1
|
Nunes JA, Santos-Júnior PFDS, Gomes MC, Ferreira LAS, Padilha EKA, Teixeira TR, Stanger EJ, Kaur Y, Silva EBD, Costa CACB, Freitas JDD, Araújo-Júnior JXD, Mendonça-Junior FJB, Giardini MA, Siqueira-Neto JL, Caffrey CR, Zhan P, Cardoso SH, Silva-Júnior EFD. Nanomolar activity of coumarin-3-thiosemicarbazones targeting Trypanosoma cruzi cruzain and the T. brucei cathepsin L-like protease. Eur J Med Chem 2025; 283:117109. [PMID: 39653622 DOI: 10.1016/j.ejmech.2024.117109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
Trypanosoma cruzi (T. cruzi) and Trypanosoma brucei (T. brucei) urgently demand innovative drug development due to their impact on public health worldwide. Their cysteine proteases, Cruzain (CRZ) and the T. brucei Cathepsin L-like protease (TbrCATL) are established drug targets for these parasites. In this study, our coumarin-3-thiosemicarbazones demonstrated nanomolar IC50 values (22-698 nM) toward these proteases. Against T. cruzi amastigotes and T. brucei trypomastigotes, LASF-01 displayed a promising result. Herein, MCG-02, the most potent TbrCATL inhibitor, underwent comprehensive analyses, including cytotoxicity assessments and in vitro tests. Molecular dynamics (MD) simulations and a multiscale Quantum Mechanics/Quantum Mechanics (QM/QM) approach were used to generate insights into their binding modes. These suggested that MCG-02 could be a reversible, competitive covalent inhibitor. Further, confirmatory assays were experimentally performed changing different parameters to prove its efficacy. Additionally, the predicted pharmacokinetic profile showed that there is no violation of the Lipinski rule of five. Notably, coumarin-3-thiosemicarbazone hybrids emerged as promising candidates for designing highly active inhibitors against CRZ and TbrCATL. Overall, the integration of in silico and experimental approaches enhanced our understanding regarding the binding modes of MCG-02, which were experimentally corroborated, providing valuable insights for future drug development.
Collapse
Affiliation(s)
- Jéssica Alves Nunes
- Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, Alagoas, Maceió, 57072-970, Brazil
| | - Paulo Fernando da Silva Santos-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, Alagoas, Maceió, 57072-970, Brazil
| | - Midiane Correa Gomes
- Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, Alagoas, Maceió, 57072-970, Brazil
| | - Luiz Alberto Santos Ferreira
- Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca, 57309-005, Brazil
| | - Emanuelly Karla Araújo Padilha
- Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, Alagoas, Maceió, 57072-970, Brazil
| | - Thaiz Rodrigues Teixeira
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Emily J Stanger
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Yashpreet Kaur
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Elany Barbosa da Silva
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Johnnatan Duarte de Freitas
- Department of Chemistry, Federal Institute of Alagoas, Maceió Campus, Mizael Domingues Street, 57020-600, Maceió, Alagoas, Brazil
| | - João Xavier de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, Alagoas, Maceió, 57072-970, Brazil
| | | | - Miriam A Giardini
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jair L Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Sílvia Helena Cardoso
- Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca, 57309-005, Brazil.
| | - Edeildo Ferreira da Silva-Júnior
- Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, Alagoas, Maceió, 57072-970, Brazil.
| |
Collapse
|
2
|
Barazorda-Ccahuana HL, Cárcamo-Rodriguez EG, Centeno-Lopez AE, Galdino AS, Machado-de-Ávila RA, Giunchetti RC, Coelho EAF, Chávez-Fumagalli MA. Targeting with Structural Analogs of Natural Products the Purine Salvage Pathway in Leishmania (Leishmania) infantum by Computer-Aided Drug-Design Approaches. Trop Med Infect Dis 2024; 9:41. [PMID: 38393130 PMCID: PMC10891554 DOI: 10.3390/tropicalmed9020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Visceral Leishmaniasis (VL) has a high death rate, with 500,000 new cases and 50,000 deaths occurring annually. Despite the development of novel strategies and technologies, there is no adequate treatment for the disease. Therefore, the purpose of this study is to find structural analogs of natural products as potential novel drugs to treat VL. We selected structural analogs from natural products that have shown antileishmanial activities, and that may impede the purine salvage pathway using computer-aided drug-design (CADD) approaches. For these, we started with the vastly studied target in the pathway, the adenine phosphoribosyl transferase (APRT) protein, which alone is non-essential for the survival of the parasite. Keeping this in mind, we search for a substance that can bind to multiple targets throughout the pathway. Computational techniques were used to study the purine salvage pathway from Leishmania infantum, and molecular dynamic simulations were used to gather information on the interactions between ligands and proteins. Because of its low homology to human proteins and its essential role in the purine salvage pathway proteins network interaction, the findings further highlight the significance of adenylosuccinate lyase protein (ADL) as a therapeutic target. An analog of the alkaloid Skimmianine, N,N-diethyl-4-methoxy-1-benzofuran-6-carboxamide, demonstrated a good binding affinity to APRT and ADL targets, no expected toxicity, and potential for oral route administration. This study indicates that the compound may have antileishmanial activity, which was granted in vitro and in vivo experiments to settle this finding in the future.
Collapse
Affiliation(s)
- Haruna Luz Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Eymi Gladys Cárcamo-Rodriguez
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Angela Emperatriz Centeno-Lopez
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Alexsandro Sobreira Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | | | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador 40015-970, BA, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| |
Collapse
|
3
|
Cavalcante CHL, Almeida-Neto FWDQ, da Rocha MN, Bandeira PN, de Menezes RRPPB, Paula Magalhães E, Sampaio TL, Marinho ES, Marinho MM, Maria Costa Martins A, Dos Santos HS. Antichagasic evaluation, molecular docking and ADMET properties of the chalcone (2 E)-3-(2-fluorophenyl)-1-(2-hydroxy- 3,4,6-trimethoxyphenyl)prop-2-en-1-one against Trypanosoma cruzi. J Biomol Struct Dyn 2023; 41:7463-7479. [PMID: 36120936 DOI: 10.1080/07391102.2022.2123394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Characterized as a neglected disease, Chagas disease is an infection that, in the current scenario, affects about 8 million people per year, with a higher incidence in underdeveloped countries, Chagas is responsible for physiological disabilities that result in impacts that are slightly reflected in world socioeconomic stability. Although treatments are based on drugs such as Benznidazole, the pathology lacks a continuous treatment method with low toxicological incidence. The present study estimates the anti-chagasic activity of the synthetic chalcone CPN2F based on the alignment between in vitro tests and structural classification in silico studies, molecular docking and ADMET studies. The in vitro tests showed a reduction in the protozoan metabolism in host cells (LLC-MK2). At the same time, the molecular docking models evaluate this growth inhibition through the synergistic effect associated with Benznida- zole against validated therapeutic target key stages (Cruzaine TcGAPDH and Trypanothione reductase) of the Trypanosoma cruzi development cycle. The in silico prediction results reveal an alignment between pharmacokinetic attributes, such as renal absorption and release, which allow the preparation of CPN2F as an antichagasic drug with a low incidence of organic toxicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Carlos Henrique Leitão Cavalcante
- Postgraduate Program in Biotechnology - PPGB-Renorbio, State University of Ceara, Fortaleza, CE, Brazil
- Federal Institute of Education and Technology of Ceara, Maracanau, CE, Brazil
| | | | - Matheus Nunes da Rocha
- Center for Science and Technology, Postgraduate Program in Natural Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | - Paulo Nogueira Bandeira
- Center for Exact Sciences and Technology, State University of Vale do Acaraú, Sobral, CE, Brazil
| | | | - Emanuel Paula Magalhães
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Tiago Lima Sampaio
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Márcia Machado Marinho
- Center for Exact Sciences and Technology, State University of Vale do Acaraú, Sobral, CE, Brazil
| | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Hélcio Silva Dos Santos
- Postgraduate Program in Biotechnology - PPGB-Renorbio, State University of Ceara, Fortaleza, CE, Brazil
- Center for Science and Technology, Postgraduate Program in Natural Sciences, State University of Ceará, Fortaleza, CE, Brazil
- Center for Exact Sciences and Technology, State University of Vale do Acaraú, Sobral, CE, Brazil
| |
Collapse
|
4
|
Alves ETM, Pernichelle FG, Nascimento LA, Ferreira GM, Ferreira EI. Covalent Inhibitors for Neglected Diseases: An Exploration of Novel Therapeutic Options. Pharmaceuticals (Basel) 2023; 16:1028. [PMID: 37513939 PMCID: PMC10385647 DOI: 10.3390/ph16071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Neglected diseases, primarily found in tropical regions of the world, present a significant challenge for impoverished populations. Currently, there are 20 diseases considered neglected, which greatly impact the health of affected populations and result in difficult-to-control social and economic consequences. Unfortunately, for the majority of these diseases, there are few or no drugs available for patient treatment, and the few drugs that do exist often lack adequate safety and efficacy. As a result, there is a pressing need to discover and design new drugs to address these neglected diseases. This requires the identification of different targets and interactions to be studied. In recent years, there has been a growing focus on studying enzyme covalent inhibitors as a potential treatment for neglected diseases. In this review, we will explore examples of how these inhibitors have been used to target Human African Trypanosomiasis, Chagas disease, and Malaria, highlighting some of the most promising results so far. Ultimately, this review aims to inspire medicinal chemists to pursue the development of new drug candidates for these neglected diseases, and to encourage greater investment in research in this area.
Collapse
Affiliation(s)
- Erick Tavares Marcelino Alves
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Filipe Gomes Pernichelle
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Lucas Adriano Nascimento
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Elizabeth Igne Ferreira
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| |
Collapse
|
5
|
Danazumi AU, Ishmam IT, Idris S, Izert MA, Balogun EO, Górna MW. Targeted protein degradation might present a novel therapeutic approach in the fight against African trypanosomiasis. Eur J Pharm Sci 2023; 186:106451. [PMID: 37088149 PMCID: PMC11032742 DOI: 10.1016/j.ejps.2023.106451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
African trypanosomiasis (AT) is a hemoparasitic disease caused by infection with African trypanosomes and it is prevalent in many sub-Saharan African countries, affecting both humans and domestic animals. The disease is transmitted mostly by haematophagous insects of the genus Glossina while taking blood meal, in the process spreading the parasites from an infected animal to an uninfected animal. The disease is fatal if untreated, and the available drugs are generally ineffective and resulting in toxicities. Therefore, it is still pertinent to explore novel methods and targets for drug discovery. Proteolysis-targeting chimeras (PROTACs) present a new strategy for development of therapeutic molecules that mimic cellular proteasomal-mediated protein degradation to target proteins involved in different disease types. PROTACs have been used to degrade proteins involved in various cancers, neurodegenerative diseases, and immune disorders with remarkable success. Here, we highlight the problems associated with the current treatments for AT, discuss the concept of PROTACs and associated targeted protein degradation (TPD) approaches, and provide some insights on the future potential for the use of these emerging technologies (PROTACs and TPD) for the development of new generation of anti-Trypanosoma drugs and the first "TrypPROTACs".
Collapse
Affiliation(s)
- Ammar Usman Danazumi
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland; Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland; Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | - Salisu Idris
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Matylda Anna Izert
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Emmanuel Oluwadare Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria; African Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.
| | - Maria Wiktoria Górna
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
6
|
Ballesteros-Casallas A, Quiroga C, Ortiz C, Benítez D, Denis PA, Figueroa D, Salas CO, Bertrand J, Tapia RA, Sánchez P, Miscione GP, Comini MA, Paulino M. Mode of action of p-quinone derivatives with trypanocidal activity studied by experimental and in silico models. Eur J Med Chem 2023; 246:114926. [PMID: 36508970 DOI: 10.1016/j.ejmech.2022.114926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Quinones are attractive pharmacological scaffolds for developing new agents for the treatment of different transmissible and non-transmissible human diseases due to their capacity to alter the cell redox homeostasis. The bioactivity and potential mode of action of 19 p-quinone derivatives fused to different aromatic rings (carbo or heterocycles) and harboring distinct substituents were investigated in infective Trypanosoma brucei brucei. All the compounds, except for a furanequinone (EC50=38 μM), proved to be similarly or even more potent (EC50 = 0.5-5.5 μM) than the clinical drug nifurtimox (EC50 = 5.3 μM). Three furanequinones and one thiazolequinone displayed a higher selectivity than nifurtimox. Two of these selective hits resulted potent inhibitors of T. cruzi proliferation (EC50=0.8-1.1 μM) but proved inactive against Leishmania infantum amastigotes. Most of the p-quinones induced a rapid and marked intracellular oxidation in T. b. brucei. DFT calculations on the oxidized quinone (Q), semiquinone (Q•-) and hydroquinone (QH2) suggest that all quinones have negative ΔG for the formation of Q•-. Qualitative and quantitative structure-activity relationship analyses in two or three dimensions of different electronic and biophysical descriptors of quinones and their corresponding bioactivities (killing potency and oxidative capacity) were performed. Charge distribution over the quinone ring carbons of Q and Q.- and the frontier orbitals energies of SUMO (Q.-) and LUMO (Q) correlate with their oxidative and trypanocidal activity. QSAR analysis also highlighted that both bromine substitution in the p-quinone ring and a bulky phenyl group attached to the furane and thiazole rings (which generates a negative charge due to the π electron system polarized by the nearby heteroatoms) are favorable for activity. By combining experimental and in silico procedures, this study disclosed important information about p-quinones that may help to rationally tune their electronic properties and biological activities.
Collapse
Affiliation(s)
- Andres Ballesteros-Casallas
- COBO, Computational Bio-Organic Chemistry, Chemistry Department, Universidad de Los Andes, Carrera 1 18A-12, Bogotá, 111711, Colombia; Bioinformatics Center, DETEMA Department, Faculty of Chemistry, Universidad de la República, General Flores 2124, Montevideo, 11600, Uruguay
| | - Cristina Quiroga
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Cecilia Ortiz
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Diego Benítez
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Pablo A Denis
- Computational Nanotechnology, DETEMA Department, Faculty of Chemistry, Universidad de la República, General Flores 2124, Montevideo, 11600, Uruguay
| | - David Figueroa
- COBO, Computational Bio-Organic Chemistry, Chemistry Department, Universidad de Los Andes, Carrera 1 18A-12, Bogotá, 111711, Colombia
| | - Cristian O Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, 6094411, Chile
| | - Jeanluc Bertrand
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, 6094411, Chile
| | - Ricardo A Tapia
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, 6094411, Chile
| | - Patricio Sánchez
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, 6094411, Chile
| | - Gian Pietro Miscione
- COBO, Computational Bio-Organic Chemistry, Chemistry Department, Universidad de Los Andes, Carrera 1 18A-12, Bogotá, 111711, Colombia.
| | - Marcelo A Comini
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.
| | - Margot Paulino
- Bioinformatics Center, DETEMA Department, Faculty of Chemistry, Universidad de la República, General Flores 2124, Montevideo, 11600, Uruguay.
| |
Collapse
|
7
|
Rocha YM, Magalhães EP, de Medeiros Chaves M, Machado Marinho M, Nascimento E Melo de Oliveira V, Nascimento de Oliveira R, Lima Sampaio T, de Menezes RRPPB, Martins AMC, Nicolete R. Antiparasitary and antiproliferative activities in vitro of a 1,2,4-oxadiazole derivative on Trypanosoma cruzi. Parasitol Res 2022; 121:2141-2156. [PMID: 35610523 DOI: 10.1007/s00436-022-07554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/13/2022] [Indexed: 11/26/2022]
Abstract
Chagas disease (CD) is a neglected disease, prevalent and endemic in Latin America, but also present in Europe and North America. The main treatment used for this disease is benznidazole, but its efficacy is variable in the chronic phase and presents high toxicity. So, there is a need for the development of new therapeutic agents. The five-membered heterocyclic 1,2,4-oxadiazole ring has received attention for its unique properties and a broad spectrum of biological activities and is therefore a potential candidate for the development of new drugs. Thus, the aim of this study was to evaluate the activity of the N-cyclohexyl-3-(3-methylphenyl)-1,2,4-oxadiazol-5-amine (2) on the evolutionary forms of Trypanosoma cruzi strain Y, as well as its mechanisms of action and in silico theoretical approach. The results by computational method showed an interaction of the 1,2,4-oxadiazole (2) with TcGAPDH, cruzain, and trypanothione reductase, showing good charge distribution and affinity in those three targets. Furthermore, cytotoxicity in LLC-MK2 cells was performed by the MTT method. In the assays with different parasite forms, the tested compound showed similar time-dependent concentration effect. The evaluation of the antiamastigote effect between the two concentrations tested showed a reduction in the number of infected cells and also in the number of amastigotes per infected cell. By flow cytometry, the compound (2) displayed alterations suggestive of necrotic events. Finally, in scanning electron microscopy structural alterations were present, characteristic of necrosisin the epimastigote forms. Overall, the 1,2,4-oxadiazole derivative (2) here evaluated opens perspectives to the development of new antichagasic agents.
Collapse
Affiliation(s)
- Yasmim Mendes Rocha
- Post-Graduate Program in Pharmaceutical Sciences - Federal University of Ceará, Fortaleza, CE, Brazil
- Fundação Oswaldo Cruz (Fiocruz Ceará), Rua São José, S/N, Eusébio, 61760-000, Brazil
| | - Emanuel Paula Magalhães
- Post-Graduate Program in Pharmaceutical Sciences - Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Márcia Machado Marinho
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Valentina Nascimento E Melo de Oliveira
- Department of Chemistry, Federal Rural University of Pernambuco, Recife, PE, Brazil
- Instituto Federal de Educação Ciência E Tecnologia de Pernambuco, Campus Ipojuca, Ipojuca, 55590-000, Brazil
| | | | - Tiago Lima Sampaio
- Post-Graduate Program in Pharmaceutical Sciences - Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ramon R P P B de Menezes
- Post-Graduate Program in Pharmaceutical Sciences - Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Alice M C Martins
- Post-Graduate Program in Pharmaceutical Sciences - Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Roberto Nicolete
- Post-Graduate Program in Pharmaceutical Sciences - Federal University of Ceará, Fortaleza, CE, Brazil.
- Fundação Oswaldo Cruz (Fiocruz Ceará), Rua São José, S/N, Eusébio, 61760-000, Brazil.
| |
Collapse
|
8
|
Yang Q, Váňa J, Klán P. The complex photochemistry of coumarin-3-carboxylic acid in acetonitrile and methanol. Photochem Photobiol Sci 2022; 21:1481-1495. [PMID: 35578152 DOI: 10.1007/s43630-022-00238-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/23/2022] [Indexed: 11/26/2022]
Abstract
Irradiation of coumarin-3-carboxylic acid in acetonitrile and methanol solutions at 355 nm results in complex multistep photochemical transformations, strongly dependent on the solvent properties and oxygen content. A number of reaction intermediates, which themselves undergo further (photo)chemical reactions, were identified by steady-state and transient absorption spectroscopy, mass spectrometry, and NMR and product analyses. The triplet excited compound in acetonitrile undergoes decarboxylation to give a 3-coumarinyl radical that traps molecular oxygen to form 3-hydroxycoumarin as the major but chemically reactive intermediate. This compound is oxygenated by singlet oxygen, produced by coumarin-3-carboxylic acid sensitization, followed by a pyrone ring-opening reaction to give an oxalic acid derivative. The subsequent steps lead to the production of salicylaldehyde, carbon monoxide, and carbon dioxide as the final products. When 3-coumarinyl radical is not trapped by oxygen in degassed acetonitrile, it abstracts hydrogen from the solvent and undergoes triplet-sensitized [2 + 2] cycloaddition. The reaction of 3-coumarinyl radical with oxygen is largely suppressed in aerated methanol as a better H-atom donor, and coumarin is obtained as the primary product in good yields. Because coumarin derivatives are used in many photophysical and photochemical applications, this work provides detailed and sometimes surprising insights into their complex phototransformations.
Collapse
Affiliation(s)
- Qiuyun Yang
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Jiří Váňa
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, Czech Republic
| | - Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, Czech Republic.
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, Czech Republic.
| |
Collapse
|
9
|
Kurtanović N, Tomašević N, Matić S, Mitrović MM, Kostić DA, Sabatino M, Antonini L, Ragno R, Mladenović M. Human estrogen receptor α antagonists, part 2: Synthesis driven by rational design, in vitro antiproliferative, and in vivo anticancer evaluation of innovative coumarin-related antiestrogens as breast cancer suppressants. Eur J Med Chem 2022; 227:113869. [PMID: 34710747 DOI: 10.1016/j.ejmech.2021.113869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/04/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022]
Abstract
New twelve in silico designed coumarin-based ERα antagonists, namely 3DQ-1a to 3DQ-1е, were synthesized and confirmed as selective ERα antagonists, showing potencies ranging from single-digit nanomolar to picomolar. The hits were confirmed as selective estrogen receptor modulators and validated as antiproliferative agents using MCF-7 breast cancer cell lines exerting from picomolar to low nanomolar potency, at the same time showing no agonistic activity within endometrial cell lines. Their mechanism of action was inspected and revealed to be through the inhibition of the Raf-1/MAPK/ERK signal transduction pathway, preventing hormone-mediated gene expression on either genomic direct or genomic indirect level, and stopping the MCF-7 cells proliferation at G0/G1 phase. In vivo experiments, by means of the per os administration to female Wistar rats with pre-induced breast cancer, distinguished six derivatives, 3DQ-4a, 3DQ-2a, 3DQ-1a, 3DQ-1b, 3DQ-2b, and 3DQ-3b, showing remarkable potency as tumor suppressors endowed with optimal pharmacokinetic profiles and no significant histopathological profiles. The presented data indicate the new compounds as potential candidates to be submitted in clinical trials for breast cancer therapy.
Collapse
Affiliation(s)
- Nezrina Kurtanović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, P.O. Box 60, Serbia
| | - Nevena Tomašević
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, P.O. Box 60, Serbia
| | - Sanja Matić
- University of Kragujevac, Institute for Informational Technologies, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| | - Marina M Mitrović
- University of Kragujevac, Faculty of Medical Sciences, Department of Biochemistry, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Danijela A Kostić
- University of Niš, Department of Chemistry, Faculty of Sciences and Mathematics, Višegradska 33, 18000, Niš, Serbia
| | - Manuela Sabatino
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Lorenzo Antonini
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| | - Milan Mladenović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, P.O. Box 60, Serbia.
| |
Collapse
|
10
|
Coumarins as Potential Antiprotozoal Agents: Biological Activities and Mechanism of Action. REVISTA BRASILEIRA DE FARMACOGNOSIA 2021. [DOI: 10.1007/s43450-021-00169-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Ettari R, Previti S, Di Chio C, Zappalà M. Falcipain-2 and Falcipain-3 Inhibitors as Promising Antimalarial Agents. Curr Med Chem 2021; 28:3010-3031. [PMID: 32744954 DOI: 10.2174/0929867327666200730215316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/01/2020] [Accepted: 07/11/2020] [Indexed: 11/22/2022]
Abstract
Malaria remains a serious problem in global public health, particularly widespread in South America and in tropical regions of Africa and Asia. Chemotherapy is actually the only way to treat this poverty-related disease, since an effective vaccine is not currently available. However, the onset of resistance to the most common antimalarial drugs sometimes makes the current therapeutic regimen problematic. Therefore, the identification of new targets for a new drug discovery process is an urgent priority. In this context, falcipain-2 and falcipain- 3 of P. falciparum represent the key enzymes in the life-cycle of the parasite. Both falcipain- 2 and falcipain-3 are involved in hemoglobin hydrolysis, an essential pathway to provide free amino acids for the parasite metabolic needs. In addition, falcipain-2 is involved in cleaving ankirin and band 4.1 protein, which are cytoskeletal elements essential for the stability of the red cell membrane. This review article is focused on the most recent and effective inhibitors of falcipain-2 and falcipain-3, with particular attention to peptide, peptidomimetic or nonpeptide inhibitors, which targeted one or both the malarial cysteine proteases, endowed with a consistent activity against P. falciparum.
Collapse
Affiliation(s)
- Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Santo Previti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| |
Collapse
|
12
|
dos Santos Vasconcelos CR, Rezende AM. Systematic in silico Evaluation of Leishmania spp. Proteomes for Drug Discovery. Front Chem 2021; 9:607139. [PMID: 33987166 PMCID: PMC8111926 DOI: 10.3389/fchem.2021.607139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/24/2021] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis is a group of neglected infectious diseases, with approximately 1. 3 million new cases each year, for which the available therapies have serious limitations. Therefore, it is extremely important to apply efficient and low-cost methods capable of selecting the best therapeutic targets to speed up the development of new therapies against those diseases. Thus, we propose the use of integrated computational methods capable of evaluating the druggability of the predicted proteomes of Leishmania braziliensis and Leishmania infantum, species responsible for the different clinical manifestations of leishmaniasis in Brazil. The protein members of those proteomes were assessed based on their structural, chemical, and functional contexts applying methods that integrate data on molecular function, biological processes, subcellular localization, drug binding sites, druggability, and gene expression. These data were compared to those extracted from already known drug targets (BindingDB targets), which made it possible to evaluate Leishmania proteomes for their biological relevance and treatability. Through this methodology, we identified more than 100 proteins of each Leishmania species with druggability characteristics, and potential interaction with available drugs. Among those, 31 and 37 proteins of L. braziliensis and L. infantum, respectively, have never been tested as drug targets, and they have shown evidence of gene expression in the evolutionary stage of pharmacological interest. Also, some of those Leishmania targets showed an alignment similarity of <50% when compared to the human proteome, making these proteins pharmacologically attractive, as they present a reduced risk of side effects. The methodology used in this study also allowed the evaluation of opportunities for the repurposing of compounds as anti-leishmaniasis drugs, inferring potential interaction between Leishmania proteins and ~1,000 compounds, of which only 15 have already been tested as a treatment for leishmaniasis. Besides, a list of potential Leishmania targets to be tested using drugs described at BindingDB, such as the potential interaction of the DEAD box RNA helicase, TRYR, and PEPCK proteins with the Staurosporine compound, was made available to the public.
Collapse
Affiliation(s)
- Crhisllane Rafaele dos Santos Vasconcelos
- Bioinformatics Plataform, Microbiology Department, Instituto Aggeu Magalhães, Recife, Brazil
- Posgraduate Program in Genetics, Genetics Department, Universidade Federal de Pernambuco, Recife, Brazil
| | - Antonio Mauro Rezende
- Bioinformatics Plataform, Microbiology Department, Instituto Aggeu Magalhães, Recife, Brazil
- Posgraduate Program in Genetics, Genetics Department, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
13
|
López-Lira C, Tapia RA, Herrera A, Lapier M, Maya JD, Soto-Delgado J, Oliver AG, Graham Lappin A, Uriarte E. New benzimidazolequinones as trypanosomicidal agents. Bioorg Chem 2021; 111:104823. [PMID: 33798844 DOI: 10.1016/j.bioorg.2021.104823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/11/2021] [Accepted: 03/08/2021] [Indexed: 01/27/2023]
Abstract
Herein, the design and synthesis of new 2-phenyl(pyridinyl)benzimidazolequinones and their 5-phenoxy derivatives as potential anti-Trypanosoma cruzi agents are described. The compounds were evaluated in vitro against the epimastigotes and trypomastigote forms of Trypanosoma cruzi. The replacing of a benzene moiety in the naphthoquinone system by an imidazole enhanced the trypanosomicidal activity against Trypanosoma cruzi. Three of the tested compounds (11a-c) showed potent trypanosomicidal activity and compound 11a, with IC50 of 0.65 μM on the trypomastigote form of T. cruzi, proved to be 15 times more active than nifurtimox. Additionally, molecular docking studies indicate that the quinone derivatives 11a-c could have a multitarget profile interacting preferentially with trypanothione reductase and Old Yellow Enzyme.
Collapse
Affiliation(s)
- Claudia López-Lira
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 6094411, Chile
| | - Ricardo A Tapia
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 6094411, Chile.
| | - Alejandra Herrera
- Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Michel Lapier
- Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Juan D Maya
- Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Jorge Soto-Delgado
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Viña del Mar 2531015, Chile.
| | - Allen G Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - A Graham Lappin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
14
|
Zuma AA, de Souza W. Chagas Disease Chemotherapy: What Do We Know So Far? Curr Pharm Des 2021; 27:3963-3995. [PMID: 33593251 DOI: 10.2174/1381612827666210216152654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/13/2021] [Indexed: 11/22/2022]
Abstract
Chagas disease is a Neglected Tropical Disease (NTD), and although endemic in Latin America, affects around 6-7 million people infected worldwide. The treatment of Chagas disease is based on benznidazole and nifurtimox, which are the only available drugs. However, they are not effective during the chronic phase and cause several side effects. Furthermore, BZ promotes cure in 80% of the patients in the acute phase, but the cure rate drops to 20% in adults in the chronic phase of the disease. In this review, we present several studies published in the last six years, which describes the antiparasitic potential of distinct drugs, from the synthesis of new compounds aiming to target the parasite, as well as the repositioning and the combination of drugs. We highlight several compounds for having shown results that are equivalent or superior to BZ, which means that they should be further studied, either in vitro or in vivo. Furthermore, we stand out the differences in the effects of BZ on the same strain of T. cruzi, which might be related to methodological differences such as parasite and cell ratios, host cell type and the time of adding the drug. In addition, we discuss the wide variety of strains and also the cell types used as a host cell, which makes it difficult to compare the trypanocidal effect of the compounds.
Collapse
Affiliation(s)
- Aline Araujo Zuma
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro. Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Ilha do Fundão, 21491-590, Rio de Janeiro, RJ. Brazil
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro. Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Ilha do Fundão, 21491-590, Rio de Janeiro, RJ. Brazil
| |
Collapse
|
15
|
Galbiati A, Zana A, Conti P. Covalent inhibitors of GAPDH: From unspecific warheads to selective compounds. Eur J Med Chem 2020; 207:112740. [PMID: 32898762 DOI: 10.1016/j.ejmech.2020.112740] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 11/18/2022]
Abstract
Targeting glycolysis is an attractive approach for the treatment of a wide range of pathologies, such as various tumors and parasitic infections. Due to its pivotal role in the glycolysis, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) represents a rate-limiting enzyme in those cells that mostly, or exclusively rely on this pathway for energy production. In this context, GAPDH inhibition can be a valuable approach for the development of anticancer and antiparasitic drugs. In addition to its glycolytic role, GAPDH possesses several moonlight functions, whose deregulation is involved in some pathological conditions. Covalent modification on different amino acids of GAPDH, in particular on cysteine residues, can lead to a modulation of the enzyme activity. The selectivity towards specific cysteine residues is essential to achieve a specific phenotypic effect. In this work we report an extensive overview of the latest advances on the numerous compounds able to inhibit GAPDH through the covalent binding to cysteine residues, ranging from endogenous metabolites and xenobiotics, which may serve as pharmacological tools to actual drug-like compounds with promising therapeutic perspectives. Furthermore, we focused on the potentialities of the different warheads, shedding light on the possibility to exploit a combination of a finely tuned electrophilic group with a well-designed recognition moiety. These findings can provide useful information for the rational design of novel covalent inhibitors of GAPDH, with the final goal to expand the current treatment options.
Collapse
Affiliation(s)
- Andrea Galbiati
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy.
| | - Aureliano Zana
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| | - Paola Conti
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| |
Collapse
|
16
|
Saccoliti F, Di Santo R, Costi R. Recent Advancement in the Search of Innovative Antiprotozoal Agents Targeting Trypanothione Metabolism. ChemMedChem 2020; 15:2420-2435. [PMID: 32805075 DOI: 10.1002/cmdc.202000325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/13/2020] [Indexed: 01/28/2023]
Abstract
Leishmania and Trypanosoma parasites are responsible for the challenging neglected tropical diseases leishmaniases, Chagas disease, and human African trypanosomiasis, which account for up to 40,000 deaths annually mainly in developing countries. Current chemotherapy relies on drugs with significant limitations in efficacy and safety, prompting the urgent need to explore innovative approaches to improve the drug discovery pipeline. The unique trypanothione-based redox pathway, which is absent in human hosts, is vital for all trypanosomatids and offers valuable opportunities to guide the rational development of specific, broad-spectrum and innovative anti-trypanosomatid agents. Major efforts focused on the key metabolic enzymes trypanothione synthetase-amidase and trypanothione reductase, whose inhibition should affect the entire pathway and, finally, parasite survival. Herein, we will report and comment on the most recent studies in the search for enzyme inhibitors, underlining the promising opportunities that have emerged so far to drive the exploration of future successful therapeutic approaches.
Collapse
Affiliation(s)
- Francesco Saccoliti
- D3 PharmaChemistry, Italian Institute of Technology, Via Morego 30, 16163, Genova, Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185, Roma, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185, Roma, Italy
| |
Collapse
|
17
|
Yang T, Sui X, Yu B, Shen Y, Cong H. Recent Advances in the Rational Drug Design Based on Multi-target Ligands. Curr Med Chem 2020; 27:4720-4740. [DOI: 10.2174/0929867327666200102120652] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
Abstract
Multi-target drugs have gained considerable attention in the last decade owing to their
advantages in the treatment of complex diseases and health conditions linked to drug resistance.
Single-target drugs, although highly selective, may not necessarily have better efficacy or fewer
side effects. Therefore, more attention is being paid to developing drugs that work on multiple
targets at the same time, but developing such drugs is a huge challenge for medicinal chemists.
Each target must have sufficient activity and have sufficiently characterized pharmacokinetic parameters.
Multi-target drugs, which have long been known and effectively used in clinical practice,
are briefly discussed in the present article. In addition, in this review, we will discuss the
possible applications of multi-target ligands to guide the repositioning of prospective drugs.
Collapse
Affiliation(s)
- Ting Yang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xin Sui
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
18
|
Costa CHSD, Bichara TW, Gomes GC, Dos Santos AM, da Costa KS, Lima AHLE, Alves CN, Lameira J. Unraveling the conformational dynamics of glycerol 3-phosphate dehydrogenase, a nicotinamide adenine dinucleotide-dependent enzyme of Leishmania mexicana. J Biomol Struct Dyn 2020; 39:2044-2055. [PMID: 32174264 DOI: 10.1080/07391102.2020.1742206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Allosteric changes modulate the enzymatic activity, leading to activation or inhibition of the molecular target. Understanding the induced fit accommodation mechanism of a ligand in its lowest-free energy state and the subsequent conformational changes induced in the protein are important questions for drug design. In the present study, molecular dynamics (MD) simulations, binding free energy calculations, and principal component analysis (PCA) were applied to analyze the glycerol-3-phosphate dehydrogenase of Leishmania mexicana (LmGPDH) conformational changes induced by its cofactor and substrate binding. GPDH is a nicotinamide adenine dinucleotide (NAD)-dependent enzyme, which has been reported as an interesting target for drug discovery and development against leishmaniasis. Despite its relevance for glycolysis and pentose phosphate pathways, the structural flexibility and conformational motions of LmGPDH in complex with NADH and dihydroxyacetone phosphate (DHAP) remain unexplored. Here, we analyzed the conformational dynamics of the enzyme-NADH complex (cofactor), and the enzyme-NADH-DHAP complex (adduct), mapped the hydrogen-bond interactions for the complexes and pointed some structural determinants of the enzyme that emerge from these contacts to NADH and DHAP. Finally, we proposed a consistent mechanism for the conformational changes on the first step of the reversible redox conversion of dihydroxyacetone phosphate to glycerol 3-phosphate, indicating key residues and interactions that could be further explored in drug discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cláudio Nahum Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Belém, PA, Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Belém, PA, Brazil
| |
Collapse
|
19
|
Capelini C, Câmara VRF, Villar JDF, Barbosa JMC, Salomão K, de Castro SL, Junior PAS, Murta SMF, Couto TB, Lourenço MCS, Wardell JL, Low JN, da Silva EF, Carvalho SA. Synthesis, Antitrypanosomal and Antimycobacterial Activities of Coumarin N-acylhydrazonic Derivatives. Med Chem 2020; 17:630-637. [PMID: 31965946 DOI: 10.2174/1573406416666200121105215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Near to 5-7 million people are infected with T. cruzi in the world, and about 10,000 people per year die of problems associated with this disease. METHODS Herein, the synthesis, antitrypanosomal and antimycobacterial activities of seventeen coumarinic N-acylhydrazonic derivatives have been reported. RESULTS These compounds were synthesized using methodology with reactions global yields ranging from 46%-70%. T. cruzi in vitro effects were evaluated against trypomastigote and amastigote, forming M. tuberculosis activity towards H37Rv sensitive strain and resistant strains. DISCUSSION Against T. cruzi, the more active compounds revealed only moderate activity IC50/96h~20 μM for both trypomastigotes and amastigotes intracellular forms. (E)-2-oxo-N'- (3,4,5-trimethoxybenzylidene)-2H-chromene-3-carbohydrazide showed meaningful activity in INH resistant/RIP resistant strain. CONCLUSION These compound acting as multitarget could be good leads for the development of new trypanocidal and bactericidal agents.
Collapse
Affiliation(s)
- Camila Capelini
- Instituto de Tecnologia em Farmacos - Farmanguinhos, Fundacao Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ, Brazil
| | - Vitória R F Câmara
- Instituto de Tecnologia em Farmacos - Farmanguinhos, Fundacao Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ, Brazil
| | - José D Figueroa Villar
- Grupo de Quimica Medicinal, Departamento de Quimica, Instituto Militar de Engenharia, Praca General Tiburcio 80, 22290-270 Rio de Janeiro, Brazil
| | - Juliana M C Barbosa
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Kelly Salomão
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Solange L de Castro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Policarpo A S Junior
- Instituto Rene Rachou - Fundacao Oswaldo Cruz, 30190002 - Belo Horizonte, MG, Brazil
| | - Silvane M F Murta
- Instituto Rene Rachou - Fundacao Oswaldo Cruz, 30190002 - Belo Horizonte, MG, Brazil
| | - Thais B Couto
- Instituto Nacional de Infectologia Evandro Chagas, Fundacao Oswaldo Cruz, 21045-900 Rio de Janeiro, RJ, Brazil
| | - Maria C S Lourenço
- Instituto Nacional de Infectologia Evandro Chagas, Fundacao Oswaldo Cruz, 21045-900 Rio de Janeiro, RJ, Brazil
| | - James L Wardell
- Instituto de Tecnologia em Farmacos - Farmanguinhos, Fundacao Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ, Brazil
| | - John N Low
- Department of Chemistry, University of Aberdeen, Old Aberdeen, AB 24 3 UE, Scotland, United Kingdom
| | - Edson F da Silva
- Instituto de Tecnologia em Farmacos - Farmanguinhos, Fundacao Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ, Brazil
| | - Samir A Carvalho
- Instituto de Tecnologia em Farmacos - Farmanguinhos, Fundacao Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
20
|
Muronetz VI, Melnikova AK, Barinova KV, Schmalhausen EV. Inhibitors of Glyceraldehyde 3-Phosphate Dehydrogenase and Unexpected Effects of Its Reduced Activity. BIOCHEMISTRY (MOSCOW) 2019; 84:1268-1279. [PMID: 31760917 DOI: 10.1134/s0006297919110051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The review describes the use of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) inhibitors to study the enzyme and to suppress its activity in various cell types. The main problem of selective GAPDH inhibition is a highly conserved nature of the enzyme active site and, especially, Cys150 environment important for the catalytic action of cysteine sulfhydryl group. Numerous attempts to find specific inhibitors of sperm GAPDH and enzymes from Trypanosoma sp. and Mycobacterium tuberculosis that would not inhibit GAPDH of somatic mammalian cells have failed, which has pushed researchers to search for new ways to solve this problem. The sections of the review are devoted to the studies of GAPDH inactivation by reactive oxygen species, glutathione, and glycating agents. The final section discusses possible effects of GAPDH inhibition and inactivation on glycolysis and related metabolic pathways (pentose phosphate pathway, uncoupling of the glycolytic oxidation and phosphorylation, etc.).
Collapse
Affiliation(s)
- V I Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia
| | - A K Melnikova
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia
| | - K V Barinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - E V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
21
|
Antinori S, Ridolfo AL, Giacomelli A, Bonazzetti C, Corbellino M, Galli M. Chagas disease in Italy: the study's contribution of Italian researchers. Panminerva Med 2019; 61:464-472. [PMID: 31362479 DOI: 10.23736/s0031-0808.19.03723-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Chagas disease (CD) is an emerging infection in Italy as the consequence of the huge immigration from Latin American countries observed during the last ten-fifteen years. However, the interest of Italian researchers on CD dates back to the '80-90s of the last century with studies conducted in collaboration with Brazilian and Argentinian colleagues by Italian cardiologists and pathologists. Moreover, the first demonstration of the existence in the pre-Columbian America of Chagas disease in a Peruvian mummy was made by a group of Italian paleopathologists. Seroprevalence studies performed between 2010-2014 in Negrar (Verona), Bergamo, Milan, Florence and Rome shows Trypanosoma cruzi infection ranging from 3.9% to 17.1% with people coming from Bolivia as the most affected. As observed in Latin America about 30% of screened subjects in Italy are affected by cardiac or digestive forms of CD. More than 20% of subjects treated with benznidazole discontinued it permanently due to adverse events.
Collapse
Affiliation(s)
- Spinello Antinori
- Luigi Sacco Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy - .,III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy -
| | - Anna L Ridolfo
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Andrea Giacomelli
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Cecilia Bonazzetti
- Luigi Sacco Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.,III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Mario Corbellino
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Massimo Galli
- Luigi Sacco Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.,III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| |
Collapse
|
22
|
Evolutionary divergent PEX3 is essential for glycosome biogenesis and survival of trypanosomatid parasites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118520. [PMID: 31369765 DOI: 10.1016/j.bbamcr.2019.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/13/2023]
Abstract
Trypanosomatid parasites cause devastating African sleeping sickness, Chagas disease, and Leishmaniasis that affect about 18 million people worldwide. Recently, we showed that the biogenesis of glycosomes could be the "Achilles' heel" of trypanosomatids suitable for the development of new therapies against trypanosomiases. This was shown for inhibitors of the import machinery of matrix proteins, while the distinct machinery for the topogenesis of glycosomal membrane proteins evaded investigation due to the lack of a druggable interface. Here we report on the identification of the highly divergent trypanosomal PEX3, a central component of the transport machinery of peroxisomal membrane proteins and the master regulator of peroxisome biogenesis. The trypanosomatid PEX3 shows very low degree of conservation and its identification was made possible by a combinatory approach identifying of PEX19-interacting proteins and secondary structure homology screening. The trypanosomal PEX3 localizes to glycosomes and directly interacts with the membrane protein import receptor PEX19. RNAi-studies revealed that the PEX3 is essential and that its depletion results in mislocalization of glycosomal proteins to the cytosol and a severe growth defect. Comparison of the parasites and human PEX3-PEX19 interface disclosed differences that might be accessible for drug development. The absolute requirement for biogenesis of glycosomes and its structural distinction from its human counterpart make PEX3 a prime drug target for the development of novel therapies against trypanosomiases. The identification paves the way for future drug development targeting PEX3, and for the analysis of additional partners involved in this crucial step of glycosome biogenesis.
Collapse
|
23
|
Dias GG, Nascimento TAD, de Almeida AKA, Bombaça ACS, Menna-Barreto RFS, Jacob C, Warratz S, da Silva Júnior EN, Ackermann L. Ruthenium(II)-Catalyzed C-H Alkenylation of Quinones: Diversity-Oriented Strategy for Trypanocidal Compounds. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Gleiston G. Dias
- Institute of Exact Sciences; Department of Chemistry; Federal University of Minas Gerais; UFMG 31270-901 Belo Horizonte, MG Brazil
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Tamires A. do Nascimento
- Institute of Chemistry and Biotechnology; Federal University of Alagoas; UFMG 31270-901 Belo Horizonte, MG Brazil
| | - Andresa K. A. de Almeida
- Institute of Chemistry and Biotechnology; Federal University of Alagoas; UFMG 31270-901 Belo Horizonte, MG Brazil
| | | | | | - Claus Jacob
- Division of Bioorganic Chemistry; School of Pharmacy; Saarland University; 66123 Saarbrücken Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Eufrânio N. da Silva Júnior
- Institute of Exact Sciences; Department of Chemistry; Federal University of Minas Gerais; UFMG 31270-901 Belo Horizonte, MG Brazil
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
24
|
Herrera Acevedo C, Scotti L, Alves MF, de F.F.M. Diniz M, Tullius Scotti M. Hybrid Compounds in the Search for Alternative Chemotherapeutic Agents against Neglected Tropical Diseases. LETT ORG CHEM 2019. [DOI: 10.2174/1570178615666180402123057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neglected tropical diseases (NTDs) affect more than a billion people worldwide, mainly
populations living in poverty conditions. More than 56% of annual NTD deaths are caused by
Leishmaniasis, Sleeping sickness, and Chagas disease. For these three diseases, many problems have
been observed with the chemotherapeutic drugs commonly used, these being mainly resistance, high
toxicity, and low efficacy. In the search for alternative treatments, hybridization is an interesting approach,
which generates new molecules by merging two pharmacophores and then looking for improvements
in biological activity or reduced compound toxicity. Here, we review various studies that
present such hybrid molecules with promising in vitro and in vivo activities against Leishmania and
Trypanosoma parasites.
Collapse
Affiliation(s)
- Chonny Herrera Acevedo
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| | - Mateus F. Alves
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| | - Margareth de F.F.M. Diniz
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| |
Collapse
|
25
|
Viana JDO, Félix MB, Maia MDS, Serafim VDL, Scotti L, Scotti MT. Drug discovery and computational strategies in the multitarget drugs era. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000001010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
Tonin MD, Garden SJ, Jotani MM, Wardell JL, Tiekink ER. On the influence of small chemical changes upon the supramolecular association in substituted 2-(phenoxy)-1,4-naphthoquinones. Z KRIST-CRYST MATER 2018. [DOI: 10.1515/zkri-2018-2129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
X-ray crystallography reveals the common feature of the title compounds is a 1,4-naphthoquinone ring system with a substituted phenoxy residue adjacent to an oxo-group to give 1 (H), 2 (3-Br), 3 (3-CF3), 4 (4-CN) and 5 (4-NO2). To a first approximation the fused ring system along with the two oxo substituents is planar with the major difference between the molecules relating to the relative orientations of the pendant phenoxy residues: dihedral angles range from 56.56(4)° (3) to 87.52(10)° (2). The presence of intermolecular C–H···O interactions is the common feature of the supramolecular association in the crystals of 1–5. In each of 1 and 5, these extend in three-dimensions but, only to supramolecular dimers in 4, chains in 2 and layers in 3. Each crystal also features C=O···π interactions, pointing to the importance of these points of contact in this series di-oxocompounds. In 2, these, along with C–Br···π interactions lead to a three-dimensional architecture. For 3, the C=O···π and π···π interactions occur within the layers which stack without directional interactions between them. In 4, C–H···O and C=O···π interactions combine to give a supramolecular layer, which also stack without directional interactions in the inter-layer region. Further analysis of the molecular packing was conducted by a Hirshfeld surface analysis (HSA). This points to the significant role of H···H, C···H/H···C and O···H/H···O contacts in the packing of 1. Notably different roles for these contacts are found in the other crystals correlating with the participation of the respective substituents in the molecular packing. The HSA suggests the association between layers in 3 (weak F···F and H···F interactions) and 4 (weak H···N interactions) is contributed by the phenoxy-substituents.
Collapse
Affiliation(s)
- Marlon D.L. Tonin
- Instituto de Química, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco A, Cidade Universitária , 21941-909 Rio de Janeiro-RJ , Brazil
| | - Simon J. Garden
- Instituto de Química, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco A, Cidade Universitária , 21941-909 Rio de Janeiro-RJ , Brazil
| | - Mukesh M. Jotani
- Department of Physics , Bhavan’s Sheth R. A. College of Science , Ahmedabad, 380001 Gujarat , India
| | - James L. Wardell
- Department of Chemistry , University of Aberdeen , Old Aberdeen AB24 3UE , Scotland
| | - Edward R.T. Tiekink
- Research Centre for Crystalline Materials, School of Science and Technology , Sunway University , 47500 Bandar Sunway, Selangor Darul Ehsan , Malaysia
| |
Collapse
|
27
|
Brancaglion GA, Toyota AE, Cardoso Machado JV, Fernandes Júnior AÁ, Silveira AT, Vilas Boas DF, Dos Santos EG, Caldas IS, Carvalho DT. In vitro and in vivo trypanocidal activities of 8-methoxy-3-(4-nitrobenzoyl)-6-propyl-2H-cromen-2-one, a new synthetic coumarin of low cytotoxicity against mammalian cells. Chem Biol Drug Des 2018; 92:1888-1898. [PMID: 29992719 DOI: 10.1111/cbdd.13362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/26/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Abstract
Natural and synthetic coumarins have been described as prototypes of new drug candidates against Chagas' disease. During a typical screening with new compounds, we observed the potential of a new synthetic nitrobenzoylcoumarin (1) as trypanocidal against Trypanosoma cruzi epimastigotas. Then, we decided to prepare and evaluate a set of analogues from 1 to check the major structural requirements for trypanocidal activity. The structural variations were conducted in six different sites on the original compound and the best derivative (3) presented activity (IC50 28 ± 3 μM) similar to that of benznidazole (IC50 25 ± 10 μM). The enhancement of trypanocidal activity was conditioned to a change in the side chain at C6 (allyl to n-propyl group) and the preservation of coumarin nucleus and the nitrobenzoyl group at C3. Exposure of 3 to H9C2 cells showed low toxicity (CC50 > 200 μM) and its activity on T. cruzi amastigotes (IC50 13 ± 0.3 μM) encouraged us to perform an evaluation of its potential when given orally to mice infected with trypomastigote forms. Derivative 3 was able to reduce parasitemia when compared to the group of untreated animals. Taken together, these results show the potential therapeutic application of the synthetic coumarins.
Collapse
Affiliation(s)
- Guilherme Andrade Brancaglion
- Departamento de Alimentos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - André Eidi Toyota
- Departamento de Alimentos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - José Vaz Cardoso Machado
- Departamento de Alimentos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Antônio Ávila Fernandes Júnior
- Departamento de Alimentos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Alberto Thalison Silveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Diego Fernandes Vilas Boas
- Departamento Patologia e Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Elda Gonçalves Dos Santos
- Departamento Patologia e Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Ivo Santana Caldas
- Departamento Patologia e Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Diogo Teixeira Carvalho
- Departamento de Alimentos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| |
Collapse
|
28
|
Preparation of Rhodium(III) complexes with 2(1H)-quinolinone derivatives and evaluation of their in vitro and in vivo antitumor activity. Eur J Med Chem 2018; 151:226-236. [DOI: 10.1016/j.ejmech.2018.03.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 11/21/2022]
|
29
|
Liu L, Huang X, Liu J, Li W, Ji Y, Tian D, Tian L, Yang X, Xu L, Yan R, Li X, Song X. Identification of common immunodominant antigens of Eimeria tenella, Eimeria acervulina and Eimeria maxima by immunoproteomic analysis. Oncotarget 2018; 8:34935-34945. [PMID: 28432276 PMCID: PMC5471023 DOI: 10.18632/oncotarget.16824] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/24/2017] [Indexed: 11/25/2022] Open
Abstract
Clinical chicken coccidiosis is mostly caused by simultaneous infection of several Eimeria species, and host immunity against Eimeria is species-specific. It is urgent to identify common immunodominant antigen of Eimeria for developing multivalent anticoccidial vaccines. In this study, sporozoite proteins of Eimeria tenella, Eimeria acervulina and Eimeria maxima were analyzed by two-dimensional electrophoresis (2DE). Western bot analysis was performed on the yielded 2DE gel using antisera of E. tenella E. acervulina and E. maxima respectively. Next, the detected immunodominant spots were identified by comparing the data from MALDI-TOF-MS/MS with available databases. Finally, Eimeria common antigens were identified by comparing amino acid sequence between the three Eimeria species. The results showed that analysis by 2DE of sporozoite proteins detected 629, 626 and 632 protein spots from E. tenella, E. acervulina and E. maxima respectively. Western bot analysis revealed 50 (E. tenella), 64 (E. acervulina) and 57 (E. maxima) immunodominant spots from the sporozoite 2DE gels of the three Eimeria species. The immunodominant spots were identified as 33, 27 and 25 immunodominant antigens of E. tenella, E. acervulina and E. maxima respectively. Fifty-four immunodominant proteins were identified as 18 ortholog proteins among the three Eimeria species. Finally, 5 of the 18 ortholog proteins were identified as common immunodominant antigens including elongation factor 2 (EF-2), 14-3-3 protein, ubiquitin-conjugating enzyme domain-containing protein (UCE) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In conclusion, our results not only provide Eimeria sporozoite immunodominant antigen map and additional immunodominant antigens, but also common immunodominant antigens for developing multivalent anticoccidial vaccines.
Collapse
Affiliation(s)
- Lianrui Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinmei Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu 210014, China
| | - Jianhua Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyu Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihong Ji
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinchao Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
30
|
Alavi SJ, Sadeghian H, Seyedi SM, Salimi A, Eshghi H. A novel class of human 15-LOX-1 inhibitors based on 3-hydroxycoumarin. Chem Biol Drug Des 2018; 91:1125-1132. [DOI: 10.1111/cbdd.13174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/05/2017] [Accepted: 12/31/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Seyed Jamal Alavi
- Department of Chemistry; Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
| | - Hamid Sadeghian
- Neurogenic Inflammation Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Department of Laboratory Sciences; School of Paramedical Sciences; Mashhad University of Medical Sciences; Mashhad Iran
| | - Seyed Mohammad Seyedi
- Department of Chemistry; Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
| | - Alireza Salimi
- Department of Chemistry; Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
| | - Hossein Eshghi
- Department of Chemistry; Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
| |
Collapse
|
31
|
Uliassi E, Fiorani G, Krauth-Siegel RL, Bergamini C, Fato R, Bianchini G, Carlos Menéndez J, Molina MT, López-Montero E, Falchi F, Cavalli A, Gul S, Kuzikov M, Ellinger B, Witt G, Moraes CB, Freitas-Junior LH, Borsari C, Costi MP, Bolognesi ML. Crassiflorone derivatives that inhibit Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase ( Tb GAPDH) and Trypanosoma cruzi trypanothione reductase ( Tc TR) and display trypanocidal activity. Eur J Med Chem 2017; 141:138-148. [DOI: 10.1016/j.ejmech.2017.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/18/2017] [Accepted: 10/02/2017] [Indexed: 01/23/2023]
|
32
|
Bruno S, Uliassi E, Zaffagnini M, Prati F, Bergamini C, Amorati R, Paredi G, Margiotta M, Conti P, Costi MP, Kaiser M, Cavalli A, Fato R, Bolognesi ML. Molecular basis for covalent inhibition of glyceraldehyde-3-phosphate dehydrogenase by a 2-phenoxy-1,4-naphthoquinone small molecule. Chem Biol Drug Des 2017; 90:225-235. [DOI: 10.1111/cbdd.12941] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Stefano Bruno
- Department of Pharmacy; University of Parma; Parma Italy
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum - University of Bologna; Bologna Italy
| | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum - University of Bologna; Bologna Italy
| | - Federica Prati
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum - University of Bologna; Bologna Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum - University of Bologna; Bologna Italy
| | - Riccardo Amorati
- Department of Chemistry “G. Ciamician”; Alma Mater Studiorum - University of Bologna; Bologna Italy
| | | | | | - Paola Conti
- Department of Pharmaceutical Sciences; University of Milan; Milan Italy
| | - Maria Paola Costi
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Marcel Kaiser
- Swiss Tropical & Public Health Institute; Basel Switzerland
- University of Basel; Basel Switzerland
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum - University of Bologna; Bologna Italy
- CompuNet; Istituto Italiano di Tecnologia; Genova Italy
| | - Romana Fato
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum - University of Bologna; Bologna Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum - University of Bologna; Bologna Italy
| |
Collapse
|
33
|
Kashif M, Moreno-Herrera A, Lara-Ramirez EE, Ramírez-Moreno E, Bocanegra-García V, Ashfaq M, Rivera G. Recent developments in trans-sialidase inhibitors of Trypanosoma cruzi. J Drug Target 2017; 25:485-498. [DOI: 10.1080/1061186x.2017.1289539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Muhammad Kashif
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Mexico
| | | | | | - Esther Ramírez-Moreno
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | | | - Muhammad Ashfaq
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Gildardo Rivera
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Mexico
| |
Collapse
|
34
|
Abstract
In trypanosomatids, polyamine and trypanothione pathways can be considered as a whole unique metabolism, where most enzymes are essential for parasitic survival and infectivity. Leishmania parasites and all the other members of the Trypanosomatids family depend on polyamines for growth and survival: the enzymes involved in the synthesis and utilization of spermidine and trypanothione, i.e., arginase, ornithine decarboxylase, S-adenosylmethionine decarboxylase, spermidine synthase and in particular trypanothione synthetase-amidase, trypanothione reductase and tryparedoxin-dependent peroxidase are promising targets for drug development. This review deals with recent structure-based studies on these enzymes, aimed at the discovery of inhibitors of this pathway.
Collapse
|
35
|
Bruno S, Margiotta M, Pinto A, Cullia G, Conti P, De Micheli C, Mozzarelli A. Selectivity of 3-bromo-isoxazoline inhibitors between human and Plasmodium falciparum glyceraldehyde-3-phosphate dehydrogenases. Bioorg Med Chem 2016; 24:2654-9. [DOI: 10.1016/j.bmc.2016.04.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/14/2016] [Accepted: 04/16/2016] [Indexed: 01/09/2023]
|
36
|
Leroux AE, Krauth-Siegel RL. Thiol redox biology of trypanosomatids and potential targets for chemotherapy. Mol Biochem Parasitol 2016; 206:67-74. [DOI: 10.1016/j.molbiopara.2015.11.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/09/2015] [Accepted: 11/18/2015] [Indexed: 02/08/2023]
|
37
|
Bahia SBBB, Reis WJ, Jardim GAM, Souto FT, de Simone CA, Gatto CC, Menna-Barreto RFS, de Castro SL, Cavalcanti BC, Pessoa C, Araujo MH, da Silva Júnior EN. Molecular hybridization as a powerful tool towards multitarget quinoidal systems: synthesis, trypanocidal and antitumor activities of naphthoquinone-based 5-iodo-1,4-disubstituted-, 1,4- and 1,5-disubstituted-1,2,3-triazoles. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00216a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Some of the hybrid compounds exhibited promising trypanocidal and anticancer activities.
Collapse
Affiliation(s)
- Samara Ben B. B. Bahia
- Department of Chemistry
- Institute of Exact Sciences
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Wallace J. Reis
- Department of Chemistry
- Institute of Exact Sciences
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Guilherme A. M. Jardim
- Department of Chemistry
- Institute of Exact Sciences
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Francielly T. Souto
- Department of Chemistry
- Institute of Exact Sciences
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Carlos A. de Simone
- Department of Physics and Informatics
- Institute of Physics
- University of São Paulo
- São Carlos
- Brazil
| | | | | | | | - Bruno C. Cavalcanti
- Department of Physiology and Pharmacology
- Federal University of Ceará
- Fortaleza
- Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology
- Federal University of Ceará
- Fortaleza
- Brazil
| | - Maria H. Araujo
- Department of Chemistry
- Institute of Exact Sciences
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | | |
Collapse
|
38
|
Ethyl Pyruvate Emerges as a Safe and Fast Acting Agent against Trypanosoma brucei by Targeting Pyruvate Kinase Activity. PLoS One 2015; 10:e0137353. [PMID: 26340747 PMCID: PMC4560413 DOI: 10.1371/journal.pone.0137353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/14/2015] [Indexed: 12/25/2022] Open
Abstract
Background Human African Trypanosomiasis (HAT) also called sleeping sickness is an infectious disease in humans caused by an extracellular protozoan parasite. The disease, if left untreated, results in 100% mortality. Currently available drugs are full of severe drawbacks and fail to escape the fast development of trypanosoma resistance. Due to similarities in cell metabolism between cancerous tumors and trypanosoma cells, some of the current registered drugs against HAT have also been tested in cancer chemotherapy. Here we demonstrate for the first time that the simple ester, ethyl pyruvate, comprises such properties. Results The current study covers the efficacy and corresponding target evaluation of ethyl pyruvate on T. brucei cell lines using a combination of biochemical techniques including cell proliferation assays, enzyme kinetics, phasecontrast microscopic video imaging and ex vivo toxicity tests. We have shown that ethyl pyruvate effectively kills trypanosomes most probably by net ATP depletion through inhibition of pyruvate kinase (Ki = 3.0±0.29 mM). The potential of ethyl pyruvate as a trypanocidal compound is also strengthened by its fast acting property, killing cells within three hours post exposure. This has been demonstrated using video imaging of live cells as well as concentration and time dependency experiments. Most importantly, ethyl pyruvate produces minimal side effects in human red cells and is known to easily cross the blood-brain-barrier. This makes it a promising candidate for effective treatment of the two clinical stages of sleeping sickness. Trypanosome drug-resistance tests indicate irreversible cell death and a low incidence of resistance development under experimental conditions. Conclusion Our results present ethyl pyruvate as a safe and fast acting trypanocidal compound and show that it inhibits the enzyme pyruvate kinase. Competitive inhibition of this enzyme was found to cause ATP depletion and cell death. Due to its ability to easily cross the blood-brain-barrier, ethyl pyruvate could be considered as new candidate agent to treat the hemolymphatic as well as neurological stages of sleeping sickness.
Collapse
|
39
|
Prati F, Bergamini C, Molina MT, Falchi F, Cavalli A, Kaiser M, Brun R, Fato R, Bolognesi ML. 2-Phenoxy-1,4-naphthoquinones: From a Multitarget Antitrypanosomal to a Potential Antitumor Profile. J Med Chem 2015; 58:6422-34. [DOI: 10.1021/acs.jmedchem.5b00748] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Federica Prati
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6/Via Irnerio 48, 40126 Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6/Via Irnerio 48, 40126 Bologna, Italy
| | - Maria Teresa Molina
- Instituto de Química Médica (IQM-CSIC), c/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Federico Falchi
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6/Via Irnerio 48, 40126 Bologna, Italy
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Andrea Cavalli
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6/Via Irnerio 48, 40126 Bologna, Italy
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Marcel Kaiser
- Swiss Tropical & Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz
1, 4003 Basel, Switzerland
| | - Reto Brun
- Swiss Tropical & Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz
1, 4003 Basel, Switzerland
| | - Romana Fato
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6/Via Irnerio 48, 40126 Bologna, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6/Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
40
|
Sola I, Castellà S, Viayna E, Galdeano C, Taylor MC, Gbedema SY, Pérez B, Clos MV, Jones DC, Fairlamb AH, Wright CW, Kelly JM, Muñoz-Torrero D. Synthesis, biological profiling and mechanistic studies of 4-aminoquinoline-based heterodimeric compounds with dual trypanocidal-antiplasmodial activity. Bioorg Med Chem 2015; 23:5156-67. [PMID: 25678015 DOI: 10.1016/j.bmc.2015.01.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 12/13/2022]
Abstract
Dual submicromolar trypanocidal-antiplasmodial compounds have been identified by screening and chemical synthesis of 4-aminoquinoline-based heterodimeric compounds of three different structural classes. In Trypanosoma brucei, inhibition of the enzyme trypanothione reductase seems to be involved in the potent trypanocidal activity of these heterodimers, although it is probably not the main biological target. Regarding antiplasmodial activity, the heterodimers seem to share the mode of action of the antimalarial drug chloroquine, which involves inhibition of the haem detoxification process. Interestingly, all of these heterodimers display good brain permeabilities, thereby being potentially useful for late stage human African trypanosomiasis. Future optimization of these compounds should focus mainly on decreasing cytotoxicity and acetylcholinesterase inhibitory activity.
Collapse
Affiliation(s)
- Irene Sola
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Sílvia Castellà
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Elisabet Viayna
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Carles Galdeano
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Martin C Taylor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Stephen Y Gbedema
- Bradford School of Pharmacy, University of Bradford, West Yorkshire BD7 1 DP, United Kingdom; Department of Pharmaceutics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Belén Pérez
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - M Victòria Clos
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Deuan C Jones
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Alan H Fairlamb
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Colin W Wright
- Bradford School of Pharmacy, University of Bradford, West Yorkshire BD7 1 DP, United Kingdom
| | - John M Kelly
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Diego Muñoz-Torrero
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain.
| |
Collapse
|
41
|
Castro MÁ, Gamito AM, Tangarife-Castaño V, Roa-Linares V, Miguel del Corral JM, Mesa-Arango AC, Betancur-Galvis L, Francesch AM, San Feliciano A. New 1,4-anthracenedione derivatives with fused heterocyclic rings: synthesis and biological evaluation. RSC Adv 2015. [DOI: 10.1039/c4ra11726c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
New 1,4-anthracenediones bearing fused-heterocycle rings were synthesized and evaluated as cytotoxics, antifungals and antivirals. Some of them showed GI50 at the μM level.
Collapse
Affiliation(s)
- Ma. Ángeles Castro
- Departamento de Química Farmacéutica
- Facultad de Farmacia
- CIETUS-IBSAL
- Campus Miguel de Unamuno
- Universidad de Salamanca
| | - Ana Ma. Gamito
- Departamento de Química Farmacéutica
- Facultad de Farmacia
- CIETUS-IBSAL
- Campus Miguel de Unamuno
- Universidad de Salamanca
| | - Verónica Tangarife-Castaño
- Grupo de Investigación Dermatológica
- Facultad de Medicina
- Departamento de Medicina Interna
- Universidad de Antioquia
- Medellín
| | - Vicky Roa-Linares
- Grupo de Investigación Dermatológica
- Facultad de Medicina
- Departamento de Medicina Interna
- Universidad de Antioquia
- Medellín
| | - José Ma. Miguel del Corral
- Departamento de Química Farmacéutica
- Facultad de Farmacia
- CIETUS-IBSAL
- Campus Miguel de Unamuno
- Universidad de Salamanca
| | - Ana C. Mesa-Arango
- Grupo de Investigación Dermatológica
- Facultad de Medicina
- Departamento de Medicina Interna
- Universidad de Antioquia
- Medellín
| | - Liliana Betancur-Galvis
- Grupo de Investigación Dermatológica
- Facultad de Medicina
- Departamento de Medicina Interna
- Universidad de Antioquia
- Medellín
| | | | - Arturo San Feliciano
- Departamento de Química Farmacéutica
- Facultad de Farmacia
- CIETUS-IBSAL
- Campus Miguel de Unamuno
- Universidad de Salamanca
| |
Collapse
|
42
|
Sola I, Artigas A, Taylor MC, Gbedema SY, Pérez B, Clos MV, Wright CW, Kelly JM, Muñoz-Torrero D. Synthesis and antiprotozoal activity of oligomethylene- and p-phenylene-bis(methylene)-linked bis(+)-huprines. Bioorg Med Chem Lett 2014; 24:5435-8. [DOI: 10.1016/j.bmcl.2014.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/04/2014] [Accepted: 10/08/2014] [Indexed: 01/24/2023]
|
43
|
Bruno S, Pinto A, Paredi G, Tamborini L, De Micheli C, La Pietra V, Marinelli L, Novellino E, Conti P, Mozzarelli A. Discovery of Covalent Inhibitors of Glyceraldehyde-3-phosphate Dehydrogenase, A Target for the Treatment of Malaria. J Med Chem 2014; 57:7465-71. [DOI: 10.1021/jm500747h] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Stefano Bruno
- Dipartimento
di Farmacia and Centro Siteia.Parma, Università di Parma, Parco Area
delle Scienze 23/A, 43124 Parma, Italy
- Istituto di Bioscienze e Biorisorse, CNR, 80131 Napoli, Italy
| | - Andrea Pinto
- Dipartimento
di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy
| | - Gianluca Paredi
- Dipartimento
di Farmacia and Centro Siteia.Parma, Università di Parma, Parco Area
delle Scienze 23/A, 43124 Parma, Italy
| | - Lucia Tamborini
- Dipartimento
di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy
| | - Carlo De Micheli
- Dipartimento
di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy
| | - Valeria La Pietra
- Dipartimento
di Farmacia, Università di Napoli Federico II, Via Montesano,
49, 80138 Napoli, Italy
| | - Luciana Marinelli
- Dipartimento
di Farmacia, Università di Napoli Federico II, Via Montesano,
49, 80138 Napoli, Italy
| | - Ettore Novellino
- Dipartimento
di Farmacia, Università di Napoli Federico II, Via Montesano,
49, 80138 Napoli, Italy
| | - Paola Conti
- Dipartimento
di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy
| | - Andrea Mozzarelli
- Dipartimento
di Farmacia and Centro Siteia.Parma, Università di Parma, Parco Area
delle Scienze 23/A, 43124 Parma, Italy
- Istituto Nazionale di Biostrutture e Biosistemi, 00136 Roma, Italy
| |
Collapse
|
44
|
Prati F, Uliassi E, Bolognesi ML. Two diseases, one approach: multitarget drug discovery in Alzheimer's and neglected tropical diseases. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00069b] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Multitarget drug discovery may represent a promising therapeutic approach to treat Alzheimer's and neglected tropical diseases.
Collapse
Affiliation(s)
- F. Prati
- Department of Drug Discovery & Development
- Istituto Italiano di Tecnologia
- Genova
- Italy
- Department of Pharmacy & Biotechnology
| | - E. Uliassi
- Department of Pharmacy & Biotechnology
- University of Bologna
- Bologna
- Italy
| | - M. L. Bolognesi
- Department of Pharmacy & Biotechnology
- University of Bologna
- Bologna
- Italy
| |
Collapse
|