1
|
Yang J, Xiao S, Deng J, Li Y, Hu H, Wang J, Lu C, Li G, Zheng L, Wei Q, Zhong J. Oxygen vacancy-engineered cerium oxide mediated by copper-platinum exhibit enhanced SOD/CAT-mimicking activities to regulate the microenvironment for osteoarthritis therapy. J Nanobiotechnology 2024; 22:491. [PMID: 39155382 PMCID: PMC11330606 DOI: 10.1186/s12951-024-02678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/30/2024] [Indexed: 08/20/2024] Open
Abstract
Cerium oxide (CeO2) nanospheres have limited enzymatic activity that hinders further application in catalytic therapy, but they have an "oxidation switch" to enhance their catalytic activity by increasing oxygen vacancies. In this study, according to the defect-engineering strategy, we developed PtCuOX/CeO2-X nanozymes as highly efficient SOD/CAT mimics by introducing bimetallic copper (Cu) and platinum (Pt) into CeO2 nanospheres to enhance the oxygen vacancies, in an attempt to combine near-infrared (NIR) irradiation to regulate microenvironment for osteoarthritis (OA) therapy. As expected, the Cu and Pt increased the Ce3+/Ce4+ ratio of CeO2 to significantly enhance the oxygen vacancies, and simultaneously CeO2 (111) facilitated the uniform dispersion of Cu and Pt. The strong metal-carrier interaction synergy endowed the PtCuOX/CeO2-X nanozymes with highly efficient SOD/CAT-like activity by the decreased formation energy of oxygen vacancy, promoted electron transfer, the increased adsorption energy of intermediates, and the decreased reaction activation energy. Besides, the nanozymes have excellent photothermal conversion efficiency (55.41%). Further, the PtCuOX/CeO2-X antioxidant system effectively scavenged intracellular ROS and RNS, protected mitochondrial function, and inhibited the inflammatory factors, thus reducing chondrocyte apoptosis. In vivo, experiments demonstrated the biosafety of PtCuOX/CeO2-X and its potent effect on OA suppression. In particular, NIR radiation further enhanced the effects. Mechanistically, PtCuOX/CeO2-X nanozymes reduced ras-related C3 botulinum toxin substrate 1 (Rac-1) and p-p65 protein expression, as well as ROS levels to remodel the inflammatory microenvironment by inhibiting the ROS/Rac-1/nuclear factor kappa-B (NF-κB) signaling pathway. This study introduces new clinical concepts and perspectives that can be applied to inflammatory diseases.
Collapse
Affiliation(s)
- Junxu Yang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Shihui Xiao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Jiejia Deng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Life Sciences Institute, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Yuquan Li
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, No. 166 East University Road, Nanning, Guangxi, 530005, People's Republic of China
| | - Hao Hu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Jiawei Wang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Chun Lu
- School of Materials and Environment, Guangxi Minzu University, Nanning, Guangxi, 53000, People's Republic of China
| | - Guanhua Li
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| | - Qingjun Wei
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, No. 166 East University Road, Nanning, Guangxi, 530005, People's Republic of China.
| | - Jingping Zhong
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
2
|
Meng LH, Awakawa T, Li XM, Quan Z, Yang SQ, Wang BG, Abe I. Discovery of (±)-Penindolenes Reveals an Unusual Indole Ring Cleavage Pathway Catalyzed by P450 Monooxygenase. Angew Chem Int Ed Engl 2024; 63:e202403963. [PMID: 38635317 DOI: 10.1002/anie.202403963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
(±)-Penindolenes A-D (1-4), the first representatives of indole terpenoids featuring a γ-lactam skeleton, were isolated from the mangrove-derived endophytic fungus Penicillium brocae MA-231. Our bioactivity tests revealed their potent antimicrobial and acetylcholinesterase inhibitory activities. The biosynthetic reactions by the five enzymes PbaABCDE leading to γ-lactam ring formation were identified with heterologous expression and in vitro enzymatic assays. Remarkably, the cytochrome P450 monooxygenase PbaB and its homolog in Aspergillus oryzae catalyzed the 2,3-cleavage of the indole ring to generate two keto groups in 1. This is the first example of the oxidative cleavage of indole by a P450 monooxygenase. In addition, rare secondary amide bond formation by the glutamine synthetase-like enzyme PbaD was reported. These findings will contribute to the engineered biosynthesis of unnatural, bioactive indole terpenoids.
Collapse
Affiliation(s)
- Ling-Hong Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- RIKEN Center for Sustainable Resource Science 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
| | - Zhiyang Quan
- RIKEN Center for Sustainable Resource Science 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
3
|
El-Saghier AM, Enaili SS, Abdou A, Hamed AM, Kadry AM. Synthesis, docking and biological evaluation of purine-5- N-isosteresas anti-inflammatory agents. RSC Adv 2024; 14:17785-17800. [PMID: 38832248 PMCID: PMC11146149 DOI: 10.1039/d4ra02970d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
An operationally simple one-pot three-component and convenient synthesis method for a series of diverse purine analogues of 5-amino-7-(substituted)-N-(4-sulfamoylphenyl)-4,7-dihydro-[1,2,4]-triazolo[1,5-a][1,3,5]triazine-2-carboxamide derivatives generated in situ via the reaction of 2-hydrazinyl-N-(4-sulfamoylphenyl)-2-thioxoacetamide, cyanoguanidine and a variety of aldehydes was achieved under green conditions. This experiment was conducted to evaluate the anti-inflammatory effect of the newly synthesized compounds using indomethacin as a reference medication; all compounds were tested for in vitro anti-inflammatory activity using the inhibition of albumin denaturation, RBC hemolysis technique and COX inhibition assay. The results showed that all evaluated compounds exhibited significant in vitro anti-inflammatory efficacy leading to excellently effective RBC membrane stabilization, inhibition of protein denaturation, and inhibition of COX enzymes when compared to those of indomethacin. At concentrations of 50, 100, 200, and 300 μg ml-1, these compounds decreased COX-1 and COX-2 activities more than indomethacin and have IC50 values in the range of 40.04-87.29 μg ml-1 for COX-1 and 27.76-42.3 μg ml-1 for COX-2 while indomethacin showed IC50 = 91.57 for COX-1 and 42.66 μg ml-1 for COX-2. The anti-inflammatory findings show the need for more investigation to define the properties underlying the evaluated compounds' anti-inflammatory abilities. The enzyme cyclooxygenase-2 (COX 2) (PDB ID: 5IKT) was docked with ten synthetic substances. With docking scores (S) of -8.82, -7.82, and -7.76 kcal mol-1, 7-furan triazolo-triazine (4), 7-(2-hydroxy phenyl) triazolo-triazine (11), and 7-(4-dimethylamino phenyl) triazolo-triazine (12) had the greatest binding affinities, respectively. Therefore, these substances have COX-2 (PDB ID: 5IKT) inhibitory capabilities and hence may be investigated for COX 2 targeting development. Furthermore, both the top-ranked compounds (4 and 11) and the standard indomethacin were subjected to DFT analysis. The HOMO - LUMO energy difference (ΔE) of the mentioned compounds was found to be less than that of indomethacin.
Collapse
Affiliation(s)
- Ahmed M El-Saghier
- Chemistry Department, Faculty of Science, Sohag University 282524 Sohag Egypt
| | - Souhaila S Enaili
- Chemistry Department, Faculty of Science, Sohag University 282524 Sohag Egypt
- Chemistry Department, Faculty of Science, Al Zawiya University Al Zawiya Libya
| | - Aly Abdou
- Chemistry Department, Faculty of Science, Sohag University 282524 Sohag Egypt
| | - Amany M Hamed
- Chemistry Department, Faculty of Science, Sohag University 282524 Sohag Egypt
| | - Asmaa M Kadry
- Chemistry Department, Faculty of Science, Sohag University 282524 Sohag Egypt
| |
Collapse
|
4
|
Sousa AKD, Brito MVD, Prudêncio RDS, Sousa SG, Carvalho ADS, Silva TMLD, Almeida VPAD, Sousa JJDS, Gomes PRC, Marques RDA, Brito TVD, Vasconcelos DFP, Junior EBDN, Oliveira MDCFD, Magalhães DDA, Barbosa ALDR. The annonalide diterpene extracted from Casimirella ampla (Miers) reduces inflammatory and antinociceptive events in general models of inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117707. [PMID: 38232858 DOI: 10.1016/j.jep.2024.117707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The plants of the genus Casimirella ampla (Miers) (C. ampla) are extensively used in folk medicine. For a long time, rural communities have been using extracts from its roots for food and therapeutic purposes. The extract is rich in diterpenoid annonalide (Annona), which has antiophidic, anti-inflammatory and antinociceptive properties. Inflammation is the body's primary defense mechanism against cell damage and invasion by pathogens, which can trigger acute and chronic inflammatory processes. The first line of treatment for this condition consists of the use of non-steroidal anti-inflammatory drugs, but these have numerous associated collateral damages, based on scientific knowledge about diterpenoids from C. ampla, as well as their already reported antinociceptive and anti-inflammatory properties. AIMS OF THE STUDY Evaluate the effect of Annona in classic models of inflammation and pain. MATERIALS AND METHODS Animals were pretreated with Annona (0.1, 1.0 and 10 mg/kg), or Tween 80 (2%), or indomethacin (Indo) (10 mg/kg) orally in the paw edema tests induced by carrageenan (Cg), serotonin (5-HT), histamine, bradykinin, 48/80 and, prostaglandin E2 (PGE2), evaluating microscopic lesion scores, migration of leukocytes to the peritoneal cavity, concentration of myeloperoxide (MPO), malonyldialdehyde (MDA) and glutathione (GSH), abdominal contortion test by acetic acid and formalin test. RESULTS Treatment with Annona compound at a dose of 0.1 mg/kg was more effective in reducing inflammatory, oxidant and nociceptive parameters, as it reduced paw edema induced by carrageenan, through different mediators and migration of inflammatory cells. Furthermore, it worked by reducing the concentration of MPO, MDA, preserving GSH levels and reducing nociception caused by formalin and acetic acid.
Collapse
Affiliation(s)
- Antônio Kleiton de Sousa
- Laboratory of Experimental Physiopharmacology (LAFFEX), Parnaiba Delta Federal University, (UFDPar), Parnaíba, PI, Brazil; Graduate Program in Biotechnology (PPGBIOTEC) Parnaiba Delta Federal University, (UFDPar), Parnaíba, PI, Brazil
| | - Maria Vieira de Brito
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Rafael da Silva Prudêncio
- Laboratory of Experimental Physiopharmacology (LAFFEX), Parnaiba Delta Federal University, (UFDPar), Parnaíba, PI, Brazil; Graduate Program in Biotechnology (PPGBIOTEC) Parnaiba Delta Federal University, (UFDPar), Parnaíba, PI, Brazil
| | - Stefany Guimarães Sousa
- Laboratory of Experimental Physiopharmacology (LAFFEX), Parnaiba Delta Federal University, (UFDPar), Parnaíba, PI, Brazil
| | - André Dos Santos Carvalho
- Laboratory of Experimental Physiopharmacology (LAFFEX), Parnaiba Delta Federal University, (UFDPar), Parnaíba, PI, Brazil
| | - Tino Marcos Lino da Silva
- Laboratory of Experimental Physiopharmacology (LAFFEX), Parnaiba Delta Federal University, (UFDPar), Parnaíba, PI, Brazil; Graduate Program in Biotechnology (PPGBIOTEC) Parnaiba Delta Federal University, (UFDPar), Parnaíba, PI, Brazil
| | | | - João Janilson da Silva Sousa
- Laboratory of Experimental Physiopharmacology (LAFFEX), Parnaiba Delta Federal University, (UFDPar), Parnaíba, PI, Brazil
| | - Paulo Roberto Carneiro Gomes
- Graduate Program in Biotechnology (PPGBIOTEC) Parnaiba Delta Federal University, (UFDPar), Parnaíba, PI, Brazil; Laboratory of Analysis and Histological Processing (LAPHIS), Department of Biomedicine - Federal University of Piauí, Parnaíba, Brazil
| | - Ricardo de Araújo Marques
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Tarcisio Vieira de Brito
- Laboratory of Experimental Physiopharmacology (LAFFEX), Parnaiba Delta Federal University, (UFDPar), Parnaíba, PI, Brazil
| | | | | | | | - Diva de Aguiar Magalhães
- Laboratory of Experimental Physiopharmacology (LAFFEX), Parnaiba Delta Federal University, (UFDPar), Parnaíba, PI, Brazil
| | - André Luiz Dos Reis Barbosa
- Laboratory of Experimental Physiopharmacology (LAFFEX), Parnaiba Delta Federal University, (UFDPar), Parnaíba, PI, Brazil.
| |
Collapse
|
5
|
Kruth S, Nett M. Aurachins, Bacterial Antibiotics Interfering with Electron Transport Processes. Antibiotics (Basel) 2023; 12:1067. [PMID: 37370386 DOI: 10.3390/antibiotics12061067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Aurachins are farnesylated quinolone alkaloids of bacterial origin and excellent inhibitors of the respiratory chain in pro- and eukaryotes. Therefore, they have become important tool compounds for the investigation of electron transport processes and they also serve as lead structures for the development of antibacterial and antiprotozoal drugs. Especially aurachin D proved to be a valuable starting point for structure-activity relationship studies. Aurachin D is a selective inhibitor of the cytochrome bd oxidase, which has received increasing attention as a target for the treatment of infectious diseases caused by mycobacteria. Moreover, aurachin D possesses remarkable activities against Leishmania donovani, the causative agent of leishmaniasis. Aurachins are naturally produced by myxobacteria of the genus Stigmatella as well as by some Streptomyces and Rhodococcus strains. The recombinant production of these antibiotics turned out to be challenging due to their complex biosynthesis and their inherent toxicity. Recently, the biotechnological production of aurachin D was established in E. coli with a titer which is higher than previously reported from natural producer organisms.
Collapse
Affiliation(s)
- Sebastian Kruth
- Laboratory of Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany
| | - Markus Nett
- Laboratory of Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany
| |
Collapse
|
6
|
Muhammad I, Hassan SSU, Xu WJ, Tu GL, Yu HJ, Xiao X, Yan SK, Jin HZ, Bungau S. An extensive pharmacological evaluation of novel anti-nociceptive and IL-6 targeted anti-inflammatory guaiane-type sesquiterpenoids from Cinnamomum migao H. W. Li through in-depth in-vitro, ADMET, and molecular docking studies. Biomed Pharmacother 2023; 164:114946. [PMID: 37257229 DOI: 10.1016/j.biopha.2023.114946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023] Open
Abstract
Guaiane-type sesquiterpenoids are most prevalent in the genus Cinnamomum. Hence this study investigates the structures, anti-nociceptive and IL-6 targeted anti-inflammatory potential of three novels C-14 guaiane-type sesquiterpenoids and two new monoterpenoids, isolated from Cinnamomum migao. The structures were precisely confirmed and characterized through the modern chromatographic and spectroscopic techniques of HRESIMS, 1D NMR, 2D NMR, experimental circular dichroism (ECD), and calculated (ECD). Novel sesquiterpenoids 1 and 2 exhibited significant anti-inflammatory activities against the NO production and pro-inflammatory cytokines. Their IC50 values were determined as 9.52 and 13.42 μΜ against IL-6 mRNA, respectively. Similarly, subcutaneous injection of n-BuT and EA extracts showed a dose-dependent suppression of formalin-induced tonic biting/licking responses during the tonic antinociceptive phase. Furthermore, absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis of guaiane-type sesquiterpenoids 1 and 2 displayed that both compounds have a high level of GIT absorption, with a high zone of safety for cardiac and hepatotoxicity and no inhibition of cytochromes. In addition, molecular docking and simulation studies strengthen the anti-inflammatory potential of sesquiterpene 2 which showed a good binding affinity with IL-6 protein. Overall the inclusive results showed that the extracts and newly isolated guaiane-type sesquiterpenoids from C. migao will provide new evidence for the traditional use of this species to treat inflammation and nociception.
Collapse
Affiliation(s)
- Ishaq Muhammad
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China; Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Syed Shams Ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China; Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wen-Jing Xu
- Guizhou Jingcheng Pharmaceutical Co., Ltd., Guiyang 550200, PR China
| | - Guo-Li Tu
- Guizhou Jingcheng Pharmaceutical Co., Ltd., Guiyang 550200, PR China
| | - Hua-Jun Yu
- Guizhou Jingcheng Pharmaceutical Co., Ltd., Guiyang 550200, PR China
| | - Xue Xiao
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Shi-Kai Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China; Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Hui-Zi Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China; Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania
| |
Collapse
|
7
|
Winand L, Lernoud L, Meyners SA, Kuhr K, Hiller W, Nett M. Myxococcus xanthus as Host for the Production of Benzoxazoles. Chembiochem 2023; 24:e202200635. [PMID: 36484355 DOI: 10.1002/cbic.202200635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/13/2022]
Abstract
Benzoxazoles are important structural motifs in pharmaceutical drugs. Here, we present the heterologous production of 3-hydroxyanthranilate-derived benzoxazoles in the host bacterium Myxococcus xanthus following the expression of two genes from the nataxazole biosynthetic gene cluster of Streptomyces sp. Tü 6176. The M. xanthus expression strain achieved a benzoxazole titer of 114.6±7.4 mg L-1 upon precursor supplementation, which is superior to other bacterial production systems. Crosstalk between the heterologously expressed benzoxazole pathway and the endogenous myxochelin pathway led to the combinatorial biosynthesis of benzoxazoles featuring a 2,3-dihydroxybenzoic acid (2,3-DHBA) building block. Subsequent in vitro studies confirmed that this crosstalk is not only due to the availability of 2,3-DHBA in M. xanthus, rather, it is promoted by the adenylating enzyme MxcE from the myxochelin pathway, which contributes to the activation of aryl carboxylic acids and delivers them to benzoxazole biosynthesis.
Collapse
Affiliation(s)
- Lea Winand
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Lucia Lernoud
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Saskia Anna Meyners
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Katharina Kuhr
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Wolf Hiller
- Department of Chemistry and Chemical Biology, NMR Laboratory, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| |
Collapse
|
8
|
Generation of Aurachin Derivatives by Whole-Cell Biotransformation and Evaluation of Their Antiprotozoal Properties. Molecules 2023; 28:molecules28031066. [PMID: 36770729 PMCID: PMC9919615 DOI: 10.3390/molecules28031066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
The natural product aurachin D is a farnesylated quinolone alkaloid, which is known to possess activity against the causative agent of malaria, Plasmodium spp. In this study, we show that aurachin D inhibits other parasitic protozoa as well. While aurachin D had only a modest effect on Trypanosoma brucei rhodesiense, two other trypanosomatids, T. cruzi and Leishmania donovani, were killed at low micromolar and nanomolar concentrations, respectively, in an in vitro assay. The determined IC50 values of aurachin D were even lower than those of the reference drugs benznidazole and miltefosine. Due to these promising results, we set out to explore the impact of structural modifications on the bioactivity of this natural product. In order to generate aurachin D derivatives with varying substituents at the C-2, C-6 and C-7 position of the quinolone ring system, we resorted to whole-cell biotransformation using a recombinant Escherichia coli strain capable of aurachin-type prenylations. Quinolone precursor molecules featuring methyl, methoxy and halogen groups were fed to this E. coli strain, which converted the substrates into the desired analogs. None of the generated derivatives exhibited improved antiprotozoal properties in comparison to aurachin D. Obviously, the naturally occurring aurachin D features already a privileged structure, especially for the inhibition of the causative agent of visceral leishmaniasis.
Collapse
|
9
|
Shen J, Zhang Y, Zhang L, Yang N, Ma X, Zhong T, Zhang Y. Bioactivity-guided isolation of anti-inflammatory limonins from Chukrasia tabularis. Food Sci Nutr 2022; 10:4216-4225. [PMID: 36514759 PMCID: PMC9731525 DOI: 10.1002/fsn3.3015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 12/16/2022] Open
Abstract
Chukrasia tabularis is an economically important tree and widely cultured in the southeast of China. Its barks, leaves, and fruits are consumed as a traditional medicine and perceived as a valuable source for bioactive limonin compounds. The extracts from root barks of C. tabularis showed significant anti-inflammatory effect. The aim of this research was to explore the material basis of C. tabularis anti-inflammatory activity, and to purify and identify anti-inflammatory active ingredients. By a bioassay-guided isolation of dichloromethane fraction obtained two novel phragmalin limonins, Chukrasitin D and E (1 and 2), together with 12 known limonins (3-14). The chemical structure of these compounds is determined on the basis of extensive spectral analysis and chemical reactivity. In addition, the activities of these isolated limonins on the production of nitric oxide (NO), tumor necrosis factor alpha (TNF-α), and nuclear factor kappa B (NF-κB) in RAW264.7 cells induced by lipopolysaccharide (LPS) were evaluated. Limonins 1 and 2 indicated significant anti-inflammatory activity with IC50 values of 6.24 and 6.13 μM. Compound 1 notably inhibited the production of NF-κB, TNF-α and interleukin 6 (IL-6) in macrophages. The present results suggest that the root barks of C. tabularis exhibited anti-inflammatory effect and the limonins may be responsible for this activity.
Collapse
Affiliation(s)
- Jin‐Huang Shen
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of PharmacyFujian Medical UniversityFuzhouChina
| | - Yi‐Fan Zhang
- Medical Imaging DepartmentFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Li Zhang
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of PharmacyFujian Medical UniversityFuzhouChina
| | - Na‐Na Yang
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of PharmacyFujian Medical UniversityFuzhouChina
| | - Xin‐Hua Ma
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of PharmacyFujian Medical UniversityFuzhouChina
| | - Tian‐Hua Zhong
- Key Laboratory of Marine Biogenetic Resources, Third Institute of OceanographyMinistry of Natural ResourcesXiamenChina
| | - Yong‐Hong Zhang
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of PharmacyFujian Medical UniversityFuzhouChina
| |
Collapse
|
10
|
Pinheiro AC, Ombredane AS, Pinheiro WO, Andrade LR, Silva VRP, Felice GJ, Alves DS, Albernaz AF, Silveira AP, Lima MCF, Veiga-Junior VF, Gomes TFS, Damasceno EAM, Veiga-Souza FH, Souza PEN, Báo SN, Duarte ECB, Carneiro MLB, Azevedo RB, Funez MI, Joanitti GA. Evaluation of Biocompatibility, Anti-Inflammatory, and Antinociceptive Activities of Pequi Oil-Based Nanoemulsions in In Vitro and In Vivo Models. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4260. [PMID: 36500883 PMCID: PMC9740267 DOI: 10.3390/nano12234260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Pequi oil (Caryocar brasiliense) contains bioactive compounds capable of modulating the inflammatory process; however, its hydrophobic characteristic limits its therapeutic use. The encapsulation of pequi oil in nanoemulsions can improve its biodistribution and promote its immunomodulatory effects. Thus, the objective of the present study was to formulate pequi oil-based nanoemulsions (PeNE) to evaluate their biocompatibility, anti-inflammatory, and antinociceptive effects in in vitro (macrophages—J774.16) and in vivo (Rattus novergicus) models. PeNE were biocompatible, showed no cytotoxic and genotoxic effects and no changes in body weight, biochemistry, or histology of treated animals at all concentrations tested (90−360 µg/mL for 24 h, in vitro; 100−400 mg/kg p.o. 15 days, in vivo). It was possible to observe antinociceptive effects in a dose-dependent manner in the animals treated with PeNE, with a reduction of 27 and 40% in the doses of 100 and 400 mg/kg of PeNE, respectively (p < 0.05); however, the treatment with PeNE did not induce edema reduction in animals with carrageenan-induced edema. Thus, the promising results of this study point to the use of free and nanostructured pequi oil as a possible future approach to a preventive/therapeutic complementary treatment alongside existing conventional therapies for analgesia.
Collapse
Affiliation(s)
- Andréia C. Pinheiro
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Campus Universitário—Centro Metropolitano, University of Brasilia, Ceilândia Sul, Brasília 72220-275, DF, Brazil
- Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Alicia S. Ombredane
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Campus Universitário—Centro Metropolitano, University of Brasilia, Ceilândia Sul, Brasília 72220-275, DF, Brazil
- Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Willie O. Pinheiro
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Campus Universitário—Centro Metropolitano, University of Brasilia, Ceilândia Sul, Brasília 72220-275, DF, Brazil
- Postgraduate Program in Health Sciences and Technologies, School of Ceilândia, Campus Universitário—Centro Metropolitano, University of Brasilia, Ceilândia Sul, Brasília 72220-275, DF, Brazil
| | - Laise R. Andrade
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Campus Universitário—Centro Metropolitano, University of Brasilia, Ceilândia Sul, Brasília 72220-275, DF, Brazil
- Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Vitória R. P. Silva
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Campus Universitário—Centro Metropolitano, University of Brasilia, Ceilândia Sul, Brasília 72220-275, DF, Brazil
| | - Gisela J. Felice
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Campus Universitário—Centro Metropolitano, University of Brasilia, Ceilândia Sul, Brasília 72220-275, DF, Brazil
| | - Débora S. Alves
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Aryanne F. Albernaz
- Postgraduate Program in Health Sciences and Technologies, School of Ceilândia, Campus Universitário—Centro Metropolitano, University of Brasilia, Ceilândia Sul, Brasília 72220-275, DF, Brazil
| | - Ariane P. Silveira
- Laboratory of Microscopy and Microanalysis, Department of Cellular Biology, Institute of Biological Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Milena C. F. Lima
- Chemistry Section, Military Institute of Engineering, Praça Gen. Tibúrcio, 80, Praia Vermelha, Rio de Janeiro 22290-270, RJ, Brazil
| | - Valdir F. Veiga-Junior
- Chemistry Section, Military Institute of Engineering, Praça Gen. Tibúrcio, 80, Praia Vermelha, Rio de Janeiro 22290-270, RJ, Brazil
| | - Thamis F. S. Gomes
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Campus Universitário—Centro Metropolitano, University of Brasilia, Ceilândia Sul, Brasília 72220-275, DF, Brazil
- Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Emanuel A. M. Damasceno
- Health Department, Nucleus of Cytopathology and Anatomic Pathology, Regional Hospital of Taguatinga, Taguatinga, Brasilia 72120-970, DF, Brazil
| | - Fabiane H. Veiga-Souza
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília 70910-900, DF, Brazil
- Pharmaceutical Sciences School, Faculty of Ceilândia, Campus Universitário—Centro Metropolitano, University of Brasilia, Ceilândia Sul, Brasília 72220-275, DF, Brazil
| | - Paulo E. N. Souza
- Laboratory of Electron Paramagnetic Resonance, Institute of Physics, Campus Universitário Darcy Ribeiro, University of Brasília, Brasília 70910-900, DF, Brazil
| | - Sônia N. Báo
- Laboratory of Microscopy and Microanalysis, Department of Cellular Biology, Institute of Biological Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Eliza C. B. Duarte
- Department of Pathology, Faculty of Medicine, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Marcella L. B. Carneiro
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Campus Universitário—Centro Metropolitano, University of Brasilia, Ceilândia Sul, Brasília 72220-275, DF, Brazil
- Post-Graduation Program in Biomedical Engineering—PPGEB, Faculty of Gama—FGA, University of Brasilia, St. Leste Projeção A–Gama Leste, Brasília 72444-240, DF, Brazil
| | - Ricardo B. Azevedo
- Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Mani I. Funez
- Postgraduate Program in Health Sciences and Technologies, School of Ceilândia, Campus Universitário—Centro Metropolitano, University of Brasilia, Ceilândia Sul, Brasília 72220-275, DF, Brazil
- Nursing Course, School of Ceilândia, Campus Universitário—Centro Metropolitano, University of Brasilia, Ceilândia Sul, Brasília 72220-275, DF, Brazil
| | - Graziella A. Joanitti
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Campus Universitário—Centro Metropolitano, University of Brasilia, Ceilândia Sul, Brasília 72220-275, DF, Brazil
- Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília 70910-900, DF, Brazil
- Postgraduate Program in Health Sciences and Technologies, School of Ceilândia, Campus Universitário—Centro Metropolitano, University of Brasilia, Ceilândia Sul, Brasília 72220-275, DF, Brazil
| |
Collapse
|
11
|
Shi Y, Ning J, Norbu K, Hou X, Zheng H, Zhang H, Yu W, Zhou F, Li Y, Ding S, Zhang Q. The tibetan medicine Zuozhu-Daxi can prevent Helicobacter pylori induced-gastric mucosa inflammation by inhibiting lipid metabolism. Chin Med 2022; 17:126. [PMID: 36348469 PMCID: PMC9641849 DOI: 10.1186/s13020-022-00682-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background Tibetan medicine has been used in clinical practice for more than 3800 years. Zuozhu-Daxi (ZZDX), a classic traditional Tibetan medicine, has been proved to be effective in the treatment of digestive diseases, such as chronic gastritis, gastric ulcer, etc. Helicobacter pylori (H. pylori), one of the most common pathogenic microbes, is regarded as the most common cause of gastritis. Researching on the effects of ZZDX on H. pylori-induced gastric mucosa inflammation could provide more evidences on H. pylori treatment and promote the development of Tibetan medicine. This study aimed to explore whether ZZDX could rescue H. pylori-induced gastric mucosa inflammation and its mechanism. Methods Male C57BL/6 mice were infected with H. pylori, and orally treated with ZZDX to rescue gastric mucosa inflammation induced by H. pylori infection. Pathology of gastric mucosa inflammation was evaluated under microscopy by hematoxylin–eosin (HE) staining. The infection status of H. pylori was evaluated by immunohistochemical (IHC) staining. The reactive oxygen species (ROS) level in serum was evaluated using a detection kit. IL-1α, IL-6, and PGE2 expression levels in serum were measured using ELISA. IL-1α, IL-8, TNF-α, and NOD1 expression levels in gastric tissues were measured using real-time PCR. RNA sequencing and gene certification of interest were performed to explore the mechanisms in vivo and in vitro. Results The results showed that ZZDX could significantly inhibit H. pylori-induced gastric mucosa inflammation using HE staining. IL-1α, IL-6, and PGE2 expression levels in serum were significantly decreased after treatment with ZZDX. ZZDX treatment significantly decreased the mRNA expression of IL-8 induced by H. pylori infection in gastric tissues. Elovl4, Acot1 and Scd1 might be involved in the mechanisms of ZZDX treatment. However, the H. pylori infection status in the gastric mucosa was not reduced after ZZDX treatment. Conclusions ZZDX reversed gastric mucosal injury and alleviated gastric mucosa inflammation induced by H. pylori infection.
Collapse
|
12
|
Kruth S, Schibajew L, Nett M. Biocatalytic production of the antibiotic aurachin D in Escherichia coli. AMB Express 2022; 12:138. [DOI: 10.1186/s13568-022-01478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Aurachin D is a potent inhibitor of cytochrome bd oxidases, which are potential targets in the treatment of infectious diseases. In this study, our aim was to improve the biocatalytic production of aurachin D from a quinolone precursor molecule with recombinant Escherichia coli cells expressing the biosynthesis enzyme AuaA. In order to achieve a high-level production of this membrane-bound farnesyltransferase in E. coli, the expression of the auaA gene was translationally coupled to an upstream cistron in accordance with a bicistronic design (BCD) strategy. Screening of various BCD elements led to the identification of optimized auaA expression cassettes, which increased the aurachin D titer in E. coli up to 29-fold in comparison to T7-mediated expression. This titer could be further raised by codon optimization of auaA and by introducing the mevalonate pathway into the production strain. The latter measure was intended to improve the availability of farnesyl pyrophosphate, which is needed as a cosubstrate for the AuaA-catalyzed reaction. In sum, the described efforts resulted in a strain producing aurachin D with a titer that is 424 times higher than that obtained with the original, non-optimized expression host.
Graphical Abstract
Collapse
|
13
|
Vollmann DJ, Winand L, Nett M. Emerging concepts in the semisynthetic and mutasynthetic production of natural products. Curr Opin Biotechnol 2022; 77:102761. [DOI: 10.1016/j.copbio.2022.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/18/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
|
14
|
Kinner A, Nerke P, Siedentop R, Steinmetz T, Classen T, Rosenthal K, Nett M, Pietruszka J, Lütz S. Recent Advances in Biocatalysis for Drug Synthesis. Biomedicines 2022; 10:964. [PMID: 35625702 PMCID: PMC9138302 DOI: 10.3390/biomedicines10050964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
Biocatalysis is constantly providing novel options for the synthesis of active pharmaceutical ingredients (APIs). In addition to drug development and manufacturing, biocatalysis also plays a role in drug discovery and can support many active ingredient syntheses at an early stage to build up entire scaffolds in a targeted and preparative manner. Recent progress in recruiting new enzymes by genome mining and screening or adapting their substrate, as well as product scope, by protein engineering has made biocatalysts a competitive tool applied in academic and industrial spheres. This is especially true for the advances in the field of nonribosomal peptide synthesis and enzyme cascades that are expanding the capabilities for the discovery and synthesis of new bioactive compounds via biotransformation. Here we highlight some of the most recent developments to add to the portfolio of biocatalysis with special relevance for the synthesis and late-stage functionalization of APIs, in order to bypass pure chemical processes.
Collapse
Affiliation(s)
- Alina Kinner
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Philipp Nerke
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Regine Siedentop
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Till Steinmetz
- Laboratory for Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (T.S.); (M.N.)
| | - Thomas Classen
- Institute of Bio- and Geosciences: Biotechnology (IBG-1), Forschungszentrum Jülich, 52428 Jülich, Germany; (T.C.); (J.P.)
| | - Katrin Rosenthal
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Markus Nett
- Laboratory for Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (T.S.); (M.N.)
| | - Jörg Pietruszka
- Institute of Bio- and Geosciences: Biotechnology (IBG-1), Forschungszentrum Jülich, 52428 Jülich, Germany; (T.C.); (J.P.)
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf Located at Forschungszentrum Jülich, 52426 Jülich, Germany
| | - Stephan Lütz
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| |
Collapse
|
15
|
Islam MA, Zilani MNH, Biswas P, Khan DA, Rahman MH, Nahid R, Nahar N, Samad A, Ahammad F, Hasan MN. Evaluation of in vitro and in silico anti-inflammatory potential of some selected medicinal plants of Bangladesh against cyclooxygenase-II enzyme. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114900. [PMID: 34896569 DOI: 10.1016/j.jep.2021.114900] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/12/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants are sources of chemical treasures that can be used in treatment of different diseases, including inflammatory disorders. Traditionally, Heritiera littoralis, Ceriops decandra, Ligustrum sinense, and Polyscias scutellaria are used to treat pain, hepatitis, breast inflammation. The present research was designed to explore phytochemicals from the ethanol extracts of H. littoralis, C. decandra, L. sinense, and P. scutellaria to discern the possible pharmacophore (s) in the treatment of inflammatory disorders. MATERIAL AND METHODS The chemical compounds of experimental plants were identified through GC-MS analysis. Furthermore, in-vitro anti-inflammatory activity was assessed in human erythrocytes and an in-silico study was appraised against COX-2. RESULTS The experimental extracts totally revealed 77 compounds in GC-MS analysis and all the extracts showed anti-inflammatory activity in in-vitro assays. The most favorable phytochemicals as anti-inflammatory agents were selected via ADMET profiling and molecular docking with specific protein of the COX-2 enzyme. Molecular dynamics simulation (MDS) confirmed the stability of the selected natural compound at the binding site of the protein. Three phytochemicals exhibited the better competitive result than the conventional anti-inflammatory drug naproxen in molecular docking and MDS studies. CONCLUSION Both experimental and computational studies have scientifically revealed the folklore uses of the experimental medicinal plants in inflammatory disorders. Overall, N-(2-hydroxycyclohexyl)-4-methylbenzenesulfonamide (PubChem CID: 575170); Benzeneethanamine, 2-fluoro-. beta., 3, 4-trihydroxy-N-isopropyl (PubChem CID: 547892); and 3,5-di-tert-butylphenol (PubChem CID: 70825) could be the potential leads for COX-2 inhibitor for further evaluation of drug-likeliness.
Collapse
Affiliation(s)
- Md Aminul Islam
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Md Nazmul Hasan Zilani
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Dhrubo Ahmed Khan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Md Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh.
| | - Ruqayyah Nahid
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Nazmun Nahar
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Abdus Samad
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Computational Biology, Biological Solution Centre, Jashore, 7408, Bangladesh.
| | - Foysal Ahammad
- Laboratory of Computational Biology, Biological Solution Centre, Jashore, 7408, Bangladesh; Department of Biological Science, Faculty of Science, King Abdul-Aziz University, Jeddha, 21589, Saudi Arabia.
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
16
|
da Luz JRD, Barbosa EA, do Nascimento TES, de Rezende AA, Ururahy MAG, Brito ADS, Araujo-Silva G, López JA, Almeida MDG. Chemical Characterization of Flowers and Leaf Extracts Obtained from Turnera subulata and Their Immunomodulatory Effect on LPS-Activated RAW 264.7 Macrophages. Molecules 2022; 27:1084. [PMID: 35164352 PMCID: PMC8839466 DOI: 10.3390/molecules27031084] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/28/2022] Open
Abstract
The anti-inflammatory properties of Turnera subulata have been evaluated as an alternative drug approach to treating several inflammatory processes. Accordingly, in this study, aqueous and hydroalcoholic extracts of T. subulata flowers and leaves were analyzed regarding their phytocomposition by ultrafast liquid chromatography coupled to mass spectrometry, and their anti-inflammatory properties were assessed by an in vitro inflammation model, using LPS-stimulated RAW-264.7 macrophages. The phytochemical profile indicated vitexin-2-O-rhamnoside as an important constituent in both extracts, while methoxyisoflavones, some bulky amino acids (e.g., tryptophan, tyrosine, phenylalanine), pheophorbides, and octadecatrienoic, stearidonic, and ferulic acids were detected in hydroalcoholic extracts. The extracts displayed the ability to modulate the in vitro inflammatory response by altering the secretion of proinflammatory (TNF-α, IL-1β, and IL-6) and anti-inflammatory (IL-10) cytokines and inhibiting the PGE-2 and NO production. Overall, for the first time, putative compounds from T. subulata flowers and leaves were characterized, which can modulate the inflammatory process. Therefore, the data highlight this plant as an option to obtain extracts for phytotherapic formulations to treat and/or prevent chronic diseases.
Collapse
Affiliation(s)
- Jefferson Romáryo Duarte da Luz
- Post-Graduation Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil; (J.R.D.d.L.); (A.A.d.R.)
- Multidisciplinary Research Laboratory, DACT, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil; (T.E.S.d.N.); (J.A.L.)
| | - Eder A. Barbosa
- Laboratory of Synthesis and Analysis of Biomolecules (LSAB), Institute of Chemistry, Darcy Ribeiro University Campus, University of Brasilia, Brasília 70910-900, DF, Brazil;
| | - Thayse Evellyn Silva do Nascimento
- Multidisciplinary Research Laboratory, DACT, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil; (T.E.S.d.N.); (J.A.L.)
- Post-Graduation Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil;
| | - Adriana Augusto de Rezende
- Post-Graduation Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil; (J.R.D.d.L.); (A.A.d.R.)
- Post-Graduation Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil;
| | - Marcela Abbott Galvão Ururahy
- Post-Graduation Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil;
| | - Adriana da Silva Brito
- Faculty of Health Sciences of Trairi (FACISA/UFRN), R. Passos de Miranda, Santa Cruz 59200-000, RN, Brazil;
| | - Gabriel Araujo-Silva
- Organic Chemistry and Biochemistry Laboratory, Amapá State University (UEAP), Av. Presidente Vargas, s/n, Centro, Macapá 68900-070, AP, Brazil;
| | - Jorge A. López
- Multidisciplinary Research Laboratory, DACT, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil; (T.E.S.d.N.); (J.A.L.)
| | - Maria das Graças Almeida
- Post-Graduation Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil; (J.R.D.d.L.); (A.A.d.R.)
- Multidisciplinary Research Laboratory, DACT, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil; (T.E.S.d.N.); (J.A.L.)
- Post-Graduation Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil;
| |
Collapse
|
17
|
Winand L, Schneider P, Kruth S, Greven NJ, Hiller W, Kaiser M, Pietruszka J, Nett M. Mutasynthesis of Physostigmines in Myxococcus xanthus. Org Lett 2021; 23:6563-6567. [PMID: 34355569 DOI: 10.1021/acs.orglett.1c02374] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The alkaloid physostigmine is an approved anticholinergic drug and an important lead structure for the development of novel therapeutics. Using a complementary approach that merged chemical synthesis with pathway refactoring, we produced a series of physostigmine analogues with altered specificity and toxicity profiles in the heterologous host Myxococcus xanthus. The compounds that were generated by applying a simple feeding strategy include the promising drug candidate phenserine, which was previously accessible only by total synthesis.
Collapse
Affiliation(s)
- Lea Winand
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| | - Pascal Schneider
- Institute of Bioorganic Chemistry, Heinrich-Heine-University Düsseldorf at Forschungszentrum Jülich, Jülich, 44227 Nordrhein-Westfalen, Germany
| | - Sebastian Kruth
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| | - Nico-Joel Greven
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| | - Wolf Hiller
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| | - Marcel Kaiser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich-Heine-University Düsseldorf at Forschungszentrum Jülich, Jülich, 44227 Nordrhein-Westfalen, Germany.,Institut für Bio- und Geowissenschaften: Biotechnologie (IBG-1), Forschungszentrum Jülich, Jülich, 52428 Nordrhein-Westfalen, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| |
Collapse
|
18
|
Characterization of a Solvent-Tolerant Amidohydrolase Involved in Natural Product Heterocycle Formation. Catalysts 2021. [DOI: 10.3390/catal11080892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Heterocycles are important building blocks in pharmaceutical drugs and their enzymatic synthesis is attracting increasing interest. In recent years, various enzymes of the amidohydrolase superfamily were reported to catalyze heterocycle-forming condensation reactions. One of these enzymes, MxcM, is biochemically and kinetically characterized in this study. MxcM generates an imidazoline moiety in the biosynthesis of the natural product pseudochelin A, which features potent anti-inflammatory properties. The enzyme shows maximal activity at 50 °C and pH 10 as well as a kcat/Km value of 22,932 s−1 M−1 at its temperature optimum. Experimental data suggest that the activity of MxcM does not depend on a catalytic metal ion, which is uncommon among amidohydrolases. MxcM is highly active in diverse organic solvents and concentrated salt solutions. Furthermore, we show that MxcM is also capable to introduce imidazoline rings into derivatives of its natural substrate myxochelin B. Overall, MxcM is a solvent-stable, halotolerant enzyme with promising biochemical and kinetic properties and, in future, might become a valuable biocatalyst for the manufacturing of pharmaceutical drugs.
Collapse
|
19
|
Abstract
Inflammatory processes occur as a generic response of the immune system and can be triggered by various factors, such as infection with pathogenic microorganisms or damaged tissue. Due to the complexity of the inflammation process and its role in common diseases like asthma, cancer, skin disorders or Alzheimer's disease, anti-inflammatory drugs are of high pharmaceutical interest. Nature is a rich source for compounds with anti-inflammatory properties. Several studies have focused on the structural optimization of natural products to improve their pharmacological properties. As derivatization through total synthesis is often laborious with low yields and limited stereoselectivity, the use of biosynthetic, enzyme-driven reactions is an attractive alternative for synthesizing and modifying complex bioactive molecules. In this minireview, we present an outline of the biotechnological methods used to derivatize anti-inflammatory natural products, including precursor-directed biosynthesis, mutasynthesis, combinatorial biosynthesis, as well as whole-cell and in vitro biotransformation.
Collapse
Affiliation(s)
- Lea Winand
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
| | - Angela Sester
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
- Current address: Chair of Technical BiochemistryTechnical University of DresdenBergstrasse 6601069DresdenGermany
| | - Markus Nett
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
| |
Collapse
|