1
|
Di Chio C, Starvaggi J, Totaro N, Previti S, Natale B, Cosconati S, Bogacz M, Schirmeister T, Legac J, Rosenthal PJ, Zappalà M, Ettari R. Development of Novel Peptidyl Nitriles Targeting Rhodesain and Falcipain-2 for the Treatment of Sleeping Sickness and Malaria. Int J Mol Sci 2024; 25:4410. [PMID: 38673995 PMCID: PMC11050014 DOI: 10.3390/ijms25084410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
In recent decades, neglected tropical diseases and poverty-related diseases have become a serious health problem worldwide. Among these pathologies, human African trypanosomiasis, and malaria present therapeutic problems due to the onset of resistance, toxicity problems and the limited spectrum of action. In this drug discovery process, rhodesain and falcipain-2, of Trypanosoma brucei rhodesiense and Plasmodium falciparum, are currently considered the most promising targets for the development of novel antitrypanosomal and antiplasmodial agents, respectively. Therefore, in our study we identified a novel lead-like compound, i.e., inhibitor 2b, which we proved to be active against both targets, with a Ki = 5.06 µM towards rhodesain and an IC50 = 40.43 µM against falcipain-2.
Collapse
Affiliation(s)
- Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.D.C.); (J.S.); (N.T.); (S.P.); (M.Z.)
| | - Josè Starvaggi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.D.C.); (J.S.); (N.T.); (S.P.); (M.Z.)
| | - Noemi Totaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.D.C.); (J.S.); (N.T.); (S.P.); (M.Z.)
| | - Santo Previti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.D.C.); (J.S.); (N.T.); (S.P.); (M.Z.)
| | - Benito Natale
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy; (B.N.); (S.C.)
| | - Sandro Cosconati
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy; (B.N.); (S.C.)
| | - Marta Bogacz
- Institute of Organic Chemistry & Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße, 10, DE 07743 Jena, Germany;
| | - Tanja Schirmeister
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, DE 55128 Mainz, Germany;
| | - Jenny Legac
- Department of Medicine, San Francisco General Hospital, University of California, 1001 Potrero Avenue, San Francisco, CA 94110, USA; (J.L.); (P.J.R.)
| | - Philip J. Rosenthal
- Department of Medicine, San Francisco General Hospital, University of California, 1001 Potrero Avenue, San Francisco, CA 94110, USA; (J.L.); (P.J.R.)
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.D.C.); (J.S.); (N.T.); (S.P.); (M.Z.)
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.D.C.); (J.S.); (N.T.); (S.P.); (M.Z.)
| |
Collapse
|
2
|
Eurtivong C, Zimmer C, Schirmeister T, Butkinaree C, Saruengkhanphasit R, Niwetmarin W, Ruchirawat S, Bhambra AS. A structure-based virtual high-throughput screening, molecular docking, molecular dynamics and MM/PBSA study identified novel putative drug-like dual inhibitors of trypanosomal cruzain and rhodesain cysteine proteases. Mol Divers 2024; 28:531-551. [PMID: 36617352 DOI: 10.1007/s11030-023-10600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
Virtual screening a collection of ~ 25,000 ChemBridge molecule collection identified two nitrogenous heterocyclic molecules, 12 and 15, with potential dual inhibitory properties against trypanosomal cruzain and rhodesain cysteine proteases. Similarity search in DrugBank found the two virtual hits with novel chemical structures with unreported anti-trypanosomal activities. Investigations into the binding mechanism by molecular dynamics simulations for 100 ns revealed the molecules were able to occupy the binding sites and stabilise the protease complexes. Binding affinities calculated using the MM/PBSA method for the last 20 ns showed that the virtual hits have comparable binding affinities to other known inhibitors from literature suggesting both molecules as promising scaffolds with dual cruzain and rhodesain inhibition properties, i.e. 12 has predicted ΔGbind values of - 38.1 and - 38.2 kcal/mol to cruzain and rhodesain, respectively, and 15 has predicted ΔGbind values of - 34.4 and - 25.8 kcal/mol to rhodesain. Per residue binding free energy decomposition studies and visual inspection at 100 ns snapshots revealed hydrogen bonding and non-polar attractions with important amino acid residues that contributed to the ΔGbind values. The interactions are similar to those previously reported in the literature. The overall ADMET predictions for the two molecules were favourable for drug development with acceptable pharmacokinetic profiles and adequate oral bioavailability.
Collapse
Affiliation(s)
- Chatchakorn Eurtivong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol Univeristy, 447 Sri-Ayutthaya Road, Ratchathewi, Bangkok, 10400, Thailand.
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6, Talat Bang Khen, Lak Si, Bangkok, 10210, Thailand.
- Center of Excellence On Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand.
| | - Collin Zimmer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Chutikarn Butkinaree
- National Omics Center, National Science and Technology Development Agency, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Rungroj Saruengkhanphasit
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6, Talat Bang Khen, Lak Si, Bangkok, 10210, Thailand
- Center of Excellence On Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand
| | - Worawat Niwetmarin
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6, Talat Bang Khen, Lak Si, Bangkok, 10210, Thailand
- Center of Excellence On Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6, Talat Bang Khen, Lak Si, Bangkok, 10210, Thailand
- Center of Excellence On Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Avninder S Bhambra
- Leicester School of Allied Health Sciences, Faculty of Health and Life Sciences, de Montfort University, Leicester, UK
| |
Collapse
|
3
|
Alves ETM, Pernichelle FG, Nascimento LA, Ferreira GM, Ferreira EI. Covalent Inhibitors for Neglected Diseases: An Exploration of Novel Therapeutic Options. Pharmaceuticals (Basel) 2023; 16:1028. [PMID: 37513939 PMCID: PMC10385647 DOI: 10.3390/ph16071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Neglected diseases, primarily found in tropical regions of the world, present a significant challenge for impoverished populations. Currently, there are 20 diseases considered neglected, which greatly impact the health of affected populations and result in difficult-to-control social and economic consequences. Unfortunately, for the majority of these diseases, there are few or no drugs available for patient treatment, and the few drugs that do exist often lack adequate safety and efficacy. As a result, there is a pressing need to discover and design new drugs to address these neglected diseases. This requires the identification of different targets and interactions to be studied. In recent years, there has been a growing focus on studying enzyme covalent inhibitors as a potential treatment for neglected diseases. In this review, we will explore examples of how these inhibitors have been used to target Human African Trypanosomiasis, Chagas disease, and Malaria, highlighting some of the most promising results so far. Ultimately, this review aims to inspire medicinal chemists to pursue the development of new drug candidates for these neglected diseases, and to encourage greater investment in research in this area.
Collapse
Affiliation(s)
- Erick Tavares Marcelino Alves
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Filipe Gomes Pernichelle
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Lucas Adriano Nascimento
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Elizabeth Igne Ferreira
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| |
Collapse
|
4
|
Previti S, Ettari R, Di Chio C, Legac J, Bogacz M, Zimmer C, Schirmeister T, Rosenthal PJ, Zappalà M. Influence of amino acid size at the P3 position of N-Cbz-tripeptide Michael acceptors targeting falcipain-2 and rhodesain for the treatment of malaria and human african trypanosomiasis. Bioorg Chem 2023; 137:106587. [PMID: 37163812 DOI: 10.1016/j.bioorg.2023.106587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023]
Abstract
In recent decades, several structure-activity relationship (SAR) studies provided potent inhibitors of the cysteine proteases falcipain-2 (FP-2) and rhodesain (RD) from Plasmodium falciparum and Trypanosoma brucei rhodesiense, respectively. Whilst the roles of the warhead and residues targeting the P1 and P2 pockets of the proteases were extensively investigated, the roles of the amino acids occupying the S3 pocket were not widely assessed. Herein we report the synthesis and biological evaluation of a set of novel Michael acceptors bearing amino acids of increasing size at the P3 site (1a-g/2a-g, SPR20-SPR33) against FP-2, RD, P. falciparum, and T. brucei. Overall, the Michael acceptors bearing small amino acids at the P3 site exhibited the most potent inhibitory properties towards FP-2. In contrast, analogues with bulky residues at the P3 position were very potent rhodesain inhibitors. In cell based assays, single-digit micromolar EC50 values against the two protozoa were observed. These findings can be a starting point for the development of peptide-based FP-2 and RD inhibitors.
Collapse
Affiliation(s)
- Santo Previti
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Jenny Legac
- Department of Medicine, University of California, San Francisco, CA 94143, United States
| | - Marta Bogacz
- Institute of Organic Chemistry & Macromolecular Chemistry, Friedrich-Schiller-University of Jena, 07743 Jena, Germany
| | - Collin Zimmer
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, 55128 Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, 55128 Mainz, Germany
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA 94143, United States
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
5
|
Structure-based lead optimization of peptide-based vinyl methyl ketones as SARS-CoV-2 main protease inhibitors. Eur J Med Chem 2023; 247:115021. [PMID: 36549112 PMCID: PMC9751013 DOI: 10.1016/j.ejmech.2022.115021] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Despite several major achievements in the development of vaccines and antivirals, the fight against SARS-CoV-2 and the health problems accompanying COVID-19 are still ongoing. SARS-CoV-2 main protease (Mpro), an essential viral cysteine protease, is a crucial target for the development of antiviral agents. A virtual screening analysis of in-house cysteine protease inhibitors against SARS-CoV-2 Mpro allowed us to identify two hits (i.e., 1 and 2) bearing a methyl vinyl ketone warhead. Starting from these compounds, we herein report the development of Michael acceptors targeting SARS-CoV-2 Mpro, which differ from each other for the warhead and for the amino acids at the P2 site. The most promising vinyl methyl ketone-containing analogs showed sub-micromolar activity against the viral protease. SPR38, SPR39, and SPR41 were fully characterized, and additional inhibitory properties towards hCatL, which plays a key role in the virus entry into host cells, were observed. SPR39 and SPR41 exhibited single-digit micromolar EC50 values in a SARS-CoV-2 infection model in cell culture.
Collapse
|
6
|
The Anti-Amoebic Activity of a Peptidomimetic against Acanthamoeba castellanii. Microorganisms 2022; 10:microorganisms10122377. [PMID: 36557630 PMCID: PMC9782699 DOI: 10.3390/microorganisms10122377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Acanthamoeba is a free-living protozoan known to cause keratitis most commonly, especially among contact lens wearers. Treatment of Acanthamoeba keratitis is challenging as Acanthamoeba can encyst from the active form, a trophozoite, into a hibernating cyst that is refractory to antibiotics and difficult to kill; therefore, there is a need for more effective anti-amoebic strategies. In this study, we have evaluated the anti-amoebic activity of the antimicrobial peptide mimic RK-758 against Acanthamoeba castellanii. RK-758 peptidomimetic was subjected to biological assays to investigate its amoebicidal, amoebistatic, anti-encystation, and anti-excystation effects on A. castellanii. The anti-amoebic activity of the peptide mimic RK-758 was compared with chlorhexidine against the Acanthamoeba castellanii ATCC30868 and Acanthamoeba castellanii 044 (a clinical strain) with the concentrations of both ranging from 125 µM down to 7.81 µM. All experiments were performed in duplicate with three independent replicates. The data were represented as mean ± SE and analysed using a two-sample t-test and two-tailed distributions. A p < 0.05 was considered statistically significant. The peptidomimetic RK-758 had anti-Acanthamoeba activity against both trophozoites and cysts in a dose-dependent manner. The RK-758 had amoebicidal and growth inhibitory activities of ≥50% at a concentration between 125 µM and 15.6 µM against the trophozoites of both Acanthamoeba strains. Inhibitory effects on the cyst formation and trophozoite re-emergence from cysts were noted at similar concentrations. Chlorhexidine had 50% activity at 7.81 µM and above against the trophozoites and cysts of both strains. In the haemolysis assay, the RK-758 lysed horse RBCs at concentrations greater than 50 µM whereas lysis occurred at concentrations greater than 125 µM for the chlorhexidine. The peptidomimetic RK-758, therefore, has activity against both the trophozoite and cyst forms of Acanthamoeba and has the potential to be further developed as an anti-microbial agent against Acanthamoeba. RK-758 may also have use as an anti-amoebic disinfectant in contact lens solutions.
Collapse
|
7
|
Previti S, Ettari R, Calcaterra E, Di Chio C, Ravichandran R, Zimmer C, Hammerschmidt S, Wagner A, Bogacz M, Cosconati S, Schirmeister T, Zappalà M. Development of Urea-Bond-Containing Michael Acceptors as Antitrypanosomal Agents Targeting Rhodesain. ACS Med Chem Lett 2022; 13:1083-1090. [PMID: 35859868 PMCID: PMC9290002 DOI: 10.1021/acsmedchemlett.2c00084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
![]()
Human African Trypanosomiasis
(HAT) is a neglected tropical disease
widespread in sub-Saharan Africa. Rhodesain, a cysteine protease of Trypanosoma brucei rhodesiense, has been identified as a
valid target for the development of anti-HAT agents. Herein, we report
a series of urea-bond-containing Michael acceptors, which were demonstrated
to be potent rhodesain inhibitors with Ki values ranging from 0.15 to 2.51 nM, and five of them showed comparable k2nd values to that of K11777, a potent antitrypanosomal
agent. Moreover, most of the urea derivatives exhibited single-digit
micromolar activity against the protozoa, and the presence of substituents
at the P3 position appears to be essential for the antitrypanosomal
effect. Replacement of Phe with Leu at the P2 site kept unchanged
the inhibitory properties. Compound 7 (SPR7) showed the
best compromise in terms of rhodesain inhibition, selectivity, and
antiparasitic activity, thus representing a new lead compound for
future SAR studies.
Collapse
Affiliation(s)
- Santo Previti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Elsa Calcaterra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Rahul Ravichandran
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Collin Zimmer
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Stefan Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Annika Wagner
- Institute of Organic Chemistry & Macromolecular Chemistry, Friedrich-Schiller-University of Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Marta Bogacz
- Institute of Organic Chemistry & Macromolecular Chemistry, Friedrich-Schiller-University of Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Sandro Cosconati
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
8
|
Previti S, Ettari R, Di Chio C, Ravichandran R, Bogacz M, Hellmich UA, Schirmeister T, Cosconati S, Zappalà M. Development of Reduced Peptide Bond Pseudopeptide Michael Acceptors for the Treatment of Human African Trypanosomiasis. Molecules 2022; 27:3765. [PMID: 35744891 PMCID: PMC9229991 DOI: 10.3390/molecules27123765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Human African Trypanosomiasis (HAT) is an endemic protozoan disease widespread in the sub-Saharan region that is caused by T. b. gambiense and T. b. rhodesiense. The development of molecules targeting rhodesain, the main cysteine protease of T. b. rhodesiense, has led to a panel of inhibitors endowed with micro/sub-micromolar activity towards the protozoa. However, whilst impressive binding affinity against rhodesain has been observed, the limited selectivity towards the target still remains a hard challenge for the development of antitrypanosomal agents. In this paper, we report the synthesis, biological evaluation, as well as docking studies of a series of reduced peptide bond pseudopeptide Michael acceptors (SPR10-SPR19) as potential anti-HAT agents. The new molecules show Ki values in the low-micro/sub-micromolar range against rhodesain, coupled with k2nd values between 1314 and 6950 M-1 min-1. With a few exceptions, an appreciable selectivity over human cathepsin L was observed. In in vitro assays against T. b. brucei cultures, SPR16 and SPR18 exhibited single-digit micromolar activity against the protozoa, comparable to those reported for very potent rhodesain inhibitors, while no significant cytotoxicity up to 70 µM towards mammalian cells was observed. The discrepancy between rhodesain inhibition and the antitrypanosomal effect could suggest additional mechanisms of action. The biological characterization of peptide inhibitor SPR34 highlights the essential role played by the reduced bond for the antitrypanosomal effect. Overall, this series of molecules could represent the starting point for further investigations of reduced peptide bond-containing analogs as potential anti-HAT agents.
Collapse
Affiliation(s)
- Santo Previti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres 31, 98166 Messina, Italy; (R.E.); (C.D.C.)
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres 31, 98166 Messina, Italy; (R.E.); (C.D.C.)
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres 31, 98166 Messina, Italy; (R.E.); (C.D.C.)
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Rahul Ravichandran
- DiSTABiF, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy; (R.R.); (S.C.)
| | - Marta Bogacz
- Institute of Organic Chemistry & Macromolecular Chemistry, Friedrich-Schiller-University of Jena, Humboldtstraße 10, 07743 Jena, Germany; (M.B.); (U.A.H.)
| | - Ute A. Hellmich
- Institute of Organic Chemistry & Macromolecular Chemistry, Friedrich-Schiller-University of Jena, Humboldtstraße 10, 07743 Jena, Germany; (M.B.); (U.A.H.)
- Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudingerweg 5, 55128 Mainz, Germany;
| | - Sandro Cosconati
- DiSTABiF, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy; (R.R.); (S.C.)
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres 31, 98166 Messina, Italy; (R.E.); (C.D.C.)
| |
Collapse
|
9
|
Maiorana S, Ettari R, Previti S, Amendola G, Wagner A, Cosconati S, Hellmich UA, Schirmeister T, Zappalà M. Peptidyl Vinyl Ketone Irreversible Inhibitors of Rhodesain: Modifications of the P2 Fragment. ChemMedChem 2020; 15:1552-1561. [DOI: 10.1002/cmdc.202000360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Santina Maiorana
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Viale Annunziata 98168 Messina Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Viale Annunziata 98168 Messina Italy
| | - Santo Previti
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Viale Annunziata 98168 Messina Italy
| | - Giorgio Amendola
- DiSTABiFUniversity of Campania Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| | - Annika Wagner
- Department Centre for Biomolecular Magnetic Resonance (BMRZ) Max von Laue Str. 9 60438 Frankfurt Germany
- Department of Chemistry Section BiochemistryUniversity of Mainz Johann-Joachim-Becherweg 30 55128 Mainz Germany
| | - Sandro Cosconati
- DiSTABiFUniversity of Campania Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| | - Ute A. Hellmich
- Department Centre for Biomolecular Magnetic Resonance (BMRZ) Max von Laue Str. 9 60438 Frankfurt Germany
- Department of Chemistry Section BiochemistryUniversity of Mainz Johann-Joachim-Becherweg 30 55128 Mainz Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical SciencesUniversity of Mainz Staudingerweg 5 55128 Mainz Germany
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Viale Annunziata 98168 Messina Italy
| |
Collapse
|