1
|
Santos GX, Dos SantosTeodoro JE, Fonseca MG, Acunha RM, da Silva Júnior PI, Reis LMD, de Freitas RL, Medeiros P. Mygalin, an Acanthoscurria gomesiana spider-derived synthetic, modulates haloperidol-induced cataleptic state in mice. Neurosci Lett 2024; 820:137572. [PMID: 38072029 DOI: 10.1016/j.neulet.2023.137572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Haloperidol (HAL) is an antipsychotic used in the treatment of schizophrenia. However, adverse effects are observed in the extrapyramidal tracts due to its systemic action. Natural compounds are among the treatment alternatives widely available in Brazilian biodiversity. Mygalin (MY), a polyamine that was synthesized from a natural molecule present in the hemolymph of the Acanthoscurria gomesian spider, may present an interesting approach. AIMS This study aimed to evaluate the effect of MY in mice subjected to HAL-induced catalepsy. METHODS Male Swiss mice were used. Catalepsy was induced by intraperitoneal administration of HAL (0.5 mg/kg - 1 mL/Kg) diluted in physiological saline. To assess the MY effects on catalepsy, mice were assigned to 4 groups: (1) physiological saline (NaCl 0.9 %); (2) MY at 0.002 mg/Kg; (3) MY at 0.02 mg/Kg; (4) MY at 0.2 mg/Kg. MY or saline was administered intraperitoneally (IP) 10 min b HAL before saline. Catalepsy was evaluated using the bar test at 15, 30, 60, 90, and 120 min after the IP administration of HAL. RESULTS The latency time in the bar test 15, 30, 60, and 90 min increased (p < 0.05) after IP administration of HAL compared to the control group. Catalepsy was attenuated 15, 30, 90, and 120 min (p < 0.05) after the IP-administration of MY at 0.2 mg/Kg; while MY at 0.02 mg/Kg attenuated catalepsy 15 min after the HAL treatment. Our findings showed that MY attenuates the HAL-induced cataleptic state in mice.
Collapse
Affiliation(s)
| | | | | | - Renata Moreira Acunha
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes 3900 Ribeirão Preto, São Paulo 14049-900, Brazil
| | | | | | - Renato Leonardo de Freitas
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes 3900 Ribeirão Preto, São Paulo 14049-900, Brazil; Interdisciplinary Center for Pain Care, Federal University of São Carlos (UFSCar), Universidade Federal de São Carlos, Rodovia Washington Luiz, Km 235, Caixa Postal 676, CEP 13565-905, SP, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café 2450 Ribeirão Preto, São Paulo 14050-220, Brazil
| | - Priscila Medeiros
- Interdisciplinary Center for Pain Care, Federal University of São Carlos (UFSCar), Universidade Federal de São Carlos, Rodovia Washington Luiz, Km 235, Caixa Postal 676, CEP 13565-905, SP, Brazil; Department of General and Specialized Nursing - EERP/USP Ribeirão Preto College of Nursing - USP, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café 2450 Ribeirão Preto, São Paulo 14050-220, Brazil.
| |
Collapse
|
2
|
Medeiros AC, Medeiros P, de Freitas RL, da Silva Júnior PI, Coimbra NC, Dos Santos WF. Acanthoscurria gomesiana spider-derived synthetic mygalin in the dorsal raphe nucleus modulates acute and chronic pain. J Biochem Mol Toxicol 2021; 35:e22877. [PMID: 34382705 DOI: 10.1002/jbt.22877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/15/2021] [Accepted: 07/24/2021] [Indexed: 11/07/2022]
Abstract
Mygalin, a diacylspermidine that is naturally found in the hemolymph of the spider Acanthoscurria gomesiana, is of interest for development as a potential analgesic. Previous studies have shown that acylpolyamines modulate glutamatergic receptors with the potential to alter pain pathways. This study aimed to evaluate the effects of mygalin on acute and chronic pain in rodents. For evaluation of acute pain, Wistar rats were subjected to tail-flick and hot-plate nociceptive tests. For the evaluation of chronic neuropathic pain, a partial ligation of the sciatic nerve was performed and, 21 days later, animals were examined in hot-plate, tail-flick, acetone, and von Frey tests. Either Mygalin or vehicle was microinjected in the dorsal raphe nucleus (DRN) before the tests. Another group was pretreated with selective antagonists of glutamate receptors (LY 235959, MK-801, CNQX, and NBQX). Mygalin decreases nociceptive thresholds on both acute and chronic neuropathic pain models in all the tests performed. The lowest dose of mygalin yielded the most effective nociception, showing an increase of 63% of the nociceptive threshold of animals with neuropathic chronic pain. In conclusion, mygalin microinjection in the DRN results in antinociceptive effect in models of neuropathic pain, suggesting that acylpolyamines and their derivatives, such as this diacylspermidine, could be pursued for the treatment of neuropathic pain and development of selective analgesics.
Collapse
Affiliation(s)
- Ana C Medeiros
- Department of Biology, Ribeirão Preto School of Philosophy, Sciences and Literature of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
| | - Priscila Medeiros
- Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil.,Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Renato L de Freitas
- Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil.,Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Biomedical Sciences Institute, Federal University of Alfenas (UNIFAL), Alfenas, Minas Gerais, Brazil
| | - Pedro Ismael da Silva Júnior
- Laboratory for Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS/CEPID), São Paulo, São Paulo, Brazil
| | - Norberto C Coimbra
- Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil.,Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Wagner F Dos Santos
- Department of Biology, Ribeirão Preto School of Philosophy, Sciences and Literature of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
3
|
Zhu B, Shen J, Jiang R, Jin L, Zhan G, Liu J, Sha Q, Xu R, Miao L, Yang C. Abnormalities in gut microbiota and serum metabolites in hemodialysis patients with mild cognitive decline: a single-center observational study. Psychopharmacology (Berl) 2020; 237:2739-2752. [PMID: 32601991 DOI: 10.1007/s00213-020-05569-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
RATIONALE Although a growing body of evidence indicates that the scores of cognitive function in hemodialysis patients are significantly lower than those of healthy individuals, underlying mechanisms have not been fully elucidated. OBJECTIVES To investigate the roles of gut microbiota and serum metabolites in hemodialysis patients with mild cognitive decline (MCD). METHODS A total of 30 healthy individuals and 77 hemodialysis patients were enrolled and were classified into healthy control (HC), normal cognitive function (NCF), and MCD groups by evaluation of Montreal Cognitive Assessment. Fecal samples were analyzed by 16S rRNA and serum samples were analyzed by gas chromatography-mass spectrometry from all subjects. RESULTS The 16S rRNA study demonstrated that the gut microbiota profiles, including α- and β-diversity, and a number of 16 gut bacteria were significantly altered in the MCD group compared with those in HC or those with NCF. A metabonomics study showed that a total of 29 serum metabolites were altered in the MCD group. Receiver operating characteristic curves showed that Genus Bilophila and serum putrescine might be sensitive biomarkers to indicate MCD in patients with hemodialysis. CONCLUSIONS These findings demonstrate gut microbiota and serum metabolites were probably involved in the pathogenesis of hemodialysis-related MCD. Therapeutic strategies targeting abnormalities in gut microbiota and serum metabolites may facilitate the beneficial effects for hemodialysis patients with MCD.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jianqin Shen
- The Blood Purification Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Riyue Jiang
- Department of Ultrasound Imaging, Renmin Hospital, Wuhan University, Wuhan, 430060, China
| | - Lina Jin
- The Blood Purification Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinfeng Liu
- The Blood Purification Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Qi Sha
- Department of Clinical Nutrition, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Rongpeng Xu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Liying Miao
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
4
|
Lee JY, Krieger J, Herguedas B, García-Nafría J, Dutta A, Shaikh SA, Greger IH, Bahar I. Druggability Simulations and X-Ray Crystallography Reveal a Ligand-Binding Site in the GluA3 AMPA Receptor N-Terminal Domain. Structure 2018; 27:241-252.e3. [PMID: 30528594 DOI: 10.1016/j.str.2018.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/25/2018] [Accepted: 10/18/2018] [Indexed: 11/19/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) mediate the majority of excitatory neurotransmission in the brain. Their dysfunction is implicated in many neurological disorders, rendering iGluRs potential drug targets. Here, we performed a systematic analysis of the druggability of two major iGluR subfamilies, using molecular dynamics simulations in the presence of drug-like molecules. We demonstrate the applicability of druggability simulations by faithfully identifying known agonist and modulator sites on AMPA receptors (AMPARs) and NMDA receptors. Simulations produced the expected allosteric changes of the AMPAR ligand-binding domain in response to agonist. We also identified a novel ligand-binding site specific to the GluA3 AMPAR N-terminal domain (NTD), resulting from its unique conformational flexibility that we explored further with crystal structures trapped in vastly different states. In addition to providing an in-depth analysis into iGluR NTD dynamics, our approach identifies druggable sites and permits the determination of pharmacophoric features toward novel iGluR modulators.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Avenue, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - James Krieger
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Avenue, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - Beatriz Herguedas
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Javier García-Nafría
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Anindita Dutta
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Avenue, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - Saher A Shaikh
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ingo H Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Avenue, Suite 3064 BST3, Pittsburgh, PA 15260, USA.
| |
Collapse
|
5
|
Berger ML, Maciejewska D, Vanden Eynde JJ, Mottamal M, Żabiński J, Kaźmierczak P, Rezler M, Jarak I, Piantanida I, Karminski-Zamola G, Mayence A, Rebernik P, Kumar A, Ismail MA, Boykin DW, Huang TL. Pentamidine analogs as inhibitors of [(3)H]MK-801 and [(3)H]ifenprodil binding to rat brain NMDA receptors. Bioorg Med Chem 2015; 23:4489-4500. [PMID: 26117647 DOI: 10.1016/j.bmc.2015.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 06/05/2015] [Accepted: 06/05/2015] [Indexed: 12/29/2022]
Abstract
The anti-protozoal drug pentamidine is active against opportunistic Pneumocystis pneumonia, but in addition has several other biological targets, including the NMDA receptor (NR). Here we describe the inhibitory potencies of 76 pentamidine analogs at 2 binding sites of the NR, the channel binding site labeled with [(3)H]MK-801 and the [(3)H]ifenprodil binding site. Most analogs acted weaker at the ifenprodil than at the channel site. The spermine-sensitivity of NR inhibition by the majority of the compounds was reminiscent of other long-chain dicationic NR blockers. The potency of the parent compound as NR blocker was increased by modifying the heteroatoms in the bridge connecting the 2 benzamidine moieties and also by integrating the bridge into a seven-membered ring. Docking of the 45 most spermine-sensitive bisbenzamidines to a recently described acidic interface between the N-terminal domains of GluN1 and GluN2B mediating polyamine stimulation of the NR revealed the domain contributed by GluN1 as the most relevant target.
Collapse
Affiliation(s)
- Michael L Berger
- Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | - Dorota Maciejewska
- Department of Organic Chemistry, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Jerzy Żabiński
- Department of Organic Chemistry, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Kaźmierczak
- Department of Organic Chemistry, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Rezler
- Department of Organic Chemistry, Medical University of Warsaw, Warsaw, Poland
| | - Ivana Jarak
- Department of Organic Chemistry, University of Zagreb, Zagreb, Croatia
| | - Ivo Piantanida
- Department of Organic Chemistry, University of Zagreb, Zagreb, Croatia
| | | | - Annie Mayence
- College of Pharmacy, Xavier University of Louisiana, New Orleans, USA
| | - Patrick Rebernik
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Arvind Kumar
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Mohamed A Ismail
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - David W Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Tien L Huang
- College of Pharmacy, Xavier University of Louisiana, New Orleans, USA
| |
Collapse
|
6
|
Luo J, Mohammed I, Wärmländer SKTS, Hiruma Y, Gräslund A, Abrahams JP. Endogenous Polyamines Reduce the Toxicity of Soluble Aβ Peptide Aggregates Associated with Alzheimer’s Disease. Biomacromolecules 2014; 15:1985-91. [DOI: 10.1021/bm401874j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jinghui Luo
- Gorlaeus
Laboratory, Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands
| | - Inayathulla Mohammed
- Gorlaeus
Laboratory, Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands
| | | | - Yoshitaka Hiruma
- Gorlaeus
Laboratory, Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands
| | - Astrid Gräslund
- Department
of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jan Pieter Abrahams
- Gorlaeus
Laboratory, Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands
| |
Collapse
|