1
|
Breault É, Desgagné M, Neve JD, Côté J, Barlow TMA, Ballet S, Sarret P. Multitarget ligands that comprise opioid/nonopioid pharmacophores for pain management: Current state of the science. Pharmacol Res 2024; 209:107408. [PMID: 39307212 DOI: 10.1016/j.phrs.2024.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Chronic pain, which affects more than one-third of the world's population, represents one of the greatest medical challenges of the 21st century, yet its effective management remains sub-optimal. The 'gold standard' for the treatment of moderate to severe pain consists of opioid ligands, such as morphine and fentanyl, that target the µ-opioid receptor (MOP). Paradoxically, these opioids also cause serious side effects, including constipation, respiratory depression, tolerance, and addiction. In addition, the development of opioid-use disorders, such as opioid diversion, misuse, and abuse, has led to the current opioid crisis, with dramatic increases in addiction, overdoses, and ultimately deaths. As pain is a complex, multidimensional experience involving a variety of pathways and mediators, dual or multitarget ligands that can bind to more than one receptor and exert complementary analgesic effects, represent a promising avenue for pain relief. Indeed, unlike monomodal therapeutic approaches, the modulation of several endogenous nociceptive systems can often result in an additive or even synergistic effect, thereby improving the analgesic-to-side-effect ratio. Here, we provide a comprehensive overview of research efforts towards the development of dual- or multi-targeting opioid/nonopioid hybrid ligands for effective and safer pain management. We reflect on the underpinning discovery rationale by discussing the design, medicinal chemistry, and in vivo pharmacological effects of multitarget antinociceptive compounds.
Collapse
Affiliation(s)
- Émile Breault
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Michael Desgagné
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Jérôme Côté
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Thomas M A Barlow
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Philippe Sarret
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
2
|
Cannabinoid CB2 Receptors in Neurodegenerative Proteinopathies: New Insights and Therapeutic Potential. Biomedicines 2022; 10:biomedicines10123000. [PMID: 36551756 PMCID: PMC9775106 DOI: 10.3390/biomedicines10123000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Some of the most prevalent neurodegenerative disorders, including Alzheimer's and Parkinson's disease, are proteinopathies characterized by the accumulation of specific protein aggregates in the brain. Such misfolded protein aggregates can trigger modulation of the innate and adaptive immune systems and subsequently lead to chronic neuroinflammation that drives the onset and progression of neurodegenerative diseases. Since there is still no effective disease-modifying treatment, new therapeutic targets for neurodegenerative proteinopathies have been sought. The endocannabinoid system, and in particular the cannabinoid CB2 receptors, have been extensively studied, due to their important role in neuroinflammation, especially in microglial cells. Several studies have shown promising effects of CB2 receptor activation on reducing protein aggregation-based pathology as well as on attenuating inflammation and several dementia-related symptoms. In this review, we discuss the available data on the role of CB2 receptors in neuroinflammation and the potential benefits and limitations of specific agonists of these receptors in the therapy of neurodegenerative proteinopathies.
Collapse
|
3
|
Sachdev S, Cabalteja CC, Cheloha RW. Strategies for targeting cell surface proteins using multivalent conjugates and chemical biology. Methods Cell Biol 2021; 166:205-222. [PMID: 34752333 PMCID: PMC8895325 DOI: 10.1016/bs.mcb.2021.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Proper function of receptors on the cell surface is essential for homeostasis. Compounds that target cell surface receptors to address dysregulation have proven exceptionally successful as therapeutic agents; however, the development of compounds with the desired specificity for receptors, cells, and tissues of choice has proven difficult in some cases. The use of compounds that can engage more than one binding site at the cell surface offers a path toward improving biological specificity or pharmacological properties. In this chapter we summarize historical context for the development of such bivalent compounds. We focus on developments in chemical methods and biological engineering to provide bivalent compounds in which the high affinity and specificity of antibodies are leveraged to create multifunctional conjugates with new and useful properties. The development of methods to meld biological macromolecules with synthetic compounds will facilitate modulation of receptor biology in ways not previously possible.
Collapse
Affiliation(s)
- Shivani Sachdev
- National Institutes of Health, National Institute of Diabetes, Digestive, and Kidney Diseases (NIDDK), Laboratory of Bioorganic Chemistry, Bethesda, MD, United States
| | - Chino C Cabalteja
- National Institutes of Health, National Institute of Diabetes, Digestive, and Kidney Diseases (NIDDK), Laboratory of Bioorganic Chemistry, Bethesda, MD, United States
| | - Ross W Cheloha
- National Institutes of Health, National Institute of Diabetes, Digestive, and Kidney Diseases (NIDDK), Laboratory of Bioorganic Chemistry, Bethesda, MD, United States.
| |
Collapse
|
4
|
Basagni F, Rosini M, Decker M. Functionalized Cannabinoid Subtype 2 Receptor Ligands: Fluorescent, PET, Photochromic and Covalent Molecular Probes. ChemMedChem 2020; 15:1374-1389. [PMID: 32578963 PMCID: PMC7497013 DOI: 10.1002/cmdc.202000298] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 01/01/2023]
Abstract
Cannabinoid subtype 2 receptors (CB2 Rs) are G protein-coupled receptors (GPCRs) belonging to the endocannabinoid system, a complex network of signalling pathways leading to the regulation of key physiological processes. Interestingly, CB2 Rs are strongly up-regulated in pathological conditions correlated with the onset of inflammatory events like cancer and neurodegenerative diseases. Therefore, CB2 Rs represent an important biological target for therapeutic as well as diagnostic purposes. No CB2 R-selective drugs are yet on the market, thus underlining a that deeper comprehension of CB2 Rs' complex activation pathways and their role in the regulation of diseases is needed. Herein, we report an overview of pharmacological and imaging tools such as fluorescent, positron emission tomography (PET), photochromic and covalent selective CB2 R ligands. These molecular probes can be used in vitro as well as in vivo to investigate and explore the unravelled role(s) of CB2 Rs, and they can help to design suitable CB2 R-targeted drugs.
Collapse
Affiliation(s)
- Filippo Basagni
- Pharmaceutical and Medicinal Chemistry Institute of Pharmacy and Food ChemistryJulius Maximilian University of WürzburgAm Hubland97074WürzburgGermany
- Department of Pharmacy and BiotechnologyUniversity of BolognaVia Belmeloro 640126BolognaItaly
| | - Michela Rosini
- Department of Pharmacy and BiotechnologyUniversity of BolognaVia Belmeloro 640126BolognaItaly
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry Institute of Pharmacy and Food ChemistryJulius Maximilian University of WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
5
|
Morales P, Jagerovic N. Novel approaches and current challenges with targeting the endocannabinoid system. Expert Opin Drug Discov 2020; 15:917-930. [PMID: 32336154 PMCID: PMC7502221 DOI: 10.1080/17460441.2020.1752178] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The pathophysiological relevance of the endocannabinoid system has been widely demonstrated in a variety of diseases including cancer, neurological disorders, and metabolic issues. Therefore, targeting the receptors and the endogenous machinery involved in this system can provide a successful therapeutic outcome. Ligands targeting the canonical cannabinoid receptors, CB1 and CB2, along with inhibitors of the endocannabinoid enzymes have been thoroughly studied in diverse disease models. In fact, phytocannabinoids such as cannabidiol or Δ9-tetrahydrocannabinol are currently on the market for the management of neuropathic pain due to spasticity in multiple sclerosis or seizures in children epilepsy amongst others. AREAS COVERED Challenges in the pharmacology of cannabinoids arise from its pharmacokinetics, off-target effects, and psychoactive effects. In this context, the current review outlines the novel molecular approaches emerging in the field discussing their clinical potential. EXPERT OPINION Even if orthosteric CB1 and CB2 ligands are on the forefront in cannabinoid clinical research, emerging strategies such as allosteric or biased modulation of these receptors along with controlled off-targets effects may increase the therapeutic potential of cannabinoids.
Collapse
Affiliation(s)
- Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
6
|
Newman AH, Battiti FO, Bonifazi A. 2016 Philip S. Portoghese Medicinal Chemistry Lectureship: Designing Bivalent or Bitopic Molecules for G-Protein Coupled Receptors. The Whole Is Greater Than the Sum of Its Parts. J Med Chem 2020; 63:1779-1797. [PMID: 31499001 PMCID: PMC8281448 DOI: 10.1021/acs.jmedchem.9b01105] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The genesis of designing bivalent or bitopic molecules that engender unique pharmacological properties began with Portoghese's work directed toward opioid receptors, in the early 1980s. This strategy has evolved as an attractive way to engineer highly selective compounds for targeted G-protein coupled receptors (GPCRs) with optimized efficacies and/or signaling bias. The emergence of X-ray crystal structures of many GPCRs and the identification of both orthosteric and allosteric binding sites have provided further guidance to ligand drug design that includes a primary pharmacophore (PP), a secondary pharmacophore (SP), and a linker between them. It is critical to note the synergistic relationship among all three of these components as they contribute to the overall interaction of these molecules with their receptor proteins and that strategically designed combinations have and will continue to provide the GPCR molecular tools of the future.
Collapse
Affiliation(s)
- Amy Hauck Newman
- Corresponding author: Amy H. Newman: Phone: (443)-740-2887. Fax: (443)-740-2111.
| | - Francisco O. Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
7
|
Botta J, Appelhans J, McCormick PJ. Continuing challenges in targeting oligomeric GPCR-based drugs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:213-245. [DOI: 10.1016/bs.pmbts.2019.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Allosteric Modulation of Cannabinoid Receptor 1-Current Challenges and Future Opportunities. Int J Mol Sci 2019; 20:ijms20235874. [PMID: 31771126 PMCID: PMC6928801 DOI: 10.3390/ijms20235874] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
The cannabinoid receptor type 1 (CB1R), a G protein-coupled receptor (GPCR), plays an essential role in the control of many physiological processes such as hunger, memory loss, gastrointestinal activity, catalepsy, fear, depression, and chronic pain. Therefore, it is an attractive target for drug discovery to manage pain, neurodegenerative disorders, obesity, and substance abuse. However, the psychoactive adverse effects, generated by CB1R activation in the brain, limit the use of the orthosteric CB1R ligands as drugs. The discovery of CB1R allosteric modulators during the last decade provided new tools to target the CB1R. Moreover, application of the site-directed mutagenesis in combination with advanced physical methods, especially X-ray crystallography and computational modeling, has opened new horizons for understanding the complexity of the structure, function, and activity of cannabinoid receptors. In this paper, we present the latest advances in research on the CB1R, its allosteric modulation and allosteric ligands, and their translational potential. We focused on structural essentials of the cannabinoid 1 receptor- ligand (drug) interactions, as well as modes of CB1R signaling regulation.
Collapse
|
9
|
Scheiner M, Dolles D, Gunesch S, Hoffmann M, Nabissi M, Marinelli O, Naldi M, Bartolini M, Petralla S, Poeta E, Monti B, Falkeis C, Vieth M, Hübner H, Gmeiner P, Maitra R, Maurice T, Decker M. Dual-Acting Cholinesterase-Human Cannabinoid Receptor 2 Ligands Show Pronounced Neuroprotection in Vitro and Overadditive and Disease-Modifying Neuroprotective Effects in Vivo. J Med Chem 2019; 62:9078-9102. [PMID: 31609608 PMCID: PMC7640639 DOI: 10.1021/acs.jmedchem.9b00623] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have designed and synthesized a series of 14 hybrid molecules out of the cholinesterase (ChE) inhibitor tacrine and a benzimidazole-based human cannabinoid receptor subtype 2 (hCB2R) agonist and investigated them in vitro and in vivo. The compounds are potent ChE inhibitors, and for the most promising hybrids, the mechanism of human acetylcholinesterase (hAChE) inhibition as well as their ability to interfere with AChE-induced aggregation of β-amyloid (Aβ), and Aβ self-aggregation was assessed. All hybrids were evaluated for affinity and selectivity for hCB1R and hCB2R. To ensure that the hybrids retained their agonist character, the expression of cAMP-regulated genes was quantified, and potency and efficacy were determined. Additionally, the effects of the hybrids on microglia activation and neuroprotection on HT-22 cells were investigated. The most promising in vitro hybrids showed pronounced neuroprotection in an Alzheimer's mouse model at low dosage (0.1 mg/kg, i.p.), lacking hepatotoxicity even at high dose (3 mg/kg, i.p.).
Collapse
Affiliation(s)
- Matthias Scheiner
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Dominik Dolles
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sandra Gunesch
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Matthias Hoffmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Massimo Nabissi
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Oliviero Marinelli
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Marina Naldi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Eleonora Poeta
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Christina Falkeis
- Pathology, Clinical Center Bayreuth, Preuschwitzer Straße 101, 95445 Bayreuth, Germany
| | - Michael Vieth
- Pathology, Clinical Center Bayreuth, Preuschwitzer Straße 101, 95445 Bayreuth, Germany
| | - Harald Hübner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Schuhstraße 19, 91052 Erlangen, Germany
| | - Peter Gmeiner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Schuhstraße 19, 91052 Erlangen, Germany
| | - Rangan Maitra
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Tangui Maurice
- MMDN, University of Montpellier, INSERM, EPHE, UMR-S1198, 34095 Montpellier, France
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
10
|
Páez JA, Campillo NE. Innovative Therapeutic Potential of Cannabinoid Receptors as Targets in Alzheimer’s Disease and Less Well-Known Diseases. Curr Med Chem 2019; 26:3300-3340. [DOI: 10.2174/0929867325666180226095132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
:
The discovery of cannabinoid receptors at the beginning of the 1990s, CB1 cloned
in 1990 and CB2 cloned in 1993, and the availability of selective and potent cannabimimetics
could only be justified by the existence of endogenous ligands that are capable of binding to
them. Thus, the characterisation and cloning of the first cannabinoid receptor (CB1) led to the
isolation and characterisation of the first endocannabinoid, arachidonoylethanolamide (AEA),
two years later and the subsequent identification of a family of lipid transmitters known as the
fatty acid ester 2-arachidonoylglycerol (2-AG).
:
The endogenous cannabinoid system is a complex signalling system that comprises transmembrane
endocannabinoid receptors, their endogenous ligands (the endocannabinoids), the
specific uptake mechanisms and the enzymatic systems related to their biosynthesis and degradation.
:
The endocannabinoid system has been implicated in a wide diversity of biological processes,
in both the central and peripheral nervous systems, including memory, learning, neuronal development,
stress and emotions, food intake, energy regulation, peripheral metabolism, and
the regulation of hormonal balance through the endocrine system.
:
In this context, this article will review the current knowledge of the therapeutic potential of
cannabinoid receptor as a target in Alzheimer’s disease and other less well-known diseases
that include, among others, multiple sclerosis, bone metabolism, and Fragile X syndrome.
:
The therapeutic applications will be addressed through the study of cannabinoid agonists acting
as single drugs and multi-target drugs highlighting the CB2 receptor agonist.
Collapse
Affiliation(s)
- Juan A. Páez
- Instituto de Quimica Medica (IQM-CSIC). C/ Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Nuria E. Campillo
- Centro de Investigaciones Biologicas (CIB-CSIC). C/ Ramiro de Maeztu, 9, 28040, Madrid, Spain
| |
Collapse
|
11
|
Dvorácskó S, Keresztes A, Mollica A, Stefanucci A, Macedonio G, Pieretti S, Zádor F, Walter FR, Deli MA, Kékesi G, Bánki L, Tuboly G, Horváth G, Tömböly C. Preparation of bivalent agonists for targeting the mu opioid and cannabinoid receptors. Eur J Med Chem 2019; 178:571-588. [PMID: 31220675 DOI: 10.1016/j.ejmech.2019.05.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/30/2019] [Accepted: 05/12/2019] [Indexed: 11/17/2022]
Abstract
In order to obtain novel pharmacological tools and to investigate a multitargeting analgesic strategy, the CB1 and CB2 cannabinoid receptor agonist JWH-018 was conjugated with the opiate analgesic oxycodone or with an enkephalin related tetrapeptide. The opioid and cannabinoid pharmacophores were coupled via spacers of different length and chemical structure. In vitro radioligand binding experiments confirmed that the resulting bivalent compounds bound both to the opioid and to the cannabinoid receptors with moderate to high affinity. The highest affinity bivalent derivatives 11 and 19 exhibited agonist properties in [35S]GTPγS binding assays. These compounds activated MOR and CB (11 mainly CB2, whereas 19 mainly CB1) receptor-mediated signaling, as it was revealed by experiments using receptor specific antagonists. In rats both 11 and 19 exhibited antiallodynic effect similar to the parent drugs in 20 μg dose at spinal level. These results support the strategy of multitargeting G-protein coupled receptors to develop lead compounds with antinociceptive properties.
Collapse
MESH Headings
- Analgesics, Opioid/chemical synthesis
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/pharmacology
- Animals
- Dose-Response Relationship, Drug
- Enkephalins/chemistry
- Enkephalins/pharmacology
- Indoles/chemistry
- Indoles/pharmacology
- Mice
- Molecular Structure
- Naphthalenes/chemistry
- Naphthalenes/pharmacology
- Oxycodone/chemistry
- Oxycodone/pharmacology
- Rats
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Szabolcs Dvorácskó
- A Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary
| | - Attila Keresztes
- A Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary
| | - Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Azzurra Stefanucci
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Giorgia Macedonio
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Stefano Pieretti
- Istituto Superiore di Sanità, Centro Nazionale Ricerca e Valutazione Preclinica e Clinica dei Farmaci, Viale Regina Elena 299, 00161, Rome, Italy
| | - Ferenc Zádor
- Laboratory of Opioid Research, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary
| | - Fruzsina R Walter
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary
| | - Mária A Deli
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary
| | - Gabriella Kékesi
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720, Szeged, Dóm tér 10., Hungary
| | - László Bánki
- Department of Traumatology, Faculty of Medicine, University of Szeged, 6725, Szeged, Semmelweis u. 6., Hungary
| | - Gábor Tuboly
- Department of Neurology, Faculty of Medicine, University of Szeged, 6725, Szeged, Semmelweis u. 6., Hungary
| | - Gyöngyi Horváth
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720, Szeged, Dóm tér 10., Hungary
| | - Csaba Tömböly
- A Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary.
| |
Collapse
|
12
|
Moreno E, Cavic M, Krivokuca A, Casadó V, Canela E. The Endocannabinoid System as a Target in Cancer Diseases: Are We There Yet? Front Pharmacol 2019; 10:339. [PMID: 31024307 PMCID: PMC6459931 DOI: 10.3389/fphar.2019.00339] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system (ECS) has been placed in the anti-cancer spotlight in the last decade. The immense data load published on its dual role in both tumorigenesis and inhibition of tumor growth and metastatic spread has transformed the cannabinoid receptors CB1 (CB1R) and CB2 (CB2R), and other members of the endocannabinoid-like system, into attractive new targets for the treatment of various cancer subtypes. Although the clinical use of cannabinoids has been extensively documented in the palliative setting, clinical trials on their application as anti-cancer drugs are still ongoing. As drug repurposing is significantly faster and more economical than de novo introduction of a new drug into the clinic, there is hope that the existing pharmacokinetic and safety data on the ECS ligands will contribute to their successful translation into oncological healthcare. CB1R and CB2R are members of a large family of membrane proteins called G protein-coupled receptors (GPCR). GPCRs can form homodimers, heterodimers and higher order oligomers with other GPCRs or non-GPCRs. Currently, several CB1R and CB2R-containing heteromers have been reported and, in cancer cells, CB2R form heteromers with the G protein-coupled chemokine receptor CXCR4, the G protein-coupled receptor 55 (GPR55) and the tyrosine kinase receptor (TKR) human V-Erb-B2 Avian Erythroblastic Leukemia Viral Oncogene Homolog 2 (HER2). These protein complexes possess unique pharmacological and signaling properties, and their modulation might affect the antitumoral activity of the ECS. This review will explore the potential of the endocannabinoid network in the anti-cancer setting as well as the clinical and ethical pitfalls behind it, and will develop on the value of cannabinoid receptor heteromers as potential new targets for anti-cancer therapies and as prognostic biomarkers.
Collapse
Affiliation(s)
- Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Milena Cavic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Ana Krivokuca
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Enric Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
13
|
Cortés A, Casadó-Anguera V, Moreno E, Casadó V. The heterotetrameric structure of the adenosine A 1-dopamine D 1 receptor complex: Pharmacological implication for restless legs syndrome. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 84:37-78. [PMID: 31229177 DOI: 10.1016/bs.apha.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dopaminergic and purinergic signaling play a pivotal role in neurological diseases associated with motor symptoms, including Parkinson's disease (PD), multiple sclerosis, amyotrophic lateral sclerosis, Huntington disease, Restless Legs Syndrome (RLS), spinal cord injury (SCI), and ataxias. Extracellular dopamine and adenosine exert their functions interacting with specific dopamine (DR) or adenosine (AR) receptors, respectively, expressed on the surface of target cells. These receptors are members of the family A of G protein-coupled receptors (GPCRs), which is the largest protein superfamily in mammalian genomes. GPCRs are target of about 40% of all current marketed drugs, highlighting their importance in clinical medicine. The striatum receives the densest dopamine innervations and contains the highest density of dopamine receptors. The modulatory role of adenosine on dopaminergic transmission depends largely on the existence of antagonistic interactions mediated by specific subtypes of DRs and ARs, the so-called A2AR-D2R and A1R-D1R interactions. Due to the dopamine/adenosine antagonism in the CNS, it was proposed that ARs and DRs could form heteromers in the neuronal cell surface. Therefore, adenosine can affect dopaminergic signaling through receptor-receptor interactions and by modulations in their shared intracellular pathways in the striatum and spinal cord. In this work we describe the allosteric modulations between GPCR protomers, focusing in those of adenosine and dopamine within the A1R-D1R heteromeric complex, which is involved in RLS. We also propose that the knowledge about the intricate allosteric interactions within the A1R-D1R heterotetramer, may facilitate the treatment of motor alterations, not only when the dopamine pathway is hyperactivated (RLS, chorea, etc.) but also when motor function is decreased (SCI, aging, PD, etc.).
Collapse
Affiliation(s)
- Antoni Cortés
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Verònica Casadó-Anguera
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Estefanía Moreno
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Vicent Casadó
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
14
|
Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer's disease and potential therapeutic strategies. Prog Neurobiol 2018; 174:53-89. [PMID: 30599179 DOI: 10.1016/j.pneurobio.2018.12.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/04/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
AD is a progressive neurodegenerative disorder and a leading cause of dementia in an aging population worldwide. The enormous challenge which AD possesses to global healthcare makes it as urgent as ever for the researchers to develop innovative treatment strategies to fight this disease. An in-depth analysis of the extensive available data associated with the AD is needed for a more comprehensive understanding of underlying molecular mechanisms and pathophysiological pathways associated with the onset and progression of the AD. The currently understood pathological and biochemical manifestations include cholinergic, Aβ, tau, excitotoxicity, oxidative stress, ApoE, CREB signaling pathways, insulin resistance, etc. However, these hypotheses have been criticized with several conflicting reports for their involvement in the disease progression. Several issues need to be addressed such as benefits to cost ratio with cholinesterase therapy, the dilemma of AChE selectivity over BChE, BBB permeability of peptidic BACE-1 inhibitors, hurdles related to the implementation of vaccination and immunization therapy, and clinical failure of candidates related to newly available targets. The present review provides an insight to the different molecular mechanisms involved in the development and progression of the AD and potential therapeutic strategies, enlightening perceptions into structural information of conventional and novel targets along with the successful applications of computational approaches for the design of target-specific inhibitors.
Collapse
Affiliation(s)
- Piyoosh Sharma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pavan Srivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ankit Seth
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Prabhash Nath Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Anupam G Banerjee
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushant K Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
15
|
Romanucci V, Di Fabio G, Zarrelli A. A New Class of Synthetic Flavonolignan-Like Dimers: Still Few Molecules, but with Attractive Properties. Molecules 2018; 24:E108. [PMID: 30597952 PMCID: PMC6337569 DOI: 10.3390/molecules24010108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
In recent years, there has been increasing interest in dimeric molecules due to reports of their promising therapeutic value in the treatment of numerous diseases (such as cancer, HIV, Alzheimer's and, malaria). Many reports in the literature have highlighted the ability of these molecules to interact not only with specific biologic receptors but also to induce a biological response that more than doubles the results of the corresponding monomeric counterpart. In this regard, flavonolignan dimers or simply bi-flavonolignans are an emerging class of dimeric compounds that unlike bi-flavonoids, which are very widespread in nature, consist of synthetic dimers of some flavonolignans isolated from the milk thistle Silybum marianum [L. Gaertn. (Asteraceae)]. This mini-review will discuss recent developments in the synthesis, characterization and antioxidant activity of new families of flavonolignan dimers, in light of emerging medicinal chemistry strategies.
Collapse
Affiliation(s)
- Valeria Romanucci
- Department of Chemical Sciences, University of Napoli 'Federico II', Via Cintia 4, I-80126 Napoli, Italy.
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Napoli 'Federico II', Via Cintia 4, I-80126 Napoli, Italy.
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Napoli 'Federico II', Via Cintia 4, I-80126 Napoli, Italy.
| |
Collapse
|
16
|
Dolles D, Hoffmann M, Gunesch S, Marinelli O, Möller J, Santoni G, Chatonnet A, Lohse MJ, Wittmann HJ, Strasser A, Nabissi M, Maurice T, Decker M. Structure-Activity Relationships and Computational Investigations into the Development of Potent and Balanced Dual-Acting Butyrylcholinesterase Inhibitors and Human Cannabinoid Receptor 2 Ligands with Pro-Cognitive in Vivo Profiles. J Med Chem 2018; 61:1646-1663. [PMID: 29400965 DOI: 10.1021/acs.jmedchem.7b01760] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The enzyme butyrylcholinesterase (BChE) and the human cannabinoid receptor 2 (hCB2R) represent promising targets for pharmacotherapy in the later stages of Alzheimer's disease. We merged pharmacophores for both targets into small benzimidazole-based molecules, investigated SARs, and identified several dual-acting ligands with a balanced affinity/inhibitory activity and an excellent selectivity over both hCB1R and hAChE. A homology model for the hCB2R was developed based on the hCB1R crystal structure and used for molecular dynamics studies to investigate binding modes. In vitro studies proved hCB2R agonism. Unwanted μ-opioid receptor affinity could be designed out. One well-balanced dual-acting and selective hBChE inhibitor/hCB2R agonist showed superior in vivo activity over the lead CB2 agonist with regards to cognition improvement. The data shows the possibility to combine a small molecule with selective and balanced GPCR-activity/enzyme inhibition and in vivo activity for the therapy of AD and may help to rationalize the development of other dual-acting ligands.
Collapse
Affiliation(s)
- Dominik Dolles
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| | - Matthias Hoffmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| | - Sandra Gunesch
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| | - Oliviero Marinelli
- School of Pharmacy, Department of Experimental Medicine, University of Camerino , I-62032 Camerino, Italy
| | - Jan Möller
- Institute of Pharmacology and Toxicology, Julius Maximilian University of Würzburg , Versbacher Strabe 9, D-97078 Würzburg, Germany
| | - Giorgio Santoni
- School of Pharmacy, Department of Experimental Medicine, University of Camerino , I-62032 Camerino, Italy
| | - Arnaud Chatonnet
- INRA UMR866, University of Montpellier , F-34060 Montpellier, France
| | - Martin J Lohse
- Institute of Pharmacology and Toxicology, Julius Maximilian University of Würzburg , Versbacher Strabe 9, D-97078 Würzburg, Germany
| | - Hans-Joachim Wittmann
- Pharmaceutical and Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg , D-95053 Regensburg, Germany
| | - Andrea Strasser
- Pharmaceutical and Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg , D-95053 Regensburg, Germany
| | - Massimo Nabissi
- School of Pharmacy, Department of Experimental Medicine, University of Camerino , I-62032 Camerino, Italy
| | - Tangui Maurice
- INSERM UMR-S1198, University of Montpellier, EPHE , F-34095 Montpellier, France
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
17
|
Dolles D, Strasser A, Wittmann HJ, Marinelli O, Nabissi M, Pertwee RG, Decker M. The First Photochromic Affinity Switch for the Human Cannabinoid Receptor 2. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201700032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dominik Dolles
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius Maximilian University of Würzburg; Würzburg Germany
| | - Andrea Strasser
- Pharmaceutical and Medicinal Chemistry II; Institute of Pharmacy; University of Regensburg; Regensburg Germany
| | - Hans-Joachim Wittmann
- Pharmaceutical and Medicinal Chemistry II; Institute of Pharmacy; University of Regensburg; Regensburg Germany
| | - Oliviero Marinelli
- School of Pharmacy; Department of Experimental Medicine; University of Camerino; Camerino Italy
| | - Massimo Nabissi
- School of Pharmacy; Department of Experimental Medicine; University of Camerino; Camerino Italy
| | - Roger G. Pertwee
- School of Medicine, Medical Sciences and Nutrition; Institute of Medical Sciences; University of Aberdeen; Aberdeen Scotland UK
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius Maximilian University of Würzburg; Würzburg Germany
| |
Collapse
|
18
|
Murillo-Rodríguez E, Di Marzo V, Machado S, Rocha NB, Veras AB, Neto GAM, Budde H, Arias-Carrión O, Arankowsky-Sandoval G. Role of N-Arachidonoyl-Serotonin (AA-5-HT) in Sleep-Wake Cycle Architecture, Sleep Homeostasis, and Neurotransmitters Regulation. Front Mol Neurosci 2017; 10:152. [PMID: 28611585 PMCID: PMC5447686 DOI: 10.3389/fnmol.2017.00152] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022] Open
Abstract
The endocannabinoid system comprises several molecular entities such as endogenous ligands [anandamide (AEA) and 2-arachidonoylglycerol (2-AG)], receptors (CB1 and CB2), enzymes such as [fatty acid amide hydrolase (FAHH) and monoacylglycerol lipase (MAGL)], as well as the anandamide membrane transporter. Although the role of this complex neurobiological system in the sleep–wake cycle modulation has been studied, the contribution of the blocker of FAAH/transient receptor potential cation channel subfamily V member 1 (TRPV1), N-arachidonoyl-serotonin (AA-5-HT) in sleep has not been investigated. Thus, in the present study, varying doses of AA-5-HT (5, 10, or 20 mg/Kg, i.p.) injected at the beginning of the lights-on period of rats, caused no statistical changes in sleep patterns. However, similar pharmacological treatment given to animals at the beginning of the dark period decreased wakefulness (W) and increased slow wave sleep (SWS) as well as rapid eye movement sleep (REMS). Power spectra analysis of states of vigilance showed that injection of AA-5-HT during the lights-off period diminished alpha spectrum across alertness in a dose-dependent fashion. In opposition, delta power spectra was enhanced as well as theta spectrum, during SWS and REMS, respectively. Moreover, the highest dose of AA-5-HT decreased wake-related contents of neurotransmitters such as dopamine (DA), norepinephrine (NE), epinephrine (EP), serotonin (5-HT) whereas the levels of adenosine (AD) were enhanced. In addition, the sleep-inducing properties of AA-5-HT were confirmed since this compound blocked the increase in W caused by stimulants such as cannabidiol (CBD) or modafinil (MOD) during the lights-on period. Additionally, administration of AA-5-HT also prevented the enhancement in contents of DA, NE, EP, 5-HT and AD after CBD of MOD injection. Lastly, the role of AA-5-HT in sleep homeostasis was tested in animals that received either CBD or MOD after total sleep deprivation (TSD). The injection of CBD or MOD increased alertness during sleep rebound period after TSD. However, AA-5-HT blocked this effect by allowing animals to display an enhancement in sleep across sleep rebound period. Overall, our findings provide evidence that AA-5-HT is an important modulator of sleep, sleep homeostasis and neurotransmitter contents.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac MayabMérida, Mexico.,Grupo de Investigación en Envejecimiento, División Ciencias de la Salud, Universidad Anáhuac MayabMérida, Mexico.,Grupo de Investigación Desarrollos Tecnológicos para la Salud, División de Ingeniería y Ciencias Exactas, Universidad Anáhuac MayabMérida, Mexico.,Intercontinental Neuroscience Research Group
| | - Vincenzo Di Marzo
- Intercontinental Neuroscience Research Group.,Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle RicerchePozzuoli, Italy
| | - Sergio Machado
- Intercontinental Neuroscience Research Group.,Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de JaneiroRio de Janeiro, Brazil.,Postgraduate Program, Salgado de Oliveira UniversityRio de Janeiro, Brazil
| | - Nuno B Rocha
- Intercontinental Neuroscience Research Group.,Faculty of Health Sciences, Polytechnic Institute of PortoPorto, Portugal
| | - André B Veras
- Intercontinental Neuroscience Research Group.,Institute of Psychiatry, Federal University of Rio de JaneiroRio de Janeiro, Brazil.,Dom Bosco Catholic UniversityRio de Janeiro, Brazil
| | - Geraldo A M Neto
- Intercontinental Neuroscience Research Group.,Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Henning Budde
- Intercontinental Neuroscience Research Group.,Faculty of Human Sciences, Medical School HamburgHamburg, Germany.,Physical Activity, Physical Education, Health and Sport Research Centre (PAPESH), Sports Science Department, School of Science and Engineering Reykjavik UniversityReykjavik, Iceland.,Department of Health, Physical and Social Education, Lithuanian Sports UniversityKaunas, Lithuania
| | - Oscar Arias-Carrión
- Intercontinental Neuroscience Research Group.,Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General "Dr. Manuel Gea González"Ciudad de México, Mexico
| | - Gloria Arankowsky-Sandoval
- Intercontinental Neuroscience Research Group.,Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de YucatánMérida, Mexico
| |
Collapse
|
19
|
Decker M, Muñoz-Torrero D. Special Issue: "Molecules against Alzheimer". Molecules 2016; 21:molecules21121736. [PMID: 27999295 PMCID: PMC6274565 DOI: 10.3390/molecules21121736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
This Special Issue, entitled “Molecules against Alzheimer”, gathers a number of original articles, short communications, and review articles on recent research efforts toward the development of novel drug candidates, diagnostic agents and therapeutic approaches for Alzheimer’s disease (AD), the most prevalent neurodegenerative disorder and a leading cause of death worldwide. This Special Issue contains many interesting examples describing the design, synthesis, and pharmacological profiling of novel compounds that hit one or several key biological targets, such as cholinesterases, β-amyloid formation or aggregation, monoamine oxidase B, oxidative stress, biometal dyshomeostasis, mitochondrial dysfunction, serotonin and/or melatonin systems, the Wnt/β-catenin pathway, sigma receptors, nicotinamide phosphoribosyltransferase, or nuclear erythroid 2-related factor. The development of novel AD diagnostic agents based on tau protein imaging and the use of lithium or intranasal insulin for the prevention or the symptomatic treatment of AD is also covered in some articles of the Special Issue.
Collapse
Affiliation(s)
- Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Diego Muñoz-Torrero
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain.
| |
Collapse
|
20
|
Chanphai P, Agudelo D, Vesper AR, Bérubé G, Tajmir-Riahi HA. Testosterone and its dimers alter tRNA morphology. J Pharm Biomed Anal 2016; 134:269-274. [PMID: 27930994 DOI: 10.1016/j.jpba.2016.11.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/28/2016] [Indexed: 12/28/2022]
Abstract
The morphology of tRNA was studied upon conjugation with testosterone and its aliphatic and aromatic dimers, using multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling. Structural analysis showed that testosterone binds tRNA through A62, A64, C60, C61, C63, G51, U50 and U59 bases. The binding affinity was testosterone dimer-aromatic>testosterone dimer-aliphatic>testosterone. The steroid loading efficacy was 35-45%. Transmission electron microscopy showed major changes in tRNA morphology upon testosterone interaction with an increase in the diameter of the tRNA aggregate, indicating encapsulation of testosterone by tRNA.
Collapse
Affiliation(s)
- P Chanphai
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - D Agudelo
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - A R Vesper
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - G Bérubé
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - H A Tajmir-Riahi
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada.
| |
Collapse
|
21
|
Navarro G, Morales P, Rodríguez-Cueto C, Fernández-Ruiz J, Jagerovic N, Franco R. Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders. Front Neurosci 2016; 10:406. [PMID: 27679556 PMCID: PMC5020102 DOI: 10.3389/fnins.2016.00406] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/22/2016] [Indexed: 12/04/2022] Open
Abstract
Endocannabinoids activate two types of specific G-protein-coupled receptors (GPCRs), namely cannabinoid CB1 and CB2. Contrary to the psychotropic actions of agonists of CB1 receptors, and serious side effects of the selective antagonists of this receptor, drugs acting on CB2 receptors appear as promising drugs to combat CNS diseases (Parkinson's disease, Huntington's chorea, cerebellar ataxia, amyotrohic lateral sclerosis). Differential localization of CB2 receptors in neural cell types and upregulation in neuroinflammation are keys to understand the therapeutic potential in inter alia diseases that imply progressive neurodegeneration. Medicinal chemistry approaches are now engaged to develop imaging tools to map receptors in the living human brain, to develop more efficacious agonists, and to investigate the possibility to develop allosteric modulators.
Collapse
Affiliation(s)
- Gemma Navarro
- Department of Biochemistry and Molecular Biomedicine, University of BarcelonaBarcelona, Spain; Centro de Investigación en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadrid, Spain; Cell and Molecular Neuropharmacology, Institut de Biomedicina (IBUB), Universitat de BarcelonaBarcelona, Spain
| | - Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Center for Drug Discovery, University of North Carolina at GreensboroGreensboro, NC, USA
| | - Carmen Rodríguez-Cueto
- Centro de Investigación en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad ComplutenseMadrid, Spain; Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
| | - Javier Fernández-Ruiz
- Centro de Investigación en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad ComplutenseMadrid, Spain; Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, University of BarcelonaBarcelona, Spain; Centro de Investigación en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadrid, Spain; Cell and Molecular Neuropharmacology, Institut de Biomedicina (IBUB), Universitat de BarcelonaBarcelona, Spain
| |
Collapse
|
22
|
Morales P, Hernandez-Folgado L, Goya P, Jagerovic N. Cannabinoid receptor 2 (CB2) agonists and antagonists: a patent update. Expert Opin Ther Pat 2016; 26:843-56. [PMID: 27215781 DOI: 10.1080/13543776.2016.1193157] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Modulation of the CB2 receptor is an interesting approach for pain and inflammation, arthritis, addictions, neuroprotection, and cancer, among other possible therapeutic applications, and is devoid of central side effects. AREAS COVERED This review highlights the novel scaffolds for CB2 ligands and the diverse therapeutic applications for CB2 modulators disclosed in patents published since 2012. EXPERT OPINION Structural diversity of CB2 modulator scaffolds characterized the patent literature. Several CB2 agonists reached clinical Phase II for pain management and inflammation. Other therapeutic applications need to be explored such as neuroprotection and/or neurodegeneration.
Collapse
Affiliation(s)
- Paula Morales
- a Instituto de Química Médica , Consejo Superior de Investigaciones Científicas , Madrid , Spain
| | - Laura Hernandez-Folgado
- a Instituto de Química Médica , Consejo Superior de Investigaciones Científicas , Madrid , Spain
| | - Pilar Goya
- a Instituto de Química Médica , Consejo Superior de Investigaciones Científicas , Madrid , Spain
| | - Nadine Jagerovic
- a Instituto de Química Médica , Consejo Superior de Investigaciones Científicas , Madrid , Spain
| |
Collapse
|
23
|
Dolles D, Nimczick M, Scheiner M, Ramler J, Stadtmüller P, Sawatzky E, Drakopoulos A, Sotriffer C, Wittmann HJ, Strasser A, Decker M. Aminobenzimidazoles and Structural Isomers as Templates for Dual-Acting Butyrylcholinesterase Inhibitors andhCB2R Ligands To Combat Neurodegenerative Disorders. ChemMedChem 2015; 11:1270-83. [DOI: 10.1002/cmdc.201500418] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Dominik Dolles
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Martin Nimczick
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Matthias Scheiner
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Jacqueline Ramler
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Patricia Stadtmüller
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Edgar Sawatzky
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Antonios Drakopoulos
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Christoph Sotriffer
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Hans-Joachim Wittmann
- Pharmaceutical and Medicinal Chemistry II; Institute of Pharmacy; University of Regensburg; 95053 Regensburg Germany
| | - Andrea Strasser
- Pharmaceutical and Medicinal Chemistry II; Institute of Pharmacy; University of Regensburg; 95053 Regensburg Germany
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|