1
|
Bindra S, Mostafa EM, Abdelgawad MA, Selim S, Kumar S, Mathew B. Synthetic strategies and medicinal chemistry perspectives of dual acting carbonic anhydrase modulators with monoamine oxidase and cholinesterase inhibitors. RSC Med Chem 2025:d4md00837e. [PMID: 39925735 PMCID: PMC11799932 DOI: 10.1039/d4md00837e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/18/2025] [Indexed: 02/11/2025] Open
Abstract
Multi-target drug design (MTDD) represents the paradigm shift in pharmaceutical research, moving beyond the conventional one-drug-one-target approach to address the complexity of multifactorial diseases. This strategy aims to develop single therapeutic candidates that can simultaneously modulate multiple biological targets, offering more comprehensive disease management and reducing the likelihood of drug resistance. In this article, we highlighted the design, synthesis, and structure-activity relationships (SARs) of various dual acting inhibitors involved in treatment of neurodegenerative diseases. Dual acting inhibitors targeting carbonic anhydrases (CAs), monoamine oxidases (MAOs), and cholinesterases (ChEs) have emerged as promising therapeutic agents due to their potential in treating complex neurodegenerative and psychiatric disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). By integrating CA inhibitors with MAO and ChE inhibition, researchers aim to address both the neuroprotective and symptomatic aspects of these disorders. The review also discusses key SAR studies that have guided the optimization of dual inhibitors, focusing on achieving selectivity and potency while minimizing off-target effects. From a medicinal chemistry perspective, the dual inhibition approach offers advantages such as improved efficacy, reduced polypharmacy, and better management of disease progression. However, challenges remain, including maintaining selectivity for target isoforms and overcoming pharmacokinetic limitations. Overall, the development of dual-acting CA-MAO-ChE inhibitors represents a compelling avenue in drug discovery, with the potential to significantly impact the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sandeep Bindra
- Dr. Bhagat Singh Rai College of Pharmacy Mandla Road Seoni-480661 Madhya Pradesh India
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham Amrita Health Science Campus Kochi-682041 Kerala India
| | - Ehab M Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University Sakaka 72388 Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka 72388 Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University Sakaka 72388 Saudi Arabia
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham Amrita Health Science Campus Kochi-682041 Kerala India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham Amrita Health Science Campus Kochi-682041 Kerala India
| |
Collapse
|
2
|
Elkamhawy A, Oh JM, Kim M, El-Halaby LO, Abdellattif MH, Al-Karmalawy AA, Kim H, Lee K. Rational design, synthesis, biological evaluation, and molecular modeling of novel naphthamide derivatives possessing potent, reversible, and competitive inhibitory mode of action over human monoamine oxidase. Mol Divers 2025; 29:179-193. [PMID: 38727994 DOI: 10.1007/s11030-024-10841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/07/2024] [Indexed: 02/02/2025]
Abstract
Herein, a novel series of naphthamide derivatives has been rationally developed, synthesized, and evaluated for their inhibitory activity against monoamine oxidase (MAO) and cholinesterase (ChE) enzymes. Compared to the reported naphthalene-based hit IV, the new naphthamide hybrids 2a, 2c, 2g and 2h exhibited promising MAO inhibitory activities; with an IC50 value of 0.294 μM, compound 2c most potently inhibited MAO-A, while compound 2g exhibited most potent MAO-B inhibitory activity with an IC50 value of 0.519 μM. Compounds 2c and 2g showed selectivity index (SI) values of 6.02 for MAO-A and 2.94 for MAO-B, respectively. On the other hand, most compounds showed weak inhibitory activity against ChEs except 2a and 2h over butyrylcholinesterase (BChE). The most potent compounds 2c and 2g were found to be competitive and reversible MAO inhibitors based on kinetic and reversibility studies. Plausible interpretations of the observed biological effects were provided through molecular docking simulations. The drug-likeness predicted by SwissADME and Osiris property explorer showed that the most potent compounds (2a, 2c, 2g, and 2h) obey Lipinski's rule of five. Accordingly, in the context of neurological disorders, hybrids 2c and 2g may contribute to the identification of safe and potent therapeutic approaches in the near future.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Minkyoung Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Lamiaa O El-Halaby
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Magda H Abdellattif
- Chemistry Department, College of Sciences, University College of Taraba, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, 12566, Giza, Egypt
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
3
|
Zhao X, Hu Q, Wang X, Li C, Chen X, Zhao D, Qiu Y, Xu H, Wang J, Ren L, Zhang N, Li S, Gong P, Hou Y. Dual-target inhibitors based on acetylcholinesterase: Novel agents for Alzheimer's disease. Eur J Med Chem 2024; 279:116810. [PMID: 39243456 DOI: 10.1016/j.ejmech.2024.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly, accounting for 60 %-70 % of cases. At present, the pathogenesis of this condition remains unclear, but the hydrolysis of acetylcholine (ACh) is thought to play a role. Acetylcholinesterase (AChE) can break down ACh transmission from the presynaptic membrane and stop neurotransmitters' excitatory effect on the postsynaptic membrane, which plays a key role in nerve conduction. Acetylcholinesterase inhibitors (AChEIs) can delay the hydrolysis of acetylcholine (ACh), which represents a key strategy for treating AD. Due to its complex etiology, AD has proven challenging to treat. Various inhibitors and antagonists targeting key enzymes and proteins implicated in the disease's pathogenesis have been explored as potential therapeutic agents. These include Glycogen Synthase Kinase 3β (GSK-3β) inhibitors, β-site APP Cleaving Enzyme (BACE-1) inhibitors, Monoamine Oxidase (MAO) inhibitors, Phosphodiesterase inhibitors (PDEs), N-methyl--aspartic Acid (NMDA) antagonists, Histamine 3 receptor antagonists (H3R), Serotonin receptor subtype 4 (5-HT4R) antagonists, Sigma1 receptor antagonists (S1R) and soluble Epoxide Hydrolase (sEH) inhibitors. The drug development strategy of multi-target-directed ligands (MTDLs) offers unique advantages in the treatment of complex diseases. On the one hand, it can synergistically enhance the therapeutic efficacy of single-target drugs. On the other hand, it can also reduce the side effects. In this review, we discuss the design strategy of dual inhibitors based on acetylcholinesterase and the structure-activity relationship of these drugs.
Collapse
Affiliation(s)
- Xingyi Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Qiaoguan Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiaoqian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Chunting Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiao Chen
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Dong Zhao
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Yue Qiu
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Haoyu Xu
- Yangtze River Pharmaceutical (Group) CO., Ltd. NO.1 South Yangtze River Road, Taizhou City, Jiangsu Province, 225321, China
| | - Jiaqi Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Le Ren
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Na Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Shuang Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Ping Gong
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
4
|
Mateev E, Karatchobanov V, Dedja M, Diamantakos K, Mateeva A, Muhammed MT, Irfan A, Kondeva-Burdina M, Valkova I, Georgieva M, Zlatkov A. Novel Pyrrole Derivatives as Multi-Target Agents for the Treatment of Alzheimer's Disease: Microwave-Assisted Synthesis, In Silico Studies and Biological Evaluation. Pharmaceuticals (Basel) 2024; 17:1171. [PMID: 39338334 PMCID: PMC11435393 DOI: 10.3390/ph17091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/08/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Considering the complex pathogenesis of Alzheimer's disease (AD), the multi-target ligand strategy is expected to provide superior effects for the treatment of the neurological disease compared to the classic single target strategy. Thus, one novel pyrrole-based hydrazide (vh0) and four corresponding hydrazide-hydrazones (vh1-4) were synthesized by applying highly efficient MW-assisted synthetic protocols. The synthetic pathway provided excellent yields and reduced reaction times under microwave conditions compared to conventional heating. The biological assays indicated that most of the novel pyrroles are selective MAO-B inhibitors with IC50 in the nanomolar range (665 nM) and moderate AChE inhibitors. The best dual-acting MAO-B/AChE inhibitor (IC50hMAOB-0.665 μM; IC50eeAChE-4.145 μM) was the unsubstituted pyrrole-based hydrazide (vh0). Importantly, none of the novel molecules displayed hMAOA-blocking capacities. The radical-scavenging properties of the compounds were examined using DPPH and ABTS in vitro tests. Notably, the hydrazide vh0 demonstrated the best antioxidant activities. In addition, in silico simulations using molecular docking and MM/GBSA, targeting the AChE (PDB ID: 4EY6) and MAO-B (PDB: 2V5Z), were utilized to obtain active conformations and to optimize the most prominent dual inhibitor (vh0). The ADME and in vitro PAMPA studies demonstrated that vh0 could cross the blood-brain barrier, and it poses good lead-like properties. Moreover, the optimized molecular structures and the frontier molecular orbitals were examined via DFT studies at 6-311G basis set in the ground state.
Collapse
Affiliation(s)
- Emilio Mateev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Valentin Karatchobanov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Marjano Dedja
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Konstantinos Diamantakos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Alexandrina Mateeva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Türkiye;
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Magdalena Kondeva-Burdina
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria;
| | - Iva Valkova
- Department of Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria;
| | - Maya Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Alexander Zlatkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| |
Collapse
|
5
|
Kumar S, Jaiswal S, Gupta SK, Ayyannan SR. Benzimidazole-derived carbohydrazones as dual monoamine oxidases and acetylcholinesterase inhibitors: design, synthesis, and evaluation. J Biomol Struct Dyn 2024; 42:4710-4729. [PMID: 37345530 DOI: 10.1080/07391102.2023.2224887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023]
Abstract
A series of novel benzimidazole-derived carbohydrazones was designed, synthesized and evaluated for their dual inhibition potential against monoamine oxidases (MAOs) and acetylcholinesterase (AChE) using multitarget-directed ligand approach (MTDL). The investigated compounds have exhibited moderate to excellent in vitro MAOs/AChE inhibitory activity at micromolar to nanomolar concentrations. Compound 12, 2-(1H-Benzo[d]imidazol-1-yl)-N'-[1-(4-hydroxyphenyl) ethylidene]acetohydrazide has emerged as a lead dual MAO-AChE inhibitor by exhibiting superior multi-target activity profile against MAO-A (IC50 = 0.067 ± 0.018 µM), MAO-B (IC50 = 0.029 ± 0.005 µM) and AChE (IC50 = 1.37 ± 0.026 µM). SAR studies suggest that the site A (hydrophobic ring) and site C (semicarbazone linker) modifications attempted on the semicarbazone-based MTDL resulted in a significant enhancement in the MAO-A/B inhibitory potential and a drastic decrease in the AChE inhibitory activity. Further, molecular docking and dynamics simulation experiments disclosed the possible molecular interactions of inhibitors inside the active site of respective enzymes. Also, computational prediction of drug-likeness and ADME parameters of test compounds revealed their drug-like characteristics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sandeep Kumar
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Shivani Jaiswal
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sukesh Kumar Gupta
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
6
|
Li Q, Cui Y, Wang Z, Li Y, Yang H. Toxicity assessment of dioxins and their transformation by-products from inferred degradation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173416. [PMID: 38795989 DOI: 10.1016/j.scitotenv.2024.173416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Due to the significant POPs characteristics, dioxins caused concern in public health and environmental protection. Evaluating the toxicity risk of dioxin degradation pathways is critical. OCDD, 1,2,3,4,6,7,8-HpCDD, and 1,2,3,4,6,7,8-HpCDF, which are highly abundant in the environment and have strong biodegradation capabilities, were selected as precursor molecules in this study. Firstly, their transformation pathways were deduced during the metabolism of biometabolism, microbial aerobic, microbial anaerobic, and photodegradation pathways, and density function theory (DFT) was used to calculate the Gibbs free energy to infer the possibility of the occurrence of the transformation pathway. Secondly, the carcinogenic potential of the precursors and their degradation products was evaluated using the TOPKAT modeling method. With the help of the positive indicator (0-1) normalization method and heat map analysis, a significant increase in the toxic effect of some of the transformation products was found, and it was inferred that it was related to the structure of the transformation products. Meanwhile, the strength of the endocrine disrupting effect of dioxin transformation products was quantitatively assessed using molecular docking and subjective assignment methods, and it was found that dioxin transformation products with a higher content of chlorine atoms and molecules similar to those of thyroid hormones exhibited a higher risk of endocrine disruption. Finally, the environmental health risks caused by each degradation pathway were comprehensively assessed with the help of the negative indicator (1-2) standardization method, which provides a theoretical basis for avoiding the toxicity risks caused by dioxin degradation transformation. In addition, the 3D-QSAR model was used to verify the necessity and rationality of this study. This paper provides theoretical support and reference significance for the toxicity assessment of dioxin degradation by-products from inferred degradation pathways.
Collapse
Affiliation(s)
- Qing Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yuhan Cui
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Zhonghe Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
7
|
Krishna A, Kumar S, Sudevan ST, Singh AK, Pappachen LK, Rangarajan TM, Abdelgawad MA, Mathew B. A Comprehensive Review of the Docking Studies of Chalcone for the Development of Selective MAO-B Inhibitors. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:697-714. [PMID: 37190818 DOI: 10.2174/1871527322666230515155000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Monoamine oxidase B is a crucial therapeutic target for neurodegenerative disorders like Alzheimer's and Parkinson's since they assist in disintegrating neurotransmitters such as dopamine in the brain. Pursuing efficacious monoamine oxidase B inhibitors is a hot topic, as contemporary therapeutic interventions have many shortcomings. Currently available FDA-approved monoamine oxidase inhibitors like safinamide, selegiline and rasagiline also have a variety of side effects like depression and insomnia. In the quest for a potent monoamine oxidase B inhibitor, sizeable, diverse chemical entities have been uncovered, including chalcones. Chalcone is a renowned structural framework that has been intensively explored for its monoamine oxidase B inhibitory activity.The structural resemblance of chalcone (1,3-diphenyl-2-propen-1-one) based compounds and 1,4-diphenyl- 2-butene, a recognized MAO-B inhibitor, accounts for their MAO-B inhibitory activity. Therefore, multiple revisions to the chalcone scaffold have been attempted by the researchers to scrutinize the implications of substitutions onthe molecule's potency. In this work, we outline the docking investigation results of various chalcone analogues with monoamine oxidase B available in the literature until now to understand the interaction modes and influence of substituents. Here we focused on the interactions between reported chalcone derivatives and the active site of monoamine oxidase B and the influence of substitutions on those interactions. Detailed images illustrating the interactions and impact of the substituents or structural modifications on these interactions were used to support the docking results.
Collapse
Affiliation(s)
- Athulya Krishna
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Ashutosh Kumar Singh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Leena K Pappachen
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi-110021, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| |
Collapse
|
8
|
Zou D, Liu R, Lv Y, Guo J, Zhang C, Xie Y. Latest advances in dual inhibitors of acetylcholinesterase and monoamine oxidase B against Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:2270781. [PMID: 37955252 PMCID: PMC10653629 DOI: 10.1080/14756366.2023.2270781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive brain disease characterised by progressive memory loss and cognition impairment, ultimately leading to death. There are three FDA-approved acetylcholinesterase inhibitors (donepezil, rivastigmine, and galantamine, AChEIs) for the symptomatic treatment of AD. Monoamine oxidase B (MAO-B) has been considered to contribute to pathologies of AD. Therefore, we reviewed the dual inhibitors of acetylcholinesterase (AChE) and MAO-B developed in the last five years. In this review, these dual-target inhibitors were classified into six groups according to the basic parent structure, including chalcone, coumarin, chromone, benzo-fused five-membered ring, imine and hydrazine, and other scaffolds. Their design strategies, structure-activity relationships (SARs), and molecular docking studies with AChE and MAO-B were analysed and discussed, giving valuable insights for the subsequent development of AChE and MAO-B dual inhibitors. Challenges in the development of balanced and potent AChE and MAO-B dual inhibitors were noted, and corresponding solutions were provided.
Collapse
Affiliation(s)
- Dajiang Zou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Renzheng Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Hangzhou, China
| |
Collapse
|
9
|
Kumar VP, Vishnu MS, Kumar S, Jaiswal S, Ayyannan SR. Exploration of a library of piperonylic acid-derived hydrazones possessing variable aryl functionalities as potent dual cholinesterase and monoamine oxidase inhibitors. Mol Divers 2023; 27:2465-2489. [PMID: 36355337 DOI: 10.1007/s11030-022-10564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022]
Abstract
A library of piperonylic acid-derived hydrazones possessing variable aryl moiety was synthesized and investigated for their multifunctional properties against cholinesterases (ChEs) and monoamine oxidases (MAOs). The in vitro enzymatic assay results revealed that the tested hydrazones have exhibited excellent cholinesterase inhibition profile. Compound 4i, (E)-N'-(2,3-dichlorobenzylidene)benzo[d][1,3]dioxole-5-carbohydrazide showed promising dual inhibitory profile against AChE (0.048 ± 0.007 μM), BChE (0.89 ± 0.018 μM), and MAO-B (0.95 ± 0.12 μM) enzymes. SAR exploration revealed that the truncation of the linker connecting both the aryl binding sites of the semicarbazone scaffold, by one atom, has relatively suppressed the AChE inhibitory potential. Kinetic studies disclosed that the compound 4i reversibly inhibited AChE enzyme in a competitive manner (Ki = 8.0 ± 0.076 nM), while it displayed a non-competitive and reversible inhibition profile against MAO-B (Ki = 9.6 ± 0.021 µM). Moreover, molecular docking studies of synthesized compounds against ChEs and MAOs provided the crucial molecular features that enable their close association and interaction with the target enzymes. All atomistic simulation studies confirmed the stable association of compound 4i within the active sites of AChE and MAO-B. In addition, theoretical ADMET prediction studies demonstrated the acceptable pharmacokinetic profile of the dual inhibitors. In summary, the attempted lead simplification study afforded a potent dual ChE-MAO-B inhibitor compound that merits further investigation.
Collapse
Affiliation(s)
- V Pavan Kumar
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| | - M S Vishnu
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| | - Sandeep Kumar
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| | - Shivani Jaiswal
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India.
| |
Collapse
|
10
|
El-Damasy AK, Park JE, Kim HJ, Lee J, Bang EK, Kim H, Keum G. Identification of New N-methyl-piperazine Chalcones as Dual MAO-B/AChE Inhibitors. Pharmaceuticals (Basel) 2023; 16:ph16010083. [PMID: 36678580 PMCID: PMC9860728 DOI: 10.3390/ph16010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Monoamine oxidase-B (MAO-B), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) have been considered target enzymes of depression and neurodegenerative diseases, including Alzheimer's disease (AD). In this study, seventeen N-methyl-piperazine chalcones were synthesized, and their inhibitory activities were evaluated against the target enzymes. Compound 2k (3-trifluoromethyl-4-fluorinated derivative) showed the highest selective inhibition against MAO-B with an IC50 of 0.71 μM and selectivity index (SI) of 56.34, followed by 2n (2-fluoro-5-bromophenyl derivative) (IC50 = 1.11 μM, SI = 16.04). Compounds 2k and 2n were reversible competitive MAO-B inhibitors with Ki values of 0.21 and 0.28 μM, respectively. Moreover, 2k and 2n effectively inhibited AChE with IC50 of 8.10 and 4.32 μM, which underscored their multi-target inhibitory modes. Interestingly, compound 2o elicited remarkable inhibitions over MAO-B, AChE, and BChE with IC50 of 1.19-3.87 μM. A cell-based assay of compounds 2k and 2n against Vero normal cells pointed out their low cytotoxicity. In a docking simulation, 2k showed the lowest energy for MAO-B (-11.6 kcal/mol) with four hydrogen bonds and two π-π interactions. Furthermore, in silico studies were conducted, and disclosed that 2k and 2n are expected to possess favorable pharmacokinetic properties, such as the ability to penetrate the blood-brain barrier (BBB). In view of these findings, compounds 2k and 2n could serve as promising potential candidates for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ashraf K. El-Damasy
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Correspondence: (A.K.E.-D.); (H.K.); (G.K.)
| | - Jong Eun Park
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hyun Ji Kim
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jinhyuk Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Eun-Kyoung Bang
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
- Correspondence: (A.K.E.-D.); (H.K.); (G.K.)
| | - Gyochang Keum
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Correspondence: (A.K.E.-D.); (H.K.); (G.K.)
| |
Collapse
|
11
|
Sudevan ST, Rangarajan TM, Al-Sehemi AG, Nair AS, Koyiparambath VP, Mathew B. Revealing the role of the benzyloxy pharmacophore in the design of a new class of monoamine oxidase-B inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200084. [PMID: 35567313 DOI: 10.1002/ardp.202200084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
Abstract
The conceptual layout of monoamine oxidase (MAO) inhibitors has been modified to explore their potential biological application in the case of neurological disorders for the time being. The current review article is an effort to display the summation of innovative conceptual prospects of MAO inhibitors and their intriguing chemistry and bioactivity. Based on this scenario, we emphasize the pivotal role of the benzyloxy moiety attached to scaffolds like oxadiazolones, indolalkylamines, safinamide, caffeine, benzofurans, α-tetralones, β-nitrostyrene, benzoquinones, coumarins, indoles, chromones, and chromanone analogs, while acting as an MAO inhibitor.
Collapse
Affiliation(s)
- Sachithra T Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, India
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia.,Department of Chemistry, KingKhalid University, 61413, Abha, Saudi Arabia
| | - Aathira S Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Vishal P Koyiparambath
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| |
Collapse
|
12
|
George G, Koyiparambath VP, Sukumaran S, Nair AS, Pappachan LK, Al-Sehemi AG, Kim H, Mathew B. Structural Modifications on Chalcone Framework for Developing New Class of Cholinesterase Inhibitors. Int J Mol Sci 2022; 23:ijms23063121. [PMID: 35328542 PMCID: PMC8953944 DOI: 10.3390/ijms23063121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/18/2022] Open
Abstract
Due to the multifaceted pharmacological activities of chalcones, these scaffolds have been considered one of the most privileged frameworks in the drug discovery process. Structurally, chalcones are α, β-unsaturated carbonyl functionalities with two aryl or heteroaryl units. Amongst the numerous pharmacological activities explored for chalcone derivatives, the development of novel chalcone analogs for the treatment of Alzheimer's disease (AD) is among the research topics of most interest. Chalcones possess numerous advantages, such as smaller molecular size, opportunities for further structural modification thereby altering the physicochemical properties, cost-effectiveness, and convenient synthetic methodology. The present review highlights the recent evidence of chalcones as a privileged structure in AD drug development processes. Different classes of chalcone-derived analogs are summarized for the easy understanding of the previously reported analogs as well as the importance of certain functionalities in exhibiting cholinesterase inhibition. In this way, this review will shed light on the medicinal chemistry fraternity for the design and development of novel promising chalcone candidates for the treatment of AD.
Collapse
Affiliation(s)
- Ginson George
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Vishal Payyalot Koyiparambath
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Sunitha Sukumaran
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Leena K. Pappachan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Abdullah G. Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Hoon Kim
- Department of Pharmacy, Sunchon National University, Suncheon 57922, Korea
- Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
- Correspondence: (H.K.); (B.M.)
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
- Correspondence: (H.K.); (B.M.)
| |
Collapse
|
13
|
Koyiparambath VP, Oh JM, Khames A, Abdelgawad MA, Nair AS, Nath LR, Gambacorta N, Ciriaco F, Nicolotti O, Kim H, Mathew B. Trimethoxylated Halogenated Chalcones as Dual Inhibitors of MAO-B and BACE-1 for the Treatment of Neurodegenerative Disorders. Pharmaceutics 2021; 13:pharmaceutics13060850. [PMID: 34201128 PMCID: PMC8226672 DOI: 10.3390/pharmaceutics13060850] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 02/05/2023] Open
Abstract
Six halogenated trimethoxy chalcone derivatives (CH1-CH6) were synthesized and spectrally characterized. The compounds were further evaluated for their inhibitory potential against monoamine oxidases (MAOs) and β-secretase (BACE-1). Six compounds inhibited MAO-B more effectively than MAO-A, and the 2',3',4'-methoxy moiety in CH4-CH6 was more effective for MAO-B inhibition than the 2',4',6'-methoxy moiety in CH1-CH3. Compound CH5 most potently inhibited MAO-B, with an IC50 value of 0.46 µM, followed by CH4 (IC50 = 0.84 µM). In 2',3',4'-methoxy derivatives (CH4-CH6), the order of inhibition was -Br in CH5 > -Cl in CH4 > -F in CH6 at the para-position in ring B of chalcone. CH4 and CH5 were selective for MAO-B, with selectivity index (SI) values of 15.1 and 31.3, respectively, over MAO-A. CH4 and CH5 moderately inhibited BACE-1 with IC50 values of 13.6 and 19.8 µM, respectively. When CH4 and CH5 were assessed for their cell viability studies on the normal African Green Monkey kidney cell line (VERO) using MTT assays, it was noted that both compounds were found to be safe, and only a slightly toxic effect was observed in concentrations above 200 µg/mL. CH4 and CH5 decreased reactive oxygen species (ROS) levels of VERO cells treated with H2O2, indicating both compounds retained protective effects on the cells by antioxidant activities. All compounds showed high blood brain barrier permeabilities analyzed by a parallel artificial membrane permeability assay (PAMPA). Molecular docking and ADME prediction of the lead compounds provided more insights into the rationale behind the binding and the CNS drug likeness. From non-test mutagenicity and cardiotoxicity studies, CH4 and CH5 were non-mutagenic and non-/weak-cardiotoxic. These results suggest that CH4 and CH5 could be considered candidates for the cure of neurological dysfunctions.
Collapse
Affiliation(s)
- Vishal Payyalot Koyiparambath
- Department of Pharmaceutical Chemistry, AIMS Health Sciences Campus, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi 682041, India; (V.P.K.); (A.S.N.)
| | - Jong Min Oh
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea;
| | - Ahmed Khames
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box-11099, Taif 21944, Saudi Arabia;
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62514, Egypt
| | - Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry, AIMS Health Sciences Campus, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi 682041, India; (V.P.K.); (A.S.N.)
| | - Lekshmi R. Nath
- Department of Pharmacogonosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India;
| | - Nicola Gambacorta
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125 Bari, Italy; (N.G.); (O.N.)
| | - Fulvio Ciriaco
- Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125 Bari, Italy;
| | - Orazio Nicolotti
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125 Bari, Italy; (N.G.); (O.N.)
| | - Hoon Kim
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea;
- Correspondence: (H.K.); (B.M.)
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, AIMS Health Sciences Campus, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi 682041, India; (V.P.K.); (A.S.N.)
- Correspondence: (H.K.); (B.M.)
| |
Collapse
|
14
|
Maliyakkal N, Baysal I, Tengli A, Ucar G, Almoyad MAA, Parambi DGT, Gambacorta N, Nicolotti O, Beeran AA, Mathew B. Trimethoxy Crown Chalcones as Multifunctional Class of Monoamine Oxidase Enzyme Inhibitors. Comb Chem High Throughput Screen 2021; 25:1314-1326. [PMID: 34082669 DOI: 10.2174/1386207324666210603125452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chalcones with methoxy substituents are considered as a promising framework for the inhibition of monoamine oxidase (MAO) enzymes. METHODS A series of nine trimethoxy substituted chalcones (TMa-TMi) was synthesized and evaluated as a multifunctional class of MAO inhibitors. All the synthesized compounds were investigated for their in vitro MAO inhibition, kinetics, reversibility, blood-brain barrier (BBB) permeation, and cytotoxicity and antioxidant potentials. RESULTS In the present study, compound (2E)-3-(4-nitrophenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (TMf) was provided with an MAO-A inhibition constant value equal to 3.47±0.09 μM and with a selectivity of 0.008. Thus, it was comparable to that of moclobemide, a well known potent hMAO-A inhibitor (SI=0.010). Compound (2E)-3-(4-bromophenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (TMh) showed good MAO-B inhibition, with an inhibition constant of 0.46±0.009 μM. The PAMPA assay demonstrated that all the synthesized derivatives can cross the BBB successfully. The cytotoxicity studies revealed that TMf and TMh have 88.22 and 80.18 % cell viability at 25 µM. Compound TMf appeared as the most promising antioxidant molecule with IC50 values, relative to DPPH and H2O2 radical activities, equal to 6.02±0.17 and 7.25±0.07 μM. To shed light on the molecular interactions of TMf and TMh towards MAO-A and MAO-B, molecular docking simulations and MM/GBSA calculations have been carried out. CONCLUSION The lead molecules TMf and TMh with multi-functional nature can be further employed for the treatment of various neurodegenerative disorders and depressive states.
Collapse
Affiliation(s)
- Naseer Maliyakkal
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushyt, King Khalid University, Abha, Saudi Arabia
| | - Ipek Baysal
- Vocational School of Health Services, Pharmacy Services Programme, Hacettepe University, Ankara, Turkey
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education & Research, Mysuru-570015, Karnataka, India
| | - Gulberk Ucar
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushyt, King Khalid University, Abha, Saudi Arabia
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014, Saudi Arabia
| | - Nicola Gambacorta
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Via E. Orabona, 4, I-70125 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Via E. Orabona, 4, I-70125 Bari, Italy
| | - Asmy Appadath Beeran
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi-682 041, India
| |
Collapse
|
15
|
Yue G, Jiang D, Dou Z, Li S, Feng J, Zhang L, Chen H, Yang C, Yin Z, Song X, Liang X, Wang X, Lu C. Rapid umpolung Michael addition of isatin N, N′-cyclic azomethine imine 1,3-dipoles with chalcones. NEW J CHEM 2021. [DOI: 10.1039/d1nj00960e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3,3-Disubstituted oxindoles were prepared rapidly in moderate to excellent yields with promising dr values by the t-BuONa-promoted Michael addition.
Collapse
|