27:110588. [PMID: 39220410 PMCID: PMC11363564 DOI: 10.1016/j.isci.2024.110588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/08/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Although autosomal-dominant inheritance is believed an important cause of familial clustering Alzheimer's disease (FAD), it covers only a small proportion of FAD incidence, and so we investigated epigenetic memory as an alternative mechanism to contribute for intergenerational AD pathogenesis. Our data in vivo showed that mys-2 of Caenorhabditis elegans that encodes a putative MYST acetyltransferase responsible for H4K16 acetylation modulated AD occurrence. The phenotypic improvements in the parent generation caused by mys-2 disfunction were passed to their progeny due to epigenetic memory, which resulted in similar H4K16ac levels among the candidate target genes of MYS-2 and similar gene expression patterns of the AD-related pathways. Furthermore, the ROS/CDK-5/ATM pathway functioned as an upstream activator of MYS-2. Our study indicated that MYS-2/MOF could be inherited intergenerationally via epigenetic mechanisms in C. elegans and mammalian cell of AD model, providing a new insight into our understanding of the etiology and inheritance of FAD.
Collapse
Affiliation(s)
- Yuhong Li
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
- College of Biological Resources and Food Engineering, Qujing Normal University, Qujing 655000, China
| | - Hua Bai
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
- School of Public Health, Kunming Medical University, Kunming 650500, China
| | - Wenwen Liu
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Wenhui Zhou
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Huan Gu
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Peiji Zhao
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Man Zhu
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
- College of Biological Resources and Food Engineering, Qujing Normal University, Qujing 655000, China
| | - Yixin Li
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Xinyi Yan
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Ninghui Zhao
- Neurosurgery of the Second Hospital Affiliated with Kunming Medical University, Kunming 650101, China
| | - Xiaowei Huang
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| |
Collapse
|
3
|
Shoba VM, Munkanatta Godage DNP, Chaudhary SK, Deb A, Siriwardena SU, Choudhary A. Synthetic Reprogramming of Kinases Expands Cellular Activities of Proteins. Angew Chem Int Ed Engl 2022; 61:e202202770. [DOI: 10.1002/anie.202202770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Veronika M. Shoba
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Dhanushka N. P. Munkanatta Godage
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Santosh K. Chaudhary
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Arghya Deb
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Sachini U. Siriwardena
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Divisions of Renal Medicine and Engineering Brigham and Women's Hospital Boston MA 02115 USA
| |
Collapse
|
4
|
Shoba VM, Munkanatta Godage DNP, Chaudhary SK, Deb A, Siriwardena SU, Choudhary A. Synthetic Reprogramming of Kinases Expands Cellular Activities of Proteins. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Veronika M. Shoba
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Dhanushka N. P. Munkanatta Godage
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Santosh K. Chaudhary
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Arghya Deb
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Sachini U. Siriwardena
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Divisions of Renal Medicine and Engineering Brigham and Women's Hospital Boston MA 02115 USA
| |
Collapse
|
5
|
Abstract
Neuroepigenetics, a new branch of epigenetics, plays an important role in the regulation of gene expression. Neuroepigenetics is associated with holistic neuronal function and helps in formation and maintenance of memory and learning processes. This includes neurodevelopment and neurodegenerative defects in which histone modification enzymes appear to play a crucial role. These modifications, carried out by acetyltransferases and deacetylases, regulate biologic and cellular processes such as apoptosis and autophagy, inflammatory response, mitochondrial dysfunction, cell-cycle progression and oxidative stress. Alterations in acetylation status of histone as well as non-histone substrates lead to transcriptional deregulation. Histone deacetylase decreases acetylation status and causes transcriptional repression of regulatory genes involved in neural plasticity, synaptogenesis, synaptic and neural plasticity, cognition and memory, and neural differentiation. Transcriptional deactivation in the brain results in development of neurodevelopmental and neurodegenerative disorders. Mounting evidence implicates histone deacetylase inhibitors as potential therapeutic targets to combat neurologic disorders. Recent studies have targeted naturally-occurring biomolecules and micro-RNAs to improve cognitive defects and memory. Multi-target drug ligands targeting HDAC have been developed and used in cell-culture and animal-models of neurologic disorders to ameliorate synaptic and cognitive dysfunction. Herein, we focus on the implications of histone deacetylase enzymes in neuropathology, their regulation of brain function and plausible involvement in the pathogenesis of neurologic defects.
Collapse
|
6
|
Katti S, Igumenova TI. Structural insights into C1-ligand interactions: Filling the gaps by in silico methods. Adv Biol Regul 2021; 79:100784. [PMID: 33526356 PMCID: PMC8867786 DOI: 10.1016/j.jbior.2020.100784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023]
Abstract
Protein Kinase C isoenzymes (PKCs) are the key mediators of the phosphoinositide signaling pathway, which involves regulated hydrolysis of phosphatidylinositol (4,5)-bisphosphate to diacylglycerol (DAG) and inositol-1,4,5-trisphosphate. Dysregulation of PKCs is implicated in many human diseases making this class of enzymes an important therapeutic target. Specifically, the DAG-sensing cysteine-rich conserved homology-1 (C1) domains of PKCs have emerged as promising targets for pharmaceutical modulation. Despite significant progress, the rational design of the C1 modulators remains challenging due to difficulties associated with structure determination of the C1-ligand complexes. Given the dearth of experimental structural data, computationally derived models have been instrumental in providing atomistic insight into the interactions of the C1 domains with PKC agonists. In this review, we provide an overview of the in silico approaches for seven classes of C1 modulators and outline promising future directions.
Collapse
Affiliation(s)
- Sachin Katti
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, United States
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, United States.
| |
Collapse
|
7
|
Vaidya GN, Rana P, Venkatesh A, Chatterjee DR, Contractor D, Satpute DP, Nagpure M, Jain A, Kumar D. Paradigm shift of "classical" HDAC inhibitors to "hybrid" HDAC inhibitors in therapeutic interventions. Eur J Med Chem 2020; 209:112844. [PMID: 33143937 DOI: 10.1016/j.ejmech.2020.112844] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
'Epigenetic' regulation of genes via post-translational modulation of proteins is the current mainstay approach for the disease therapies, particularly explored in the Histone Deacetylase (HDAC) class of enzymes. Mainly sight saw in cancer chemotherapeutics, HDAC inhibitors have also found a promising role in other diseases (neurodegenerative disorders, cardiovascular diseases, and viral infections) and successfully entered in various combination therapies (pre-clinical/clinical stages). The prevalent flexibility in the structural design of HDAC inhibitors makes them easily tuneable to merge with other pharmacophore modules for generating multi-targeted single hybrids as a novel tactic to overcome drawbacks of polypharmacy. Herein, we reviewed the putative role of prevalent HDAC hybrids inhibitors in the current and prospective stage as a translational approach to overcome the limitations of the existing conventional drug candidates (parent molecule) when used either alone (drug resistance, solubility issues, adverse side effects, selectivity profile) or in combination (pharmacokinetic interactions, patient compliance) for treating various diseases.
Collapse
Affiliation(s)
- Gargi Nikhil Vaidya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Pooja Rana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Ashwini Venkatesh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Deep Rohan Chatterjee
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Darshan Contractor
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Dinesh Parshuram Satpute
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Mithilesh Nagpure
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India; Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, India.
| | - Dinesh Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
8
|
Pharmacological intervention of histone deacetylase enzymes in the neurodegenerative disorders. Life Sci 2020; 243:117278. [PMID: 31926248 DOI: 10.1016/j.lfs.2020.117278] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023]
Abstract
Reversal of aging symptoms and related disorders are the challenging task where epigenetic is a crucial player that includes DNA methylation, histone modification; chromatin remodeling and regulation that are linked to the progression of various neurodegenerative disorders (NDDs). Overexpression of various histone deacetylase (HDACs) can activate Glycogen synthase kinase 3 which promotes the hyperphosphorylation of tau and inhibits its degradation. While HDAC is important for maintaining the neuronal morphology and brain homeostasis, at the same time, these enzymes are promoting neurodegeneration, if it is deregulated. Different experimental models have also confirmed the neuroprotective effects caused by HDAC enzymes through the regulation of neuronal apoptosis, inflammatory response, DNA damage, cell cycle regulation, and metabolic dysfunction. Apart from transcriptional regulation, protein-protein interaction, histone post-translational modifications, deacetylation mechanism of non-histone protein and direct association with disease proteins have been linked to neuronal imbalance. Histone deacetylases inhibitors (HDACi) can be able to alter gene expression and shown its efficacy on experimental models, and in clinical trials for NDD's and found to be a very promising therapeutic agent with certain limitation, for instance, non-specific target effect, isoform-selectivity, specificity, and limited number of predicted biomarkers. Herein, we discussed (i) the catalytic mechanism of the deacetylation process of various HDAC's in in vivo and in vitro experimental models, (ii) how HDACs are participating in neuroprotection as well as in neurodegeneration, (iii) a comprehensive role of HDACi in maintaining neuronal homeostasis and (iv) therapeutic role of biomolecules to modulate HDACs.
Collapse
|
9
|
|
10
|
Lu J, Zhang H, Chen X, Zou Y, Li J, Wang L, Wu M, Zang J, Yu Y, Zhuang W, Xia Q, Wang J. A small molecule activator of SIRT3 promotes deacetylation and activation of manganese superoxide dismutase. Free Radic Biol Med 2017; 112:287-297. [PMID: 28711502 DOI: 10.1016/j.freeradbiomed.2017.07.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/10/2017] [Indexed: 01/04/2023]
Abstract
The modulation of protein acetylation network is a promising strategy for life span extension and disease treatment (Sabari et al., 2016; Giblin et al., 2014) [1,2]. A variety of small molecules have been developed to target deacetylases, but extremely few of these molecules are capable of activating the mitochondrial NAD-dependent deacetylase sirtuin-3 (SIRT3) (Gertz and Steegborn, 2016; Scholz et al., 2015) [3,4]. Manganese superoxide dismutase (MnSOD) is the major superoxide scavenger in mitochondria, whose activity is regulated by SIRT3-mediated deacetylation, particularly at the Lys68 site (Chen et al., 2011) [5]. To investigate the influence of Lys68 acetylation on MnSOD activity, we produced a mutant MnSOD protein-bearing N-acetyllysine (AcK) at its Lys68 position through the genetic code expansion approach. We solved the crystal structure of this acetylated MnSOD (MnSODK68AcK), thus revealing the structural and electrostatic basis for the significant activity decrease upon Lys68 acetylation. On the basis of an assay we developed for the SIRT3-mediated deacetylation of MnSODK68AcK, we identified a novel SIRT3 activator, 7-hydroxy-3-(4'-methoxyphenyl) coumarin (C12), which binds to SIRT3 with high affinity and can promote the deacetylation and activation of MnSOD. C12 adds to the current repertoire of extremely few SIRT3 activators, which are potentially valuable for treating a wide array of diseases via modulating the cellular acetylome.
Collapse
Affiliation(s)
- Jiaqi Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hua Zhang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Huhhot, 010021,China
| | - Xian Chen
- Department of Physics, Jilin University, Changchun 130012, China
| | - Yong Zou
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Tianhe District, Guangzhou 510650, China
| | - Jiasong Li
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Li Wang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Minhao Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianye Zang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Yu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wei Zhuang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Qing Xia
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Jiangyun Wang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
11
|
Krishna K, Behnisch T, Sajikumar S. Inhibition of Histone Deacetylase 3 Restores Amyloid-β Oligomer-Induced Plasticity Deficit in Hippocampal CA1 Pyramidal Neurons. J Alzheimers Dis 2016; 51:783-91. [PMID: 26890755 DOI: 10.3233/jad-150838] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD) are associated with alterations in epigenetic factors leading to cognitive decline. Histone deacetylase 3 (HDAC3) is a known critical epigenetic negative regulator of learning and memory. In this study, attenuation of long-term potentiation by amyloid-β oligomer, and its reversal by specific HDAC3 inhibitor RGFP966, was performed in rat CA1 pyramidal neurons using whole cell voltage-clamp and field recording techniques. Our findings provide the first evidence that amyloid-β oligomer-induced synaptic plasticity impairment can be prevented by inhibition of HDAC3 enzyme both at the single neuron as well as in a population of neurons, thus identifying HDAC3 as a potential target for ameliorating AD related plasticity impairments.
Collapse
Affiliation(s)
- Kumar Krishna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thomas Behnisch
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology/Aging Program, Life Sciences Institute (LSI), National University of Singapore, Singapore
| |
Collapse
|
12
|
Yang F, Peng S, Li Y, Su L, Peng Y, Wu J, Chen H, Liu M, Yi Z, Chen Y. A hybrid of thiazolidinone with the hydroxamate scaffold for developing novel histone deacetylase inhibitors with antitumor activities. Org Biomol Chem 2016; 14:1727-35. [PMID: 26732459 DOI: 10.1039/c5ob02250a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A series of novel histone deacetylase (HDAC) inhibitors were designed, synthesized and evaluated based on the strategies of a hybrid of the classic pharmacophore of HDAC inhibitors with the thiazolidinone scaffold. Some of the compounds 12i showed potent HDAC1 inhibition with nM IC50 values, more importantly, compound displayed much better anti-metastatic effects than vorinostat (SAHA) against migration of the A549 cell line. Further mechanism exploration implied that compound 12i may inhibit tumor metastasis via modulating the epithelial-mesenchymal transition (EMT) and upregulating the acetylation of α-tubulin.
Collapse
Affiliation(s)
- Feifei Yang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China. and School of biological science and technology, University of Jinan, Jinan, Shandong Province 250022, China
| | - Shihong Peng
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Yunqi Li
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Liqiang Su
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Yangrui Peng
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jing Wu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Huang Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
13
|
Talman V, Pascale A, Jäntti M, Amadio M, Tuominen RK. Protein Kinase C Activation as a Potential Therapeutic Strategy in Alzheimer's Disease: Is there a Role for Embryonic Lethal Abnormal Vision-like Proteins? Basic Clin Pharmacol Toxicol 2016; 119:149-60. [PMID: 27001133 DOI: 10.1111/bcpt.12581] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/04/2016] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is an irreversible and progressive neurodegenerative disorder. It affects predominantly brain areas that are critical for memory and learning and is characterized by two main pathological hallmarks: extracellular amyloid plaques and intracellular neurofibrillary tangles. Protein kinase C (PKC) has been classified as one of the cognitive kinases controlling memory and learning. By regulating several signalling pathways involved in amyloid and tau pathologies, it also plays an inhibitory role in AD pathophysiology. Among downstream targets of PKC are the embryonic lethal abnormal vision (ELAV)-like RNA-binding proteins that modulate the stability and the translation of specific target mRNAs involved in synaptic remodelling linked to cognitive processes. This MiniReview summarizes the current evidence on the role of PKC and ELAV-like proteins in learning and memory, highlighting how their derangement can contribute to AD pathophysiology. This last aspect emphasizes the potential of pharmacological activation of PKC as a promising therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Virpi Talman
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alessia Pascale
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maria Jäntti
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Marialaura Amadio
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Raimo K Tuominen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Ganesan A. Multitarget Drugs: an Epigenetic Epiphany. ChemMedChem 2016; 11:1227-41. [PMID: 26891251 DOI: 10.1002/cmdc.201500394] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/28/2016] [Indexed: 12/22/2022]
Abstract
Epigenetics refers to changes in a biological phenotype that are not due to an underlying change in genotype. In eukaryotes, epigenetics involves a set of chemical modifications of the DNA and the histone proteins in nucleosomes. These dynamic changes are carried out by enzymes and modulate protein-protein and protein-nucleic acid interactions to determine whether specific genes are expressed or silenced. Both the epigenetic enzymes and recognition domains are currently important drug discovery targets, particularly for the treatment of cancer. This review summarizes the progress of epigenetic targets that have reached a clinical stage: DNA methyltransferases, histone deacetylases, lysine methyltransferases, lysine demethylases, and bromodomains; this is followed by a comprehensive survey of multitarget drugs that have included an epigenetic target as one of their mechanisms of action.
Collapse
Affiliation(s)
- A Ganesan
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
15
|
Bang SR, Ambavade SD, Jagdale PG, Adkar PP, Waghmare AB, Ambavade PD. Lacosamide reduces HDAC levels in the brain and improves memory: Potential for treatment of Alzheimer's disease. Pharmacol Biochem Behav 2015; 134:65-9. [PMID: 25931268 DOI: 10.1016/j.pbb.2015.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 04/10/2015] [Accepted: 04/15/2015] [Indexed: 11/28/2022]
Abstract
Lacosamide, a histone deacetylase (HDAC) inhibitor, has been approved for the treatment of epilepsy. Some HDAC inhibitors have been proven effective for the treatment of memory disorders. The present investigation was designed to evaluate the effect of lacosamide on memory and brain HDAC levels. The effect on memory was evaluated in animals with scopolamine-induced amnesia using the elevated plus maze, object recognition test, and radial arm maze. The levels of acetylcholinesterase and HDAC in the cerebral cortex were evaluated. Lacosamide at doses of 10 and 30mg/kg significantly reduced the transfer latency in the elevated plus maze. Lacosamide at a dose of 30mg/kg significantly increased the time spent with a familiar object in the object recognition test at the 24h interval and decreased the time spent in the baited arm. Moreover, at this dose, the number of errors in the radial arm maze at 3 and 24h intervals was minimized and a reduction in the level of HDAC1, but not acetylcholinesterase, was observed in the cerebral cortex. These effects of lacosamide are equivalent to those of piracetam at a dose of 300mg/kg. These results suggest that lacosamide at a 30mg/kg dose improves disrupted memory, possibly by inhibiting HDAC, and could be used to treat amnesic symptoms of Alzheimer's disease.
Collapse
Affiliation(s)
- Shraddha R Bang
- Department of Pharmacology, JSPM's Jayawantrao Sawant College of Pharmacy and Research(1), Handewadi Road, Hadapsar, Pune 411028, India
| | - Shirishkumar D Ambavade
- Department of Pharmacology, JSPM's Jayawantrao Sawant College of Pharmacy and Research(1), Handewadi Road, Hadapsar, Pune 411028, India.
| | - Priti G Jagdale
- Department of Pharmacology, JSPM's Jayawantrao Sawant College of Pharmacy and Research(1), Handewadi Road, Hadapsar, Pune 411028, India
| | - Prafulla P Adkar
- Department of Pharmacology, JSPM's Jayawantrao Sawant College of Pharmacy and Research(1), Handewadi Road, Hadapsar, Pune 411028, India
| | - Arun B Waghmare
- Haffkine Biopharmaceutical Corporation Ltd., Pimpri, Pune 18, India
| | | |
Collapse
|
16
|
Kim HK, Kim MG, Leem KH. Collagen hydrolysates increased osteogenic gene expressions via a MAPK signaling pathway in MG-63 human osteoblasts. Food Funct 2014; 5:573-8. [PMID: 24496382 DOI: 10.1039/c3fo60509d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study investigated the effects of CHs on osteogenic activities and MAPK-regulation on bone matrix gene expressions. The effects of CHs on cell proliferation, alkaline phosphatase (ALP) activity, collagen synthesis, and mineralization were measured in human osteoblastic MG-63 cells. Activation of MAPKs and downstream transcription factors such as extracellular-signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase 1/2 (JNK1/2), p38, ELK1, and cJUN was examined using Western blot analysis. The expressions of osteogenic genes were measured by quantitative real-time PCR. CHs dose-dependently increased MG-63 cell proliferation, ALP activity, collagen synthesis, and calcium deposition. CHs activated ERK1/2, JNK1/2, p38, and ELK1 phosphorylation except cJUN. The COL1A1 (collagen, type I, alpha 1), ALPL (alkaline phosphatase), BGLAP (osteocalcin), and SPP1 (secreted phosphoprotein 1, osteopontin) gene expressions were increased by CH treatment. The ERK1/2 inhibitor (PD98509) blocked the CH-induced COL1A1 and ALPL gene expression, as well as ELK1 phosphorylation. The JNK1/2 inhibitor (SP600125) abolished CH-induced COL1A1 expression. The p38 inhibitor (SB203580) blocked CH-induced COL1A1 and SPP1 gene expression. In conclusion, CH treatment stimulates the osteogenic activities and increases bone matrix gene expressions via the MAPK/ELK1 signaling pathway. These results could provide a mechanistic explanation for the bone-strengthening effects of CHs.
Collapse
Affiliation(s)
- Hye Kyung Kim
- Department of Food & Biotechnology, Hanseo University, Seosan, Chungnam 356-706, South Korea
| | | | | |
Collapse
|
17
|
Prusevich P, Kalin JH, Ming SA, Basso M, Givens J, Li X, Hu J, Taylor MS, Cieniewicz AM, Hsiao PY, Huang R, Roberson H, Adejola N, Avery LB, Casero RA, Taverna SD, Qian J, Tackett AJ, Ratan RR, McDonald OG, Feinberg AP, Cole PA. A selective phenelzine analogue inhibitor of histone demethylase LSD1. ACS Chem Biol 2014; 9:1284-93. [PMID: 24707965 PMCID: PMC4076021 DOI: 10.1021/cb500018s] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Lysine-specific
demethylase 1 (LSD1) is an epigenetic enzyme that
oxidatively cleaves methyl groups from monomethyl and dimethyl Lys4
of histone H3 (H3K4Me1, H3K4Me2) and can contribute to gene silencing.
This study describes the design and synthesis of analogues of a monoamine
oxidase antidepressant, phenelzine, and their LSD1 inhibitory properties.
A novel phenelzine analogue (bizine) containing a phenyl-butyrylamide
appendage was shown to be a potent LSD1 inhibitor in vitro and was selective versus monoamine oxidases A/B and the LSD1 homologue,
LSD2. Bizine was found to be effective at modulating bulk histone
methylation in cancer cells, and ChIP-seq experiments revealed a statistically
significant overlap in the H3K4 methylation pattern of genes affected
by bizine and those altered in LSD1–/– cells. Treatment
of two cancer cell lines, LNCaP and H460, with bizine conferred a
reduction in proliferation rate, and bizine showed additive to synergistic
effects on cell growth when used in combination with two out of five
HDAC inhibitors tested. Moreover, neurons exposed to oxidative stress
were protected by the presence of bizine, suggesting potential applications
in neurodegenerative disease.
Collapse
Affiliation(s)
| | | | | | - Manuela Basso
- Burke
Medical Research Institute, Departments of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10065, United States
| | - Jeffrey Givens
- Department
of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | - Alan J. Tackett
- Department
of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Rajiv R. Ratan
- Burke
Medical Research Institute, Departments of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10065, United States
| | - Oliver G. McDonald
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | | | | |
Collapse
|
18
|
Wang H, Nefzi A, Fields GB, Lakshmana MK, Minond D. AlphaLISA-based high-throughput screening assay to measure levels of soluble amyloid precursor protein α. Anal Biochem 2014; 459:24-30. [PMID: 24857774 DOI: 10.1016/j.ab.2014.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/23/2014] [Accepted: 05/11/2014] [Indexed: 01/14/2023]
Abstract
Activation of nonamyloidogenic processing of amyloid precursor protein (APP) has been hypothesized to be a viable approach for Alzheimer's disease drug discovery. However, until recently, the lack of HTS-compatible assay technologies precluded large scale screening efforts to discover molecules that potentiate nonamyloidogenic pathways. We have developed an HTS-compatible assay based on AlphaLISA technology that quantitatively detects soluble APPα (sAPPα), a marker of nonamyloidogenic processing of APP, released from live cells in low volume, 384-well plates. The assay exhibited good QC parameters (Z'>0.5, S/B>2). A pilot screen of 801 compounds yielded a novel chemotype that increased the release of sAPPα 2-fold at 5μM. These results suggest that the AlphaLISA-based HTS assay is robust and sensitive and can be used to screen large compound collections to discover molecules that potentiate the release of sAPPα. Additionally, we demonstrated that increase of APP processing by nonamyloidogenic pathways will result in decrease of release of amyloidogenic Aβ40 fragments.
Collapse
Affiliation(s)
- Hongjie Wang
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, 34987 FL, USA
| | - Adel Nefzi
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, 34987 FL, USA
| | - Gregg B Fields
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, 34987 FL, USA
| | - Madepalli K Lakshmana
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, 34987 FL, USA
| | - Dmitriy Minond
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, 34987 FL, USA.
| |
Collapse
|
19
|
Noh H, Seo H. Age-dependent effects of valproic acid in Alzheimer's disease (AD) mice are associated with nerve growth factor (NGF) regulation. Neuroscience 2014; 266:255-65. [PMID: 24568732 DOI: 10.1016/j.neuroscience.2014.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/08/2014] [Accepted: 02/11/2014] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that causes cognitive impairment. Major pathophysiological AD characteristics include numerous senile plaque, neurofibrillary tangles, and neuronal loss in the specific regions of patients' brains. In this study, we aimed to understand disease stage-dependent regulation of histone modification for the expression of specific markers in plasma and the hippocampus of in vivo AD model. Since the control of histone acetylation/deacetylation has been studied as one of major epigenetic regulatory mechanisms for specific gene expression, we detected the effects of histone deacetylase (HDAC) inhibitor on marker expression and neuroprotection in in vivo AD model mice. We determined the effects of valproic acid (VPA, HDAC inhibitor), on the levels of cytokines, secreted form of APP (sAPP), nerve growth factor (NGF), and cognitive function in Tg6799 AD mice in three different disease stages (1month: pre-symptomatic; 5months: early symptomatic; and 10months: late-symptomatic stages). VPA decreased the mRNA levels of nuclear factor kappaB (NF-κB) and IL-1ß in the plasma of Tg6799 mice compared to vehicle control at 10months of age. VPA increased the protein levels of NGF in the hippocampus of Tg6799 mice at 5 and 10months of age. In addition, VPA decreased escape latencies of Tg6799 mice at 5 and 10months of age in Morris water maze assessment. Taken together, HDAC inhibition is a promising therapeutic target for AD and it needs to be considered in an age-dependent and/or stage-dependent manner.
Collapse
Affiliation(s)
- H Noh
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea
| | - H Seo
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
20
|
Kim JH, Jung TY, Seo J, Lee S, Kim MG, Leem KH, Lim SC. Involvement of MAPK signaling pathway in the osteogenic gene expressions of Cervi Pantotrichum Cornu in MG-63 human osteoblast-like cells. Life Sci 2013; 94:45-53. [PMID: 24239640 DOI: 10.1016/j.lfs.2013.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/28/2013] [Accepted: 11/01/2013] [Indexed: 11/20/2022]
Abstract
AIMS The purposes of this study were to determine whether Cervi Pantotrichum Cornu (CPC) has osteogenic activities in human osteoblastic MG-63 cells and to investigate the underlying molecular mechanism. MAIN METHODS The effects of CPC on alkaline phosphatase activity, collagen synthesis, and calcium deposits were measured. The COL1A1, ALPL, BGLAP, and SPP1 expressions were measured by real-time PCR. Phosphorylated MAP kinases (ERK1/2, JNK1/2, p38, ELK1, and cJUN) were studied by western blot analysis. The involvement of MAPK pathway in osteogenic gene expressions was determined by using each selective MAPK inhibitor (PD98059, SP600125, and SB203580). KEY FINDINGS CPC increased alkaline phosphatase activity, collagen synthesis, and calcium deposits. CPC activated ERK1/2, JNK1/2, p38, and ELK1 phosphorylation except cJUN. CPC increased the COL1A1, ALPL, BGLAP, and SPP1 gene expressions. The elevated COL1A1 and BGLAP expressions were inhibited by PD98059, SP600125 or SB203580. The elevated ALPL expression was blocked by SB203580. The elevated SPP1 expression was inhibited by SP600125 or SB203580. CPC increased COL1A1 and BGLAP expressions via ERK1/2, JNK1/2, and p38 MAPKs pathways and SPP1 expression via JNK1/2 and p38 pathways. p38 pathway is needed for ALPL expression. SIGNIFICANCE These results imply that MAPK signaling pathway is an indispensable factor for bone matrix genes expression of CPC in MG-63 human osteoblast-like cells.
Collapse
Affiliation(s)
- Jee Hyun Kim
- Dept. of Acupuncture & Moxibustion, College of Korean Medicine, Daegu Haany University, Kyeongbuk 712-715, Republic of Korea
| | - Tae Young Jung
- Dept. of Diagnostics, College of Korean Medicine, Daegu Haany University, Kyeongbuk 712-715, Republic of Korea
| | - Jungchul Seo
- Comprehensive and Integrative Medicine Institute, Daegu 705-718, Republic of Korea
| | - Sena Lee
- College of Korean Medicine, Semyung University, Chungbuk 390-711, Republic of Korea
| | - Myung-Gyou Kim
- College of Korean Medicine, Semyung University, Chungbuk 390-711, Republic of Korea
| | - Kang-Hyun Leem
- College of Korean Medicine, Semyung University, Chungbuk 390-711, Republic of Korea.
| | - Sung Chul Lim
- Dept. of Acupuncture & Moxibustion, College of Korean Medicine, Daegu Haany University, Kyeongbuk 712-715, Republic of Korea.
| |
Collapse
|
21
|
Wagner FF, Weїwer M, Lewis MC, Holson EB. Small molecule inhibitors of zinc-dependent histone deacetylases. Neurotherapeutics 2013; 10:589-604. [PMID: 24101253 PMCID: PMC3805861 DOI: 10.1007/s13311-013-0226-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lysine acetylation is an ancient, evolutionarily conserved, reversible post-translational modification. A multitude of diverse cellular functions are regulated by this dynamic modification, including energy and metabolism, protein folding, transcription, and translation. Gene expression can be manipulated through changes in histone acetylation status, and this process is controlled by the function of 2 opposing enzymes: histone acetyl transferases and histone deacetylases (HDACs). The zinc-dependent HDACs are a family of hydrolases that remove acetyl groups from lysines, and their function can be modulated by the action of small molecule ligands. Inhibition through competitive binding of the catalytic domain of these enzymes has been achieved by a diverse array of small molecule chemotypes. Structural biology has aided the development of potent, and in some cases highly isoform-selective, inhibitors that have demonstrated utility in a number of neurological disease models. Continued development and characterization of highly optimized small molecule inhibitors of HDAC enzymes will help refine our understanding of their function and, optimistically, lead to novel therapeutic treatment alternatives for a host of neurological disorders.
Collapse
Affiliation(s)
- Florence F. Wagner
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142 USA
| | - Michel Weїwer
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142 USA
| | - Michael C. Lewis
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142 USA
| | - Edward B. Holson
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142 USA
| |
Collapse
|
22
|
Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer's disease: Past, present and future. Neuropharmacology 2013; 76 Pt A:27-50. [PMID: 23891641 DOI: 10.1016/j.neuropharm.2013.07.004] [Citation(s) in RCA: 531] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 06/26/2013] [Accepted: 07/02/2013] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. The etiology is multifactorial, and pathophysiology of the disease is complex. Data indicate an exponential rise in the number of cases of AD, emphasizing the need for developing an effective treatment. AD also imposes tremendous emotional and financial burden to the patient's family and community. The disease has been studied over a century, but acetylcholinesterase inhibitors and memantine are the only drugs currently approved for its management. These drugs provide symptomatic improvement alone but do less to modify the disease process. The extensive insight into the molecular and cellular pathomechanism in AD over the past few decades has provided us significant progress in the understanding of the disease. A number of novel strategies that seek to modify the disease process have been developed. The major developments in this direction are the amyloid and tau based therapeutics, which could hold the key to treatment of AD in the near future. Several putative drugs have been thoroughly investigated in preclinical studies, but many of them have failed to produce results in the clinical scenario; therefore it is only prudent that lessons be learnt from the past mistakes. The current rationales and targets evaluated for therapeutic benefit in AD are reviewed in this article. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- R Anand
- Department of Biochemistry, Christian Medical College, Vellore 632002, Tamilnadu, India.
| | | | | |
Collapse
|
23
|
Hong-Qi Y, Zhi-Kun S, Sheng-Di C. Current advances in the treatment of Alzheimer's disease: focused on considerations targeting Aβ and tau. Transl Neurodegener 2012; 1:21. [PMID: 23210837 PMCID: PMC3514124 DOI: 10.1186/2047-9158-1-21] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 10/23/2012] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that impairs mainly the memory and cognitive function in elderly. Extracellular beta amyloid deposition and intracellular tau hyperphosphorylation are the two pathological events that are thought to cause neuronal dysfunction in AD. Since the detailed mechanisms that underlie the pathogenesis of AD are still not clear, the current treatments are those drugs that can alleviate the symptoms of AD patients. Recent studies have indicated that these symptom-reliving drugs also have the ability of regulating amyloid precursor protein processing and tau phosphorylation. Thus the pharmacological mechanism of these drugs may be too simply-evaluated. This review summarizes the current status of AD therapy and some potential preclinical considerations that target beta amyloid and tau protein are also discussed.
Collapse
Affiliation(s)
- Yang Hong-Qi
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou , Henan Province, 450003, People's Republic of China
| | - Sun Zhi-Kun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou , Henan Province, 450003, People's Republic of China
| | - Chen Sheng-Di
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| |
Collapse
|
24
|
Mercaptoacetamide-based class II HDAC inhibitor lowers Aβ levels and improves learning and memory in a mouse model of Alzheimer's disease. Exp Neurol 2012; 239:192-201. [PMID: 23063601 DOI: 10.1016/j.expneurol.2012.10.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 09/11/2012] [Accepted: 10/04/2012] [Indexed: 02/04/2023]
Abstract
Histone deacetylase inhibitors (HDACIs) alter gene expression epigenetically by interfering with the normal functions of HDAC. Given their ability to decrease Aβ levels, HDACIs are a potential treatment for Alzheimer's disease (AD). However, it is unclear how HDACIs alter Aβ levels. We developed two novel HDAC inhibitors with improved pharmacological properties, such as a longer half-life and greater penetration of the blood-brain barrier: mercaptoacetamide-based class II HDACI (coded as W2) and hydroxamide-based class I and IIHDACI (coded as I2) and investigated how they affect Aβ levels and cognition. HDACI W2 decreased Aβ40 and Aβ42 in vitro. HDACI I2 also decreased Aβ40, but not Aβ42. We systematically examined the molecular mechanisms by which HDACIs W2 and I2 can decrease Aβ levels. HDACI W2 decreased gene expression of γ-secretase components and increased the Aβ degradation enzyme Mmp2. Similarly, HDACI I2 decreased expression of β- and γ-secretase components and increased mRNA levels of Aβ degradation enzymes. HDACI W2 also significantly decreased Aβ levels and rescued learning and memory deficits in aged hAPP 3xTg AD mice. Furthermore, we found that the novel HDACI W2 decreased tau phosphorylation at Thr181, an effect previously unknown for HDACIs. Collectively, these data suggest that class II HDACls may serve as a novel therapeutic strategy for AD.
Collapse
|
25
|
Benadiba M, Luurtsema G, Wichert-Ana L, Buchpigel CA, Filho GB. New Molecular Targets for PET and SPECT Imaging in Neurodegenerative Diseases. BRAZILIAN JOURNAL OF PSYCHIATRY 2012; 34 Suppl 2:S125-36. [DOI: 10.1016/j.rbp.2012.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 02/29/2012] [Indexed: 01/23/2023]
|
26
|
Franci G, Miceli M, Altucci L. Targeting epigenetic networks with polypharmacology: a new avenue to tackle cancer. Epigenomics 2012; 2:731-42. [PMID: 22122079 DOI: 10.2217/epi.10.62] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The term 'epigenetic' fuses old and new concepts that refer to the modulation of gene expression in cellular heritability, fate, development and programming-reprogramming other than the DNA sequence itself. Epigenetic control of transcription is regulated by enzymes that mediate covalent modifications at gene-regulatory regions and histone proteins around which chromosomal DNA is wound. Many of the enzymes that mediate chromatin epigenetic reactions are deregulated in diseases such as cancer. Thus, small-molecule inhibitors that target chromatin-modifying enzymes represent a novel option for treatment, and DNA methyltransferase and histone deacetylase inhibitors have been approved for cancer treatment. Moreover, other classes of epi-enzymes (MS-275, SAHA) have been demonstrated to have strong disease association, and are currently being targeted for modulation. An epigenetic poly-pharmacological approach targeting multiple chromatin-modifying enzymes may represent a 'smart' option to treat cancer versus the current view on the selective and single pharmacological targeting of epigenetic enzymes.
Collapse
|
27
|
Irie K, C. Yanagita R, Tokuda H, Suzuki N, Shu Y. Synthesis of Antineoplastic Analogs of Aplysiatoxin with Various Side Chain Structures. HETEROCYCLES 2012. [DOI: 10.3987/com-12-s(n)8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Abstract
Neurological disease, and in particular neurodegenerative diseases, cause significant burdens on both patient and healthcare costs. Despite extensive research, treatment options for patients with these conditions remain limited, and generally, only provide modest symptomatic relief. Aberrant epigenetic post-translational modifications of proteins are emerging as important elements in the pathogenesis of neurological disease. Using Alzheimer’s disease and Huntington’s disease as examples in the following article, some of latest data linking both the histone code and the various proteins that regulate this code to the pathogenesis of neurological disease are discussed. The current evidence suggesting that pharmacologically targeting one such family, the histone deacetylases, may be of potential benefit in the treatment of such diseases is also discussed. Finally, some of the potential mechanisms to specifically target these proteins within the neurological setting are discussed.
Collapse
Affiliation(s)
- Steven G Gray
- Translational Cancer Research Group, Department of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James’s Hospital, James’s Street, Dublin 8, Ireland
| |
Collapse
|
29
|
León R, Garcia AG, Marco-Contelles J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer's disease. Med Res Rev 2011; 33:139-89. [PMID: 21793014 DOI: 10.1002/med.20248] [Citation(s) in RCA: 354] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
With 27 million cases worldwide documented in 2006, Alzheimer's disease (AD) constitutes an overwhelming health, social, economic, and political problem to nations. Unless a new medicine capable to delay disease progression is found, the number of cases will reach 107 million in 2050. So far, the therapeutic paradigm one-compound-one-target has failed. This could be due to the multiple pathogenic mechanisms involved in AD including amyloid β (Aβ) aggregation to form plaques, τ hyperphosphorylation to disrupt microtubule to form neurofibrillary tangles, calcium imbalance, enhanced oxidative stress, impaired mitochondrial function, apoptotic neuronal death, and deterioration of synaptic transmission, particularly at cholinergic neurons. Approximately 100 compounds are presently been investigated directed to single targets, namely inhibitors of β and γ secretase, vaccines or antibodies that clear Aβ, metal chelators to inhibit Aβ aggregation, blockers of glycogen synthase kinase 3β, enhancers of mitochondrial function, antioxidants, modulators of calcium-permeable channels such as voltage-dependent calcium channels, N-methyl-D-aspartate receptors for glutamate, or enhancers of cholinergic neurotransmission such as inhibitors of acetylcholinesterase or butyrylcholinesterase. In view of this complex pathogenic mechanisms, and the successful treatment of chronic diseases such as HIV or cancer, with multiple drugs having complementary mechanisms of action, the concern is growing that AD could better be treated with a single compound targeting two or more of the pathogenic mechanisms leading to neuronal death. This review summarizes the current therapeutic strategies based on the paradigm one-compound-various targets to treat AD. A treatment that delays disease onset and/or progression by 5 years could halve the number of people requiring institutionalization and/or dying from AD.
Collapse
Affiliation(s)
- Rafael León
- Department of Chemistry, University of Cambridge, Cambridge, Lensfield road, Cambridge CB2 1EW, United Kingdom.
| | | | | |
Collapse
|
30
|
Dinarello CA, Fossati G, Mascagni P. Histone deacetylase inhibitors for treating a spectrum of diseases not related to cancer. Mol Med 2011; 17:333-52. [PMID: 21556484 DOI: 10.2119/molmed.2011.00116] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/04/2011] [Indexed: 01/04/2023] Open
Abstract
This issue of Molecular Medicine contains 14 original research reports and state-of-the-art reviews on histone deacetylase inhibitors (HDACi's), which are being studied in models of a broad range of diseases not related to the proapoptotic properties used to treat cancer. The spectrum of these diseases responsive to HDACi's is for the most part due to several antiinflammatory properties, often observed in vitro but importantly also in animal models. One unifying property is a reduction in cytokine production as well as inhibition of cytokine postreceptor signaling. Distinct from their use in cancer, the reduction in inflammation by HDACi's is consistently observed at low concentrations compared with the higher concentrations required for killing tumor cells. This characteristic makes HDACi's attractive candidates for treating chronic diseases, since low doses are well tolerated. For example, low oral doses of the HDACi givinostat have been used in children to reduce arthritis and are well tolerated. In addition to the antiinflammatory properties, HDACi's have shown promise in models of neurodegenerative disorders, and HDACi's also hold promise to drive HIV-1 out of latently infected cells. No one molecular mechanism accounts for the non-cancer-related properties of HDACi's, since there are 18 genes coding for histone deacetylases. Rather, there are mechanisms unique for the pathological process of specific cell types. In this overview, we summarize the preclinical data on HDACi's for therapy in a wide spectrum of diseases unrelated to the treatment of cancer. The data suggest the use of HDACi's in treating autoimmune as well as chronic inflammatory diseases.
Collapse
Affiliation(s)
- Charles A Dinarello
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, Aurora, Colorado 80045, USA.
| | | | | |
Collapse
|
31
|
Agudelo M, Gandhi N, Saiyed Z, Pichili V, Thangavel S, Khatavkar P, Yndart-Arias A, Nair M. Effects of alcohol on histone deacetylase 2 (HDAC2) and the neuroprotective role of trichostatin A (TSA). Alcohol Clin Exp Res 2011; 35:1550-6. [PMID: 21447001 DOI: 10.1111/j.1530-0277.2011.01492.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Previous studies have implicated histone deacetylases (HDACs) and HDAC inhibitors (HDIs) such as trichostatin A (TSA) in the regulation of gene expression during drug addiction. Furthermore, an increase in HDAC activity has been linked to neurodegeneration. Alcohol has also been shown to promote abundant generation of reactive oxygen species (ROS) resulting in oxidative stress. TSA inhibits HDACs and has been shown to be neuroprotective in other neurodegenerative disease models. Although HDACs and HDIs have been associated with drug addiction, there is no evidence of the neurodegenerative role of HDAC2 and neuroprotective role of TSA in alcohol addiction. Therefore, we hypothesize that alcohol modulates HDAC2 through mechanisms involving oxidative stress. METHODS To test our hypothesis, the human neuronal cell line, SK-N-MC, was treated with different concentrations of ethanol (EtOH); HDAC2 gene and protein expression were assessed at different time points. Pharmacological inhibition of HDAC2 with TSA was evaluated at the gene level using qRT-PCR and at the protein level using Western blot and flow cytometry. ROS production was measured with a fluorescence microplate reader and fluorescence microscopy. RESULTS Our results showed a dose-dependent increase in HDAC2 expression with EtOH treatment. Additionally, alcohol significantly induced ROS, and pharmacological inhibition of HDAC2 with TSA was shown to be neuroprotective by significantly inhibiting HDAC2 and ROS. CONCLUSIONS These results suggest that EtOH can upregulate HDAC2 through mechanisms involving oxidative stress and HDACs may play an important role in alcohol use disorders (AUDs). Moreover, the use of HDIs may be of therapeutic significance for the treatment of neurodegenerative disorders including AUDs.
Collapse
Affiliation(s)
- Marisela Agudelo
- Department of Immunology, Florida International University, Miami, FL 33199, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
This review focuses on recent developments in the use of natural products as therapeutics for Alzheimer's disease. The compounds span a diverse array of structural classes and are organized according to their mechanism of action, with the focus primarily on the major hypotheses. Overall, the review discusses more than 180 compounds and summarizes 400 references.
Collapse
Affiliation(s)
- Philip Williams
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | | | | |
Collapse
|
33
|
Giorgi C, Agnoletto C, Baldini C, Bononi A, Bonora M, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A, Zavan B, Pinton P. Redox control of protein kinase C: cell- and disease-specific aspects. Antioxid Redox Signal 2010; 13:1051-85. [PMID: 20136499 DOI: 10.1089/ars.2009.2825] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hormones, growth factors, electrical stimulation, and cell-cell interactions regulate numerous cellular processes by altering the levels of second messengers, thus influencing biochemical reactions inside the cells. The Protein Kinase C family (PKCs) is a group of serine/threonine kinases that are dependent on calcium (Ca(2+)), diacylglycerol, and phospholipids. Signaling pathways that induce variations on the levels of PKC activators have been implicated in the regulation of diverse cellular functions and, in turn, PKCs are key regulators of a plethora of cellular processes, including proliferation, differentiation, and tumorigenesis. Importantly, PKCs contain regions, both in the N-terminal regulatory domain and in the C-terminal catalytic domain, that are susceptible to redox modifications. In several pathophysiological conditions when the balance between oxidants, antioxidants, and alkylants is compromised, cells undergo redox stress. PKCs are cell-signaling proteins that are particularly sensitive to redox stress because modification of their redox-sensitive regions interferes with their activity and, thus, with their biological effects. In this review, we summarize the involvement of PKCs in health and disease and the importance of redox signaling in the regulation of this family of kinases.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), BioPharmaNet, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Inflammation involving the innate and adaptive immune systems is a normal response to infection. However, when allowed to continue unchecked, inflammation may result in autoimmune or autoinflammatory disorders, neurodegenerative disease, or cancer. A variety of safe and effective anti-inflammatory agents are available, including aspirin and other nonsteroidal anti-inflammatories, with many more drugs under development. In particular, the new era of anti-inflammatory agents includes "biologicals" such as anticytokine therapies and small molecules that block the activity of kinases. Other anti-inflammatories currently in use or under development include statins, histone deacetylase inhibitors, PPAR agonists, and small RNAs. This Review discusses the current status of anti-inflammatory drug research and the development of new anti-inflammatory therapeutics.
Collapse
|
35
|
Promising multifunctional anti-Alzheimer's dimer bis(7)-Cognitin acting as an activator of protein kinase C regulates activities of α-secretase and BACE-1 concurrently. Eur J Pharmacol 2009; 623:14-21. [DOI: 10.1016/j.ejphar.2009.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 08/26/2009] [Accepted: 09/08/2009] [Indexed: 11/19/2022]
|