1
|
Klopp C, Zhang X, Campbell MK, Kvaskoff D, Struwe MA, Warren CR, Bajrami B, Scheidig AJ, Jones AK, Clement B. mARC1 Is the Main Contributor to Metabolic Reduction of N-Hydroxyurea. J Med Chem 2024; 67:18090-18097. [PMID: 39397364 PMCID: PMC11513889 DOI: 10.1021/acs.jmedchem.4c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
N-Hydroxyurea has been known since the 1960s as an antiproliferative drug and is used both in oncology and for treatment of hematological disorders such as sickle cell anemia where very high daily doses are administered. It is assumed that the cellular effect of N-hydroxyurea is caused by inhibition of ribonucleotide reductase, while alternative mechanisms, e.g., generation of nitric oxide, have also been proposed. Despite its many therapeutic applications, the metabolism of hydroxyurea is largely unexplored. The major elimination pathway of N-hydroxyurea is the reduction to urea. Since the mitochondrial amidoxime reducing component (mARC) is known for its N-reductive activity, we investigated the reduction of NHU by this enzyme system. This study presents in vitro and in vivo evidence that this reductive biotransformation is specifically mediated by the mARC1. Inactivation by mARC1 is a possible explanation for the high doses of NHU required for treatment.
Collapse
Affiliation(s)
- Cathrin Klopp
- Zoological
Institute − Structural Biology, Kiel
University 24118, Kiel, Germany
- Pharmaceutical
Institute − Medicinal Chemistry, Kiel University 24118, Kiel, Germany
| | - Xiaomei Zhang
- Department
of Cardiometabolic Disease Research, Boehringer
Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, United States
| | - Morgan K. Campbell
- Department
of Cardiometabolic Disease Research, Boehringer
Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, United States
| | - David Kvaskoff
- Department
of Drug Discovery Sciences, Discovery Science Technologies (DK, BB), Boehringer Ingelheim Pharma GmbH & Co. 88400, Biberach
an der Riss, Germany
| | - Michel A. Struwe
- Zoological
Institute − Structural Biology, Kiel
University 24118, Kiel, Germany
- Pharmaceutical
Institute − Medicinal Chemistry, Kiel University 24118, Kiel, Germany
| | - Curtis R. Warren
- Department
of Cardiometabolic Disease Research, Boehringer
Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, United States
| | - Besnik Bajrami
- Department
of Drug Discovery Sciences, Discovery Science Technologies (DK, BB), Boehringer Ingelheim Pharma GmbH & Co. 88400, Biberach
an der Riss, Germany
| | - Axel J. Scheidig
- Zoological
Institute − Structural Biology, Kiel
University 24118, Kiel, Germany
| | - Amanda K. Jones
- Department
of Cardiometabolic Disease Research, Boehringer
Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, United States
| | - Bernd Clement
- Pharmaceutical
Institute − Medicinal Chemistry, Kiel University 24118, Kiel, Germany
| |
Collapse
|
2
|
Hou W, Watson C, Cecconie T, Bolaki MN, Brady JJ, Lu Q, Gatto GJ, Day TA. Biochemical and functional characterization of the p.A165T missense variant of mitochondrial amidoxime-reducing component 1. J Biol Chem 2024; 300:107353. [PMID: 38723751 PMCID: PMC11190489 DOI: 10.1016/j.jbc.2024.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Recent genome-wide association studies have identified a missense variant p.A165T in mitochondrial amidoxime-reducing component 1 (mARC1) that is strongly associated with protection from all-cause cirrhosis and improved prognosis in nonalcoholic steatohepatitis. The precise mechanism of this protective effect is unknown. Substitution of alanine 165 with threonine is predicted to affect mARC1 protein stability and to have deleterious effects on its function. To investigate the mechanism, we have generated a knock-in mutant mARC1 A165T and a catalytically dead mutant C273A (as a control) in human hepatoma HepG2 cells, enabling characterization of protein subcellular distribution, stability, and biochemical functions of the mARC1 mutant protein expressed from its endogenous locus. Compared to WT mARC1, we found that the A165T mutant exhibits significant mislocalization outside of its traditional location anchored in the mitochondrial outer membrane and reduces protein stability, resulting in lower basal levels. We evaluated the involvement of the ubiquitin proteasome system in mARC1 A165T degradation and observed increased ubiquitination and faster degradation of the A165T variant. In addition, we have shown that HepG2 cells carrying the MTARC1 p.A165T variant exhibit lower N-reductive activity on exogenously added amidoxime substrates in vitro. The data from these biochemical and functional assays suggest a mechanism by which the MTARC1 p.A165T variant abrogates enzyme function which may contribute to its protective effect in liver disease.
Collapse
Affiliation(s)
- Wangfang Hou
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Christian Watson
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Ted Cecconie
- MEDDesign-NCE-MD SPMB US, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | | | | | - Quinn Lu
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Gregory J Gatto
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA.
| | - Tovah A Day
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Struwe MA, Scheidig AJ, Clement B. The mitochondrial amidoxime reducing component-from prodrug-activation mechanism to drug-metabolizing enzyme and onward to drug target. J Biol Chem 2023; 299:105306. [PMID: 37778733 PMCID: PMC10637980 DOI: 10.1016/j.jbc.2023.105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023] Open
Abstract
The mitochondrial amidoxime-reducing component (mARC) is one of five known molybdenum enzymes in eukaryotes. mARC belongs to the MOSC domain superfamily, a large group of so far poorly studied molybdoenzymes. mARC was initially discovered as the enzyme activating N-hydroxylated prodrugs of basic amidines but has since been shown to also reduce a variety of other N-oxygenated compounds, for example, toxic nucleobase analogs. Under certain circumstances, mARC might also be involved in reductive nitric oxide synthesis through reduction of nitrite. Recently, mARC enzymes have received a lot of attention due to their apparent involvement in lipid metabolism and, in particular, because many genome-wide association studies have shown a common variant of human mARC1 to have a protective effect against liver disease. The mechanism linking mARC enzymes with lipid metabolism remains unknown. Here, we give a comprehensive overview of what is currently known about mARC enzymes, their substrates, structure, and apparent involvement in human disease.
Collapse
Affiliation(s)
- Michel A Struwe
- Zoologisches Institut - Strukturbiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany; Pharmazeutisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany.
| | - Axel J Scheidig
- Zoologisches Institut - Strukturbiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Bernd Clement
- Pharmazeutisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany
| |
Collapse
|
4
|
Klopp C, Struwe MA, Plieth C, Clement B, Scheidig AJ. New Design of an Activity Assay Suitable for High-Throughput Screening of Substrates and Inhibitors of the Mitochondrial Amidoxime Reducing Component (mARC). Anal Chem 2023; 95:12452-12458. [PMID: 37549068 DOI: 10.1021/acs.analchem.3c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The mitochondrial amidoxime-reducing component (mARC) is one of the simplest molybdenum-containing enzymes. mARC is among a few known reducing enzymes playing an important role in drug metabolism in mammals. Here, an assay based on the fluorescence of NADH is reported for the rapid detection of substrates and potential inhibitors of mARC. So far unknown inhibitors might be useful for the development of drugs assigned to nonalcoholic fatty liver disease (NAFLD) and similar diseases. Kinetics of reactions catalyzed by mARC can be recorded with high sensitivity and precision. On a microtiter plate scale, the assay presented could be applied for high-throughput screening of substance libraries and detection of novel mARC substrate candidates. For instance, molnupiravir was also identified as a new substrate by this assay. For better comparison for such substances, the inhibitor or substrate-to-BAO ratio was introduced. After normalization of enzyme activities to the standard benzamidoxime, substrates can reproducibly be classified.
Collapse
Affiliation(s)
- Cathrin Klopp
- Pharmaceutical Institute - Medicinal Chemistry, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany
- Zoological Institute - Structural Biology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Michel A Struwe
- Pharmaceutical Institute - Medicinal Chemistry, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany
- Zoological Institute - Structural Biology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Christoph Plieth
- Centre for Biochemistry and Molecular Biology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Bernd Clement
- Pharmaceutical Institute - Medicinal Chemistry, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Axel J Scheidig
- Zoological Institute - Structural Biology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
5
|
Clement B, Struwe MA. The History of mARC. Molecules 2023; 28:4713. [PMID: 37375270 DOI: 10.3390/molecules28124713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
The mitochondrial amidoxime-reducing component (mARC) is the most recently discovered molybdoenzyme in humans after sulfite oxidase, xanthine oxidase and aldehyde oxidase. Here, the timeline of mARC's discovery is briefly described. The story begins with investigations into N-oxidation of pharmaceutical drugs and model compounds. Many compounds are N-oxidized extensively in vitro, but it turned out that a previously unknown enzyme catalyzes the retroreduction of the N-oxygenated products in vivo. After many years, the molybdoenzyme mARC could finally be isolated and identified in 2006. mARC is an important drug-metabolizing enzyme and N-reduction by mARC has been exploited very successfully for prodrug strategies, that allow oral administration of otherwise poorly bioavailable therapeutic drugs. Recently, it was demonstrated that mARC is a key factor in lipid metabolism and likely involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). The exact link between mARC and lipid metabolism is not yet fully understood. Regardless, many now consider mARC a potential drug target for the prevention or treatment of liver diseases. This article focusses on discoveries related to mammalian mARC enzymes. mARC homologues have been studied in algae, plants and bacteria. These will not be discussed extensively here.
Collapse
Affiliation(s)
- Bernd Clement
- Pharmazeutisches Institut, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Michel A Struwe
- Pharmazeutisches Institut, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
- Zoologisches Institut-Strukturbiologie, Zentrum für Biochemie und Molekularbiologie, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|
6
|
Ahire D, Basit A, Christopher LJ, Iyer R, Leeder JS, Prasad B. Interindividual Variability and Differential Tissue Abundance of Mitochondrial Amidoxime Reducing Component Enzymes in Humans. Drug Metab Dispos 2022; 50:191-196. [PMID: 34949674 PMCID: PMC8969132 DOI: 10.1124/dmd.121.000805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial amidoxime-reducing component (mARC) enzymes are molybdenum-containing proteins that metabolize a number of endobiotics and xenobiotics. The interindividual variability and differential tissue abundance of mARC1 and mARC2 were quantified using targeted proteomics in three types of tissue fractions: 1) pediatric liver tissue homogenates, 2) total membrane fraction of the paired liver and kidney samples from pediatric and adult donors, and 3) pooled S9 fractions of the liver, intestine, kidney, lung, and heart. The absolute levels of mARC1 and mARC2 in the pediatric liver homogenate were 40.08 ± 4.26 and 24.58 ± 4.02 pmol/mg homogenate protein, respectively, and were independent of age and sex. In the total membrane fraction of the paired liver and kidney samples, the abundance of hepatic mARC1 and mARC2 was comparable, whereas mARC2 abundance in the kidney was approximately 9-fold higher in comparison with mARC1. The analysis of the third set of samples (i.e., S9 fraction) revealed that mARC1 abundance in the kidney, intestine, and lung was 5- to 13-fold lower than the liver S9 abundance, whereas mARC2 abundance was approximately 3- and 16-fold lower in the intestine and lung than the liver S9, respectively. In contrast, the kidney mARC2 abundance in the S9 fraction was approximately 2.5-fold higher as compared with the hepatic mARC2 abundance. The abundance of mARC enzymes in the heart was below the limit of quantification (∼0.6 pmol/mg protein). The mARC enzyme abundance data presented here can be used to develop physiologically based pharmacokinetic models for the prediction of in vivo pharmacokinetics of mARC substrates. SIGNIFICANCE STATEMENT: A precise targeted quantitative proteomics method was developed and applied to quantify newly discovered drug-metabolizing enzymes, mARC1 and mARC2, in pediatric and adult tissue samples. The data suggest that mARC enzymes are ubiquitously expressed in an isoform-specific manner in the human liver, kidney, intestine, and lung, and the enzyme abundance is not associated with age and sex. These data are important for developing physiologically based pharmacokinetic models for the prediction of in vivo pharmacokinetics of mARC substrates.
Collapse
Affiliation(s)
| | | | | | | | | | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.A., A.B., B.P.); Department of Nonclinical Disposition and Bioanalysis, Bristol Myers Squibb, Princeton, New Jersey (L.J.C., R.I.); and Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L.)
| |
Collapse
|
7
|
Indorf P, Kubitza C, Scheidig AJ, Kunze T, Clement B. Drug Metabolism by the Mitochondrial Amidoxime Reducing Component (mARC): Rapid Assay and Identification of New Substrates. J Med Chem 2020; 63:6538-6546. [PMID: 31790578 DOI: 10.1021/acs.jmedchem.9b01483] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For the development of new drugs, the investigation of their metabolism is of central importance. In the past, the focus was mostly on the consideration of established enzymes leading to oxidations such as cytochrome P450. However, reductive metabolism by the mARC enzyme system can play an important role in particular for nitrogen containing functional groups. A rapid test was established to give developers of new drugs in the preclinical stage the opportunity to test the metabolism by mARC. To demonstrate the relevance and validity of the new test system, known and potential substrates were applied to this new assay. All known substrates could be detected by the system. Furthermore, several new substrates were found including long-established drugs such as hydroxyurea and new compounds in development such as epacdadostat.
Collapse
Affiliation(s)
- Patrick Indorf
- Pharmaceutical Institute-Medicinal Chemistry, Christian-Albrechts-University Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Christian Kubitza
- Zoological Institute-Structural Biology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Axel J Scheidig
- Zoological Institute-Structural Biology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Thomas Kunze
- Pharmaceutical Institute-Medicinal Chemistry, Christian-Albrechts-University Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Bernd Clement
- Pharmaceutical Institute-Medicinal Chemistry, Christian-Albrechts-University Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| |
Collapse
|
8
|
Timilsina A, Bizimana F, Pandey B, Yadav RKP, Dong W, Hu C. Nitrous Oxide Emissions from Paddies: Understanding the Role of Rice Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E180. [PMID: 32024218 PMCID: PMC7076488 DOI: 10.3390/plants9020180] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 11/16/2022]
Abstract
: Paddies are a potential source of anthropogenic nitrous oxide (N2O) emission. In paddies, both the soil and the rice plants emit N2O into the atmosphere. The rice plant in the paddy is considered to act as a channel between the soil and the atmosphere for N2O emission. However, recent studies suggest that plants can also produce N2O, while the mechanism of N2O formation in plants is unknown. Consequently, the rice plant is only regarded as a channel for N2O produced by soil microorganisms. The emission of N2O by aseptically grown plants and the distinct dual isotopocule fingerprint of plant-emitted N2O, as reported by various studies, support the production of N2O in plants. Herein, we propose a potential pathway of N2O formation in the rice plant. In rice plants, N2O might be formed in the mitochondria via the nitrate-nitrite-nitric oxide (NO3-NO2-NO) pathway when the cells experience hypoxic or anoxic stress. The pathway is catalyzed by various enzymes, which have been described. So, N2O emitted from paddies might have two origins, namely soil microorganisms and rice plants. So, regarding rice plants only as a medium to transport the microorganism-produced N2O might be misleading in understanding the role of rice plants in the paddy. As rice cultivation is a major agricultural activity worldwide, not understanding the pathway of N2O formation in rice plants would create more uncertainties in the N2O budget.
Collapse
Affiliation(s)
- Arbindra Timilsina
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; (F.B.); (W.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Fiston Bizimana
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; (F.B.); (W.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Bikram Pandey
- University of Chinese Academy of Sciences, Beijing 100049, China;
- Key Laboratory of Mountain Ecological Restoration and Bio-resource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | | | - Wenxu Dong
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; (F.B.); (W.D.)
| | - Chunsheng Hu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; (F.B.); (W.D.)
| |
Collapse
|
9
|
Timilsina A, Zhang C, Pandey B, Bizimana F, Dong W, Hu C. Potential Pathway of Nitrous Oxide Formation in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:1177. [PMID: 32849729 PMCID: PMC7412978 DOI: 10.3389/fpls.2020.01177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/20/2020] [Indexed: 05/12/2023]
Abstract
Plants can produce and emit nitrous oxide (N2O), a potent greenhouse gas, into the atmosphere, and several field-based studies have concluded that this gas is emitted at substantial amounts. However, the exact mechanisms of N2O production in plant cells are unknown. Several studies have hypothesised that plants might act as a medium to transport N2O produced by soil-inhabiting microorganisms. Contrarily, aseptically grown plants and axenic algal cells supplied with nitrate (NO3) are reported to emit N2O, indicating that it is produced inside plant cells by some unknown physiological phenomena. In this study, the possible sites, mechanisms, and enzymes involved in N2O production in plant cells are discussed. Based on the experimental evidence from various studies, we determined that N2O can be produced from nitric oxide (NO) in the mitochondria of plants. NO, a signaling molecule, is produced through oxidative and reductive pathways in eukaryotic cells. During hypoxia and anoxia, NO3 in the cytosol is metabolised to produce nitrite (NO2), which is reduced to form NO via the reductive pathway in the mitochondria. Under low oxygen condition, NO formed in the mitochondria is further reduced to N2O by the reduced form of cytochrome c oxidase (CcO). This pathway is active only when cells experience hypoxia or anoxia, and it may be involved in N2O formation in plants and soil-dwelling animals, as reported previously by several studies. NO can be toxic at a high concentration. Therefore, the reduction of NO to N2O in the mitochondria might protect the integrity of the mitochondria, and thus, protect the cell from the toxicity of NO accumulation under hypoxia and anoxia. As NO3 is a major source of nitrogen for plants and all plants may experience hypoxic and anoxic conditions owing to soil environmental factors, a significant global biogenic source of N2O may be its formation in plants via the proposed pathway.
Collapse
Affiliation(s)
- Arbindra Timilsina
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Arbindra Timilsina, ; Chunsheng Hu,
| | - Chuang Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bikram Pandey
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Mountain Ecological Restoration and Bio-resource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Fiston Bizimana
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenxu Dong
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Chunsheng Hu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Arbindra Timilsina, ; Chunsheng Hu,
| |
Collapse
|
10
|
Rixen S, Havemeyer A, Tyl-Bielicka A, Pysniak K, Gajewska M, Kulecka M, Ostrowski J, Mikula M, Clement B. Mitochondrial amidoxime-reducing component 2 (MARC2) has a significant role in N-reductive activity and energy metabolism. J Biol Chem 2019; 294:17593-17602. [PMID: 31554661 DOI: 10.1074/jbc.ra119.007606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/19/2019] [Indexed: 01/29/2023] Open
Abstract
The mitochondrial amidoxime-reducing component (MARC) is a mammalian molybdenum-containing enzyme. All annotated mammalian genomes harbor two MARC genes, MARC1 and MARC2, which share a high degree of sequence similarity. Both molybdoenzymes reduce a variety of N-hydroxylated compounds. Besides their role in N-reductive drug metabolism, only little is known about their physiological functions. In this study, we characterized an existing KO mouse model lacking the functional MARC2 gene and fed a high-fat diet and also performed in vivo and in vitro experiments to characterize reductase activity toward known MARC substrates. MARC2 KO significantly decreased reductase activity toward several N-oxygenated substrates, and for typical MARC substrates, only small residual reductive activity was still detectable in MARC2 KO mice. The residual detected reductase activity in MARC2 KO mice could be explained by MARC1 expression that was hardly unaffected by KO, and we found no evidence of significant activity of other reductase enzymes. These results clearly indicate that MARC2 is mainly responsible for N-reductive biotransformation in mice. Striking phenotypical features of MARC2 KO mice were lower body weight, increased body temperature, decreased levels of total cholesterol, and increased glucose levels, supporting previous findings that MARC2 affects energy pathways. Of note, the MARC2 KO mice were resistant to high-fat diet-induced obesity. We propose that the MARC2 KO mouse model could be a powerful tool for predicting MARC-mediated drug metabolism and further investigating MARC's roles in energy homeostasis.
Collapse
Affiliation(s)
- Sophia Rixen
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian Albrechts University, 24118 Kiel, Germany
| | - Antje Havemeyer
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian Albrechts University, 24118 Kiel, Germany
| | - Anita Tyl-Bielicka
- Department of Genetics, Maria Sklodowska-Curie Institute, Cancer Center, 02-781 Warsaw, Poland
| | - Kazimiera Pysniak
- Department of Genetics, Maria Sklodowska-Curie Institute, Cancer Center, 02-781 Warsaw, Poland
| | - Marta Gajewska
- Department of Genetics, Maria Sklodowska-Curie Institute, Cancer Center, 02-781 Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology, and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie Institute, Cancer Center, 02-781 Warsaw, Poland.,Department of Gastroenterology, Hepatology, and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Institute, Cancer Center, 02-781 Warsaw, Poland
| | - Bernd Clement
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian Albrechts University, 24118 Kiel, Germany
| |
Collapse
|
11
|
From the Eukaryotic Molybdenum Cofactor Biosynthesis to the Moonlighting Enzyme mARC. Molecules 2018; 23:molecules23123287. [PMID: 30545001 PMCID: PMC6321594 DOI: 10.3390/molecules23123287] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/23/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
All eukaryotic molybdenum (Mo) enzymes contain in their active site a Mo Cofactor (Moco), which is formed by a tricyclic pyranopterin with a dithiolene chelating the Mo atom. Here, the eukaryotic Moco biosynthetic pathway and the eukaryotic Moco enzymes are overviewed, including nitrate reductase (NR), sulfite oxidase, xanthine oxidoreductase, aldehyde oxidase, and the last one discovered, the moonlighting enzyme mitochondrial Amidoxime Reducing Component (mARC). The mARC enzymes catalyze the reduction of hydroxylated compounds, mostly N-hydroxylated (NHC), but as well of nitrite to nitric oxide, a second messenger. mARC shows a broad spectrum of NHC as substrates, some are prodrugs containing an amidoxime structure, some are mutagens, such as 6-hydroxylaminepurine and some others, which most probably will be discovered soon. Interestingly, all known mARC need the reducing power supplied by different partners. For the NHC reduction, mARC uses cytochrome b5 and cytochrome b5 reductase, however for the nitrite reduction, plant mARC uses NR. Despite the functional importance of mARC enzymatic reactions, the structural mechanism of its Moco-mediated catalysis is starting to be revealed. We propose and compare the mARC catalytic mechanism of nitrite versus NHC reduction. By using the recently resolved structure of a prokaryotic MOSC enzyme, from the mARC protein family, we have modeled an in silico three-dimensional structure of a eukaryotic homologue.
Collapse
|
12
|
Crystal structure of human mARC1 reveals its exceptional position among eukaryotic molybdenum enzymes. Proc Natl Acad Sci U S A 2018; 115:11958-11963. [PMID: 30397129 DOI: 10.1073/pnas.1808576115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biotransformation enzymes ensure a viable homeostasis by regulating reversible cycles of oxidative and reductive reactions. The metabolism of nitrogen-containing compounds is of high pharmaceutical and toxicological relevance because N-oxygenated metabolites derived from reactions mediated by cytochrome P450 enzymes or flavin-dependent monooxygenases are in some cases highly toxic or mutagenic. The molybdenum-dependent mitochondrial amidoxime-reducing component (mARC) was found to be an extremely efficient counterpart, which is able to reduce the full range of N-oxygenated compounds and thereby mediates detoxification reactions. However, the 3D structure of this enzyme was unknown. Here we present the high-resolution crystal structure of human mARC. We give detailed insight into the coordination of its molybdenum cofactor (Moco), the catalytic mechanism, and its ability to reduce a wide range of N-oxygenated compounds. The identification of two key residues will allow future discrimination between mARC paralogs and ensure correct annotation. Since our structural findings contradict in silico predictions that are currently made by online databases, we propose domain definitions for members of the superfamily of Moco sulfurase C-terminal (MOSC) domain-containing proteins. Furthermore, we present evidence for an evolutionary role of mARC for the emergence of the xanthine oxidase protein superfamily. We anticipate the hereby presented crystal structure to be a starting point for future descriptions of MOSC proteins, which are currently poorly structurally characterized.
Collapse
|
13
|
Orally Efficacious Broad-Spectrum Ribonucleoside Analog Inhibitor of Influenza and Respiratory Syncytial Viruses. Antimicrob Agents Chemother 2018; 62:AAC.00766-18. [PMID: 29891600 DOI: 10.1128/aac.00766-18] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/31/2018] [Indexed: 01/29/2023] Open
Abstract
Morbidity and mortality resulting from influenza-like disease are a threat, especially for older adults. To improve case management, next-generation broad-spectrum antiviral therapeutics that are efficacious against major drivers of influenza-like disease, including influenza viruses and respiratory syncytial virus (RSV), are urgently needed. Using a dual-pathogen high-throughput screening protocol for influenza A virus (IAV) and RSV inhibitors, we have identified N4-hydroxycytidine (NHC) as a potent inhibitor of RSV, influenza B viruses, and IAVs of human, avian, and swine origins. Biochemical in vitro polymerase assays and viral RNA sequencing revealed that the ribonucleotide analog is incorporated into nascent viral RNAs in place of cytidine, increasing the frequency of viral mutagenesis. Viral passaging in cell culture in the presence of an inhibitor did not induce robust resistance. Pharmacokinetic profiling demonstrated dose-dependent oral bioavailability of 36 to 56%, sustained levels of the active 5'-triphosphate anabolite in primary human airway cells and mouse lung tissue, and good tolerability after extended dosing at 800 mg/kg of body weight/day. The compound was orally efficacious against RSV and both seasonal and highly pathogenic avian IAVs in mouse models, reducing lung virus loads and alleviating disease biomarkers. Oral dosing reduced IAV burdens in a guinea pig transmission model and suppressed virus spread to uninfected contact animals through direct transmission. Based on its broad-spectrum efficacy and pharmacokinetic properties, NHC is a promising candidate for future clinical development as a treatment option for influenza-like diseases.
Collapse
|
14
|
Schneider J, Girreser U, Havemeyer A, Bittner F, Clement B. Detoxification of Trimethylamine N-Oxide by the Mitochondrial Amidoxime Reducing Component mARC. Chem Res Toxicol 2018; 31:447-453. [PMID: 29856598 DOI: 10.1021/acs.chemrestox.7b00329] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although known for years, the toxic effects of trimethylamine N-oxide (TMAO), a physiological metabolite, were just recently discovered and are currently under investigation. It is known that elevated TMAO plasma levels correlate with an elevated risk for cardiovascular disease (CVD). Even though there is a general consensus about the existence of a causal relationship between TMAO and CVD, the underlying mechanisms are not fully understood. TMAO is an oxidation product of the hepatic flavin-containing monooxygenases (FMO), mainly of isoform 3, and it is conceivable that humans also have an enzyme reversing this toxification by reducing TMAO to its precursor trimethylamine (TMA). All prokaryotic enzymes that use TMAO as a substrate have molybdenum-containing cofactors in common. Such molybdenum-containing enzymes also exist in mammals, with the so-called mitochondrial amidoxime reducing component (mARC) representing the most recently discovered mammalian molybdenum enzyme. The enzyme has been found to exist in two isoforms, mARC1 and mARC2, both being capable of reducing a variety of N-oxygenated compounds, including nonphysiological N-oxides. To investigate whether the two isoforms of this enzyme are able to reduce and detoxify TMAO, we developed a suitable analytical method and tested TMAO reduction with a recombinant enzyme system. We found that one of the two recombinant human mARC proteins, namely, hmARC1, reduces TMAO to TMA. The N-reductive activity is relatively low and identified via the kinetic parameters with Km = (30.4 ± 9.8) mM and Vmax = (100.5 ± 12.2) nmol/(mg protein·min). Nevertheless, the ubiquitous tissue expression of hmARC1 allows a continuous reduction of TMAO whereas the counter-reaction, the production of TMAO through FMO3, can take place only in the liver where FMO3 is expressed. TMAO reduction in porcine liver subfractions showed the characteristic enrichment of N-reductive activity in the outer mitochondrial membrane. TMAO reduction was also found in human cell cultures. These findings indicate the role of hmARC1 in the metabolomic pathway of TMAO, which might contribute to the prevention of CVD. This also hints at a physiological function of the molybdenum enzyme, which remains mainly unknown to date.
Collapse
Affiliation(s)
- Jennifer Schneider
- Department of Pharmaceutical and Medicinal Chemistry , Pharmaceutical Institute of the Christian-Albrechts-University of Kiel , 24118 Kiel , Germany
| | - Ulrich Girreser
- Department of Pharmaceutical and Medicinal Chemistry , Pharmaceutical Institute of the Christian-Albrechts-University of Kiel , 24118 Kiel , Germany
| | - Antje Havemeyer
- Department of Pharmaceutical and Medicinal Chemistry , Pharmaceutical Institute of the Christian-Albrechts-University of Kiel , 24118 Kiel , Germany
| | - Florian Bittner
- Federal Research Centre for Cultivated Plants , Julius Kuehn Institute , 06484 Quedlinburg , Germany
| | - Bernd Clement
- Department of Pharmaceutical and Medicinal Chemistry , Pharmaceutical Institute of the Christian-Albrechts-University of Kiel , 24118 Kiel , Germany
| |
Collapse
|
15
|
Llamas A, Chamizo-Ampudia A, Tejada-Jimenez M, Galvan A, Fernandez E. The molybdenum cofactor enzyme mARC: Moonlighting or promiscuous enzyme? Biofactors 2017; 43:486-494. [PMID: 28497908 DOI: 10.1002/biof.1362] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
Molybdenum (Mo) is present in the active center of eukaryotic enzymes as a tricyclic pyranopterin chelate compound forming the Mo Cofactor (Moco). Four Moco containing enzymes are known in eukaryotes, nitrate reductase (NR), sulfite oxidase (SO), xanthine oxidoreductase (XOR), and aldehyde oxidase (AO). A fifth Moco enzyme has been recently identified. Because of the ability of this enzyme to convert by reduction several amidoximes prodrugs into their active amino forms, it was named mARC (mitochondrial Amidoxime Reducing Component). This enzyme is also able to catalyze the reduction of a broad range of N-hydroxylated compounds (NHC) as the base analogue 6-hydroxylaminopurine (HAP), as well as nitrite to nitric oxide (NO). All the mARC proteins need reducing power that is supplied by other proteins. The human and plants mARC proteins require a Cytochrome b5 (Cytb5) and a Cytochrome b5 reductase (Cytb5-R) to form an electron transfer chain from NADH to the NHC. Recently, plant mARC proteins were shown to be implicated in the reduction of nitrite to NO, and it was proposed that the electrons required for the reaction were supplied by NR instead of Cytochrome b5 components. This newly characterized mARC activity was termed NO Forming Nitrite Reductase (NOFNiR). Moonlighting proteins form a special class of multifunctional enzymes that can perform more than one function; if the extra function is not physiologically relevant, they are called promiscuous enzymes. In this review, we summarize the current knowledge on the mARC protein, and we propose that mARC is a new moonlighting enzyme. © 2017 BioFactors, 43(4):486-494, 2017.
Collapse
Affiliation(s)
- Angel Llamas
- Dpto. de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| | - Alejandro Chamizo-Ampudia
- Dpto. de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| | - Manuel Tejada-Jimenez
- Dpto. de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| | - Aurora Galvan
- Dpto. de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| | - Emilio Fernandez
- Dpto. de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| |
Collapse
|
16
|
Plitzko B, Havemeyer A, Bork B, Bittner F, Mendel R, Clement B. Defining the Role of the NADH-Cytochrome-b5 Reductase 3 in the Mitochondrial Amidoxime Reducing Component Enzyme System. ACTA ACUST UNITED AC 2016; 44:1617-21. [PMID: 27469001 DOI: 10.1124/dmd.116.071845] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/27/2016] [Indexed: 11/22/2022]
Abstract
The importance of the mitochondrial amidoxime reducing component (mARC)-containing enzyme system in N-reductive metabolism has been studied extensively. It catalyzes the reduction of various N-hydroxylated compounds and therefore acts as the counterpart of cytochrome P450- and flavin-containing monooxygenase-catalyzed oxidations at nitrogen centers. This enzyme system was found to be responsible for the activation of amidoxime and N-hydroxyguanidine prodrugs in drug metabolism. The synergy of three components (mARC, cytochrome b5, and the appropriate reductase) is crucial to exert the N-reductive catalytic effect. Previous studies have demonstrated the involvement of the specific isoforms of the molybdoenzyme mARC and the electron transport protein cytochrome b5 in N-reductive metabolism. To date, the corresponding reductase involved in N-reductive metabolism has yet to be defined because previous investigations have presented ambiguous results. Using small interfering RNA-mediated knockdown in human cells and assessing the stoichiometry of the enzyme system reconstituted in vitro, we provide evidence that NADH-cytochrome-b5 reductase 3 is the principal reductase involved in the mARC enzyme system and is an essential component of N-reductive metabolism in human cells. In addition, only minimal levels of cytochrome-b5 reductase 3 protein are sufficient for catalysis, which impeded previous attempts to identify the reductase.
Collapse
Affiliation(s)
- Birte Plitzko
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts University of Kiel, Kiel, Germany (B.P., A.H., B.C.); and Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany (B.B., F.B., R.M.)
| | - Antje Havemeyer
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts University of Kiel, Kiel, Germany (B.P., A.H., B.C.); and Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany (B.B., F.B., R.M.)
| | - Bettina Bork
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts University of Kiel, Kiel, Germany (B.P., A.H., B.C.); and Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany (B.B., F.B., R.M.)
| | - Florian Bittner
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts University of Kiel, Kiel, Germany (B.P., A.H., B.C.); and Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany (B.B., F.B., R.M.)
| | - Ralf Mendel
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts University of Kiel, Kiel, Germany (B.P., A.H., B.C.); and Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany (B.B., F.B., R.M.)
| | - Bernd Clement
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts University of Kiel, Kiel, Germany (B.P., A.H., B.C.); and Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany (B.B., F.B., R.M.)
| |
Collapse
|
17
|
Boer J, Young-Sciame R, Lee F, Bowman KJ, Yang X, Shi JG, Nedza FM, Frietze W, Galya L, Combs AP, Yeleswaram S, Diamond S. Roles of UGT, P450, and Gut Microbiota in the Metabolism of Epacadostat in Humans. Drug Metab Dispos 2016; 44:1668-74. [DOI: 10.1124/dmd.116.070680] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/20/2016] [Indexed: 12/21/2022] Open
|
18
|
Lindahl PA, Moore MJ. Labile Low-Molecular-Mass Metal Complexes in Mitochondria: Trials and Tribulations of a Burgeoning Field. Biochemistry 2016; 55:4140-53. [PMID: 27433847 DOI: 10.1021/acs.biochem.6b00216] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iron, copper, zinc, manganese, cobalt, and molybdenum play important roles in mitochondrial biochemistry, serving to help catalyze reactions in numerous metalloenzymes. These metals are also found in labile "pools" within mitochondria. Although the composition and cellular function of these pools are largely unknown, they are thought to be comprised of nonproteinaceous low-molecular-mass (LMM) metal complexes. Many problems must be solved before these pools can be fully defined, especially problems stemming from the lability of such complexes. This lability arises from inherently weak coordinate bonds between ligands and metals. This is an advantage for catalysis and trafficking, but it makes characterization difficult. The most popular strategy for investigating such pools is to detect them using chelator probes with fluorescent properties that change upon metal coordination. Characterization is limited because of the inevitable destruction of the complexes during their detection. Moreover, probes likely react with more than one type of metal complex, confusing analyses. An alternative approach is to use liquid chromatography (LC) coupled with inductively coupled plasma mass spectrometry (ICP-MS). With help from a previous lab member, the authors recently developed an LC-ICP-MS approach to analyze LMM extracts from yeast and mammalian mitochondria. They detected several metal complexes, including Fe580, Fe1100, Fe1500, Cu5000, Zn1200, Zn1500, Mn1100, Mn2000, Co1200, Co1500, and Mo780 (numbers refer to approximate masses in daltons). Many of these may be used to metalate apo-metalloproteins as they fold inside the organelle. The LC-based approach also has challenges, e.g., in distinguishing artifactual metal complexes from endogenous ones, due to the fact that cells must be disrupted to form extracts before they are passed through chromatography columns prior to analysis. Ultimately, both approaches will be needed to characterize these intriguing complexes and to elucidate their roles in mitochondrial biochemistry.
Collapse
Affiliation(s)
- Paul A Lindahl
- Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States.,Department of Biochemistry and Biophysics, Texas A&M University , College Station, Texas 77843-2128, United States
| | - Michael J Moore
- Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States
| |
Collapse
|
19
|
Plitzko B, Havemeyer A, Kunze T, Clement B. The pivotal role of the mitochondrial amidoxime reducing component 2 in protecting human cells against apoptotic effects of the base analog N6-hydroxylaminopurine. J Biol Chem 2015; 290:10126-35. [PMID: 25713076 DOI: 10.1074/jbc.m115.640052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Indexed: 12/27/2022] Open
Abstract
N-Hydroxylated nucleobases and nucleosides as N-hydroxylaminopurine (HAP) or N-hydroxyadenosine (HAPR) may be generated endogenously in the course of cell metabolism by cytochrome P450, by oxidative stress or by a deviating nucleotide biosynthesis. These compounds have shown to be toxic and mutagenic for procaryotic and eucaryotic cells. For DNA replication fidelity it is therefore of great importance that organisms exhibit effective mechanisms to remove such non-canonical base analogs from DNA precursor pools. In vitro, the molybdoenzymes mitochondrial amidoxime reducing component 1 and 2 (mARC1 and mARC2) have shown to be capable of reducing N-hydroxylated base analogs and nucleoside analogs to the corresponding canonical nucleobases and nucleosides upon reconstitution with the electron transport proteins cytochrome b5 and NADH-cytochrome b5 reductase. By RNAi-mediated down-regulation of mARC in human cell lines the mARC-dependent N-reductive detoxication of HAP in cell metabolism could be demonstrated. For HAPR, on the other hand, the reduction to adenosine seems to be of less significance in the detoxication pathway of human cells as HAPR is primarily metabolized to inosine by direct dehydroxylamination catalyzed by adenosine deaminase. Furthermore, the effect of mARC knockdown on sensitivity of human cells to HAP was examined by flow cytometric quantification of apoptotic cell death and detection of poly (ADP-ribose) polymerase (PARP) cleavage. mARC2 was shown to protect HeLa cells against the apoptotic effects of the base analog, whereas the involvement of mARC1 in reductive detoxication of HAP does not seem to be pivotal.
Collapse
Affiliation(s)
- Birte Plitzko
- From the Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Antje Havemeyer
- From the Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Thomas Kunze
- From the Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Bernd Clement
- From the Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
20
|
Bauch E, Reichmann D, Mendel RR, Bittner F, Manke AM, Kurz P, Girreser U, Havemeyer A, Clement B. Electrochemical and mARC-catalyzed enzymatic reduction of para-substituted benzamidoximes: consequences for the prodrug concept "amidoximes instead of amidines". ChemMedChem 2014; 10:360-7. [PMID: 25512261 DOI: 10.1002/cmdc.201402437] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Indexed: 11/05/2022]
Abstract
The mitochondrial amidoxime reducing component (mARC) activates amidoxime prodrugs by reduction to the corresponding amidine drugs. This study analyzes relationships between the chemical structure of the prodrug and its metabolic activation and compares its enzyme-mediated vs. electrochemical reduction. The enzyme kinetic parameters KM and Vmax for the N-reduction of ten para-substituted derivatives of the model compound benzamidoxime were determined by incubation with recombinant proteins and subcellular fractions from pig liver followed by quantification of the metabolites by HPLC. A clear influence of the substituents at position 4 on the chemical properties of the amidoxime function was confirmed by correlation analyses of (1) H NMR chemical shifts and the redox potentials of the 4-substituted benzamidoximes with Hammett's σ. However, no clear relationship between the kinetic parameters for the enzymatic reduction and Hammett's σ or the lipophilicity could be found. It is thus concluded that these properties as well as the redox potential of the amidoxime can be largely ignored during the development of new amidoxime prodrugs, at least regarding prodrug activation.
Collapse
Affiliation(s)
- Eva Bauch
- Department of Pharmaceutical and Medicinal Chemistry, Christian Albrechts University Kiel, Gutenbergstraße 76, 24118 Kiel (Germany)
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The mammalian molybdenum enzymes of mARC. J Biol Inorg Chem 2014; 20:265-75. [PMID: 25425164 DOI: 10.1007/s00775-014-1216-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/11/2014] [Indexed: 01/14/2023]
Abstract
The "mitochondrial amidoxime reducing component" (mARC) is the most recently discovered molybdenum-containing enzyme in mammals. All mammalian genomes studied to date contain two mARC genes: MARC1 and MARC2. The proteins encoded by these genes are mARC-1 and mARC-2 and represent the simplest form of eukaryotic molybdenum enzymes, only binding the molybdenum cofactor. In the presence of NADH, mARC proteins exert N-reductive activity together with the two electron transport proteins cytochrome b5 type B and NADH cytochrome b5 reductase. This enzyme system is capable of reducing a great variety of N-hydroxylated substrates. It plays a decisive role in the activation of prodrugs containing an amidoxime structure, and in detoxification pathways, e.g., of N-hydroxylated purine and pyrimidine bases. It belongs to a group of drug metabolism enzymes, in particular as a counterpart of P450 formed N-oxygenated metabolites. Its physiological relevance, on the other hand, is largely unknown. The aim of this article is to summarize our current knowledge of these proteins with a special focus on the mammalian enzymes and their N-reductive activity.
Collapse
|
22
|
Conversion of the Pseudomonas aeruginosa Quinolone Signal and Related Alkylhydroxyquinolines by Rhodococcus sp. Strain BG43. Appl Environ Microbiol 2014; 80:7266-74. [PMID: 25239889 DOI: 10.1128/aem.02342-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/11/2014] [Indexed: 11/20/2022] Open
Abstract
A bacterial strain, which based on the sequences of its 16S rRNA, gyrB, catA, and qsdA genes, was identified as a Rhodococcus sp. closely related to Rhodococcus erythropolis, was isolated from soil by enrichment on the Pseudomonas quinolone signal [PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone], a quorum sensing signal employed by the opportunistic pathogen Pseudomonas aeruginosa. The isolate, termed Rhodococcus sp. strain BG43, cometabolically degraded PQS and its biosynthetic precursor 2-heptyl-4(1H)-quinolone (HHQ) to anthranilic acid. HHQ degradation was accompanied by transient formation of PQS, and HHQ hydroxylation by cell extracts required NADH, indicating that strain BG43 has a HHQ monooxygenase isofunctional to the biosynthetic enzyme PqsH of P. aeruginosa. The enzymes catalyzing HHQ hydroxylation and PQS degradation were inducible by PQS, suggesting a specific pathway. Remarkably, Rhodococcus sp. BG43 is also capable of transforming 2-heptyl-4-hydroxyquinoline-N-oxide to PQS. It thus converts an antibacterial secondary metabolite of P. aeruginosa to a quorum sensing signal molecule.
Collapse
|
23
|
Ott G, Plitzko B, Krischkowski C, Reichmann D, Bittner F, Mendel RR, Kunze T, Clement B, Havemeyer A. Reduction of Sulfamethoxazole Hydroxylamine (SMX-HA) by the Mitochondrial Amidoxime Reducing Component (mARC). Chem Res Toxicol 2014; 27:1687-95. [DOI: 10.1021/tx500174u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Gudrun Ott
- Department
of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, D-24118 Kiel, Germany
| | - Birte Plitzko
- Department
of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, D-24118 Kiel, Germany
| | - Carmen Krischkowski
- Department
of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, D-24118 Kiel, Germany
| | - Debora Reichmann
- Department
of Plant Biology, Braunschweig University of Technology, Humboldtstrasse
1, D-38106 Braunschweig, Germany
| | - Florian Bittner
- Department
of Plant Biology, Braunschweig University of Technology, Humboldtstrasse
1, D-38106 Braunschweig, Germany
| | - Ralf R. Mendel
- Department
of Plant Biology, Braunschweig University of Technology, Humboldtstrasse
1, D-38106 Braunschweig, Germany
| | - Thomas Kunze
- Department
of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, D-24118 Kiel, Germany
| | - Bernd Clement
- Department
of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, D-24118 Kiel, Germany
| | - Antje Havemeyer
- Department
of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, D-24118 Kiel, Germany
| |
Collapse
|