1
|
Santa Maria de la Parra L, Balsa LM, León IE. Metallocompounds as anticancer agents against osteosarcoma. Drug Discov Today 2024; 29:104100. [PMID: 39019429 DOI: 10.1016/j.drudis.2024.104100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Metallocompounds are a class of anticancer compounds largely used in the treatment of several types of solid tumors, including bone cancer. Osteosarcoma (OS) is a primary malignant bone tumor that frequently affects children, adolescents and young adults. It is a very invasive type of tumor, so ∼40% of patients develop distant metastases, showing elevated mortality rates. In this review, we present an outline of the chemistry and antitumor properties of metal-based compounds in preclinical (in vitro and in vivo) and clinical OS models, focusing on the relationship between structure-activity, molecular targets and the study of the mechanism of action involved in metallocompound anticancer activity.
Collapse
Affiliation(s)
- Lucía Santa Maria de la Parra
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - Lucía M Balsa
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina; Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, La Plata 1900, Argentina.
| |
Collapse
|
2
|
Patra SA, Sahu G, Das S, Dinda R. Recent Advances in Mitochondria-Localized Luminescent Ruthenium(II) Metallodrugs as Anticancer Agents. ChemMedChem 2023; 18:e202300397. [PMID: 37772783 DOI: 10.1002/cmdc.202300397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Presently, the most effective way to transport drugs specifically to mitochondria inside the cells is of pharmacophoric interest, as mitochondria are recognized as one of the most important targets for new drug design in cancer diagnosis. To date, there are many reviews covering the photophysical, photochemical, and anticancer properties of ruthenium(II) based metallodrugs owing to their high interest in biological applications. There are, however, no reviews specifically covering the mitochondria-localized luminescent Ru(II) complexes and their subsequent mitochondria-mediated anticancer activities. Therefore, this review describes the physicochemical basis for the mitochondrial accumulation of ruthenium complexes, their synthetic strategies to localize and monitor the mitochondria in living cells, and their related underlying anticancer results. Finally, we review the related areas from previous works describing the mitochondria-localized ruthenium complexes for the treatment of cancer-related diseases. Along with this, we also deliberate the perspectives and future directions for emerging more bifunctional Ru(II) complexes that can target, image, and kill tumors more efficiently in comparison with the existing mitochondria-targeted cancer therapeutics.
Collapse
Affiliation(s)
- Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sanchita Das
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| |
Collapse
|
3
|
Reardon MM, Guerrero M, Alatrash N, MacDonnell FM. Exploration of the Pharmacophore for Cytoskeletal Targeting Ruthenium Polypyridyl Complexes. ChemMedChem 2023; 18:e202300347. [PMID: 37574460 DOI: 10.1002/cmdc.202300347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Ruthenium(II) trisdiimine complexes of the formula, [Ru(dip)n (L-L)3-n ]2+ , where n=0-3; dip=4,7-diphenyl-1,10-phenanthroline; L-L=2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen) were prepared and tested for cytotoxicity in two cell lines (H358, MCF7). Cellular uptake and subcellular localization were determined by harvesting treated cells and determining the ruthenium concentration in whole or fractionated cells (cytosolic, nuclear, mitochondrial/ ER/Golgi, and cytoskeletal proteins) by Ru ICP-MS. The logP values for the chloride salts of these complexes were measured and the data were analyzed to determine the role of lipophilicity versus structure in the various biological assays. Cellular uptake increased with lipophilicity but shows the biggest jump when the complex contains two or more dip ligands. Significantly, preferential cytoskeletal localization is also correlated with increased cytotoxicity. All of the RPCs promote tubulin polymerization in vitro, but [Ru(dip)2 phen]2+ and [Ru(dip)3 ]2+ show the strongest activity. Analysis of the pellet formed by centrifugation of MTs formed in the presence of [Ru(dip)2 phen]2+ establish a binding stoichiometry of one RPC per tubulin heterodimer. Complexes of the general formula [Ru(dip)2 (L-L)]2+ possess the necessary characteristics to target the cytoskeleton in live cells and increase cytotoxicity, however the nature of the L-L ligand does influence the extent of the effect.
Collapse
Affiliation(s)
- Melissa M Reardon
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Arlington, TX, 76109, USA
| | - Matthew Guerrero
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Arlington, TX, 76109, USA
| | - Nagham Alatrash
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Arlington, TX, 76109, USA
| | - Frederick M MacDonnell
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Arlington, TX, 76109, USA
| |
Collapse
|
4
|
Kumar S, Singh S, Kumar A, Murthy K, Kumar Singh A. pH-Responsive luminescence sensing, photoredox catalysis and photodynamic applications of ruthenium(II) photosensitizers bearing imidazo[4,5-f][1,10]phenanthroline scaffolds. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Lenis-Rojas OA, Robalo MP, Tomaz AI, Fernandes AR, Roma-Rodrigues C, Teixeira RG, Marques F, Folgueira M, Yáñez J, Gonzalez AA, Salamini-Montemurri M, Pech-Puch D, Vázquez-García D, Torres ML, Fernández A, Fernández JJ. Half-Sandwich Ru( p-cymene) Compounds with Diphosphanes: In Vitro and In Vivo Evaluation As Potential Anticancer Metallodrugs. Inorg Chem 2021; 60:2914-2930. [PMID: 33570919 DOI: 10.1021/acs.inorgchem.0c02768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ruthenium(II) complexes are currently considered attractive alternatives to the widely used platinum-based drugs. We present herein the synthesis and characterization of half-sandwich ruthenium compounds formulated as [Ru(p-cymene)(L)Cl][CF3SO3] (L = 1,1-bis(methylenediphenylphosphano)ethylene, 1; L = 1,1-bis(diphenylphosphano)ethylene, 2), which were characterized by elemental analysis, mass spectrometry, 1H and 31P{1H} NMR, UV-vis and IR spectroscopy, conductivity measurements and cyclic voltammetry. The molecular structures for both complexes were determined by single-crystal X-ray diffraction. Their cytotoxic activity was evaluated using the MTT assay against human tumor cells, namely ovarian (A2780) and breast (MCF7 and MDA-MB-231). Both complexes were active against breast adenocarcinoma cells, with complex 1 exhibiting a quite remarkable cytotoxicity in the submicromolar range. Interestingly, at concentrations equivalent to the IC50 values in the MCF7 cancer cells, complexes 1 and 2 presented lower cytotoxicity in normal human primary fibroblasts. The antiproliferative effects of 1 and 2 in MCF7 cells might be associated with the induction of reactive oxygen species (ROS), leading to a combined cell death mechanism via apoptosis and autophagy. Despite the fact that in vitro a partial intercalation between complexes and DNA was observed, no MCF7 cell cycle delay or arrest was observed, indicating that DNA might not be a direct target. Complexes 1 and 2 both exhibited a moderate to strong interaction with human serum albumin, suggesting that protein targets may be involved in their mode of action. Their acute toxicity was evaluated in the zebrafish model. Complex 1 (the most toxic of the two) exhibited a lethal toxicity LC50 value about 1 order of magnitude higher than any IC50 concentrations found for the cancer cell models used, highlighting its therapeutic relevance as a drug candidate in cancer chemotherapy.
Collapse
Affiliation(s)
- Oscar A Lenis-Rojas
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB, Av. da República, EAN, 2780-157 Oeiras, Portugal
| | - M Paula Robalo
- Área Departamental de Engenharia Química, ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal.,Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Isabel Tomaz
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-016 Lisboa, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Ricardo G Teixeira
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-016 Lisboa, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologías Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139.7), 2695-066 Bobadela LRS, Portugal
| | - Mónica Folgueira
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Biology, Universidade da Coruña, 15008 A Coruña, Spain.,Department of Cell and Developmental Biology, University College London, Gower Street, London WC1 6BT, U.K
| | - Julián Yáñez
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Biology, Universidade da Coruña, 15008 A Coruña, Spain
| | - Anabel Alba Gonzalez
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Biology, Universidade da Coruña, 15008 A Coruña, Spain
| | - Martín Salamini-Montemurri
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Biology, Universidade da Coruña, 15008 A Coruña, Spain
| | - Dawrin Pech-Puch
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain.,Departamento de Biología Marina, Universidad Autónoma de Yucatán, Km. 15.5, carretera Mérida-Xmatkuil, A.P. 4-116 Itzimná, C.P. 97100, Mérida, Yucatán, Mexico
| | - Digna Vázquez-García
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Margarita López Torres
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Alberto Fernández
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Jesús J Fernández
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| |
Collapse
|
6
|
Liu J, Lai H, Xiong Z, Chen B, Chen T. Functionalization and cancer-targeting design of ruthenium complexes for precise cancer therapy. Chem Commun (Camb) 2019; 55:9904-9914. [PMID: 31360938 DOI: 10.1039/c9cc04098f] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The successful clinical application of the three generation platinum anticancer drugs, cisplatin, carboplatin and oxaliplatin, has promoted research interest in metallodrugs; however, the problems of drug resistance and adverse effects have hindered their further application and effects. Thus, scientists are searching for new anticancer metallodrugs with lower toxicity and higher efficacy. The ruthenium complexes have emerged as the most promising alternatives to platinum-based anticancer agents because of their unique multifunctional biochemical properties. In this review, we first focus on the anticancer applications of various ruthenium complexes in different signaling pathways, including the mitochondria-mediated pathway, the DNA damage-mediated pathway, and the death receptor-mediated pathway. We then discuss the functionalization and cancer-targeting designs of different ruthenium complexes in conjunction with other therapies such as photodynamic therapy, photothermal therapy, radiosensitization, targeted therapy and nanotechnology for precise cancer therapy. This review will help in designing and accelerating the research progress regarding new anticancer ruthenium complexes.
Collapse
Affiliation(s)
- Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou 510120, China
| | | | | | | | | |
Collapse
|
7
|
Abstract
Background:
Since the serendipitous discovery of the antitumor activity of cisplatin
there has been a continuous surge in studies aimed at the development of new cytotoxic
metal complexes. While the majority of these complexes have been designed to interact with
nuclear DNA, other targets for anticancer metallodrugs attract increasing interest. In cancer
cells the mitochondrial metabolism is deregulated. Impaired apoptosis, insensitivity to antigrowth
signals and unlimited proliferation have been linked to mitochondrial dysfunction. It
is therefore not surprising that mitochondria have emerged as a major target for cancer therapy.
Mitochondria-targeting agents are able to bypass resistance mechanisms and to (re-) activate
cell-death programs.
Methods:
Web-based literature searching tools such as SciFinder were used to search for reports
on cytotoxic metal complexes that are taken up by the mitochondria and interact with
mitochondrial DNA or mitochondrial proteins, disrupt the mitochondrial membrane potential,
facilitate mitochondrial membrane permeabilization or activate mitochondria-dependent celldeath
signaling by unbalancing the cellular redox state. Included in the search were publications
investigating strategies to selectively accumulate metallodrugs in the mitochondria.
Results:
This review includes 241 references on antimitochondrial metal complexes, the use
of mitochondria-targeting carrier ligands and the formation of lipophilic cationic complexes.
Conclusion:
Recent developments in the design, cytotoxic potency, and mechanistic understanding
of antimitochondrial metal complexes, in particular of cyclometalated Au, Ru, Ir and
Pt complexes, Ru polypyridine complexes and Au-N-heterocyclic carbene and phosphine
complexes are summarized and discussed.
Collapse
Affiliation(s)
- Andrea Erxleben
- School of Chemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
8
|
Bai M, Pan T, Yu G, Xie Q, Zeng Z, Zhang Y, Zhu D, Mu L, Qian J, Chang B, Mei WJ, Guan S. Chiral ruthenium(II) complex Δ-[Ru(bpy) 2(o-FMPIP)] (bpy = bipyridine, o-FMPIP = 2-(2'-trifluoromethyphenyl) imidazo[4,5-f][1,10]phenanthroline) as potential apoptosis inducer via DNA damage. Eur J Pharmacol 2019; 853:49-55. [PMID: 30880177 DOI: 10.1016/j.ejphar.2019.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022]
Abstract
Chiral ruthenium(II) complexes have long been considered as potential anticancer agents. Herein, in vivo inhibitory activity of a chiral ruthenium(II) complex coordinated by ligand 2-(2'-trifluoromethyphenyl) imidazo [4,5-f][1,10]phenanthroline, Δ-[Ru(bpy)2(o-FMPIP)] (D0402) on Kunming(KM) mice bearing tumor (H22 hepatic cancer) has been evaluated, and the results showed that the tumor weight of mice treated with 0.22 mg/(kg·day) D0402 via i.v. administration for 7 days decreased about 31.79% compared to the control group, while the body weight, as well as the thymus, spleen, liver, lung, and kidney indices of mice treated with D0402 observed almost no loss compared to the control group. Furthermore, the mechanism studies on anti-angiogenic showed that D0402 could inhibit the formation of angiogenesis in the transgenic Tg(fli1a: EGFP) zebrafish. After treated with D0402, the sub-intestinal vessels(SIVs) of the zebrafish became disordered and chaotic, and was dosage dependent. Moreover, the TUNEL analysis and comet assays revealed that D0402 can induce apoptosis of HepG2 cell through DNA damage, and this was further demonstrated by immunofluorescence analysis with the number of γ-H2AX increased following the increasing amount of D0402. Besides, in vivo toxicity of D0402 has also been investigated on the development of zebrafish embryo, and the results showed that there were no death or development delay occurred for zebrafish embryo treated with D0402 up to concentration of 60 μM. All in together, this study suggested that D0402 can be developed as a potential inhibitor against liver cancer through co-junction of anti-angiogenesis and apoptosis-inducing via DNA damage in the near future.
Collapse
Affiliation(s)
- Mingjun Bai
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tao Pan
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Gengnan Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiang Xie
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Zhaolin Zeng
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yanyang Zhang
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Duo Zhu
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Luwen Mu
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jiesheng Qian
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Boyang Chang
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Wen-Jie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Province Engineering Technology Centre for Molecular Probe and Biomedicine Imaging, Guangzhou 510006, China.
| | - Shouhai Guan
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
9
|
Lenis-Rojas OA, Robalo MP, Tomaz AI, Carvalho A, Fernandes AR, Marques F, Folgueira M, Yáñez J, Vázquez-García D, López Torres M, Fernández A, Fernández JJ. RuII(p-cymene) Compounds as Effective and Selective Anticancer Candidates with No Toxicity in Vivo. Inorg Chem 2018; 57:13150-13166. [DOI: 10.1021/acs.inorgchem.8b01270] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Oscar A. Lenis-Rojas
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - M. Paula Robalo
- Área Departamental de Engenharia Química, ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal
- Centro de Química Estrutural, Complexo 1, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Isabel Tomaz
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Andreia Carvalho
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologías Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139.7), 2695-066 Bobadela LRS, Portugal
| | - Mónica Folgueira
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Biology, Universidade da Coruña, 15008 A Coruña, Spain
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1 6BT, U.K
| | - Julián Yáñez
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Biology, Universidade da Coruña, 15008 A Coruña, Spain
| | - Digna Vázquez-García
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Margarita López Torres
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Alberto Fernández
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Jesús J. Fernández
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| |
Collapse
|
10
|
Pal M, Nandi U, Mukherjee D. Detailed account on activation mechanisms of ruthenium coordination complexes and their role as antineoplastic agents. Eur J Med Chem 2018; 150:419-445. [DOI: 10.1016/j.ejmech.2018.03.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 10/17/2022]
|
11
|
Poynton FE, Bright SA, Blasco S, Williams DC, Kelly JM, Gunnlaugsson T. The development of ruthenium(ii) polypyridyl complexes and conjugates for in vitro cellular and in vivo applications. Chem Soc Rev 2018; 46:7706-7756. [PMID: 29177281 DOI: 10.1039/c7cs00680b] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ruthenium(ii) [Ru(ii)] polypyridyl complexes have been the focus of intense investigations since work began exploring their supramolecular interactions with DNA. In recent years, there have been considerable efforts to translate this solution-based research into a biological environment with the intention of developing new classes of probes, luminescent imaging agents, therapeutics and theranostics. In only 10 years the field has expanded with diverse applications for these complexes as imaging agents and promising candidates for therapeutics. In light of these efforts this review exclusively focuses on the developments of these complexes in biological systems, both in cells and in vivo, and hopes to communicate to readers the diversity of applications within which these complexes have found use, as well as new insights gained along the way and challenges that researchers in this field still face.
Collapse
Affiliation(s)
- Fergus E Poynton
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
12
|
A comparative study on in vitro cytotoxicity, cellular uptake, localization and apoptosis-inducing mechanism of two ruthenium(II) complexes. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0203-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Chen J, Zhang Y, Li G, Peng F, Jie X, She J, Dongye G, Zou Z, Rong S, Chen L. Cytotoxicity in vitro, cellular uptake, localization and apoptotic mechanism studies induced by ruthenium(II) complex. J Biol Inorg Chem 2017; 23:261-275. [DOI: 10.1007/s00775-017-1528-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/13/2017] [Indexed: 12/22/2022]
|
14
|
Zeng L, Gupta P, Chen Y, Wang E, Ji L, Chao H, Chen ZS. The development of anticancer ruthenium(ii) complexes: from single molecule compounds to nanomaterials. Chem Soc Rev 2017; 46:5771-5804. [PMID: 28654103 PMCID: PMC5624840 DOI: 10.1039/c7cs00195a] [Citation(s) in RCA: 729] [Impact Index Per Article: 104.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer is rapidly becoming the top killer in the world. Most of the FDA approved anticancer drugs are organic molecules, while metallodrugs are very scarce. The advent of the first metal based therapeutic agent, cisplatin, launched a new era in the application of transition metal complexes for therapeutic design. Due to their unique and versatile biochemical properties, ruthenium-based compounds have emerged as promising anti-cancer agents that serve as alternatives to cisplatin and its derivertives. Ruthenium(iii) complexes have successfully been used in clinical research and their mechanisms of anticancer action have been reported in large volumes over the past few decades. Ruthenium(ii) complexes have also attracted significant attention as anticancer candidates; however, only a few of them have been reported comprehensively. In this review, we discuss the development of ruthenium(ii) complexes as anticancer candidates and biocatalysts, including arene ruthenium complexes, polypyridyl ruthenium complexes, and ruthenium nanomaterial complexes. This review focuses on the likely mechanisms of action of ruthenium(ii)-based anticancer drugs and the relationship between their chemical structures and biological properties. This review also highlights the catalytic activity and the photoinduced activation of ruthenium(ii) complexes, their targeted delivery, and their activity in nanomaterial systems.
Collapse
Affiliation(s)
- Leli Zeng
- College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Lenis-Rojas OA, Roma-Rodrigues C, Fernandes AR, Marques F, Pérez-Fernández D, Guerra-Varela J, Sánchez L, Vázquez-García D, López-Torres M, Fernández A, Fernández JJ. Dinuclear RuII(bipy)2 Derivatives: Structural, Biological, and in Vivo Zebrafish Toxicity Evaluation. Inorg Chem 2017; 56:7127-7144. [DOI: 10.1021/acs.inorgchem.7b00790] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Oscar A. Lenis-Rojas
- Departamento de Química Fundamental & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento Ciências da
Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- UCIBIO, Departamento Ciências da
Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - Fernanda Marques
- Centro de Ciências
e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, LRS, Portugal
| | - David Pérez-Fernández
- Departamento de Zoología, Genética y Antropología
Física. Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Jorge Guerra-Varela
- Departamento de Zoología, Genética y Antropología
Física. Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Laura Sánchez
- Departamento de Zoología, Genética y Antropología
Física. Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Digna Vázquez-García
- Departamento de Química Fundamental & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Margarita López-Torres
- Departamento de Química Fundamental & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Alberto Fernández
- Departamento de Química Fundamental & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Jesús J. Fernández
- Departamento de Química Fundamental & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| |
Collapse
|
16
|
Griffith C, Dayoub AS, Jaranatne T, Alatrash N, Mohamedi A, Abayan K, Breitbach ZS, Armstrong DW, MacDonnell FM. Cellular and cell-free studies of catalytic DNA cleavage by ruthenium polypyridyl complexes containing redox-active intercalating ligands. Chem Sci 2017; 8:3726-3740. [PMID: 28553531 PMCID: PMC5428021 DOI: 10.1039/c6sc04094b] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/08/2017] [Indexed: 01/21/2023] Open
Abstract
The ruthenium(ii) polypyridyl complexes (RPCs), [(phen)2Ru(tatpp)]2+ (32+ ) and [(phen)2Ru(tatpp)Ru(phen)2]4+ (44+ ) are shown to cleave DNA in cell-free studies in the presence of a mild reducing agent, i.e. glutathione (GSH), in a manner that is enhanced upon lowering the [O2]. Reactive oxygen species (ROS) are involved in the cleavage process as hydroxy radical scavengers attenuate the cleavage activity. Cleavage experiments in the presence of superoxide dismutase (SOD) and catalase reveal a central role for H2O2 as the immediate precursor for hydroxy radicals. A mechanism is proposed which explains the inverse [O2] dependence and ROS data and involves redox cycling between three DNA-bound redox isomers of 32+ or 44+ . Cultured non-small cell lung cancer cells (H358) are sensitive to 32+ and 44+ with IC50 values of 13 and 15 μM, respectively, and xenograft H358 tumors in nude mice show substantial (∼80%) regression relative to untreated tumors when the mice are treated with enantiopure versions of 32+ and 44+ (Yadav et al. Mol Cancer Res, 2013, 12, 643). Fluorescence microscopy of H358 cells treated with 15 μM 44+ reveals enhanced intracellular ROS production in as little as 2 h post treatment. Detection of phosphorylated ATM via immunofluorescence within 2 h of treatment with 44+ reveals initiation of the DNA damage repair machinery due to the ROS insult and DNA double strand breaks (DSBs) in the nuclei of H358 cells and is confirmed using the γH2AX assay. The cell data for 32+ is less clear but DNA damage occurs. Notably, cells treated with [Ru(diphenylphen)3]2+ (IC50 1.7 μM) show no extra ROS production and no DNA damage by either the pATM or γH2AX even after 22 h. The enhanced DNA cleavage under low [O2] (4 μM) seen in cell-free cleavage assays of 32+ and 44+ is only partially reflected in the cytotoxicity of 32+ and 44+ in H358, HCC2998, HOP-62 and Hs766t under hypoxia (1.1% O2) relative to normoxia (18% O2). Cells treated with RPC 32+ show up to a two-fold enhancement in the IC50 under hypoxia whereas cells treated with RPC 44+ gave the same IC50 whether under hypoxia or normoxia.
Collapse
Affiliation(s)
- Cynthia Griffith
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , TX 76019 , USA .
| | - Adam S Dayoub
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , TX 76019 , USA .
| | - Thamara Jaranatne
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , TX 76019 , USA .
| | - Nagham Alatrash
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , TX 76019 , USA .
| | - Ali Mohamedi
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , TX 76019 , USA .
| | - Kenneth Abayan
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , TX 76019 , USA .
| | - Zachary S Breitbach
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , TX 76019 , USA .
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , TX 76019 , USA .
| | - Frederick M MacDonnell
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , TX 76019 , USA .
| |
Collapse
|
17
|
He L, Zeng L, Mai X, Shi C, Luo L, Chen T. Nucleolin-targeted selenium nanocomposites with enhanced theranostic efficacy to antagonize glioblastoma. J Mater Chem B 2017; 5:3024-3034. [PMID: 32263994 DOI: 10.1039/c6tb03365b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glioblastoma is considered as the most lethal cancer, due to the inability of chemotherapeutic agents to reach the glioma core as well as the infiltration zone of the invasive glioma cells. Nanotechnology based delivery systems bring new hope to cancer targeted therapy and diagnosis owing to their enhancement of selective cellular uptake and cytotoxicity to cancer cells through various smart designs. We prepared a novel selenium-based composite nanosystem (QDs/Se@Ru(A)) surface functionalized with the AS1411 aptamer and loaded with quantum dots to realize selectivity against glioblastoma and enhance theranostic effects. This cancer targeted nanosystem significantly enhanced the cellular uptake in glioma cells through nucleolin mediated endocytosis, and increased selectivity between cancer and normal cells. The QDs/Se@Ru(A) nanosystem can also be used for spontaneous fluorescence of biological probes to explore their localization in cancer cells, because of the green fluorescent quantum dots loaded into the selenium nanoparticles. QDs/Se@Ru(A) promotes excess reactive oxygen species (ROS) production in glioma cells to induce DNA damage, thus activating diverse downstream signaling pathways, and inhibiting proliferation of U87 cells through the G2/M phase cycle. Thus, this study provides an effective strategy to design a theranostic agent to simultaneously realize cell imaging and therapy for glioblastoma treatment.
Collapse
Affiliation(s)
- Lizhen He
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | |
Collapse
|
18
|
Notaro A, Gasser G. Monomeric and dimeric coordinatively saturated and substitutionally inert Ru(ii) polypyridyl complexes as anticancer drug candidates. Chem Soc Rev 2017; 46:7317-7337. [DOI: 10.1039/c7cs00356k] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Monomeric and dimeric coordinatively saturated and substitutionally inert Ru(ii) polypyridyl complexes with anticancer properties are reviewed.
Collapse
Affiliation(s)
- Anna Notaro
- Chimie ParisTech
- PSL Research University
- Laboratory for Inorganic Chemical Biology
- F-75005 Paris
- France
| | - Gilles Gasser
- Chimie ParisTech
- PSL Research University
- Laboratory for Inorganic Chemical Biology
- F-75005 Paris
- France
| |
Collapse
|
19
|
Zhang H, Li L, Wu Q, Yang F, Chen L, Hou T, Chen J, Mei W, Wang X. Inhibiting the growth of tumor cells by ruthenium(II) complexes [Ru(phen)2L] (L = o-TFMPIP and p-CPIP) through DNA-binding. J COORD CHEM 2016; 69:3507-3517. [DOI: 10.1080/00958972.2016.1237633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/23/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Hao Zhang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Li Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Qiong Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Fan Yang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Lanmei Chen
- College of Pharmacy, Guangdong Medical College, Zhanjiang, PR China
| | - Tieying Hou
- Guangdong Academy of Medical Science, Guangzhou, PR China
- Guangdong General Hospital, Guangzhou, PR China
| | - Jincan Chen
- College of Pharmacy, Guangdong Medical College, Zhanjiang, PR China
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Xicheng Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| |
Collapse
|
20
|
Lenis-Rojas OA, Fernandes AR, Roma-Rodrigues C, Baptista PV, Marques F, Pérez-Fernández D, Guerra-Varela J, Sánchez L, Vázquez-García D, Torres ML, Fernández A, Fernández JJ. Heteroleptic mononuclear compounds of ruthenium(ii): synthesis, structural analyses, in vitro antitumor activity and in vivo toxicity on zebrafish embryos. Dalton Trans 2016; 45:19127-19140. [PMID: 27868117 DOI: 10.1039/c6dt03591d] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The limitations of platinum complexes in cancer treatment have motivated the extensive investigation into other metal complexes such as ruthenium. We herein present the synthesis and characterization of a new family of ruthenium compounds 1a-5a with the general formula [Ru(bipy)2L][CF3SO3]2 (bipy = 2,2'-bipyridine; L = bidentate ligand: N,N; N,P; P,P; P,As) which have been characterized by elemental analysis, ES-MS, 1H and 31P-{1H} NMR, FTIR and conductivity measurements. The molecular structures of four Ru(ii) complexes were determined by single crystal X-ray diffraction. All compounds displayed moderate cytotoxic activity in vitro against human A2780 ovarian, MCF7 breast and HCT116 colorectal tumor cells. Compound 5a was the most cytotoxic compound against A2780 and MCF7 tumor cells with an IC50 of 4.75 ± 2.82 μM and 20.02 ± 1.46 μM, respectively. The compounds showed no cytotoxic effect on normal human primary fibroblasts but rather considerable selectivity for A2780, MCF7 and HCT116 tumor cells. All compounds induce apoptosis and autophagy in A2780 ovarian carcinoma cells and some nuclear DNA fragmentation. All compounds interact with CT-DNA with intrinsic binding constants in the order 1a > 4a > 2a > 3a > 5a. The observed hyperchromic effect may be due to the electrostatic interaction between positively charged cations and the negatively charged phosphate backbone at the periphery of the double helix-CT-DNA. Interestingly, compound 1a shows a concentration dependent DNA double strand cleavage. In addition in vivo toxicity has been evaluated on zebrafish embryos unveiling the differential toxicity between the compounds, with LC50 ranging from 8.67 mg L-1 for compound 1a to 170.30 mg L-1 for compound 2a.
Collapse
Affiliation(s)
- O A Lenis-Rojas
- Departamento de Química Fundamental & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zeng L, Chen Y, Liu J, Huang H, Guan R, Ji L, Chao H. Ruthenium(II) Complexes with 2-Phenylimidazo[4,5-f][1,10]phenanthroline Derivatives that Strongly Combat Cisplatin-Resistant Tumor Cells. Sci Rep 2016; 6:19449. [PMID: 26763798 PMCID: PMC4725915 DOI: 10.1038/srep19449] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
Cisplatin was the first metal-based therapeutic agent approved for the treatment of human cancers, but its clinical activity is greatly limited by tumor drug resistance. This work utilized the parent complex [Ru(phen)2(PIP)](2+) (1) to develop three Ru(II) complexes (2-4) with different positional modifications. These compounds exhibited similar or superior cytotoxicities compared to cisplatin in HeLa, A549 and multidrug-resistant (A549R) tumor cell lines. Complex 4, the most potent member of the series, was highly active against A549R cancer cells (IC50 = 0.8 μM). This complex exhibited 178-fold better activity than cisplatin (IC50 = 142.5 μM) in A549R cells. 3D multicellular A549R tumor spheroids were also used to confirm the high proliferative and cytotoxic activity of complex 4. Complex 4 had the greatest cellular uptake and had a tendency to accumulate in the mitochondria of A549R cells. Further mechanistic studies showed that complex 4 induced A549R cell apoptosis via inhibition of thioredoxin reductase (TrxR), elevated intracellular ROS levels, mitochondrial dysfunction and cell cycle arrest, making it an outstanding candidate for overcoming cisplatin resistance.
Collapse
Affiliation(s)
- Leli Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huaiyi Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
22
|
Medici S, Peana M, Nurchi VM, Lachowicz JI, Crisponi G, Zoroddu MA. Noble metals in medicine: Latest advances. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.08.002] [Citation(s) in RCA: 373] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Dickerson M, Sun Y, Howerton B, Glazer EC. Modifying charge and hydrophilicity of simple Ru(II) polypyridyl complexes radically alters biological activities: old complexes, surprising new tricks. Inorg Chem 2014; 53:10370-7. [PMID: 25249443 PMCID: PMC4186668 DOI: 10.1021/ic5013796] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Compounds
capable of light-triggered cytotoxicity are appealing
potential therapeutics, because they can provide spatial and temporal
control over cell killing to reduce side effects in cancer therapy.
Two simple homoleptic Ru(II) polypyridyl complexes with almost-identical
photophysical properties but radically different physiochemical properties
were investigated as agents for photodynamic therapy (PDT). The two
complexes were identical, except for the incorporation of six sulfonic
acids into the ligands of one complex, resulting in a compound carrying
an overall −4 charge. The negatively charged compound exhibited
significant light-mediated cytotoxicity, and, importantly, the negative
charges resulted in radical alterations of the biological activity,
compared to the positively charged analogue, including complete abrogation
of toxicity in the dark. The charges also altered the subcellular
localization properties, mechanism of action, and even the mechanism
of cell death. The incorporation of negative charged ligands provides
a simple chemical approach to modify the biological properties of
light-activated Ru(II) cytotoxic agents. Two Ru(II) polypyridyl complexes with
essentially identical
photophysical properties but different charges and hydrophilicites
were explored as potential agents for photodynamic therapy. Remarkably,
the complex carrying a −4 overall charge exhibited excellent
light-dependent cytotoxicity while remaining inactive in the dark.
In contrast, the complex that was +2 charged caused significant cell
death in the absence of the light trigger, likely because of its localization
in the mitochondria and destruction of the membrane potential.
Collapse
Affiliation(s)
- Matthew Dickerson
- Department of Chemistry, University of Kentucky , Lexington, Kentucky 40506, United States
| | | | | | | |
Collapse
|