1
|
Cao D, Xi R, Li H, Zhang Z, Shi X, Li S, Jin Y, Liu W, Zhang G, Liu X, Dong S, Feng X, Wang F. Discovery of a Covalent Inhibitor of Pro-Caspase-1 Zymogen Blocking NLRP3 Inflammasome Activation and Pyroptosis. J Med Chem 2024; 67:15873-15891. [PMID: 39159426 DOI: 10.1021/acs.jmedchem.4c01558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Caspase-1 plays a central role in innate immunity, as its activation by inflammasomes induces the production of proinflammatory cytokines and pyroptosis. However, specific inhibition of the enzymatic activity of this protease is not effective in suppressing inflammation, owing to its enzyme-independent function. Herein, we identified a cyclohexenyl isothiocyanate compound (CIB-1476) that potently inhibited caspase-1 activity and suppressed the assembly and activation of the NLRP3 inflammasome and gasdermin-D-mediated pyroptosis. Mechanistically, CIB-1476 directly targeted pro-caspase-1 as an irreversible covalent inhibitor by binding to Cys285 and Cys397, resulting in more durable anti-inflammatory effects in the suppression of enzyme-dependent IL-1β production and enzyme-independent nuclear factor κB activation. Chemoproteomic profiling demonstrated the engagement of CIB-1476 with caspase-1. CIB-1476 showed potent therapeutic effects by suppressing inflammasome activation in mice, which was abolished in Casp1-/- mice. These results warrant further development of CIB-1476 along with its analogues as a novel strategy for caspase-1 inhibitors.
Collapse
Affiliation(s)
- Dongyi Cao
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Department of Pharmacy, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming 650500, China
| | - Ruiying Xi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongye Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhonghui Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 511400, China
| | - Xiaoke Shi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujie Jin
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
2
|
Cuellar ME, Yang M, Karavadhi S, Zhang YQ, Zhu H, Sun H, Shen M, Hall MD, Patnaik S, Ashe KH, Walters MA, Pockes S. An electrophilic fragment screening for the development of small molecules targeting caspase-2. Eur J Med Chem 2023; 259:115632. [PMID: 37453329 PMCID: PMC10529632 DOI: 10.1016/j.ejmech.2023.115632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Recent Alzheimer's research has shown increasing interest in the caspase-2 (Casp2) enzyme. However, the available Casp2 inhibitors, which have been pentapeptides or peptidomimetics, face challenges for use as CNS drugs. In this study, we successfully screened a 1920-compound chloroacetamide-based, electrophilic fragment library from Enamine. Our two-point dose screen identified 64 Casp2 hits, which were further evaluated in a ten-point dose-response study to assess selectivity over Casp3. We discovered compounds with inhibition values in the single-digit micromolar and sub-micromolar range, as well as up to 32-fold selectivity for Casp2 over Casp3. Target engagement analysis confirmed the covalent-irreversible binding of the selected fragments to Cys320 at the active site of Casp2. Overall, our findings lay a strong foundation for the future development of small-molecule Casp2 inhibitors.
Collapse
Affiliation(s)
- Matthew E Cuellar
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Mu Yang
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Surendra Karavadhi
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Ya-Qin Zhang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Hu Zhu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Hongmao Sun
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Samarjit Patnaik
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Karen H Ashe
- Department of Neurology, University of Minnesota, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Michael A Walters
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA.
| | - Steffen Pockes
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA; Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
3
|
Tobajas-Curiel G, Sun Q, Sanders JKM, Ballester P, Hunter CA. Aromatic interactions with heterocycles in water. Chem Sci 2023; 14:11131-11140. [PMID: 37860651 PMCID: PMC10583712 DOI: 10.1039/d3sc03824f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023] Open
Abstract
Conformationally well-defined supramolecular complexes that can be studied in different solvents provide a platform for separating and quantifying free energy contributions due to functional group interactions and desolvation. Here 1:1 complexes formed between four different calix[4]pyrrole receptors and eleven different pyridine N-oxide guests have been used to dissect the factors that govern aromatic interactions with heterocycles in water and in chloroform solution. 1H NMR spectroscopy shows that the three-dimensional structures of the complexes are fixed by four H-bonding interactions between the pyrrole donors at the bottom of the receptor and the N-oxide acceptor on the guest, locking the geometrical arrangement of interacting functional groups in the binding pocket at the other end of the receptor. An aromatic heterocycle on the guest makes two stacking interactions and two edge-to-face interactions with the side walls of the receptor. Chemical double mutant cycles were used to measure the free energy contribution of these four aromatic interactions to the overall stability of the complex. In chloroform, the aromatic interactions measured with pyridine, pyrimidine, furan, thiophene and thiazole are similar to the interactions with a phenyl group, but the effect of introducing a heteroatom depends on where it sits with respect to the aromatic side-walls of the cavity. A nitrogen lone pair directed into a π-face of the side-walls of the binding site leads to repulsive interactions of up to 8 kJ mol-1. In water, the heterocycle aromatic interactions are all significantly more favourable (by up to 12 kJ mol-1). For the non-polar heterocycles, furan and thiophene, the increase in interaction energy correlates directly with hydrophobicity, as measured by the free energy of transfer of the heterocycle from n-hexadecane into water (ΔG°(water-hex)). For the heterocycles with polar nitrogen H-bond acceptors, water can access cracks in the walls of the receptor binding site to solvate the edges of the heterocycles without significantly affecting the geometry of the aromatic interactions, and these nitrogen-water H-bonds stabilise the complexes by about 15 kJ mol-1. The results highlight the complexity of the solvation processes that govern molecular recognition in water.
Collapse
Affiliation(s)
| | - Qingqing Sun
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans, 16 43007 Tarragona Spain
- Yangzhou University, School of Chemistry and Chemical Engineering Yangzhou 225002 Jiangsu China
| | - Jeremy K M Sanders
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans, 16 43007 Tarragona Spain
- ICREA Passeig Lluís Companys 23 08010 Barcelona Spain
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| |
Collapse
|
4
|
Visser EJ, Jaishankar P, Sijbesma E, Pennings MAM, Vandenboorn EMF, Guillory X, Neitz RJ, Morrow J, Dutta S, Renslo AR, Brunsveld L, Arkin MR, Ottmann C. From Tethered to Freestanding Stabilizers of 14-3-3 Protein-Protein Interactions through Fragment Linking. Angew Chem Int Ed Engl 2023; 62:e202308004. [PMID: 37455289 DOI: 10.1002/anie.202308004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Small-molecule stabilization of protein-protein interactions (PPIs) is a promising strategy in chemical biology and drug discovery. However, the systematic discovery of PPI stabilizers remains a largely unmet challenge. Herein we report a fragment-linking approach targeting the interface of 14-3-3 and a peptide derived from the estrogen receptor alpha (ERα) protein. Two classes of fragments-a covalent and a noncovalent fragment-were co-crystallized and subsequently linked, resulting in a noncovalent hybrid molecule in which the original fragment interactions were largely conserved. Supported by 20 crystal structures, this initial hybrid molecule was further optimized, resulting in selective, 25-fold stabilization of the 14-3-3/ERα interaction. The high-resolution structures of both the single fragments, their co-crystal structures and those of the linked fragments document a feasible strategy to develop orthosteric PPI stabilizers by linking to an initial tethered fragment.
Collapse
Affiliation(s)
- Emira J Visser
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Eline Sijbesma
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Marloes A M Pennings
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Edmee M F Vandenboorn
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Xavier Guillory
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - R Jeffrey Neitz
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - John Morrow
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Shubhankar Dutta
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| |
Collapse
|
5
|
Togo T, Tram L, Denton LG, ElHilali-Pollard X, Gu J, Jiang J, Liu C, Zhao Y, Zhao Y, Zheng Y, Zheng Y, Yang J, Fan P, Arkin MR, Härmä H, Sun D, Canan SS, Wheeler SE, Renslo AR. Systematic Study of Heteroarene Stacking Using a Congeneric Set of Molecular Glues for Procaspase-6. J Med Chem 2023; 66:9784-9796. [PMID: 37406165 PMCID: PMC10388292 DOI: 10.1021/acs.jmedchem.3c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Indexed: 07/07/2023]
Abstract
Heteroaromatic stacking interactions are important in drug binding, supramolecular chemistry, and materials science, making protein-ligand model systems of these interactions of considerable interest. Here we studied 30 congeneric ligands that each present a distinct heteroarene for stacking between tyrosine residues at the dimer interface of procaspase-6. Complex X-ray crystal structures of 10 analogs showed that stacking geometries were well conserved, while high-accuracy computations showed that heteroarene stacking energy was well correlated with predicted overall ligand binding energies. Empirically determined KD values in this system thus provide a useful measure of heteroarene stacking with tyrosine. Stacking energies are discussed in the context of torsional strain, the number and positioning of heteroatoms, tautomeric state, and coaxial orientation of heteroarene in the stack. Overall, this study provides an extensive data set of empirical and high-level computed binding energies in a versatile new protein-ligand system amenable to studies of other intermolecular interactions.
Collapse
Affiliation(s)
- Takaya Togo
- Department
of Pharmaceutical Chemistry, University
of California, 600 16th Street, San Francisco, California 94143, United States
| | - Linh Tram
- Department
of Pharmaceutical Chemistry, University
of California, 600 16th Street, San Francisco, California 94143, United States
| | - Laura G. Denton
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Xochina ElHilali-Pollard
- Department
of Pharmaceutical Chemistry, University
of California, 600 16th Street, San Francisco, California 94143, United States
| | - Jun Gu
- Departments
of Chemistry and Biology, Viva Biotech, Pu Dong New Area, 201203 Shanghai, China
| | - Jinglei Jiang
- Departments
of Chemistry and Biology, Viva Biotech, Pu Dong New Area, 201203 Shanghai, China
| | - Chenglei Liu
- Departments
of Chemistry and Biology, Viva Biotech, Pu Dong New Area, 201203 Shanghai, China
| | - Yan Zhao
- Departments
of Chemistry and Biology, Viva Biotech, Pu Dong New Area, 201203 Shanghai, China
| | - Yanlong Zhao
- Departments
of Chemistry and Biology, Viva Biotech, Pu Dong New Area, 201203 Shanghai, China
| | - Yinzhe Zheng
- Departments
of Chemistry and Biology, Viva Biotech, Pu Dong New Area, 201203 Shanghai, China
| | - Yunping Zheng
- Departments
of Chemistry and Biology, Viva Biotech, Pu Dong New Area, 201203 Shanghai, China
| | - Jingjing Yang
- Departments
of Chemistry and Biology, Viva Biotech, Pu Dong New Area, 201203 Shanghai, China
| | - Panpan Fan
- Departments
of Chemistry and Biology, Viva Biotech, Pu Dong New Area, 201203 Shanghai, China
| | - Michelle R. Arkin
- Department
of Pharmaceutical Chemistry, University
of California, 600 16th Street, San Francisco, California 94143, United States
| | - Harri Härmä
- Department
of Chemistry, University of Turku, 20500 Turku, Finland
| | - Deqian Sun
- Departments
of Chemistry and Biology, Viva Biotech, Pu Dong New Area, 201203 Shanghai, China
| | - Stacie S. Canan
- Departments of Chemistry
and Structural Biology, Elgia Therapeutics, La Jolla, California 92037, United States
| | - Steven E. Wheeler
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Adam R. Renslo
- Department
of Pharmaceutical Chemistry, University
of California, 600 16th Street, San Francisco, California 94143, United States
| |
Collapse
|
6
|
Van Horn KS, Wang D, Medina-Cleghorn D, Lee PS, Bryant C, Altobelli C, Jaishankar P, Leung KK, Ng RA, Ambrose AJ, Tang Y, Arkin MR, Renslo AR. Engaging a Non-catalytic Cysteine Residue Drives Potent and Selective Inhibition of Caspase-6. J Am Chem Soc 2023; 145:10015-10021. [PMID: 37104712 PMCID: PMC10176470 DOI: 10.1021/jacs.2c12240] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Indexed: 04/29/2023]
Abstract
Caspases are a family of cysteine-dependent proteases with important cellular functions in inflammation and apoptosis, while also implicated in human diseases. Classical chemical tools to study caspase functions lack selectivity for specific caspase family members due to highly conserved active sites and catalytic machinery. To overcome this limitation, we targeted a non-catalytic cysteine residue (C264) unique to caspase-6 (C6), an enigmatic and understudied caspase isoform. Starting from disulfide ligands identified in a cysteine trapping screen, we used a structure-informed covalent ligand design to produce potent, irreversible inhibitors (3a) and chemoproteomic probes (13-t) of C6 that exhibit unprecedented selectivity over other caspase family members and high proteome selectivity. This approach and the new tools described will enable rigorous interrogation of the role of caspase-6 in developmental biology and in inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Kurt S. Van Horn
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Dongju Wang
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
- School
of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Daniel Medina-Cleghorn
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Peter S. Lee
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Clifford Bryant
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Chad Altobelli
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Priyadarshini Jaishankar
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Kevin K. Leung
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Raymond A. Ng
- Chempartner
Corporation, 280 Utah
Avenue, South San Francisco, California 94080, United States
| | - Andrew J. Ambrose
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Yinyan Tang
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Michelle R. Arkin
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Adam R. Renslo
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| |
Collapse
|
7
|
Xu JH, Eberhardt J, Hill-Payne B, González-Páez GE, Castellón JO, Cravatt BF, Forli S, Wolan DW, Backus KM. Integrative X-ray Structure and Molecular Modeling for the Rationalization of Procaspase-8 Inhibitor Potency and Selectivity. ACS Chem Biol 2020; 15:575-586. [PMID: 31927936 PMCID: PMC7370820 DOI: 10.1021/acschembio.0c00019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Caspases are a critical class of proteases involved in regulating programmed cell death and other biological processes. Selective inhibitors of individual caspases, however, are lacking, due in large part to the high structural similarity found in the active sites of these enzymes. We recently discovered a small-molecule inhibitor, 63-R, that covalently binds the zymogen, or inactive precursor (pro-form), of caspase-8, but not other caspases, pointing to an untapped potential of procaspases as targets for chemical probes. Realizing this goal would benefit from a structural understanding of how small molecules bind to and inhibit caspase zymogens. There have, however, been very few reported procaspase structures. Here, we employ X-ray crystallography to elucidate a procaspase-8 crystal structure in complex with 63-R, which reveals large conformational changes in active-site loops that accommodate the intramolecular cleavage events required for protease activation. Combining these structural insights with molecular modeling and mutagenesis-based biochemical assays, we elucidate key interactions required for 63-R inhibition of procaspase-8. Our findings inform the mechanism of caspase activation and its disruption by small molecules and, more generally, have implications for the development of small molecule inhibitors and/or activators that target alternative (e.g., inactive precursor) protein states to ultimately expand the druggable proteome.
Collapse
Affiliation(s)
- Janice H. Xu
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Jerome Eberhardt
- Department of Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Brianna Hill-Payne
- Departments of Biological Chemistry and Chemistry and Biochemistry, David Geffen School of Medicine, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095
| | - Gonzalo E. González-Páez
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - José Omar Castellón
- Departments of Biological Chemistry and Chemistry and Biochemistry, David Geffen School of Medicine, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095
| | - Benjamin F. Cravatt
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Stefano Forli
- Department of Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Dennis W. Wolan
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Keriann M. Backus
- Departments of Biological Chemistry and Chemistry and Biochemistry, David Geffen School of Medicine, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095
| |
Collapse
|
8
|
Activation of Caspase-6 Is Promoted by a Mutant Huntingtin Fragment and Blocked by an Allosteric Inhibitor Compound. Cell Chem Biol 2019; 26:1295-1305.e6. [PMID: 31353319 DOI: 10.1016/j.chembiol.2019.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/08/2019] [Accepted: 06/28/2019] [Indexed: 01/04/2023]
Abstract
Aberrant activation of caspase-6 (C6) in the absence of other hallmarks of apoptosis has been demonstrated in cells and tissues from patients with Huntington disease (HD) and animal models. C6 activity correlates with disease progression in patients with HD and the cleavage of mutant huntingtin (mHTT) protein is thought to strongly contribute to disease pathogenesis. Here we show that the mHTT1-586 fragment generated by C6 cleavage interacts with the zymogen form of the enzyme, stabilizing a conformation that contains an active site and is prone to full activation. This shift toward enhanced activity can be prevented by a small-molecule inhibitor that blocks the interaction between C6 and mHTT1-586. Molecular docking studies suggest that the inhibitor binds an allosteric site in the C6 zymogen. The interaction of mHTT1-586 with C6 may therefore promote a self-reinforcing, feedforward cycle of C6 zymogen activation and mHTT cleavage driving HD pathogenesis.
Collapse
|
9
|
Abstract
Predicting the strength of stacking interactions involving heterocycles is vital for several fields, including structure-based drug design. While quantum chemical computations can provide accurate stacking interaction energies, these come at a steep computational cost. To address this challenge, we recently developed quantitative predictive models of stacking interactions between druglike heterocycles and the aromatic amino acids Phe, Tyr, and Trp (DOI: 10.1021/jacs.9b00936 ). These models depend on heterocycle descriptors derived from electrostatic potentials (ESPs) computed using density functional theory and provide accurate stacking interactions without the need for expensive computations on stacked dimers. Herein, we show that these ESP-based descriptors can be reliably evaluated directly from the atom connectivity of the heterocycle, providing a means of predicting both the descriptors and the potential for a given heterocycle to engage in stacking interactions without resorting to any quantum chemical computations. This enables the rapid conversion of simple molecular representations (e.g., SMILES) directly into accurate stacking interaction energies using a freely available online tool, thereby providing a way to rank the stacking abilities of large sets of heterocycles.
Collapse
Affiliation(s)
- Andrea N Bootsma
- Center for Computational Quantum Chemistry, Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Steven E Wheeler
- Center for Computational Quantum Chemistry, Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| |
Collapse
|
10
|
Bootsma AN, Doney AC, Wheeler SE. Predicting the Strength of Stacking Interactions between Heterocycles and Aromatic Amino Acid Side Chains. J Am Chem Soc 2019; 141:11027-11035. [DOI: 10.1021/jacs.9b00936] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Andrea N. Bootsma
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Analise C. Doney
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Steven E. Wheeler
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
11
|
Okerberg ES, Dagbay KB, Green JL, Soni I, Aban A, Nomanbhoy TK, Savinov SN, Hardy JA, Kozarich JW. Chemoproteomics Using Nucleotide Acyl Phosphates Reveals an ATP Binding Site at the Dimer Interface of Procaspase-6. Biochemistry 2019; 58:5320-5328. [PMID: 31095371 DOI: 10.1021/acs.biochem.9b00290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acyl phosphates of ATP (ATPAc) and related nucleotides have proven to be useful for the interrogation of known nucleotide binding sites via specific acylation of conserved lysines (K). In addition, occasional K acylations are identified in proteins without such known sites. Here we present a robust and specific acylation of procaspase-6 by ATPAc at K133 in Jurkat cell lysates. The K133 acylation is dependent on π-π stacking interactions between the adenine moiety of ATPAc and a conserved Y198-Y198 site formed at the homodimeric interface of procaspase-6. Significantly, the Y198A mutation in procaspase-6 abolishes K133 acylation but has no effect on the proteolytic activity of the mature, active caspase-6 Y198A variant. Additional in vitro studies show that ATP can inhibit the autoproteolytic activation of procaspase-6. These observations suggest that ATP, and possibly other nucleotides, may serve as the endogenous ligands for the allosteric site at the procaspase-6 dimer interface, a site that has persisted in its "orphan" status for more than a decade.
Collapse
Affiliation(s)
- Eric S Okerberg
- ActivX Biosciences, Inc. , La Jolla , California 92037 , United States
| | - Kevin B Dagbay
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01002 , United States
| | - Jennifer L Green
- ActivX Biosciences, Inc. , La Jolla , California 92037 , United States
| | - Ishankumar Soni
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01002 , United States
| | - Arwin Aban
- ActivX Biosciences, Inc. , La Jolla , California 92037 , United States
| | | | - Sergey N Savinov
- Department of Biochemistry & Molecular Biology , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Jeanne A Hardy
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01002 , United States.,Models to Medicine Center, Institute of Applied Life Sciences , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - John W Kozarich
- ActivX Biosciences, Inc. , La Jolla , California 92037 , United States
| |
Collapse
|
12
|
Tubeleviciute-Aydin A, Beautrait A, Lynham J, Sharma G, Gorelik A, Deny LJ, Soya N, Lukacs GL, Nagar B, Marinier A, LeBlanc AC. Identification of Allosteric Inhibitors against Active Caspase-6. Sci Rep 2019; 9:5504. [PMID: 30940883 PMCID: PMC6445123 DOI: 10.1038/s41598-019-41930-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/21/2019] [Indexed: 01/04/2023] Open
Abstract
Caspase-6 is a cysteine protease that plays essential roles in programmed cell death, axonal degeneration, and development. The excess neuronal activity of Caspase-6 is associated with Alzheimer disease neuropathology and age-dependent cognitive impairment. Caspase-6 inhibition is a promising strategy to stop early stage neurodegenerative events, yet finding potent and selective Caspase-6 inhibitors has been a challenging task due to the overlapping structural and functional similarities between caspase family members. Here, we investigated how four rare non-synonymous missense single-nucleotide polymorphisms (SNPs), resulting in amino acid substitutions outside human Caspase-6 active site, affect enzyme structure and catalytic efficiency. Three investigated SNPs were found to align with a putative allosteric pocket with low sequence conservation among human caspases. Virtual screening of 57,700 compounds against the putative Caspase-6 allosteric pocket, followed by in vitro testing of the best virtual hits in recombinant human Caspase-6 activity assays identified novel allosteric Caspase-6 inhibitors with IC50 and Ki values ranging from ~2 to 13 µM. This report may pave the way towards the development and optimisation of novel small molecule allosteric Caspase-6 inhibitors and illustrates that functional characterisation of rare natural variants holds promise for the identification of allosteric sites on other therapeutic targets in drug discovery.
Collapse
Affiliation(s)
- Agne Tubeleviciute-Aydin
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Cote Ste-Catherine, Montreal, Quebec, H3T 1E2, Canada
- Department of Neurology and Neurosurgery, McGill University, 3775 University St., Montreal, Quebec, H3A 2B4, Canada
| | - Alexandre Beautrait
- Institute for Research in Immunology and Cancer, Université de Montréal, 2590, chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Jeffrey Lynham
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Cote Ste-Catherine, Montreal, Quebec, H3T 1E2, Canada
- Department of Anatomy and Cell Biology, McGill University, 3640 University St., Montreal, Quebec, H3A 0C7, Canada
| | - Gyanesh Sharma
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Cote Ste-Catherine, Montreal, Quebec, H3T 1E2, Canada
- Department of Neurology and Neurosurgery, McGill University, 3775 University St., Montreal, Quebec, H3A 2B4, Canada
| | - Alexei Gorelik
- Department of Biochemistry, McGill University, 3649 promenade Sir-William-Osler, Montreal, Quebec, H3G 0B1, Canada
| | - Ludovic J Deny
- Institute for Research in Immunology and Cancer, Université de Montréal, 2590, chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Naoto Soya
- Department of Physiology and Biochemistry, McGill University, 3655 Promenade Sir-William-Osler, Montréal, Québec, H3G 1Y6, Canada
| | - Gergely L Lukacs
- Department of Physiology and Biochemistry, McGill University, 3655 Promenade Sir-William-Osler, Montréal, Québec, H3G 1Y6, Canada
| | - Bhushan Nagar
- Department of Biochemistry, McGill University, 3649 promenade Sir-William-Osler, Montreal, Quebec, H3G 0B1, Canada
| | - Anne Marinier
- Institute for Research in Immunology and Cancer, Université de Montréal, 2590, chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Andrea C LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Cote Ste-Catherine, Montreal, Quebec, H3T 1E2, Canada.
- Department of Neurology and Neurosurgery, McGill University, 3775 University St., Montreal, Quebec, H3A 2B4, Canada.
- Department of Anatomy and Cell Biology, McGill University, 3640 University St., Montreal, Quebec, H3A 0C7, Canada.
| |
Collapse
|
13
|
Abstract
The cysteine protease Caspase-6 (Casp6) is a potential therapeutic target of Alzheimer Disease (AD) and age-dependent cognitive impairment. To assess if Casp6 is essential to human health, we investigated the effect of CASP6 variants sequenced from healthy humans on Casp6 activity. Here, we report the effects of two rare Casp6 amino acid polymorphisms, R65W and G66R, on the catalytic function and structure of Casp6. The G66R substitution eliminated and R65W substitution significantly reduced Casp6 catalytic activity through impaired substrate binding. In contrast to wild-type Casp6, both Casp6 variants were unstable and inactive in transfected mammalian cells. In addition, Casp6-G66R acted as a dominant negative inhibitor of wild-type Casp6. The R65W and G66R substitutions caused perturbations in substrate recognition and active site organization as revealed by molecular dynamics simulations. Our results suggest that full Casp6 activity may not be essential for healthy humans and support the use of Casp6 inhibitors against Casp6-dependent neurodegeneration in age-dependent cognitive impairment and AD. Furthermore, this work illustrates that studying natural single amino acid polymorphisms of enzyme drug targets is a promising approach to uncover previously uncharacterized regulatory sites important for enzyme activity.
Collapse
|
14
|
Pakavathkumar P, Noël A, Lecrux C, Tubeleviciute-Aydin A, Hamel E, Ahlfors JE, LeBlanc AC. Caspase vinyl sulfone small molecule inhibitors prevent axonal degeneration in human neurons and reverse cognitive impairment in Caspase-6-overexpressing mice. Mol Neurodegener 2017; 12:22. [PMID: 28241839 PMCID: PMC5329948 DOI: 10.1186/s13024-017-0166-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/22/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The activation of the aspartate-specific cysteinyl protease, Caspase-6, is proposed as an early pathogenic event of Alzheimer disease (AD) and Huntington's disease. Caspase-6 inhibitors could be useful against these neurodegenerative diseases but most Caspase-6 inhibitors have been exclusively studied in vitro or show acute liver toxicity in humans. Here, we assessed vinyl sulfone small molecule peptide caspase inhibitors for potential use in vivo. METHODS The IC50 of NWL vinyl sulfone small molecule caspase inhibitors were determined on Caspase-1 to 10, and Caspase-6-transfected human colon carcinoma HCT116 cells. Inhibition of Caspase-6-mediated axonal degeneration was assessed in serum-deprived or amyloid precursor protein-transfected primary human CNS neurons. Cellular toxicity was measured by phase contrast microscopy, mitochondrial and lactate dehydrogenase colorimetric activity assays, or flow cytometry. Caspase inhibition was measured by fluorogenic activity assays, fluorescence microscopy, and western blot analyses. The effect of inhibitors on age-dependent cognitive deficits in Caspase-6 transgenic mice was assessed by the novel object recognition task. Liquid chromatography coupled to tandem mass spectrometry assessed the blood-brain barrier permeability of inhibitors in Caspase-6 mice. RESULTS Vinyl sulfone NWL-117 caspase inhibitor has a higher selectivity against Caspase-6, -4, -8, -9, and -10 whereas NWL-154 has higher selectivity against Caspase-6, -8, and -10. The half-maximal inhibitory concentrations (IC50) of NWL-117 and NWL-154 is 192 nM and 100 nM against Caspase-6 in vitro, and 4.82 μM and 3.63 μM in Caspase-6-transfected HCT116 cells, respectively. NWL inhibitors are not toxic to HCT116 cells or to human primary neurons. NWL-117 and NWL-154 inhibit serum deprivation-induced Caspase-6 activity and prevent amyloid precursor protein-mediated neurite degeneration in human primary CNS neurons. NWL-117 crosses the blood brain barrier and reverses age-dependent episodic memory deficits in Caspase-6 mice. CONCLUSIONS NWL peptidic vinyl methyl sulfone inhibitors are potent, non-toxic, blood-brain barrier permeable, and irreversible caspase inhibitors with neuroprotective effects in HCT116 cells, in primary human CNS neurons, and in Caspase-6 mice. These results highlight the therapeutic potential of vinyl sulfone inhibitors as caspase inhibitors against neurodegenerative diseases and sanction additional work to improve their selectivity against different caspases.
Collapse
Affiliation(s)
- Prateep Pakavathkumar
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Ch. Cote Ste-Catherine, Montreal, QC, H3T 1E2, Canada
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC, H3A 0G4, Canada
| | - Anastasia Noël
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Ch. Cote Ste-Catherine, Montreal, QC, H3T 1E2, Canada
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC, H3A 0G4, Canada
| | - Clotilde Lecrux
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Agne Tubeleviciute-Aydin
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Ch. Cote Ste-Catherine, Montreal, QC, H3T 1E2, Canada
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC, H3A 0G4, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Jan-Eric Ahlfors
- New World Laboratories, 500 Boulevard Cartier Ouest, Laval, QC, H7V 5B7, Canada
| | - Andrea C LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Ch. Cote Ste-Catherine, Montreal, QC, H3T 1E2, Canada.
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC, H3A 0G4, Canada.
- Molecular and Regenerative Medicine Axis, Lady Davis Institute for Medical Research, Sir Mortimer B Davis Jewish General Hospital, 3755 ch. Côte Ste-Catherine, Montréal, QC, H3T 1E2, Canada.
| |
Collapse
|
15
|
Abstract
After 20 years of sometimes quiet growth, fragment-based drug discovery (FBDD) has become mainstream. More than 30 drug candidates derived from fragments have entered the clinic, with two approved and several more in advanced trials. FBDD has been widely applied in both academia and industry, as evidenced by the large number of papers from universities, non-profit research institutions, biotechnology companies and pharmaceutical companies. Moreover, FBDD draws on a diverse range of disciplines, from biochemistry and biophysics to computational and medicinal chemistry. As the promise of FBDD strategies becomes increasingly realized, now is an opportune time to draw lessons and point the way to the future. This Review briefly discusses how to design fragment libraries, how to select screening techniques and how to make the most of information gleaned from them. It also shows how concepts from FBDD have permeated and enhanced drug discovery efforts.
Collapse
|
16
|
Keserű GM, Erlanson DA, Ferenczy GG, Hann MM, Murray CW, Pickett SD. Design Principles for Fragment Libraries: Maximizing the Value of Learnings from Pharma Fragment-Based Drug Discovery (FBDD) Programs for Use in Academia. J Med Chem 2016; 59:8189-206. [DOI: 10.1021/acs.jmedchem.6b00197] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- György M. Keserű
- Research
Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok
körútja 2, H-1117, Budapest, Hungary
| | - Daniel A. Erlanson
- Carmot Therapeutics, Inc. 409 Illinois Street, San Francisco, California 94158, United States
| | - György G. Ferenczy
- Research
Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok
körútja 2, H-1117, Budapest, Hungary
| | - Michael M. Hann
- Medicines
Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Christopher W. Murray
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton
Road, Cambridge CB4 0QA, U.K
| | - Stephen D. Pickett
- Medicines
Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
17
|
|
18
|
Poreba M, Szalek A, Kasperkiewicz P, Rut W, Salvesen GS, Drag M. Small Molecule Active Site Directed Tools for Studying Human Caspases. Chem Rev 2015; 115:12546-629. [PMID: 26551511 DOI: 10.1021/acs.chemrev.5b00434] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Caspases are proteases of clan CD and were described for the first time more than two decades ago. They play critical roles in the control of regulated cell death pathways including apoptosis and inflammation. Due to their involvement in the development of various diseases like cancer, neurodegenerative diseases, or autoimmune disorders, caspases have been intensively investigated as potential drug targets, both in academic and industrial laboratories. This review presents a thorough, deep, and systematic assessment of all technologies developed over the years for the investigation of caspase activity and specificity using substrates and inhibitors, as well as activity based probes, which in recent years have attracted considerable interest due to their usefulness in the investigation of biological functions of this family of enzymes.
Collapse
Affiliation(s)
- Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Szalek
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Wioletta Rut
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Guy S Salvesen
- Program in Cell Death and Survival Networks, Sanford Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
19
|
Pollock J, Borkin D, Lund G, Purohit T, Dyguda-Kazimierowicz E, Grembecka J, Cierpicki T. Rational Design of Orthogonal Multipolar Interactions with Fluorine in Protein-Ligand Complexes. J Med Chem 2015; 58:7465-74. [PMID: 26288158 PMCID: PMC4584387 DOI: 10.1021/acs.jmedchem.5b00975] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Multipolar interactions involving
fluorine and the protein backbone
have been frequently observed in protein–ligand complexes.
Such fluorine–backbone interactions may substantially contribute
to the high affinity of small molecule inhibitors. Here we found that
introduction of trifluoromethyl groups into two different sites in
the thienopyrimidine class of menin–MLL inhibitors considerably
improved their inhibitory activity. In both cases, trifluoromethyl
groups are engaged in short interactions with the backbone of menin.
In order to understand the effect of fluorine, we synthesized a series
of analogues by systematically changing the number of fluorine atoms,
and we determined high-resolution crystal structures of the complexes
with menin. We found that introduction of fluorine at favorable geometry
for interactions with backbone carbonyls may improve the activity
of menin–MLL inhibitors as much as 5- to 10-fold. In order
to facilitate the design of multipolar fluorine–backbone interactions
in protein–ligand complexes, we developed a computational algorithm
named FMAP, which calculates fluorophilic sites in proximity to the
protein backbone. We demonstrated that FMAP could be used to rationalize
improvement in the activity of known protein inhibitors upon introduction
of fluorine. Furthermore, FMAP may also represent a valuable tool
for designing new fluorine substitutions and support ligand optimization
in drug discovery projects. Analysis of the menin–MLL inhibitor
complexes revealed that the backbone in secondary structures is particularly
accessible to the interactions with fluorine. Considering that secondary
structure elements are frequently exposed at protein interfaces, we
postulate that multipolar fluorine–backbone interactions may
represent a particularly attractive approach to improve inhibitors
of protein–protein interactions.
Collapse
Affiliation(s)
- Jonathan Pollock
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Dmitry Borkin
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - George Lund
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Trupta Purohit
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Edyta Dyguda-Kazimierowicz
- Molecular Modeling and Quantum Chemistry Group, Department of Chemistry, Wrocław University of Technology , Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
20
|
Wang XJ, Cao Q, Zhang Y, Su XD. Activation and regulation of caspase-6 and its role in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 2014; 55:553-72. [PMID: 25340928 DOI: 10.1146/annurev-pharmtox-010814-124414] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Caspases, a family of cysteine proteases, are major mediators of apoptosis and inflammation. Caspase-6 is classified as an apoptotic effector, and it mediates nuclear shrinkage during apoptosis, but it possesses unique activation and regulation mechanisms that differ from those of other effector caspases. Furthermore, increasing evidence has shown that caspase-6 is highly involved in axon degeneration and neurodegenerative diseases, such as Huntington's disease and Alzheimer's disease. Cleavage at the caspase-6 site in mutated huntingtin protein is a prerequisite for the development of the characteristic behavioral and neuropathological features of Huntington's disease. Active caspase-6 is present in early stages of Alzheimer's disease, and caspase-6 activity is associated with the disease's pathological lesions. In this review, we discuss the evidence relevant to the role of caspase-6 in neurodegenerative diseases and summarize its activation and regulation mechanisms. In doing so, we provide new insight about potential therapeutic approaches that incorporate the modulation of caspase-6 function for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao-Jun Wang
- State Key Laboratory of Protein and Plant Gene Research and
| | | | | | | |
Collapse
|