1
|
Pomeislová A, Vrzal L, Kozák J, Dobiaš J, Hubálek M, Dvořáková H, Reyes‐Gutiérrez PE, Teplý F, Veverka V. Kinetic Target-Guided Synthesis of Small-Molecule G-Quadruplex Stabilizers. ChemistryOpen 2020; 9:1236-1250. [PMID: 33304739 PMCID: PMC7713561 DOI: 10.1002/open.202000261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/02/2020] [Indexed: 12/25/2022] Open
Abstract
The formation of a G-quadruplex motif in the promoter region of the c-MYC protooncogene prevents its expression. Accordingly, G-quadruplex stabilization by a suitable ligand may be a viable approach for anticancer therapy. In our study, we used the 4-(4-methylpiperazin-1-yl)aniline molecule, previously identified as a fragment library screen hit, as a template for the SAR-guided design of a new small library of clickable fragments and subjected them to click reactions, including kinetic target-guided synthesis in the presence of a G-quadruplex forming oligonucleotide Pu24. We tested the clickable fragments and products of click reactions for their G-quadruplex stabilizing activity and determined their mode of binding to the c-MYC G-quadruplex by NMR spectroscopy. The enhanced stabilizing potency of click products in biology assays (FRET, Polymerase extension assay) matched the increased yields of in situ click reactions. In conclusion, we identified the newly synthesized click products of bis-amino derivatives of 4-(4-methylpiperazin-1-yl)aniline as potent stabilizers of c-MYC G-quadruplex, and their further evolution may lead to the development of an efficient tool for cancer treatment.
Collapse
Affiliation(s)
- Alice Pomeislová
- Institute of Organic Chemistry and BiochemistryThe Czech Academy of Sciences Flemingovo nam. 2PragueCzech Republic
- Department of Organic ChemistryCharles UniversityPragueCzech Republic
| | - Lukáš Vrzal
- Institute of Organic Chemistry and BiochemistryThe Czech Academy of Sciences Flemingovo nam. 2PragueCzech Republic
- NMR laboratoryUniversity of Chemistry and TechnologyPragueCzech Republic
| | - Jaroslav Kozák
- Institute of Organic Chemistry and BiochemistryThe Czech Academy of Sciences Flemingovo nam. 2PragueCzech Republic
| | - Juraj Dobiaš
- Institute of Organic Chemistry and BiochemistryThe Czech Academy of Sciences Flemingovo nam. 2PragueCzech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and BiochemistryThe Czech Academy of Sciences Flemingovo nam. 2PragueCzech Republic
| | - Hana Dvořáková
- NMR laboratoryUniversity of Chemistry and TechnologyPragueCzech Republic
| | - Paul E. Reyes‐Gutiérrez
- Institute of Organic Chemistry and BiochemistryThe Czech Academy of Sciences Flemingovo nam. 2PragueCzech Republic
| | - Filip Teplý
- Institute of Organic Chemistry and BiochemistryThe Czech Academy of Sciences Flemingovo nam. 2PragueCzech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and BiochemistryThe Czech Academy of Sciences Flemingovo nam. 2PragueCzech Republic
- Department of Cell BiologyCharles UniversityPragueCzech Republic
| |
Collapse
|
2
|
Dumbacher M, Van Dooren T, Princen K, De Witte K, Farinelli M, Lievens S, Tavernier J, Dehaen W, Wera S, Winderickx J, Allasia S, Kilonda A, Spieser S, Marchand A, Chaltin P, Hoogenraad CC, Griffioen G. Modifying Rap1-signalling by targeting Pde6δ is neuroprotective in models of Alzheimer's disease. Mol Neurodegener 2018; 13:50. [PMID: 30257685 PMCID: PMC6158915 DOI: 10.1186/s13024-018-0283-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 09/13/2018] [Indexed: 01/06/2023] Open
Abstract
Background Neuronal Ca2+ dyshomeostasis and hyperactivity play a central role in Alzheimer’s disease pathology and progression. Amyloid-beta together with non-genetic risk-factors of Alzheimer’s disease contributes to increased Ca2+ influx and aberrant neuronal activity, which accelerates neurodegeneration in a feed-forward fashion. As such, identifying new targets and drugs to modulate excessive Ca2+ signalling and neuronal hyperactivity, without overly suppressing them, has promising therapeutic potential. Methods Here we show, using biochemical, electrophysiological, imaging, and behavioural tools, that pharmacological modulation of Rap1 signalling by inhibiting its interaction with Pde6δ normalises disease associated Ca2+ aberrations and neuronal activity, conferring neuroprotection in models of Alzheimer’s disease. Results The newly identified inhibitors of the Rap1-Pde6δ interaction counteract AD phenotypes, by reconfiguring Rap1 signalling underlying synaptic efficacy, Ca2+ influx, and neuronal repolarisation, without adverse effects in-cellulo or in-vivo. Thus, modulation of Rap1 by Pde6δ accommodates key mechanisms underlying neuronal activity, and therefore represents a promising new drug target for early or late intervention in neurodegenerative disorders. Conclusion Targeting the Pde6δ-Rap1 interaction has promising therapeutic potential for disorders characterised by neuronal hyperactivity, such as Alzheimer’s disease. Electronic supplementary material The online version of this article (10.1186/s13024-018-0283-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Dumbacher
- reMYND NV, Gaston Geenslaan 1, Leuven-Heverlee, 3001, Belgium.,Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584CH, Utrecht, The Netherlands
| | - Tom Van Dooren
- reMYND NV, Gaston Geenslaan 1, Leuven-Heverlee, 3001, Belgium
| | - Katrien Princen
- reMYND NV, Gaston Geenslaan 1, Leuven-Heverlee, 3001, Belgium
| | - Koen De Witte
- reMYND NV, Gaston Geenslaan 1, Leuven-Heverlee, 3001, Belgium
| | - Mélissa Farinelli
- E-Phy-Science, IPMC, 660 route des Lucioles, 06560, Sophia Antipolis, France
| | - Sam Lievens
- Orionis Biosciences, Technologiepark 12B, Zwijnaarde-Ghent, 9052, Belgium.,Cytokine Receptor Lab, Flanders Institute of Biotechnology, Medical Biotechnology Center, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Jan Tavernier
- Cytokine Receptor Lab, Flanders Institute of Biotechnology, Medical Biotechnology Center, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Wim Dehaen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f - box 2404, Leuven-Heverlee, 3001, Belgium
| | - Stefaan Wera
- ViroVet NV, Ambachtenlaan 1, Leuven-Heverlee, 3001, Belgium
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, Kasteelpark Arenberg 31 box 2433, Leuven-Heverlee, 3001, Belgium
| | - Sara Allasia
- Cistim Leuven vzw, Gaston Geenslaan 2, Leuven-Heverlee, 3001, Belgium
| | - Amuri Kilonda
- Cistim Leuven vzw, Gaston Geenslaan 2, Leuven-Heverlee, 3001, Belgium
| | - Stéphane Spieser
- Cistim Leuven vzw, Gaston Geenslaan 2, Leuven-Heverlee, 3001, Belgium
| | - Arnaud Marchand
- Cistim Leuven vzw, Gaston Geenslaan 2, Leuven-Heverlee, 3001, Belgium
| | - Patrick Chaltin
- Cistim Leuven vzw, Gaston Geenslaan 2, Leuven-Heverlee, 3001, Belgium.,Center for Drug Design and Development (CD3), KU Leuven, Waaistraat 6, 3000, Leuven, Belgium
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584CH, Utrecht, The Netherlands
| | | |
Collapse
|
3
|
Qian M, Wouters E, Dalton JAR, Risseeuw MDP, Crans RAJ, Stove C, Giraldo J, Van Craenenbroeck K, Van Calenbergh S. Synthesis toward Bivalent Ligands for the Dopamine D 2 and Metabotropic Glutamate 5 Receptors. J Med Chem 2018; 61:8212-8225. [PMID: 30180563 DOI: 10.1021/acs.jmedchem.8b00671] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, we designed and synthesized heterobivalent ligands targeting heteromers consisting of the metabotropic glutamate 5 receptor (mGluR5) and the dopamine D2 receptor (D2R). Bivalent ligand 22a with a linker consisting of 20 atoms showed 4-fold increase in affinity for cells coexpressing D2R and mGluR5 compared to cells solely expressing D2R. Likewise, the affinity of 22a for mGluR5 increased 2-fold in the coexpressing cells. Additionally, 22a exhibited a 5-fold higher mGluR5 affinity than its monovalent precursor 21a in cells coexpressing D2R and mGluR5. These results indicate that 22a is able to bridge binding sites on both receptors constituting the heterodimer. Likewise, cAMP assays revealed that 22a had a 4-fold higher potency in stable D2R and mGluR5 coexpressing cell lines than 1. Furthermore, molecular modeling reveals that 22a is able to simultaneously bind both receptors by passing between the TM5-TM6 interface and establishing six protein-ligand H-bonds.
Collapse
Affiliation(s)
- Mingcheng Qian
- Laboratory for Medicinal Chemistry (FFW) , Ghent University , Ottergemsesteenweg 460 , B-9000 Ghent , Belgium.,Laboratory of Toxicology , Ghent University , Ottergemsesteenweg 460 , B-9000 Ghent , Belgium
| | - Elise Wouters
- Laboratory of Toxicology , Ghent University , Ottergemsesteenweg 460 , B-9000 Ghent , Belgium
| | - James A R Dalton
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Institut de Neurociències , Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM , Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain.,Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències , Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain
| | - Martijn D P Risseeuw
- Laboratory for Medicinal Chemistry (FFW) , Ghent University , Ottergemsesteenweg 460 , B-9000 Ghent , Belgium
| | - René A J Crans
- Laboratory of Toxicology , Ghent University , Ottergemsesteenweg 460 , B-9000 Ghent , Belgium
| | - Christophe Stove
- Laboratory of Toxicology , Ghent University , Ottergemsesteenweg 460 , B-9000 Ghent , Belgium
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Institut de Neurociències , Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM , Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain.,Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències , Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain
| | | | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW) , Ghent University , Ottergemsesteenweg 460 , B-9000 Ghent , Belgium
| |
Collapse
|
4
|
Noverraz F, Montanari E, Pimenta J, Szabó L, Ortiz D, Gonelle-Gispert C, Bühler LH, Gerber-Lemaire S. Antifibrotic Effect of Ketoprofen-Grafted Alginate Microcapsules in the Transplantation of Insulin Producing Cells. Bioconjug Chem 2018; 29:1932-1941. [DOI: 10.1021/acs.bioconjchem.8b00190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- François Noverraz
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Group for Functionalized Biomaterials, EPFL SB ISIC SCI-SB-SG, Station 6, CH-1015 Lausanne, Switzerland
| | - Elisa Montanari
- University Hospitals of Geneva, Surgical Research Unit, CMU-1, CH-1211 Geneva, Switzerland
| | - Joël Pimenta
- University Hospitals of Geneva, Surgical Research Unit, CMU-1, CH-1211 Geneva, Switzerland
| | - Luca Szabó
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Group for Functionalized Biomaterials, EPFL SB ISIC SCI-SB-SG, Station 6, CH-1015 Lausanne, Switzerland
| | - Daniel Ortiz
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, SSMI, Batochime, CH-1015 Lausanne, Switzerland
| | - Carmen Gonelle-Gispert
- University Hospitals of Geneva, Surgical Research Unit, CMU-1, CH-1211 Geneva, Switzerland
| | - Léo H. Bühler
- University Hospitals of Geneva, Surgical Research Unit, CMU-1, CH-1211 Geneva, Switzerland
| | - Sandrine Gerber-Lemaire
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Group for Functionalized Biomaterials, EPFL SB ISIC SCI-SB-SG, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
KISS: A Mammalian Two-Hybrid Method for In Situ Analysis of Protein-Protein Interactions. Methods Mol Biol 2018; 1794:269-278. [PMID: 29855964 DOI: 10.1007/978-1-4939-7871-7_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
KISS (KInase Substrate Sensor) is a recently developed two-hybrid technology that allows in situ analysis of protein-protein interactions in intact mammalian cells. In this method, which is derived from MAPPIT (mammalian protein-protein interaction trap), the bait protein is coupled to the kinase domain of TYK2, while the prey protein is fused to a fragment of the gp130 cytokine receptor chain. Bait and prey interaction leads to phosphorylation of the gp130 anchor by TYK2, followed by recruitment and activation of STAT3, resulting in transcription of a STAT3-dependent reporter system. This approach enables the identification of interactions between proteins, including transmembrane and cytosolic proteins, and their modulation in response to physiological or pharmacological challenges. Here, we describe a detailed step-by-step protocol for the detection of an interaction between two proteins of interest using KISS.
Collapse
|
6
|
Lievens S, Van der Heyden J, Masschaele D, De Ceuninck L, Petta I, Gupta S, De Puysseleyr V, Vauthier V, Lemmens I, De Clercq DJH, Defever D, Vanderroost N, De Smet AS, Eyckerman S, Van Calenbergh S, Martens L, De Bosscher K, Libert C, Hill DE, Vidal M, Tavernier J. Proteome-scale Binary Interactomics in Human Cells. Mol Cell Proteomics 2016; 15:3624-3639. [PMID: 27803151 DOI: 10.1074/mcp.m116.061994] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/23/2016] [Indexed: 12/11/2022] Open
Abstract
Because proteins are the main mediators of most cellular processes they are also prime therapeutic targets. Identifying physical links among proteins and between drugs and their protein targets is essential in order to understand the mechanisms through which both proteins themselves and the molecules they are targeted with act. Thus, there is a strong need for sensitive methods that enable mapping out these biomolecular interactions. Here we present a robust and sensitive approach to screen proteome-scale collections of proteins for binding to proteins or small molecules using the well validated MAPPIT (Mammalian Protein-Protein Interaction Trap) and MASPIT (Mammalian Small Molecule-Protein Interaction Trap) assays. Using high-density reverse transfected cell microarrays, a close to proteome-wide collection of human ORF clones can be screened for interactors at high throughput. The versatility of the platform is demonstrated through several examples. With MAPPIT, we screened a 15k ORF library for binding partners of RNF41, an E3 ubiquitin protein ligase implicated in receptor sorting, identifying known and novel interacting proteins. The potential related to the fact that MAPPIT operates in living human cells is illustrated in a screen where the protein collection is scanned for interactions with the glucocorticoid receptor (GR) in its unliganded versus dexamethasone-induced activated state. Several proteins were identified the interaction of which is modulated upon ligand binding to the GR, including a number of previously reported GR interactors. Finally, the screening technology also enables detecting small molecule target proteins, which in many drug discovery programs represents an important hurdle. We show the efficiency of MASPIT-based target profiling through screening with tamoxifen, a first-line breast cancer drug, and reversine, an investigational drug with interesting dedifferentiation and antitumor activity. In both cases, cell microarray screens yielded known and new potential drug targets highlighting the utility of the technology beyond fundamental biology.
Collapse
Affiliation(s)
- Sam Lievens
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - José Van der Heyden
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Delphine Masschaele
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Leentje De Ceuninck
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Ioanna Petta
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium.,‖Inflammation Research Center, VIB, Ghent, Belgium.,**Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Surya Gupta
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Veronic De Puysseleyr
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Virginie Vauthier
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Irma Lemmens
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | | | - Dieter Defever
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Nele Vanderroost
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Anne-Sophie De Smet
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Sven Eyckerman
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | | | - Lennart Martens
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Claude Libert
- ‖Inflammation Research Center, VIB, Ghent, Belgium.,**Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - David E Hill
- ‡‡Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,§§Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Marc Vidal
- ‡‡Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,§§Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Jan Tavernier
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium; .,§Department of Biochemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Ratman D, Mylka V, Bougarne N, Pawlak M, Caron S, Hennuyer N, Paumelle R, De Cauwer L, Thommis J, Rider MH, Libert C, Lievens S, Tavernier J, Staels B, De Bosscher K. Chromatin recruitment of activated AMPK drives fasting response genes co-controlled by GR and PPARα. Nucleic Acids Res 2016; 44:10539-10553. [PMID: 27576532 PMCID: PMC5159533 DOI: 10.1093/nar/gkw742] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/08/2016] [Accepted: 08/15/2016] [Indexed: 12/21/2022] Open
Abstract
Adaptation to fasting involves both Glucocorticoid Receptor (GRα) and Peroxisome Proliferator-Activated Receptor α (PPARα) activation. Given both receptors can physically interact we investigated the possibility of a genome-wide cross-talk between activated GR and PPARα, using ChIP- and RNA-seq in primary hepatocytes. Our data reveal extensive chromatin co-localization of both factors with cooperative induction of genes controlling lipid/glucose metabolism. Key GR/PPAR co-controlled genes switched from transcriptional antagonism to cooperativity when moving from short to prolonged hepatocyte fasting, a phenomenon coinciding with gene promoter recruitment of phosphorylated AMP-activated protein kinase (AMPK) and blocked by its pharmacological inhibition. In vitro interaction studies support trimeric complex formation between GR, PPARα and phospho-AMPK. Long-term fasting in mice showed enhanced phosphorylation of liver AMPK and GRα Ser211. Phospho-AMPK chromatin recruitment at liver target genes, observed upon prolonged fasting in mice, is dampened by refeeding. Taken together, our results identify phospho-AMPK as a molecular switch able to cooperate with nuclear receptors at the chromatin level and reveal a novel adaptation mechanism to prolonged fasting.
Collapse
Affiliation(s)
- Dariusz Ratman
- Receptor Research Laboratories, Nuclear Receptor Lab, Medical Biotechnology Center, VIB, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Viacheslav Mylka
- Receptor Research Laboratories, Nuclear Receptor Lab, Medical Biotechnology Center, VIB, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Nadia Bougarne
- Receptor Research Laboratories, Nuclear Receptor Lab, Medical Biotechnology Center, VIB, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Michal Pawlak
- UNIV LILLE, 59000 Lille, France.,INSERM UMR 1011, 59000 Lille, France.,European Genomic Institute for Diabetes E.G.I.D., FR 3508, 59000 Lille, France.,Institut Pasteur de Lille, 59000 Lille, France
| | - Sandrine Caron
- UNIV LILLE, 59000 Lille, France.,INSERM UMR 1011, 59000 Lille, France.,European Genomic Institute for Diabetes E.G.I.D., FR 3508, 59000 Lille, France.,Institut Pasteur de Lille, 59000 Lille, France
| | - Nathalie Hennuyer
- UNIV LILLE, 59000 Lille, France.,INSERM UMR 1011, 59000 Lille, France.,European Genomic Institute for Diabetes E.G.I.D., FR 3508, 59000 Lille, France.,Institut Pasteur de Lille, 59000 Lille, France
| | - Réjane Paumelle
- UNIV LILLE, 59000 Lille, France.,INSERM UMR 1011, 59000 Lille, France.,European Genomic Institute for Diabetes E.G.I.D., FR 3508, 59000 Lille, France.,Institut Pasteur de Lille, 59000 Lille, France
| | - Lode De Cauwer
- Receptor Research Laboratories, Nuclear Receptor Lab, Medical Biotechnology Center, VIB, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Jonathan Thommis
- Receptor Research Laboratories, Nuclear Receptor Lab, Medical Biotechnology Center, VIB, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Mark H Rider
- de Duve Institute and Université catholique de Louvain, 1200 Brussels, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Sam Lievens
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium.,Receptor Research Laboratories, Cytokine Receptor Lab, Medical Biotechnology Center, VIB, 9000 Ghent, Belgium
| | - Jan Tavernier
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium.,Receptor Research Laboratories, Cytokine Receptor Lab, Medical Biotechnology Center, VIB, 9000 Ghent, Belgium
| | - Bart Staels
- UNIV LILLE, 59000 Lille, France.,INSERM UMR 1011, 59000 Lille, France.,European Genomic Institute for Diabetes E.G.I.D., FR 3508, 59000 Lille, France.,Institut Pasteur de Lille, 59000 Lille, France.,CHU Lille, Department of Biology, 59000 Lille, France
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab, Medical Biotechnology Center, VIB, 9000 Ghent, Belgium .,Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
8
|
De Clercq DJH, Tavernier J, Lievens S, Van Calenbergh S. Chemical Dimerizers in Three-Hybrid Systems for Small Molecule-Target Protein Profiling. ACS Chem Biol 2016; 11:2075-90. [PMID: 27267544 DOI: 10.1021/acschembio.5b00811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The identification of the molecular targets and mechanisms underpinning the beneficial or detrimental effects of small-molecule leads and drugs constitutes a crucial aspect of current drug discovery. Over the last two decades, three-hybrid (3H) systems have progressively taken an important position in the armamentarium of small molecule-target protein profiling technologies. Yet, a prerequisite for successful 3H analysis is the availability of appropriate chemical inducers of dimerization. Herein, we present a comprehensive and critical overview of the chemical dimerizers specifically applied in both yeast and mammalian three-hybrid systems for small molecule-target protein profiling within the broader scope of target deconvolution and drug discovery. Furthermore, examples and alternative suggestions for typical components of chemical dimerizers for 3H systems are discussed. As illustrated, more tools have become available that increase the sensitivity and efficiency of 3H-based screening platforms. Hence, it is anticipated that the great potential of 3H systems will further materialize in important contributions to drug discovery.
Collapse
Affiliation(s)
- Dries J. H. De Clercq
- Laboratory
for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- Department
of Medical Protein Research, Vlaams Instituut voor Biotechnologie, 9000 Ghent, Belgium
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Sam Lievens
- Department
of Medical Protein Research, Vlaams Instituut voor Biotechnologie, 9000 Ghent, Belgium
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Serge Van Calenbergh
- Laboratory
for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Eyckerman S, Titeca K, Van Quickelberghe E, Cloots E, Verhee A, Samyn N, De Ceuninck L, Timmerman E, De Sutter D, Lievens S, Van Calenbergh S, Gevaert K, Tavernier J. Trapping mammalian protein complexes in viral particles. Nat Commun 2016; 7:11416. [PMID: 27122307 PMCID: PMC4853472 DOI: 10.1038/ncomms11416] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 03/22/2016] [Indexed: 01/22/2023] Open
Abstract
Cell lysis is an inevitable step in classical mass spectrometry–based strategies to analyse protein complexes. Complementary lysis conditions, in situ cross-linking strategies and proximal labelling techniques are currently used to reduce lysis effects on the protein complex. We have developed Virotrap, a viral particle sorting approach that obviates the need for cell homogenization and preserves the protein complexes during purification. By fusing a bait protein to the HIV-1 GAG protein, we show that interaction partners become trapped within virus-like particles (VLPs) that bud from mammalian cells. Using an efficient VLP enrichment protocol, Virotrap allows the detection of known binary interactions and MS-based identification of novel protein partners as well. In addition, we show the identification of stimulus-dependent interactions and demonstrate trapping of protein partners for small molecules. Virotrap constitutes an elegant complementary approach to the arsenal of methods to study protein complexes. A large portion of the proteome carries out its cellular function as part of macromolecular complexes. Here the authors describe Virotrap, a novel lysis-free approach for the isolation and identification of biologically relevant protein-protein and small molecule-protein interactions.
Collapse
Affiliation(s)
- Sven Eyckerman
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Kevin Titeca
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Emmy Van Quickelberghe
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Eva Cloots
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Annick Verhee
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Noortje Samyn
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Leentje De Ceuninck
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Evy Timmerman
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Delphine De Sutter
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Sam Lievens
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, Ghent B-9000, Belgium
| | - Kris Gevaert
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Jan Tavernier
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| |
Collapse
|
10
|
De Clercq DJH, Risseeuw MDP, Karalic I, De Smet AS, Defever D, Tavernier J, Lievens S, Van Calenbergh S. Alternative Reagents for Methotrexate as Immobilizing Anchor Moieties in the Optimization of MASPIT: Synthesis and Biological Evaluation. Chembiochem 2015; 16:834-43. [DOI: 10.1002/cbic.201402702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Indexed: 11/10/2022]
|
11
|
MAPK-induced Gab1 translocation to the plasma membrane depends on a regulated intramolecular switch. Cell Signal 2015; 27:340-52. [DOI: 10.1016/j.cellsig.2014.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 01/17/2023]
|
12
|
Lievens S, Gerlo S, Lemmens I, De Clercq DJH, Risseeuw MDP, Vanderroost N, De Smet AS, Ruyssinck E, Chevet E, Van Calenbergh S, Tavernier J. Kinase Substrate Sensor (KISS), a mammalian in situ protein interaction sensor. Mol Cell Proteomics 2014; 13:3332-42. [PMID: 25154561 DOI: 10.1074/mcp.m114.041087] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Probably every cellular process is governed by protein-protein interaction (PPIs), which are often highly dynamic in nature being modulated by in- or external stimuli. Here we present KISS, for KInase Substrate Sensor, a mammalian two-hybrid approach designed to map intracellular PPIs and some of the dynamic features they exhibit. Benchmarking experiments indicate that in terms of sensitivity and specificity KISS is on par with other binary protein interaction technologies while being complementary with regard to the subset of PPIs it is able to detect. We used KISS to evaluate interactions between different types of proteins, including transmembrane proteins, expressed at their native subcellular location. In situ analysis of endoplasmic reticulum stress-induced clustering of the endoplasmic reticulum stress sensor ERN1 and ligand-dependent β-arrestin recruitment to GPCRs illustrated the method's potential to study functional PPI modulation in complex cellular processes. Exploring its use as a tool for in cell evaluation of pharmacological interference with PPIs, we showed that reported effects of known GPCR antagonists and PPI inhibitors are properly recapitulated. In a three-hybrid setup, KISS was able to map interactions between small molecules and proteins. Taken together, we established KISS as a sensitive approach for in situ analysis of protein interactions and their modulation in a changing cellular context or in response to pharmacological challenges.
Collapse
Affiliation(s)
- Sam Lievens
- From the ‡ Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, 9000 Ghent, Belgium ; §Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Sarah Gerlo
- From the ‡ Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, 9000 Ghent, Belgium ; §Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Irma Lemmens
- From the ‡ Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, 9000 Ghent, Belgium ; §Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Dries J H De Clercq
- ¶Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Martijn D P Risseeuw
- ¶Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Nele Vanderroost
- From the ‡ Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, 9000 Ghent, Belgium ; §Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Anne-Sophie De Smet
- From the ‡ Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, 9000 Ghent, Belgium ; §Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Elien Ruyssinck
- From the ‡ Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, 9000 Ghent, Belgium ; §Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Eric Chevet
- ‖French National Institute for Health and Medical Research (INSERM) U1053, University of Bordeaux Segalen, 146 Rue Leo Saignat, 33000 Bordeaux, France
| | - Serge Van Calenbergh
- ¶Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Jan Tavernier
- From the ‡ Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, 9000 Ghent, Belgium ; §Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, 9000 Ghent, Belgium;
| |
Collapse
|
13
|
Kitamura M, Kawasaki F, Ogawa K, Nakanishi S, Tanaka H, Yamada K, Kunishima M. Role of linkers in tertiary amines that mediate or catalyze 1,3,5-triazine-based amide-forming reactions. J Org Chem 2014; 79:3709-14. [PMID: 24650172 DOI: 10.1021/jo500376m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We studied 1,3,5-triazine-based amide-forming reactions that are mediated or catalyzed by various tert-amines. The representative tert-amine was trimethylamine, which has amido, 1,2,3-triazolyl, aryl, and alkyl linkers. It was found that electron-deficient aryl and heteroaryl linkers, particularly 1,2,3-triazolyl linkers, are superior. On the basis of our findings, we synthesized ligand catalysts, including a 1,2,3-triazolyl linker that connects a protein ligand to a trimethylamine moiety, and found that fluorescent-labeling of a targeting protein using the ligand catalysts proceeded in good yields.
Collapse
Affiliation(s)
- Masanori Kitamura
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Beck IM, Drebert ZJ, Hoya-Arias R, Bahar AA, Devos M, Clarisse D, Desmet S, Bougarne N, Ruttens B, Gossye V, Denecker G, Lievens S, Bracke M, Tavernier J, Declercq W, Gevaert K, Vanden Berghe W, Haegeman G, De Bosscher K. Compound A, a selective glucocorticoid receptor modulator, enhances heat shock protein Hsp70 gene promoter activation. PLoS One 2013; 8:e69115. [PMID: 23935933 PMCID: PMC3728325 DOI: 10.1371/journal.pone.0069115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 06/06/2013] [Indexed: 12/24/2022] Open
Abstract
Compound A possesses glucocorticoid receptor (GR)-dependent anti-inflammatory properties. Just like classical GR ligands, Compound A can repress NF-κB-mediated gene expression. However, the monomeric Compound A-activated GR is unable to trigger glucocorticoid response element-regulated gene expression. The heat shock response potently activates heat shock factor 1 (HSF1), upregulates Hsp70, a known GR chaperone, and also modulates various aspects of inflammation. We found that the selective GR modulator Compound A and heat shock trigger similar cellular effects in A549 lung epithelial cells. With regard to their anti-inflammatory mechanism, heat shock and Compound A are both able to reduce TNF-stimulated IκBα degradation and NF-κB p65 nuclear translocation. We established an interaction between Compound A-activated GR and Hsp70, but remarkably, although the presence of the Hsp70 chaperone as such appears pivotal for the Compound A-mediated inflammatory gene repression, subsequent novel Hsp70 protein synthesis is uncoupled from an observed CpdA-induced Hsp70 mRNA upregulation and hence obsolete in mediating CpdA’s anti-inflammatory effect. The lack of a Compound A-induced increase in Hsp70 protein levels in A549 cells is not mediated by a rapid proteasomal degradation of Hsp70 or by a Compound A-induced general block on translation. Similar to heat shock, Compound A can upregulate transcription of Hsp70 genes in various cell lines and BALB/c mice. Interestingly, whereas Compound A-dependent Hsp70 promoter activation is GR-dependent but HSF1-independent, heat shock-induced Hsp70 expression alternatively occurs in a GR-independent and HSF1-dependent manner in A549 lung epithelial cells.
Collapse
Affiliation(s)
- Ilse M Beck
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Therapy & Experimental Cancer Research, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|