1
|
Ahmad S, Kumar N, Gautam HK, Raza K. Probing the multitargeted potency of Theodrenaline and its comparative evaluation with Crizotinib against transferase, hydrolase, signalling, and apoptosis-related proteins to overcome lung cancer drug resistance. Int J Biol Macromol 2025; 308:142343. [PMID: 40154720 DOI: 10.1016/j.ijbiomac.2025.142343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Cancer has become a prevalent disease that imposes a huge burden on society and the scientific community, and the worst-case scenario has evolved nowadays due to its resistance profiles. Lung cancer comes first in diagnosis and death and is gender-neutral, causing 1.8 million deaths yearly. In this study, we have collected 24 target proteins of lung cancer that are actively participating in its development, and the idea behind it was to identify a drug candidate that can show multitargeted efficacy against all. We performed molecular docking with HTVS, SP and XP sampling algorithms and MM\GBSA-based pose fileting, which helped to identify Theodrenaline (DB12927) as a multitargeted inhibitor with docking scores ranging from -5.1 to -13.6 Kcal/mol. Interaction fingerprint analysis identified 30LEU, 23VAL, 20LYS, and 17ASP as key residues, emphasizing hydrophobic interactions. Compared to Theodrenaline, the FDA-approved drug Crizotinib showed less promising results. Pharmacokinetic assessments, DFT calculations, and 5 ns WaterMap computations supported Theodrenaline's drug-like properties and computational efficacy. Additionally, a 100 ns MD simulation using the SPC water model (NPT ensemble) showed minimal deviations (<2 Å) and strong intermolecular interactions, while Crizotinib exhibited lower stability and weaker interactions. Theodrenaline exhibited notable cytotoxic effects on the A549 cancer cell line, with ∼58 % and 41 % cytotoxicity observed after 24 h and 48 h of treatment at a 10 μM concentration, respectively. Despite some cytotoxicity on normal cells at higher concentrations, theodrenaline was less toxic to these cells than cancer cells, as confirmed by microscopic analysis. Theodrenaline also demonstrated potent antioxidant activity, surpassing Paclitaxel and ascorbic acid, with 62 % DPPH activity at 10 μM. Furthermore, theodrenaline downregulated NFκB p65 protein expression by 35 % at 1 μM after 24 h, showing similar effectiveness to Paclitaxel at lower concentrations. Comprehensive computational and experimental studies support Theodrenaline as a promising multitargeted drug that outperforms FDA-approved compounds in overcoming lung cancer resistance-however, in vivo studies are recommended for further validation.
Collapse
Affiliation(s)
- Shaban Ahmad
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India.
| | - Navin Kumar
- Division of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India; Department of Biomedical Sciences, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi 110019, India.
| | - Hemant K Gautam
- Division of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India.
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
2
|
Jiang Z, van Vlimmeren AE, Karandur D, Semmelman A, Shah NH. Deep mutational scanning of a multi-domain signaling protein reveals mechanisms of regulation and pathogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593907. [PMID: 39091798 PMCID: PMC11291063 DOI: 10.1101/2024.05.13.593907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Multi-domain signaling enzymes are often regulated through extensive inter-domain interactions, and disruption of inter-domain interfaces by mutations can lead to aberrant signaling and diseases. For example, the tyrosine phosphatase SHP2 contains two phosphotyrosine recognition domains that auto-inhibit its catalytic domain. SHP2 is canonically activated by binding of these non-catalytic domains to phosphoproteins, which destabilizes the auto-inhibited state, but numerous mutations at the main auto-inhibitory interface have been shown to hyperactivate SHP2 in cancers and developmental disorders. Hundreds of clinically observed mutations in SHP2 have not been characterized, but their locations suggest alternative modes of dysregulation. We performed deep mutational scanning on full-length SHP2 and the isolated phosphatase domain to dissect mechanisms of SHP2 dysregulation. Our analysis revealed mechanistically diverse mutational effects and identified key intra- and inter-domain interactions that contribute to SHP2 activity, dynamics, and regulation. Our datasets also provide insights into the potential pathogenicity of previously uncharacterized clinical variants.
Collapse
Affiliation(s)
- Ziyuan Jiang
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Anne E. van Vlimmeren
- Department of Chemistry, Columbia University, New York, NY 10027
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Deepti Karandur
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232
| | - Alyssa Semmelman
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Neel H. Shah
- Department of Chemistry, Columbia University, New York, NY 10027
| |
Collapse
|
3
|
Ma C, Kang D, Gao P, Zhang W, Wu X, Xu Z, Han H, Zhang L, Cai Y, Wang Y, Wang Y, Long W. Discovery of JAB-3312, a Potent SHP2 Allosteric Inhibitor for Cancer Treatment. J Med Chem 2024; 67:13534-13549. [PMID: 39110625 DOI: 10.1021/acs.jmedchem.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
As an oncogenic phosphatase, SHP2 acts as a converging node in the RTK-RAS-MAPK signaling pathway in cancer cells and suppresses antitumor immunity by passing signals downstream of PD-1. Here, we utilized the extra druggable pocket outside the previously identified SHP2 allosteric tunnel site by the (6,5 fused), 6 spirocyclic system. The optimized compound, JAB-3312, exhibited a SHP2 binding Kd of 0.37 nM, SHP2 enzymatic IC50 of 1.9 nM, KYSE-520 antiproliferative IC50 of 7.4 nM and p-ERK inhibitory IC50 of 0.23 nM. For JAB-3312, an oral dose of 1.0 mg/kg QD was sufficient to achieve 95% TGI in KYSE-520 xenograft model of mouse. JAB-3312 was well-tolerated in animal models, and a close correlation was observed between the plasma concentration of JAB-3312 and the p-ERK inhibition in tumors. Currently, JAB-3312 is undergoing clinical trials as a potential anticancer agent.
Collapse
Affiliation(s)
- Cunbo Ma
- Medicinal Chemistry, Jacobio Pharmaceuticals, Beijing 101111, China
| | - Di Kang
- Pharmacology, Jacobio Pharmaceuticals, Beijing 101111, China
| | - Panliang Gao
- Medicinal Chemistry, Jacobio Pharmaceuticals, Beijing 101111, China
| | - Wei Zhang
- Hits Discovery, Jacobio Pharmaceuticals, Beijing 101111, China
| | - Xinping Wu
- Medicinal Chemistry, Jacobio Pharmaceuticals, Beijing 101111, China
| | - Zilong Xu
- Medicinal Chemistry, Jacobio Pharmaceuticals, Beijing 101111, China
| | - Huifeng Han
- Pharmacology, Jacobio Pharmaceuticals, Beijing 101111, China
| | - Lei Zhang
- Pharmacology, Jacobio Pharmaceuticals, Beijing 101111, China
| | - Yang Cai
- Pharmacology, Jacobio Pharmaceuticals, Beijing 101111, China
| | - Yanping Wang
- Pharmacology, Jacobio Pharmaceuticals, Beijing 101111, China
| | - Yinxiang Wang
- Pharmacology, Jacobio Pharmaceuticals, Beijing 101111, China
| | - Wei Long
- Medicinal Chemistry, Jacobio Pharmaceuticals, Beijing 101111, China
| |
Collapse
|
4
|
Tang K, Wang S, Feng S, Yang X, Guo Y, Ren X, Bai L, Yu B, Liu HM, Song Y. Discovery of TK-642 as a highly potent, selective, orally bioavailable pyrazolopyrazine-based allosteric SHP2 inhibitor. Acta Pharm Sin B 2024; 14:3624-3642. [PMID: 39234614 PMCID: PMC11372460 DOI: 10.1016/j.apsb.2024.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 09/06/2024] Open
Abstract
Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) is a promising therapeutic target for cancer therapy. In this work, we presented the structure-guided design of 5,6-fused bicyclic allosteric SHP2 inhibitors, leading to the identification of pyrazolopyrazine-based TK-642 as a highly potent, selective, orally bioavailable allosteric SHP2 inhibitor (SHP2WT IC50 = 2.7 nmol/L) with favorable pharmacokinetic profiles (F = 42.5%; t 1/2 = 2.47 h). Both dual inhibition biochemical assay and docking analysis indicated that TK-642 likely bound to the "tunnel" allosteric site of SHP2. TK-642 could effectively suppress cell proliferation (KYSE-520 cells IC50 = 5.73 μmol/L) and induce apoptosis in esophageal cancer cells by targeting the SHP2-mediated AKT and ERK signaling pathways. Additionally, oral administration of TK-642 also demonstrated effective anti-tumor effects in the KYSE-520 xenograft mouse model, with a T/C value of 83.69%. Collectively, TK-642 may warrant further investigation as a promising lead compound for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Kai Tang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Shu Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Siqi Feng
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyu Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Yueyang Guo
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Xiangli Ren
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Linyue Bai
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Yihui Song
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Zhu C, Zhao H, Yang W, Chen K, Liu X, Yu Y, Li R, Tan R, Yu Z. Design, Synthesis and Antitumor Activity of a Novel Class of SHP2 Allosteric Inhibitors with a Furanyl Amide-Based Scaffold. J Med Chem 2024. [PMID: 39066713 DOI: 10.1021/acs.jmedchem.4c01217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
SHP2 plays a critical role in modulating tumor growth and PD-1-related signaling pathway, thereby serving as an attractive antitumor target. To date, no antitumor drugs targeting SHP2 have been approved, and hence, the search of SHP2 inhibitors with new chemical scaffolds is urgently needed. Herein, we developed a novel SHP2 allosteric inhibitor SDUY038 with a furanyl amide scaffold, demonstrating potent binding affinity (KD = 0.29 μM), enzymatic activity (IC50 = 1.2 μM) and similar binding interactions to SHP099. At the cellular level, SDUY038 exhibited pan-antitumor activity (IC50 = 7-24 μM) by suppressing pERK expression. Furthermore, SDUY038 significantly inhibited tumor growth in both xenograft and organoid models. Additionally, SDUY038 displayed acceptable bioavailability (F = 14%) and half-life time (t1/2 = 3.95 h). Conclusively, this study introduces the furanyl amide scaffold as a novel class of SHP2 allosteric inhibitors, offering promising lead compounds for further development of new antitumor therapies targeting SHP2.
Collapse
Affiliation(s)
- Chengchun Zhu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P.R. China
| | - Haiyang Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, No. 59, Middle Section of Qinglong Avenue, Mianyang 621010, P.R. China
- Center for Organoids and Translational Pharmacology, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, P.R. China
| | - Wenting Yang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P.R. China
| | - Kai Chen
- Center for New Drug Evaluation, Shandong Academy of Pharmaceutical Sciences, Jinan 250000, P.R. China
| | - Xiaoyu Liu
- Center for New Drug Evaluation, Shandong Academy of Pharmaceutical Sciences, Jinan 250000, P.R. China
| | - Yan Yu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P.R. China
| | - Rui Li
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu 610041, P.R. China
| | - Ruirong Tan
- Center for Organoids and Translational Pharmacology, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, P.R. China
| | - Zhiyi Yu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P.R. China
| |
Collapse
|
6
|
Yuan Z, Zhang M, Chang L, Chen X, Ruan S, Shi S, Zhang Y, Zhu L, Li H, Li S. Discovery of a novel SHP2 allosteric inhibitor using virtual screening, FMO calculation, and molecular dynamic simulation. J Mol Model 2024; 30:131. [PMID: 38613643 DOI: 10.1007/s00894-024-05935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
CONTEXT SHP2 is a non-receptor protein tyrosine phosphatase to remove tyrosine phosphorylation. Functionally, SHP2 is an essential bridge to connect numerous oncogenic cell-signaling cascades including RAS-ERK, PI3K-AKT, JAK-STAT, and PD-1/PD-L1 pathways. This study aims to discover novel and potent SHP2 inhibitors using a hierarchical structure-based virtual screening strategy that combines molecular docking and the fragment molecular orbital method (FMO) for calculating binding affinity (referred to as the Dock-FMO protocol). For the SHP2 target, the FMO method prediction has a high correlation between the binding affinity of the protein-ligand interaction and experimental values (R2 = 0.55), demonstrating a significant advantage over the MM/PBSA (R2 = 0.02) and MM/GBSA (R2 = 0.15) methods. Therefore, we employed Dock-FMO virtual screening of ChemDiv database of ∼2,990,000 compounds to identify a novel SHP2 allosteric inhibitor bearing hydroxyimino acetamide scaffold. Experimental validation demonstrated that the new compound (E)-2-(hydroxyimino)-2-phenyl-N-(piperidin-4-ylmethyl)acetamide (7188-0011) effectively inhibited SHP2 in a dose-dependent manner. Molecular dynamics (MD) simulation analysis revealed the binding stability of compound 7188-0011 and the SHP2 protein, along with the key interacting residues in the allosteric binding site. Overall, our work has identified a novel and promising allosteric inhibitor that targets SHP2, providing a new starting point for further optimization to develop more potent inhibitors. METHODS All the molecular docking studies were employed to identify potential leads with Maestro v10.1. The protein-ligand binding affinities of potential leads were further predicted by FMO calculations at MP2/6-31G* level using GAMESS v2020 system. MD simulations were carried out with AmberTools18 by applying the FF14SB force field. MD trajectories were analyzed using VMD v1.9.3. MM/GB(PB)SA binding free energy analysis was carried out with the mmpbsa.py tool of AmberTools18. The docking and MD simulation results were visualized through PyMOL v2.5.0.
Collapse
Affiliation(s)
- Zhen Yuan
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Longfeng Chang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Xingyu Chen
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Shanshan Ruan
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Shanshan Shi
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Yiqing Zhang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China.
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai, 200062, China.
- Lingang Laboratory, Shanghai, 200031, China.
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
7
|
Guo M, Li Z, Gu M, Gu J, You Q, Wang L. Targeting phosphatases: From molecule design to clinical trials. Eur J Med Chem 2024; 264:116031. [PMID: 38101039 DOI: 10.1016/j.ejmech.2023.116031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Phosphatase is a kind of enzyme that can dephosphorylate target proteins, which can be divided into serine/threonine phosphatase and tyrosine phosphatase according to its mode of action. Current evidence showed multiple phosphatases were highly correlated with diseases including various cancers, demonstrating them as potential targets. However, currently, targeting phosphatases with small molecules faces many challenges, resulting in no drug approved. In this case, phosphatases are even regarded as "undruggable" targets for a long time. Recently, a variety of strategies have been adopted in the design of small molecule inhibitors targeting phosphatases, leading many of them to enter into the clinical trials. In this review, we classified these inhibitors into 4 types, including (1) molecular glues, (2) small molecules targeting catalytic sites, (3) allosteric inhibition, and (4) bifunctional molecules (proteolysis targeting chimeras, PROTACs). These molecules with diverse strategies prove the feasibility of phosphatases as drug targets. In addition, the combination therapy of phosphatase inhibitors with other drugs has also entered clinical trials, which suggests a broad prospect. Thus, targeting phosphatases with small molecules by different strategies is emerging as a promising way in the modulation of pathogenetic phosphorylation.
Collapse
Affiliation(s)
- Mochen Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zekun Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mingxiao Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Junrui Gu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Almasoudi HH, Mashraqi MM, Alshamrani S, Alsalmi O, Alharthi AA, Gharib AF. Molecular screening reveals Variolin B as a multitargeted inhibitor of lung cancer: a molecular docking-based fingerprinting and molecular dynamics simulation study. J Biomol Struct Dyn 2024; 42:11-21. [PMID: 37771142 DOI: 10.1080/07391102.2023.2263560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/18/2023] [Indexed: 09/30/2023]
Abstract
Lung Cancer is the topmost death causing cancer and results from smoking, air pollution, cigar, exposure to asbestos or radon-like substances, and genetic factors. The cases of Lung Cancer in south Asian developing nations are being seen most due to heavy pollution and unbalanced lifestyle and putting a considerable burden on healthcare systems. The Food and Drug Administration of the USA has approved almost 100 drugs against SCLC and NSLC and a few drugs that are given to minimise the side effect of anticancer drugs. However, the drugs are shown to be resistant at significantly higher stages and non-affective on cancerous cells and have long-term side effects due to designing the drug by keeping one protein/gene target while designing or repurposing the drugs. In this study, we have taken five main lung cancer protein targets- Nerve growth factor protein (1SG1), Apoptosis inhibitor survivin (1XOX), Heat shock protein (3IUC), Protein tyrosine phosphate (3ZM3), Aldo-keto reductase (4XZL) and screened the complete prepared Drug Bank library of 155888 compounds and identified Variolin B (DB08694) as a multitargeted inhibitor against lung cancer using HTVS, SP and XP sampling algorithms followed by MM\GBSA calculation to sort the best pose. Variolin B is a natural marine antitumor and antiviral compound, so we analysed the ADMET properties and interaction patterns and then simulated all five P-L complexes for 100 ns in water using the NPT ensemble to check its selves against lung cancer. The docking results, ADMET and fingerprints have shown a good performance, and RMSD and RMSF results were with least deviation and fluctuations (<2Å) and produced a huge contact with other residues making the complex stable. The complexes initially fluctuated and deviated due to changes in the solute medium and sudden heat and stabilise after a few ns. However, extensive experimental validation is required before human use.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hassan H Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Kingdom of Saudi Arabia
| | - Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Kingdom of Saudi Arabia
| | - Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Kingdom of Saudi Arabia
| | - Ohud Alsalmi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - Afaf Awwadh Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - Amal F Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Tiemann M, Rademann J. Identification and Optimization of Protein Tyrosine Phosphatase Inhibitors Via Fragment Ligation. Methods Mol Biol 2024; 2743:239-270. [PMID: 38147220 DOI: 10.1007/978-1-0716-3569-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Phosphotyrosine biomimetics are starting points for potent inhibitors of protein tyrosine phosphatases (PTPs) and, thus, crucial for drug development. Their identification, however, has been heavily driven by rational design, limiting the discovery of diverse, novel, and improved mimetics. In this chapter, we describe two screening approaches utilizing fragment ligation methods: one to identify new mimetics and the other to optimize existing mimetics into more potent and selective inhibitors.
Collapse
Affiliation(s)
- Markus Tiemann
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Jörg Rademann
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Welsh CL, Allen S, Madan LK. Setting sail: Maneuvering SHP2 activity and its effects in cancer. Adv Cancer Res 2023; 160:17-60. [PMID: 37704288 PMCID: PMC10500121 DOI: 10.1016/bs.acr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Since the discovery of tyrosine phosphorylation being a critical modulator of cancer signaling, proteins regulating phosphotyrosine levels in cells have fast become targets of therapeutic intervention. The nonreceptor protein tyrosine phosphatase (PTP) coded by the PTPN11 gene "SHP2" integrates phosphotyrosine signaling from growth factor receptors into the RAS/RAF/ERK pathway and is centrally positioned in processes regulating cell development and oncogenic transformation. Dysregulation of SHP2 expression or activity is linked to tumorigenesis and developmental defects. Even as a compelling anti-cancer target, SHP2 was considered "undruggable" for a long time owing to its conserved catalytic PTP domain that evaded drug development. Recently, SHP2 has risen from the "undruggable curse" with the discovery of small molecules that manipulate its intrinsic allostery for effective inhibition. SHP2's unique domain arrangement and conformation(s) allow for a truly novel paradigm of inhibitor development relying on skillful targeting of noncatalytic sites on proteins. In this review we summarize the biological functions, signaling properties, structural attributes, allostery and inhibitors of SHP2.
Collapse
Affiliation(s)
- Colin L Welsh
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sarah Allen
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, United States
| | - Lalima K Madan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
11
|
Jensen NR, Kelly RR, Kelly KD, Khoo SK, Sidles SJ, LaRue AC. From Stem to Sternum: The Role of Shp2 in the Skeleton. Calcif Tissue Int 2023; 112:403-421. [PMID: 36422682 DOI: 10.1007/s00223-022-01042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/05/2022] [Indexed: 11/25/2022]
Abstract
Src homology-2 domain-containing phosphatase 2 (SHP2) is a ubiquitously expressed phosphatase that is vital for skeletal development and maintenance of chondrocytes, osteoblasts, and osteoclasts. Study of SHP2 function in small animal models has led to insights in phenotypes observed in SHP2-mutant human disease, such as Noonan syndrome. In recent years, allosteric SHP2 inhibitors have been developed to specifically target the protein in neoplastic processes. These inhibitors are highly specific and have great potential for disease modulation in cancer and other pathologies, including bone disorders. In this review, we discuss the importance of SHP2 and related signaling pathways (e.g., Ras/MEK/ERK, JAK/STAT, PI3K/Akt) in skeletal development. We review rodent models of pathologic processes caused by germline mutations that activate SHP2 enzymatic activity, with a focus on the skeletal phenotype seen in these patients. Finally, we discuss SHP2 inhibitors in development and their potential for disease modulation in these genetic diseases, particularly as it relates to the skeleton.
Collapse
Affiliation(s)
- Nathaniel R Jensen
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryan R Kelly
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Kirsten D Kelly
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA
| | - Stephanie K Khoo
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA
| | - Sara J Sidles
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Amanda C LaRue
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA.
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
12
|
Powerful Potential of Polyfluoroalkyl-Containing 4-Arylhydrazinylidenepyrazol-3-ones for Pharmaceuticals. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010059. [PMID: 36615256 PMCID: PMC9821843 DOI: 10.3390/molecules28010059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
4-Arylhydrazinylidene-5-(polyfluoroalkyl)pyrazol-3-ones (4-AHPs) were found to be obtained by the regiospecific cyclization of 2-arylhydrazinylidene-3-(polyfluoroalkyl)-3-oxoesters with hydrazines, by the azo coupling of 4-nonsubstituted pyrazol-5-oles with aryldiazonium chlorides or by the firstly discovered acid-promoted self-condensation of 2-arylhydrazinylidene-3-oxoesters. All the 4-AHPs had an acceptable ADME profile. Varying the substituents in 4-AHPs promoted the switching or combining of their biological activity. The polyfluoroalkyl residue in 4-AHPs led to the appearance of an anticarboxylesterase action in the micromolar range. An NH-fragment and/or methyl group instead of the polyfluoroalkyl one in the 4-AHPs promoted antioxidant properties in the ABTS, FRAP and ORAC tests, as well as anti-cancer activity against HeLa that was at the Doxorubicin level coupled with lower cytotoxicity against normal human fibroblasts. Some Ph-N-substituted 4-AHPs could inhibit the growth of N. gonorrhoeae bacteria at MIC 0.9 μg/mL. The possibility of using 4-AHPs for cell visualization was shown. Most of the 4-AHPs exhibited a pronounced analgesic effect in a hot plate test in vivo at and above the diclofenac and metamizole levels except for the ones with two chlorine atoms in the aryl group. The methylsulfonyl residue was proved to raise the anti-inflammatory effect also. A mechanism of the antinociceptive action of the 4-AHPs through blocking the TRPV1 receptor was proposed and confirmed using in vitro experiment and molecular docking.
Collapse
|
13
|
Khudina OG, Elkina NA, Burgart YV, Ezhikova MA, Kodess MI, Esaulkova YL, Zarubaev VV, Shtro AA, Triandafilova GA, Krasnykh OP, Malysheva KO, Gerasimova NA, Evstigneeva NP, Saloutin VI. Synthesis and biological activity of 2-sulfonarylhydrazinylidene 1,3-diketones and their pyrazole derivatives. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3696-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
14
|
Qian Y, Yang T, Liang H, Deng M. Myeloid checkpoints for cancer immunotherapy. Chin J Cancer Res 2022; 34:460-482. [PMID: 36398127 PMCID: PMC9646457 DOI: 10.21147/j.issn.1000-9604.2022.05.07] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2023] Open
Abstract
Myeloid checkpoints are receptors on the myeloid cell surface which can mediate inhibitory signals to modulate anti-tumor immune activities. They can either inhibit cellular phagocytosis or suppress T cells and are thus involved in the pathogenesis of various diseases. In the tumor microenvironment, besides killing tumor cells by phagocytosis or activating anti-tumor immunity by tumor antigen presentation, myeloid cells could execute pro-tumor efficacies through myeloid checkpoints by interacting with counter-receptors on other immune cells or cancer cells. In summary, myeloid checkpoints may be promising therapeutic targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Yixin Qian
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Ting Yang
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Huan Liang
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Mi Deng
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- Peking University Cancer Hospital & Institute, Peking University, Beijing 100142, China
| |
Collapse
|
15
|
Tiemann M, Nawrotzky E, Schmieder P, Wehrhan L, Bergemann S, Martos V, Song W, Arkona C, Keller BG, Rademann J. A Formylglycine-Peptide for the Site-Directed Identification of Phosphotyrosine-Mimetic Fragments. Chemistry 2022; 28:e202201282. [PMID: 35781901 PMCID: PMC9804470 DOI: 10.1002/chem.202201282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 01/05/2023]
Abstract
Discovery of protein-binding fragments for precisely defined binding sites is an unmet challenge to date. Herein, formylglycine is investigated as a molecular probe for the sensitive detection of fragments binding to a spatially defined protein site . Formylglycine peptide 3 was derived from a phosphotyrosine-containing peptide substrate of protein tyrosine phosphatase PTP1B by replacing the phosphorylated amino acid with the reactive electrophile. Fragment ligation with formylglycine occurred in situ in aqueous physiological buffer. Structures and kinetics were validated by NMR spectroscopy. Screening and hit validation revealed fluorinated and non-fluorinated hit fragments being able to replace the native phosphotyrosine residue. The formylglycine probe identified low-affinity fragments with high spatial resolution as substantiated by molecular modelling. The best fragment hit, 4-amino-phenyl-acetic acid, was converted into a cellularly active, nanomolar inhibitor of the protein tyrosine phosphatase SHP2.
Collapse
Affiliation(s)
- Markus Tiemann
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Eric Nawrotzky
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Peter Schmieder
- Leibniz Institute of Molecular Pharmacology (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
| | - Leon Wehrhan
- Department of Biology, Chemistry, PharmacyInstitute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Silke Bergemann
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Vera Martos
- Leibniz Institute of Molecular Pharmacology (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
| | - Wei Song
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Christoph Arkona
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Bettina G. Keller
- Department of Biology, Chemistry, PharmacyInstitute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Jörg Rademann
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| |
Collapse
|
16
|
Structural insights into the pSer/pThr dependent regulation of the SHP2 tyrosine phosphatase in insulin and CD28 signaling. Nat Commun 2022; 13:5439. [PMID: 36114179 PMCID: PMC9481563 DOI: 10.1038/s41467-022-32918-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
Serine/threonine phosphorylation of insulin receptor substrate (IRS) proteins is well known to modulate insulin signaling. However, the molecular details of this process have mostly been elusive. While exploring the role of phosphoserines, we have detected a direct link between Tyr-flanking Ser/Thr phosphorylation sites and regulation of specific phosphotyrosine phosphatases. Here we present a concise structural study on how the activity of SHP2 phosphatase is controlled by an asymmetric, dual phosphorylation of its substrates. The structure of SHP2 has been determined with three different substrate peptides, unveiling the versatile and highly dynamic nature of substrate recruitment. What is more, the relatively stable pre-catalytic state of SHP2 could potentially be useful for inhibitor design. Our findings not only show an unusual dependence of SHP2 catalytic activity on Ser/Thr phosphorylation sites in IRS1 and CD28, but also suggest a negative regulatory mechanism that may also apply to other tyrosine kinase pathways as well. SHP2 is an important human tyrosine phosphatase with key roles in cancer, immune responses and insulin signaling. Here, the authors explore its substrate recognition mechanism in molecular detail and uncover a complex regulatory mechanism for this enzyme that marks specific target sites for dephosphorylation.
Collapse
|
17
|
Fauser J, Huyot V, Matsche J, Szynal BN, Alexeev Y, Kota P, Karginov AV. Dissecting protein tyrosine phosphatase signaling by engineered chemogenetic control of its activity. J Cell Biol 2022; 221:e202111066. [PMID: 35829702 PMCID: PMC9284425 DOI: 10.1083/jcb.202111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/06/2022] [Accepted: 06/22/2022] [Indexed: 01/16/2023] Open
Abstract
Protein tyrosine phosphatases (PTPases) are critical mediators of dynamic cell signaling. A tool capable of identifying transient signaling events downstream of PTPases is essential to understand phosphatase function on a physiological time scale. We report a broadly applicable protein engineering method for allosteric regulation of PTPases. This method enables dissection of transient events and reconstruction of individual signaling pathways. Implementation of this approach for Shp2 phosphatase revealed parallel MAPK and ROCK II dependent pathways downstream of Shp2, mediating transient cell spreading and migration. Furthermore, we show that the N-SH2 domain of Shp2 regulates MAPK-independent, ROCK II-dependent cell migration. Engineered targeting of Shp2 activity to different protein complexes revealed that Shp2-FAK signaling induces cell spreading whereas Shp2-Gab1 or Shp2-Gab2 mediates cell migration. We identified specific transient morphodynamic processes induced by Shp2 and determined the role of individual signaling pathways downstream of Shp2 in regulating these events. Broad application of this approach is demonstrated by regulating PTP1B and PTP-PEST phosphatases.
Collapse
Affiliation(s)
- Jordan Fauser
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | - Vincent Huyot
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jacob Matsche
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | - Barbara N. Szynal
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | | | - Pradeep Kota
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Andrei V. Karginov
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
18
|
Liang L, Liu H, Xing G, Deng C, Hua Y, Gu R, Lu T, Chen Y, Zhang Y. Accurate calculation of absolute free energy of binding for SHP2 allosteric inhibitors using free energy perturbation. Phys Chem Chem Phys 2022; 24:9904-9920. [PMID: 35416820 DOI: 10.1039/d2cp00405d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Accurate prediction of binding affinity is a primary objective in structure-based drug discovery. A free energy perturbation (FEP) method based on molecular dynamics simulation shows great promise for protein-ligand binding affinity predictions. However, accurate calculation of binding affinity for allosteric inhibitors remains unknown and elusive, which hampers the discovery of allosteric inhibitors. Allosteric inhibitors exhibit several significant advantages over orthosteric inhibitors including higher specificity and lower side effects. Allosteric inhibitors against SHP2 are thought to be beneficial not only for diseases related to metabolism, but also for cancer, which make SHP2 a potential drug target. However, high structural sensitivity makes structural optimization of SHP2 allosteric inhibitors face challenges. Herein, we calculated the absolute binding free energy of SHP2 allosteric inhibitors using the FEP method by employing different λ-windows/simulation time sampling strategies. A simulation run with 32 λ-windows/64 ps sampling strategy delivered an excellent correlation (r = 0.96) and an unprecedented low mean absolute error of 0.5 kcal mol-1 between predicted binding free energies and experimental ones, outperforming the MM/PBSA method. Our study demonstrates the possibility to accurately calculate the absolute binding free energy of allosteric inhibitors using FEP, which offers exciting prospects for the discovery of more effective allosteric inhibitors.
Collapse
Affiliation(s)
- Li Liang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Haichun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Guomeng Xing
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Chenglong Deng
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Yi Hua
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Rui Gu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Tao Lu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China. .,State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Yanmin Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
19
|
Heynen GJJE, Lisek K, Vogel R, Wulf-Goldenberg A, Alcaniz J, Montaudon E, Marangoni E, Birchmeier W. Targeting SHP2 phosphatase in breast cancer overcomes RTK-mediated resistance to PI3K inhibitors. Breast Cancer Res 2022; 24:23. [PMID: 35365185 PMCID: PMC8974145 DOI: 10.1186/s13058-022-01521-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/18/2022] [Indexed: 12/24/2022] Open
Abstract
Background PI3K signaling is frequently activated in breast cancer and is targeted by PI3K inhibitors. However, resistance of tumor cells to PI3K inhibition, often mediated by activated receptor tyrosine kinases, is commonly observed and reduces the potency of PI3K inhibitors. Therefore, new treatment strategies to overcome resistance to PI3K inhibitors are urgently needed to boost their efficacy. The phosphatase SHP2, which plays a crucial role in mediating signal transduction between receptor tyrosine kinases and both the PI3K and MAPK pathways, is a potential target for combination treatment. Methods We tested combinations of PI3K and SHP2 inhibitors in several experimental breast cancer models that are resistant to PI3K inhibition. Using cell culturing, biochemical and genetic approaches, we evaluated tumor cell proliferation and signaling output in cells treated with PI3K and SHP2 inhibitors. Results Combination treatment with PI3K and SHP2 inhibitors counteracted both acquired and intrinsic breast cancer cell resistance to PI3K inhibition that is mediated by activated receptor tyrosine kinases. Dual PI3K and SHP2 inhibition blocked proliferation and led to sustained inactivation of PI3K and MAPK signaling, where resistant cells rapidly re-activated these pathways upon PI3K inhibitor monotreatment. In addition, we demonstrate that overexpression of SHP2 induced resistance to PI3K inhibition, and that SHP2 was frequently activated during the development of PI3K inhibitor resistance after prolonged treatment of sensitive cells. Conclusions Our results highlight the importance of SHP2 as a player in resistance to PI3K inhibitors. Combination treatment with PI3K and SHP2 inhibitors could pave the way for significant improvements in therapies for breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-022-01521-3.
Collapse
Affiliation(s)
- Guus J J E Heynen
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| | - Kamil Lisek
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Regina Vogel
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Annika Wulf-Goldenberg
- Experimental and Pharmacological Oncology (EPO), Campus Berlin-Buch, Building 82, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Joshua Alcaniz
- Experimental and Pharmacological Oncology (EPO), Campus Berlin-Buch, Building 82, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Elodie Montaudon
- Preclinical Investigation Laboratory, Institut Curie, 20 Rue d'Ulm, 75248, Paris, France
| | - Elisabetta Marangoni
- Preclinical Investigation Laboratory, Institut Curie, 20 Rue d'Ulm, 75248, Paris, France
| | - Walter Birchmeier
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| |
Collapse
|
20
|
Wang M, Li T, Ouyang Z, Tang K, Zhu Y, Song C, Sun H, Yu B, Ji X, Sun Y. SHP2 allosteric inhibitor TK-453 alleviates psoriasis-like skin inflammation in mice via inhibition of IL-23/Th17 axis. iScience 2022; 25:104009. [PMID: 35310939 PMCID: PMC8927994 DOI: 10.1016/j.isci.2022.104009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
SHP2 is the first oncogenic tyrosine phosphatase encoded by PTPN11, which plays a significant regulatory role in cancer and inflammation-related diseases. Although SHP2 allosteric inhibitors have been used in phase I/II clinical trials for solid tumors, whether SHP2 inhibition alleviates psoriasis remains unclear. Here we expressed and purified SHP2 related proteins, and established an enzyme activity screening system for different conformations of SHP2. We launched an iterative medicinal chemistry program and identified the lead compound, TK-453. Importantly, TK-453 possessed stronger affinity with SHP2 than SHP099, evidenced by the cocrystal structure of SHP2/TK-453, revealing that the additional aryl-S-aryl bridge in TK-453 induces a 1.8 Å shift of the dichlorophenyl ring and an approximate 20° deviation of the pyrazine ring plane relative to SHP099. Furthermore, TK-453 significantly ameliorated imiquimod-triggered skin inflammation in mice via inhibition of the IL-23/Th17 axis, proving that SHP2 is a potential therapeutic target for psoriasis. We identify a SHP2 allosteric inhibitor TK-453, which has a stronger affinity with SHP2 Cocrystal structure shows that TK-453 occupies the allosteric pocket of SHP2 TK-453 alleviates psoriasis-like skin inflammation in mice SHP2 inhibitor provides a new strategy for the treatment of psoriasis
Collapse
|
21
|
Rademann J, Ahsanullah A, Hassan A, Ansari FL. Integration of C-Acylation in the Solid-Phase Synthesis of Peptides and Peptidomimetics Employing Meldrum’s Acid, Phosphorus, and Sulfur Ylides. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1667-3648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe modification of native peptides to peptidomimetics is an important goal in medicinal chemistry and requires, in many cases, the integration of C-acylation steps involving amino acids with classical peptide synthesis. Many classical C-acylation protocols involving Claisen condensations and the use of ylides are not compatible with peptide synthesis, mostly due to the requirements for strong bases leading to epimerization or deprotection of peptides. Meldrum’s acid as well as several specific phosphorus and sulfur ylides, however, are acidic enough to provide reactive C-nucleophiles under mildly basic conditions tolerated during peptide synthesis. This review provides an overview of peptide-compatible C-acylations using Meldrum’s acid and phosphorus and sulfur ylides, and their application in the medicinal chemistry of peptides.1 Introduction2 C-Acylation of Meldrum’s Acid2.1 C-Acylation of Meldrum’s Acid on Solid Phase3 Ylides as Substrates for C-Acylation3.1 C-Acylation of Phosphorus Ylides in Solution Phase3.2 C-Acylation of Solid-Supported Phosphorus Ylides3.3 C-Acylation of Sulfur Ylides3.4 C-Acylation of Solid-Supported Sulfur Ylides4 Miscellaneous Ylides as Acyl Anion Equivalents5 Summary
Collapse
Affiliation(s)
- Jörg Rademann
- Institut für Pharmazie, Medizinische Chemie, Freie Universität Berlin
| | | | - Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University
| | | |
Collapse
|
22
|
Tang K, Zhao M, Wu YH, Wu Q, Wang S, Dong Y, Yu B, Song Y, Liu HM. Structure-based design, synthesis and biological evaluation of aminopyrazines as highly potent, selective, and cellularly active allosteric SHP2 inhibitors. Eur J Med Chem 2022; 230:114106. [PMID: 35063735 DOI: 10.1016/j.ejmech.2022.114106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 11/26/2022]
Abstract
Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) encoded by the proto-oncogene PTPN11 is the first identified non-receptor protein tyrosine phosphatase. SHP2 dysregulation contributes to the pathogenesis of different cancers, making SHP2 a promising therapeutic target for cancer therapy. In this article, we report the structure-guided design based on the well-characterized SHP2 inhibitor SHP099, extensive structure-activity relationship studies (SARs) of aminopyrazines, biochemical characterization and cellular potency. These medicinal chemistry efforts lead to the discovery of the lead compound TK-453, which potently inhibits SHP2 (SHP2WT IC50 = 0.023 μM, ΔTm = 7.01 °C) in a reversible and noncompetitive manner. TK-453 exhibits high selectivity over SHP2PTP, SHP1 and PTP1B, and may bind at the "tunnel" allosteric site of SHP2 as SHP099. As the key pharmacophore, the aminopyrazine scaffold not only reorganizes the cationic-π stacking interaction with R111 via the novel hydrogen bond interaction between the S atom of thioether linker and T219, but also mediates a hydrogen bond with E250. In vitro studies indicate that TK-453 inhibits proliferation of HeLa, KYSE-70 and THP-1 cells moderately and induces apoptosis of Hela cells. Further mechanistic studies suggest that TK-453 can decrease the phosphorylation levels of AKT and Erk1/2 in HeLa and KYSE-70 cells. Collectively, TK-453 is a highly potent, selective, and cellularly active allosteric SHP2 inhibitor that modulates the phosphorylation of SHP2-mediated AKT and Erk cell signaling pathways by inhibiting the phosphatase activity of SHP2.
Collapse
Affiliation(s)
- Kai Tang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Min Zhao
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Ya-Hong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qiong Wu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Shu Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Dong
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yihui Song
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
23
|
Liu M, Gao S, Elhassan RM, Hou X, Fang H. Strategies to overcome drug resistance using SHP2 inhibitors. Acta Pharm Sin B 2021; 11:3908-3924. [PMID: 35024315 PMCID: PMC8727779 DOI: 10.1016/j.apsb.2021.03.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Encoded by PTPN11, the SHP2 (Src homology-2 domain-containing protein tyrosine phosphatase-2) is widely recognized as a carcinogenic phosphatase. As a promising anti-cancer drug target, SHP2 regulates many signaling pathways such as RAS-RAF-ERK, PI3K-AKT and JAK-STAT. Meanwhile, SHP2 plays a significant role in regulating immune cell function in the tumor microenvironment. Heretofore, five SHP2 allosteric inhibitors have been recruited in clinical studies for the treatment of cancer. Most recently, studies have proved the therapeutic potential of SHP2 inhibitor in overcoming drug resistance of kinase inhibitors and programmed cell death-1 (PD-1) blockade. Herein, we review the structure, function and small molecular inhibitors of SHP2, and highlight recent progress in overcoming drug resistance using SHP2 inhibitor. We hope this review would facilitate the future clinical development of SHP2 inhibitors.
Collapse
Affiliation(s)
| | | | | | - Xuben Hou
- Corresponding author. Tel./fax: +86 531 88381168.
| | - Hao Fang
- Corresponding author. Tel./fax: +86 531 88381168.
| |
Collapse
|
24
|
Elhassan RM, Hou X, Fang H. Recent advances in the development of allosteric protein tyrosine phosphatase inhibitors for drug discovery. Med Res Rev 2021; 42:1064-1110. [PMID: 34791703 DOI: 10.1002/med.21871] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/26/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023]
Abstract
Protein tyrosine phosphatases (PTPs) superfamily catalyzes tyrosine de-phosphorylation which affects a myriad of cellular processes. Imbalance in signal pathways mediated by PTPs has been associated with development of many human diseases including cancer, metabolic, and immunological diseases. Several compelling evidence suggest that many members of PTP family are novel therapeutic targets. However, the clinical development of conventional PTP-based active-site inhibitors originally was hampered by the poor selectivity and pharmacokinetic properties. In this regard, PTPs has been widely dismissed as "undruggable." Nonetheless, allosteric modulation has become increasingly an influential and alternative approach that can be exploited for drug development against PTPs. Unlike active-site inhibitors, allosteric inhibitors exhibit a remarkable target-selectivity, drug-likeness, potency, and in vivo activity. Intriguingly, there has been a high interest in novel allosteric PTPs inhibitors within the last years. In this review, we focus on the recent advances of allosteric inhibitors that have been explored in drug discovery and have shown an excellent result in the development of PTPs-based therapeutics. A special emphasis is placed on the structure-activity relationship and molecular mechanistic studies illustrating applications in chemical biology and medicinal chemistry.
Collapse
Affiliation(s)
- Reham M Elhassan
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
25
|
Guo Y, Xu Y, Dong X, Zhang J. Cross the Undruggable Barrier, the Development of SHP2 Inhibitors: From Catalytic Site Inhibitors to Allosteric Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202100186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yu Guo
- Hangzhou Institute of Innovative Medicine College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 P.R. China
| | - Yaping Xu
- Hangzhou Institute of Innovative Medicine College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 P.R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 P.R. China
| | - Jianjun Zhang
- Department of Pharmacy Institution The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine) Hangzhou 310006 P.R. China
| |
Collapse
|
26
|
Targeting SHP2 as a therapeutic strategy for inflammatory diseases. Eur J Med Chem 2021; 214:113264. [PMID: 33582386 DOI: 10.1016/j.ejmech.2021.113264] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022]
Abstract
With the change of lifestyle and the acceleration of aging process, inflammatory diseases have increasingly become one of the most vital threats to global human health. SHP2 protein is a non-receptor tyrosine phosphatase encoded by PTPN11 gene, and it is widely expressed in various tissues and cells. Numerous studies have shown that SHP2 plays important roles in the regulation of inflammatory diseases, including cancer-related inflammation, neurodegenerative diseases and metabolic diseases. In this paper, the roles of SHP2 in inflammatory diseases of various physiological systems were reviewed. At the same time, the latest SHP2 inhibitors were summarized, which will hold a promise for the therapeutic potential in future.
Collapse
|
27
|
Kwon SJ, Ahn D, Yang HM, Kang HJ, Chung SJ. Polyphyllin D Shows Anticancer Effect through a Selective Inhibition of Src Homology Region 2-Containing Protein Tyrosine Phosphatase-2 (SHP2). Molecules 2021; 26:molecules26040848. [PMID: 33562835 PMCID: PMC7915588 DOI: 10.3390/molecules26040848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/02/2022] Open
Abstract
Natural products have continued to offer tremendous opportunities for drug development, as they have long been used in traditional medicinal systems. SHP2 has served as an anticancer target. To identify novel SHP2 inhibitors with potential anticancer activity, we screened a library containing 658 natural products. Polyphyllin D was found to selectively inhibit SHP2 over SHP1, whereas two other identified compounds (echinocystic acid and oleanolic acid) demonstrated dual SHP1 and SHP2 inhibition. In a cell-based assay, polyphyllin D exhibited cytotoxicity in Jurkat cells, an acute lymphoma leukemia cell line, whereas the other two compounds were ineffective. Polyphyllin D also decreased the level of phosphorylated extracellular signal-regulated kinase (p-ERK), a proliferation marker in Jurkat cells. Furthermore, knockdown of protein tyrosine phosphatase (PTP)N6 (SHP1) or PTPN11 (SHP2) decreased p-ERK levels. However, concurrent knockdown of PTPN6 and PTPN11 in Jurkat cells recovered p-ERK levels. These results demonstrated that polyphyllin D has potential anticancer activity, which can be attributed to its selective inhibition of SHP2 over SHP1.
Collapse
Affiliation(s)
- Se Jeong Kwon
- Department of Biopharmaceutical Convergence and School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.J.K.); (D.A.)
- AbTis Co. Ltd., Suwon 16648, Korea;
| | - Dohee Ahn
- Department of Biopharmaceutical Convergence and School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.J.K.); (D.A.)
| | - Hyun-Mo Yang
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, Gyeonggi-do 16995, Korea;
| | | | - Sang J. Chung
- Department of Biopharmaceutical Convergence and School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.J.K.); (D.A.)
- AbTis Co. Ltd., Suwon 16648, Korea;
- Correspondence: ; Tel.: +82-31-290-7703
| |
Collapse
|
28
|
Zhang H, Gao Z, Meng C, Li X, Shi D. Inhibitor Binding Sites in the Protein Tyrosine Phosphatase SHP-2. Mini Rev Med Chem 2021; 20:1017-1030. [PMID: 32124695 DOI: 10.2174/1389557520666200303130833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/19/2019] [Accepted: 02/03/2020] [Indexed: 11/22/2022]
Abstract
Protein tyrosine phosphatase 2 (SHP-2) has long been proposed as a cancer drug target. Several small-molecule compounds with different mechanisms of SHP-2 inhibition have been reported, but none are commercially available. Pool selectivity over protein tyrosine phosphatase 1 (SHP-1) and a lack of cellular activity have hindered the development of selective SHP-2 inhibitors. In this review, we describe the binding modes of existing inhibitors and SHP-2 binding sites, summarize the characteristics of the sites involved in selectivity, and identify the suitable groups for interaction with the binding sites.
Collapse
Affiliation(s)
- Haonan Zhang
- School of Life Sciences, Shandong University of Technology, Zibo 255049, Shandong Province, China
| | - Zhengquan Gao
- School of Life Sciences, Shandong University of Technology, Zibo 255049, Shandong Province, China
| | - Chunxiao Meng
- School of Life Sciences, Shandong University of Technology, Zibo 255049, Shandong Province, China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
29
|
Yang F, Anekpuritanang T, Press RD. Clinical Utility of Next-Generation Sequencing in Acute Myeloid Leukemia. Mol Diagn Ther 2021; 24:1-13. [PMID: 31848884 DOI: 10.1007/s40291-019-00443-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous disease that, even with current advancements in therapy, continues to have a poor prognosis. Recurrent somatic mutations have been identified in a core set of pathogenic genes including FLT3 (25-30% prevalence), NPM1 (25-30%), DNMT3A (25-30%), IDH1/2 (5-15%), and TET2 (5-15%), with direct diagnostic, prognostic, and targeted therapeutic implications. Advances in the understanding of the complex mechanisms of AML leukemogenesis have led to the development and recent US Food and Drug Administration (FDA) approval of several targeted therapies: midostaurin and gilteritinib targeting activated FLT3, and ivosidenib and enasidenib targeting mutated IDH1/2. Several additional drug candidates targeting other recurrently mutated gene pathways in AML are also being actively developed. Furthermore, outside of the realm of predicting responses to targeted therapies, many other mutated genes, which comprise the so-called long tail of oncogenic drivers in AML, have been shown to provide clinically useful diagnostic and prognostic information for AML patients. Many of these recurrently mutated genes have also been shown to be excellent biomarkers for post-treatment minimal residual disease (MRD) monitoring for assessing treatment response and predicting future relapse. In addition, the identification of germline mutations in a set of genes predisposing to myeloid malignancies may directly inform treatment decisions (particularly stem cell transplantation) and impact other family members. Recent advances in sequencing technology have made it practically and economically feasible to evaluate many genes simultaneously using next-generation sequencing (NGS). Mutation screening with NGS panels has been recommended by national and international professional guidelines as the standard of care for AML patients. NGS-based detection of the heterogeneous genes commonly mutated in AML has practical clinical utility for disease diagnosis, prognosis, prediction of targeted therapy response, and MRD monitoring.
Collapse
Affiliation(s)
- Fei Yang
- Department of Pathology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, L113, Portland, OR, 97239, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Tauangtham Anekpuritanang
- Department of Pathology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, L113, Portland, OR, 97239, USA.,Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Richard D Press
- Department of Pathology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, L113, Portland, OR, 97239, USA. .,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
30
|
Kerr DL, Haderk F, Bivona TG. Allosteric SHP2 inhibitors in cancer: Targeting the intersection of RAS, resistance, and the immune microenvironment. Curr Opin Chem Biol 2021; 62:1-12. [PMID: 33418513 DOI: 10.1016/j.cbpa.2020.11.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/09/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023]
Abstract
The nonreceptor protein tyrosine phosphatase SHP2 (encoded by PTPN11) integrates growth and differentiation signals from receptor tyrosine kinases (RTKs) into the RAS/mitogen-activated protein kinase (MAPK) cascade. Considered 'undruggable' over three decades, SHP2 is now a potentially druggable target with the advent of allosteric SHP2 inhibitors. These agents hold promise for improving patient outcomes, showing efficacy in preclinical cancer models, where SHP2 is critical for either oncogenic signaling or resistance to current targeted agents. SHP2 inhibition may also produce immunomodulatory effects in certain tumor microenvironment cells to help cultivate antitumor immune responses. The first generation of allosteric SHP2 inhibitors is under clinical evaluation to determine safety, appropriate tolerability management, and antitumor efficacy, investigations that will dictate future clinical applications.
Collapse
Affiliation(s)
- D Lucas Kerr
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Franziska Haderk
- Department of Medicine, University of California, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| |
Collapse
|
31
|
Song Z, Wang M, Ge Y, Chen XP, Xu Z, Sun Y, Xiong XF. Tyrosine phosphatase SHP2 inhibitors in tumor-targeted therapies. Acta Pharm Sin B 2021; 11:13-29. [PMID: 33532178 PMCID: PMC7838030 DOI: 10.1016/j.apsb.2020.07.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
Src homology containing protein tyrosine phosphatase 2 (SHP2) represents a noteworthy target for various diseases, serving as a well-known oncogenic phosphatase in cancers. As a result of the low cell permeability and poor bioavailability, the traditional inhibitors targeting the protein tyrosine phosphate catalytic sites are generally suffered from unsatisfactory applied efficacy. Recently, a particularly large number of allosteric inhibitors with striking inhibitory potency on SHP2 have been identified. In particular, few clinical trials conducted have made significant progress on solid tumors by using SHP2 allosteric inhibitors. This review summarizes the development and structure–activity relationship studies of the small-molecule SHP2 inhibitors for tumor therapies, with the purpose of assisting the future development of SHP2 inhibitors with improved selectivity, higher oral bioavailability and better physicochemical properties.
Collapse
Key Words
- ALK, anaplastic lymphoma kinase
- AML, acute myeloid leukemia
- Allosteric inhibitor
- B-ALL, B-cell acute lymphoblastic leukemia
- BTLA, B and T lymphocyte attenuator
- CADD, computer aided drug design
- CSF-1, colony stimulating factor-1
- CTLA-4, cytotoxic T lymphocyte-associated antigen-4
- EGFR, epidermal growth factor receptor
- ERK1/2, extracelluar signal-regulated kinase 1/2
- FLT3, Fms-like tyrosine kinase-3
- GAB2, Grb2-associated binding protein-2
- GRB2, growth factor receptor-bound protein 2
- HER2, human epidermal growth factor receptor-2
- HGF/SF, hepatocyte growth factor/scatter factor
- JAK, Janus kinase
- KRAS, v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
- MAPK, mitogen-activated protein kinase
- NLRP3, NLR family, pyrin domain containing protein 3
- PD-1/PDL-1, programmed cell death protein-1/programmed death ligand-1
- PDAC, pancreatic ductal adenocarcinoma
- PDX, patient-derived xenograft
- PI3K, phosphatidylinositol 3 kinase
- PTK, protein tyrosine kinase
- PTP, protein tyrosine phosphatase
- Phosphatase
- RAS, rat sarcoma protein
- RTKs, receptor tyrosine kinase inhibitors
- SAR, structure–activity relationship
- SBDD, structure-based drug design
- SCC, squamous cell carcinoma
- SCNA, somatic copy number change
- SHP2
- SHP2, Src homology containing protein tyrosine phosphatase 2
- STAT, signal transducers and activators of transcription
- Selectivity
- TIGIT, T-cell immunoglobulin and ITIM domain protein
- TKIs, tyrosine kinase inhibitors
- Tumor therapy
- hERG, human ether-a-go-go-related gene
Collapse
Affiliation(s)
- Zhendong Song
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Meijing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang Ge
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-Ping Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ziyang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiao-Feng Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
32
|
Mitra R, Ayyannan SR. Small-Molecule Inhibitors of Shp2 Phosphatase as Potential Chemotherapeutic Agents for Glioblastoma: A Minireview. ChemMedChem 2020; 16:777-787. [PMID: 33210828 DOI: 10.1002/cmdc.202000706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/13/2020] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is a dreadful cancer characterised by poor prognosis, low survival rate and difficult clinical correlations. Several signalling pathways and molecular mediators are known to precipitate GBM, and small-molecular targets of these mediators have become a favoured thrust area for researchers to develop potent anti-GBM drugs. Shp2, an important phosphatase of the nonreceptor type protein tyrosine phosphatase (PTPN) subfamily is responsible for master regulation of several such signalling pathways in normal and glioma cells. Thus, inhibition of Shp2 is a logical strategy for the design and development of anti-neoplastic drugs against GBM. Though tapping the full potential of Shp2 binding sites has been challenging, nevertheless, many synthetic and natural scaffolds have been documented as possessing potent and selective anti-Shp2 activities in biochemical and cellular assays, through either active-site or allosteric binding. Most of these scaffolds share a few common pharmacophoric features, a thorough study of which is useful in paving the way for the design and development of improved Shp2 inhibitors. This minireview summarizes the current scenario of potent small-molecule Shp2 inhibitors and emphasizes the anti-GBM potential of some important scaffolds that have shown promising GBM-specific activity in in vitro and in vivo models, thus proving their efficacy in GBM therapy. This review could guide researchers to design new and improved anti-Shp2 pharmacophores and develop them as anti-GBM agents by employing GBM-centric drug-discovery protocols.
Collapse
Affiliation(s)
- Rangan Mitra
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Senthil R Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
33
|
Mostinski Y, Heynen GJJE, López-Alberca MP, Paul J, Miksche S, Radetzki S, Schaller D, Shanina E, Seyffarth C, Kolomeets Y, Ziebart N, de Schryver J, Oestreich S, Neuenschwander M, Roske Y, Heinemann U, Rademacher C, Volkamer A, von Kries JP, Birchmeier W, Nazaré M. From Pyrazolones to Azaindoles: Evolution of Active-Site SHP2 Inhibitors Based on Scaffold Hopping and Bioisosteric Replacement. J Med Chem 2020; 63:14780-14804. [PMID: 33210922 DOI: 10.1021/acs.jmedchem.0c01265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The tyrosine phosphatase SHP2 controls the activity of pivotal signaling pathways, including MAPK, JAK-STAT, and PI3K-Akt. Aberrant SHP2 activity leads to uncontrolled cell proliferation, tumorigenesis, and metastasis. SHP2 signaling was recently linked to drug resistance against cancer medications such as MEK and BRAF inhibitors. In this work, we present the development of a novel class of azaindole SHP2 inhibitors. We applied scaffold hopping and bioisosteric replacement concepts to eliminate unwanted structural motifs and to improve the inhibitor characteristics of the previously reported pyrazolone SHP2 inhibitors. The most potent azaindole 45 inhibits SHP2 with an IC50 = 0.031 μM in an enzymatic assay and with an IC50 = 2.6 μM in human pancreas cells (HPAF-II). Evaluation in a series of cellular assays for metastasis and drug resistance demonstrated efficient SHP2 blockade. Finally, 45 inhibited proliferation of two cancer cell lines that are resistant to cancer drugs and diminished ERK signaling.
Collapse
Affiliation(s)
- Yelena Mostinski
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Guus J J E Heynen
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Maria Pascual López-Alberca
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Jerome Paul
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Sandra Miksche
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Silke Radetzki
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - David Schaller
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elena Shanina
- Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg, 1, 14476 Potsdam, Germany
| | - Carola Seyffarth
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Yuliya Kolomeets
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Nandor Ziebart
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Judith de Schryver
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Sylvia Oestreich
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Martin Neuenschwander
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Yvette Roske
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Udo Heinemann
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Christoph Rademacher
- Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg, 1, 14476 Potsdam, Germany
| | - Andrea Volkamer
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jens Peter von Kries
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Walter Birchmeier
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| |
Collapse
|
34
|
Tripathi RKP, Ayyannan SR. Emerging chemical scaffolds with potential SHP2 phosphatase inhibitory capabilities - A comprehensive review. Chem Biol Drug Des 2020; 97:721-773. [PMID: 33191603 DOI: 10.1111/cbdd.13807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
The drug discovery panorama is cluttered with promising therapeutic targets that have been deserted because of inadequate authentication and screening failures. Molecular targets formerly tagged as "undruggable" are nowadays being more cautiously cross-examined, and whilst they stay intriguing, numerous targets are emerging more accessible. Protein tyrosine phosphatases (PTPs) excellently exemplifies a class of molecular targets that have transpired as druggable, with several small molecules and antibodies recently turned available for further development. In this respect, SHP2, a PTP, has emerged as one of the potential targets in the current pharmacological research, particularly for cancer, due to its critical role in various signalling pathways. Recently, few molecules with excellent potency have entered clinical trials, but none could reach the clinic. Consequently, search for novel, non-toxic, and specific SHP2 inhibitors are on purview. In this review, general aspects of SHP2 including its structure and mechanistic role in carcinogenesis have been presented. It also sheds light on the development of novel molecular architectures belonging to diverse chemical classes that have been proposed as SHP2-specific inhibitors along with their structure-activity relationships (SARs), stemming from chemical, mechanism-based and computer-aided studies reported since January 2015 to July 2020 (excluding patents), focusing on their potency and selectivity. The encyclopedic facts and discussions presented herein will hopefully facilitate researchers to design new ligands with better efficacy and selectivity against SHP2.
Collapse
Affiliation(s)
- Rati Kailash Prasad Tripathi
- Department of Pharmaceutical Science, Sushruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar, Assam, India.,Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
35
|
Zhu G, Xie J, Kong W, Xie J, Li Y, Du L, Zheng Q, Sun L, Guan M, Li H, Zhu T, He H, Liu Z, Xia X, Kan C, Tao Y, Shen HC, Li D, Wang S, Yu Y, Yu ZH, Zhang ZY, Liu C, Zhu J. Phase Separation of Disease-Associated SHP2 Mutants Underlies MAPK Hyperactivation. Cell 2020; 183:490-502.e18. [PMID: 33002410 DOI: 10.1016/j.cell.2020.09.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/19/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023]
Abstract
The non-receptor protein tyrosine phosphatase (PTP) SHP2, encoded by PTPN11, plays an essential role in RAS-mitogen-activated protein kinase (MAPK) signaling during normal development. It has been perplexing as to why both enzymatically activating and inactivating mutations in PTPN11 result in human developmental disorders with overlapping clinical manifestations. Here, we uncover a common liquid-liquid phase separation (LLPS) behavior shared by these disease-associated SHP2 mutants. SHP2 LLPS is mediated by the conserved well-folded PTP domain through multivalent electrostatic interactions and regulated by an intrinsic autoinhibitory mechanism through conformational changes. SHP2 allosteric inhibitors can attenuate LLPS of SHP2 mutants, which boosts SHP2 PTP activity. Moreover, disease-associated SHP2 mutants can recruit and activate wild-type (WT) SHP2 in LLPS to promote MAPK activation. These results not only suggest that LLPS serves as a gain-of-function mechanism involved in the pathogenesis of SHP2-associated human diseases but also provide evidence that PTP may be regulated by LLPS that can be therapeutically targeted.
Collapse
Affiliation(s)
- Guangya Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenna Kong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfei Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yichen Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Du
- Etern Biopharma Co. Ltd., Shanghai 201203, China
| | | | - Lin Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingfeng Guan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tianxin Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hao He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenying Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chen Kan
- Department of Pathophysiology, Anhui Medical University, Hefei 230032, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong C Shen
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Shanghai 201203, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Siying Wang
- Department of Pathophysiology, Anhui Medical University, Hefei 230032, China
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Zhi-Hong Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Jidong Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
36
|
Abstract
RAS was identified as a human oncogene in the early 1980s and subsequently found to be mutated in nearly 30% of all human cancers. More importantly, RAS plays a central role in driving tumor development and maintenance. Despite decades of effort, there remain no FDA approved drugs that directly inhibit RAS. The prevalence of RAS mutations in cancer and the lack of effective anti-RAS therapies stem from RAS' core role in growth factor signaling, unique structural features, and biochemistry. However, recent advances have brought promising new drugs to clinical trials and shone a ray of hope in the field. Here, we will exposit the details of RAS biology that illustrate its key role in cell signaling and shed light on the difficulties in therapeutically targeting RAS. Furthermore, past and current efforts to develop RAS inhibitors will be discussed in depth.
Collapse
Affiliation(s)
- J Matthew Rhett
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States.
| |
Collapse
|
37
|
Yuan X, Bu H, Zhou J, Yang CY, Zhang H. Recent Advances of SHP2 Inhibitors in Cancer Therapy: Current Development and Clinical Application. J Med Chem 2020; 63:11368-11396. [DOI: 10.1021/acs.jmedchem.0c00249] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xinrui Yuan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Hong Bu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Chao-Yie Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|
38
|
Hédan B, Rault M, Abadie J, Ulvé R, Botherel N, Devauchelle P, Copie-Bergman C, Cadieu E, Parrens M, Alten J, Zalcman EL, Cario G, Damaj G, Mokhtari K, Le Loarer F, Coulomb-Lhermine A, Derrien T, Hitte C, Bachelot L, Breen M, Gilot D, Blay JY, Donadieu J, André C. PTPN11 mutations in canine and human disseminated histiocytic sarcoma. Int J Cancer 2020; 147:1657-1665. [PMID: 32212266 DOI: 10.1002/ijc.32991] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 01/20/2023]
Abstract
In humans, histiocytic sarcoma (HS) is an aggressive cancer involving histiocytes. Its rarity and heterogeneity explain that treatment remains a challenge. Sharing high clinical and histopathological similarities with human HS, the canine HS is conversely frequent in specific breeds and thus constitutes a unique spontaneous model for human HS to decipher the genetic bases and to explore therapeutic options. We identified sequence alterations in the MAPK pathway in at least 63.9% (71/111) of HS cases with mutually exclusive BRAF (0.9%; 1/111), KRAS (7.2%; 8/111) and PTPN11 (56.75%; 63/111) mutations concentrated at hotspots common to human cancers. Recurrent PTPN11 mutations are associated to visceral disseminated HS subtype in dogs, the most aggressive clinical presentation. We then identified PTPN11 mutations in 3/19 (15.7%) human HS patients. Thus, we propose PTPN11 mutations as key events for a specific subset of human and canine HS: the visceral disseminated form. Finally, by testing drugs targeting the MAPK pathway in eight canine HS cell lines, we identified a better anti-proliferation activity of MEK inhibitors than PTPN11 inhibitors in canine HS neoplastic cells. In combination, these results illustrate the relevance of naturally affected dogs in deciphering genetic mechanisms and selecting efficient targeted therapies for such rare and aggressive cancers in humans.
Collapse
Affiliation(s)
- Benoit Hédan
- Faculty of Medicine, CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, SFR Biosit, Rennes, France
| | - Mélanie Rault
- Faculty of Medicine, CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, SFR Biosit, Rennes, France
| | - Jérôme Abadie
- Department of Biology, Pathology and Food Sciences, Oniris, Laboniris, Nantes, France
| | - Ronan Ulvé
- Faculty of Medicine, CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, SFR Biosit, Rennes, France
| | - Nadine Botherel
- Faculty of Medicine, CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, SFR Biosit, Rennes, France
| | | | - Christiane Copie-Bergman
- Assistance Publique-Hôpitaux de Paris, Département de Pathologie, Groupe Henri-Mondor Albert-Chenevier, Créteil, France.,INSERM U955, Équipe 9, Faculté de Médecine, Université Paris Est Créteil, Créteil, France
| | - Edouard Cadieu
- Faculty of Medicine, CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, SFR Biosit, Rennes, France
| | - Marie Parrens
- Department of Pathology, CHU de Bordeaux, Hôpital du Haut Lévêque, INSERM U1035, Université de Bordeaux, Bordeaux, France
| | - Julia Alten
- Pediatric Oncology/Hematology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Emmanuelle L Zalcman
- Department of Neuropathology, GHU Paris Psychiatrie Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Gunnar Cario
- Pediatric Oncology/Hematology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Gandhi Damaj
- Haemalology Institute, CHU de Caen and Centre François Baclesse, Caen, France
| | - Karima Mokhtari
- Sorbonne University, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuropathologie-Escourolle, Paris, France
| | | | | | - Thomas Derrien
- Faculty of Medicine, CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, SFR Biosit, Rennes, France
| | - Christophe Hitte
- Faculty of Medicine, CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, SFR Biosit, Rennes, France
| | - Laura Bachelot
- Faculty of Medicine, CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, SFR Biosit, Rennes, France
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, CVM Research Building, Raleigh, NC, USA
| | - David Gilot
- Faculty of Medicine, CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, SFR Biosit, Rennes, France
| | - Jean Y Blay
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Jean Donadieu
- Department of Haematology, APHP, Trousseau Hospital, Paris, France
| | - Catherine André
- Faculty of Medicine, CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, SFR Biosit, Rennes, France
| |
Collapse
|
39
|
Abstract
Tyrosine phosphorylation is a critical component of signal transduction for multicellular organisms, particularly for pathways that regulate cell proliferation and differentiation. While tyrosine kinase inhibitors have become FDA-approved drugs, inhibitors of the other important components of these signaling pathways have been harder to develop. Specifically, direct phosphotyrosine (pTyr) isosteres have been aggressively pursued as inhibitors of Src homology 2 (SH2) domains and protein tyrosine phosphatases (PTPs). Medicinal chemists have produced many classes of peptide and small molecule inhibitors that mimic pTyr. However, balancing affinity with selectivity and cell penetration has made this an extremely difficult space for developing successful clinical candidates. This review will provide a comprehensive picture of the field of pTyr isosteres, from early beginnings to the current state and trajectory. We will also highlight the major protein targets of these medicinal chemistry efforts, the major classes of peptide and small molecule inhibitors that have been developed, and the handful of compounds which have been tested in clinical trials.
Collapse
Affiliation(s)
- Robert A Cerulli
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111, USA
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA.
| |
Collapse
|
40
|
Kim B, Jo S, Park SB, Chae CH, Lee K, Koh B, Shin I. Development and structure-activity relationship study of SHP2 inhibitor containing 3,4,6-trihydroxy-5-oxo-5H-benzo[7]annulene. Bioorg Med Chem Lett 2020; 30:126756. [DOI: 10.1016/j.bmcl.2019.126756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 11/15/2022]
|
41
|
Niogret C, Birchmeier W, Guarda G. SHP-2 in Lymphocytes' Cytokine and Inhibitory Receptor Signaling. Front Immunol 2019; 10:2468. [PMID: 31708921 PMCID: PMC6823243 DOI: 10.3389/fimmu.2019.02468] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Somewhat counterintuitively, the tyrosine phosphatase SHP-2 (SH2 domain-containing protein tyrosine phosphatase-2) is crucial for the activation of extracellular signal-regulated kinase (ERK) downstream of various growth factor receptors, thereby exerting essential developmental functions. This phosphatase also deploys proto-oncogenic functions and specific inhibitors have recently been developed. With respect to the immune system, the role of SHP-2 in the signaling of cytokines relevant for myelopoiesis and myeloid malignancies has been intensively studied. The function of this phosphatase downstream of cytokines important for lymphocytes is less understood, though multiple lines of evidence suggest its importance. In addition, SHP-2 has been proposed to mediate the suppressive effects of inhibitory receptors (IRs) that sustain a dysfunctional state in anticancer T cells. Molecules involved in IR signaling are of potential pharmaceutical interest as blockade of these inhibitory circuits leads to remarkable clinical benefit. Here, we discuss the dichotomy in the functions ascribed to SHP-2 downstream of cytokine receptors and IRs, with a focus on T and NK lymphocytes. Further, we highlight the importance of broadening our understanding of SHP-2′s relevance in lymphocytes, an essential step to inform on side effects and unanticipated benefits of its therapeutic blockade.
Collapse
Affiliation(s)
- Charlène Niogret
- Department of Biochemistry, University of Lausanne, Épalinges, Switzerland
| | - Walter Birchmeier
- Max-Delbrueck-Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Greta Guarda
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
42
|
Ruckert MT, de Andrade PV, Santos VS, Silveira VS. Protein tyrosine phosphatases: promising targets in pancreatic ductal adenocarcinoma. Cell Mol Life Sci 2019; 76:2571-2592. [PMID: 30982078 PMCID: PMC11105579 DOI: 10.1007/s00018-019-03095-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. It is the fourth leading cause of cancer-related death and is associated with a very poor prognosis. KRAS driver mutations occur in approximately 95% of PDAC cases and cause the activation of several signaling pathways such as mitogen-activated protein kinase (MAPK) pathways. Regulation of these signaling pathways is orchestrated by feedback loops mediated by the balance between protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), leading to activation or inhibition of its downstream targets. The human PTPome comprises 125 members, and these proteins are classified into three distinct families according to their structure. Since PTP activity description, it has become clear that they have both inhibitory and stimulatory effects on cancer-associated signaling processes and that deregulation of PTP function is closely associated with tumorigenesis. Several PTPs have displayed either tumor suppressor or oncogenic characteristics during the development and progression of PDAC. In this sense, PTPs have been presented as promising candidates for the treatment of human pancreatic cancer, and many PTP inhibitors have been developed since these proteins were first associated with cancer. Nevertheless, some challenges persist regarding the development of effective and safe methods to target these molecules and deliver these drugs. In this review, we discuss the role of PTPs in tumorigenesis as tumor suppressor and oncogenic proteins. We have focused on the differential expression of these proteins in PDAC, as well as their clinical implications and possible targeting for pharmacological inhibition in cancer therapy.
Collapse
Affiliation(s)
- Mariana Tannús Ruckert
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Pamela Viani de Andrade
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Verena Silva Santos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Silva Silveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
43
|
Sarver P, Acker M, Bagdanoff JT, Chen Z, Chen YN, Chan H, Firestone B, Fodor M, Fortanet J, Hao H, Hentemann M, Kato M, Koenig R, LaBonte LR, Liu G, Liu S, Liu C, McNeill E, Mohseni M, Sendzik M, Stams T, Spence S, Tamez V, Tichkule R, Towler C, Wang H, Wang P, Williams SL, Yu B, LaMarche MJ. 6-Amino-3-methylpyrimidinones as Potent, Selective, and Orally Efficacious SHP2 Inhibitors. J Med Chem 2019; 62:1793-1802. [DOI: 10.1021/acs.jmedchem.8b01726] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Shao H, Ma L, Jin F, Zhou Y, Tao M, Teng Y. Immune inhibitory receptor LILRB2 is critical for the endometrial cancer progression. Biochem Biophys Res Commun 2018; 506:243-250. [PMID: 30343889 DOI: 10.1016/j.bbrc.2018.09.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/17/2018] [Indexed: 01/02/2023]
Abstract
Although leukocyte immunoglobulin-like receptor subfamily B member 2 (LILRB2) is known as an immune inhibitory receptor to suppress the immune system, its function in cancer development remains largely unknown. Herein, we provide the first body of information showing that LILRB2 is highly expressed in the endometrial cancer. More importantly, the expression levels of LILRB2 are inversely correlated with the overall patients' survival. Knockdown of LILRB2 results in a dramatic decrease in the proliferation, colony formation and migration in several endometrial cancer cell lines in vitro. Furthermore, in vivo xenograft experiments reveal a notable reduction of tumor cell growth. Mechanistically, LILRB2 enhances the SHP2/CaMK1/CREB signaling pathways to support the expansion and migration of the endometrial cancer cells. These findings unravel an unexpected role of LILRB2 in solid cancers except for its canonical role in immune surveillance, which may serve as a potential endometrial stem cell marker and may benefit the development of novel strategies for the treatment of endometrial cancers.
Collapse
Affiliation(s)
- Hongfang Shao
- Center of Reproductive Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Li Ma
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Feng Jin
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Yang Zhou
- Center of Reproductive Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Minfang Tao
- Center of Reproductive Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China.
| | - Yincheng Teng
- Center of Reproductive Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China; Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
45
|
Synthesis and antitumor activity of novel phenylhydrazonopyrazolone derivatives and molecular dynamics simulations. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3412-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Tsutsumi R, Ran H, Neel BG. Off-target inhibition by active site-targeting SHP2 inhibitors. FEBS Open Bio 2018; 8:1405-1411. [PMID: 30186742 PMCID: PMC6120237 DOI: 10.1002/2211-5463.12493] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/19/2018] [Accepted: 06/05/2018] [Indexed: 01/04/2023] Open
Abstract
Due to the involvement of SHP2 (SH2 domain-containing protein-tyrosine phosphatase) in human disease, including Noonan syndrome and cancer, several inhibitors targeting SHP2 have been developed. Here, we report that the commonly used SHP2 inhibitor NSC-87877 does not exhibit robust inhibitory effects on growth factor-dependent MAPK (mitogen-activated protein kinase) pathway activation and that the recently developed active site-targeting SHP2 inhibitors IIB-08, 11a-1, and GS-493 show off-target effects on ligand-evoked activation/trans-phosphorylation of the PDGFRβ (platelet-derived growth factor receptor β). GS-493 also inhibits purified human PDGFRβ and SRC in vitro, whereas PDGFRβ inhibition by IIB-08 and 11a-1 occurs only in the cellular context. Our results argue for extreme caution in inferring specific functions for SHP2 based on studies using these inhibitors.
Collapse
Affiliation(s)
- Ryouhei Tsutsumi
- Laura and Isaac Perlmutter Cancer CenterNYU Langone HealthNew YorkNYUSA
| | - Hao Ran
- Laura and Isaac Perlmutter Cancer CenterNYU Langone HealthNew YorkNYUSA
| | - Benjamin G. Neel
- Laura and Isaac Perlmutter Cancer CenterNYU Langone HealthNew YorkNYUSA
| |
Collapse
|
47
|
Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med 2018; 24:954-960. [DOI: 10.1038/s41591-018-0024-8] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
|
48
|
Jin WY, Ma Y, Li WY, Li HL, Wang RL. Scaffold-based novel SHP2 allosteric inhibitors design using Receptor-Ligand pharmacophore model, virtual screening and molecular dynamics. Comput Biol Chem 2018; 73:179-188. [DOI: 10.1016/j.compbiolchem.2018.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/25/2018] [Accepted: 02/04/2018] [Indexed: 12/20/2022]
|
49
|
Yu ZH, Zhang ZY. Regulatory Mechanisms and Novel Therapeutic Targeting Strategies for Protein Tyrosine Phosphatases. Chem Rev 2018; 118:1069-1091. [PMID: 28541680 PMCID: PMC5812791 DOI: 10.1021/acs.chemrev.7b00105] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An appropriate level of protein phosphorylation on tyrosine is essential for cells to react to extracellular stimuli and maintain cellular homeostasis. Faulty operation of signal pathways mediated by protein tyrosine phosphorylation causes numerous human diseases, which presents enormous opportunities for therapeutic intervention. While the importance of protein tyrosine kinases in orchestrating the tyrosine phosphorylation networks and in target-based drug discovery has long been recognized, the significance of protein tyrosine phosphatases (PTPs) in cellular signaling and disease biology has historically been underappreciated, due to a large extent to an erroneous assumption that they are largely constitutive and housekeeping enzymes. Here, we provide a comprehensive examination of a number of regulatory mechanisms, including redox modulation, allosteric regulation, and protein oligomerization, that control PTP activity. These regulatory mechanisms are integral to the myriad PTP-mediated biochemical events and reinforce the concept that PTPs are indispensable and specific modulators of cellular signaling. We also discuss how disruption of these PTP regulatory mechanisms can cause human diseases and how these diverse regulatory mechanisms can be exploited for novel therapeutic development.
Collapse
Affiliation(s)
- Zhi-Hong Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907
| |
Collapse
|
50
|
Wagner S, Accorsi M, Rademann J. Benzyl Mono-P-Fluorophosphonate and Benzyl Penta-P-Fluorophosphate Anions Are Physiologically Stable Phosphotyrosine Mimetics and Inhibitors of Protein Tyrosine Phosphatases. Chemistry 2017; 23:15387-15395. [PMID: 29024172 DOI: 10.1002/chem.201701204] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Indexed: 01/15/2023]
Abstract
α,α-Difluoro-benzyl phosphonates are currently the most popular class of phosphotyrosine mimetics. Structurally derived from the natural substrate phosphotyrosine, they constitute classical bioisosteres and have enabled the development of potent inhibitors of protein tyrosine phosphatases (PTP) and phosphotyrosine recognition sites such as SH2 domains. Being dianions bearing two negative charges, phosphonates, however, do not permeate membranes and thus are often inactive in cells and have not been a successful starting point toward therapeutics, yet. In this work, benzyl phosphonates were modified by replacing phosphorus-bound oxygen atoms with phosphorus-bound fluorine atoms. Surprisingly, mono-P-fluorophosphonates were fully stable under physiological conditions, thus enabling the investigation of their mode of action toward PTP. Three alternative scenarios were tested and mono-P-fluorophosphonates were identified as stable reversible PTP1B inhibitors, despite of the loss of one negative charge and the replacement of one oxygen atom as an H-bond donor by fluorine. In extending this replacement strategy, α,α-difluorobenzyl penta-P-fluorophosphates were synthesized and found to be novel phosphotyrosine mimetics with improved affinity to the phosphotyrosine binding site of PTP1B.
Collapse
Affiliation(s)
- Stefan Wagner
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Matteo Accorsi
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Jörg Rademann
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| |
Collapse
|