1
|
Liu ZW, Liu F, Shao CT, Yan GP, Wu JY. Synthesis and Characterization of Sulfonamide-Containing Naphthalimides as Fluorescent Probes. Molecules 2024; 29:2774. [PMID: 38930839 PMCID: PMC11206436 DOI: 10.3390/molecules29122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
A tumor-targeting fluorescent probe has attracted increasing interest in fluorescent imaging for the noninvasive detection of cancers in recent years. Sulfonamide-containing naphthalimide derivatives (SN-2NI, SD-NI) were synthesized by the incorporation of N-butyl-4-ethyldiamino-1,8-naphthalene imide (NI) into sulfonamide (SN) and sulfadiazine (SD) as the tumor-targeting groups, respectively. These derivatives were further characterized by mass spectrometry (MS), nuclear magnetic resonance spectroscopy (1H NMR), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV), and a fluorescence assay. In vitro properties, including cell cytotoxicity and the cell uptake of tumor cells, were also evaluated. Sulfonamide-containing naphthalimide derivatives possessed low cell cytotoxicity to B16F10 melanoma cells. Moreover, SN-2NI and SD-NI can be taken up highly by B16F10 cells and then achieve good green fluorescent images in B16F10 cells. Therefore, sulfonamide-containing naphthalimide derivatives can be considered to be the potential probes used to target fluorescent imaging in tumors.
Collapse
Affiliation(s)
- Zhi-Wei Liu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (Z.-W.L.); (F.L.); (C.-T.S.); (J.-Y.W.)
| | - Fan Liu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (Z.-W.L.); (F.L.); (C.-T.S.); (J.-Y.W.)
| | - Chun-Tao Shao
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (Z.-W.L.); (F.L.); (C.-T.S.); (J.-Y.W.)
| | - Guo-Ping Yan
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Jiang-Yu Wu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (Z.-W.L.); (F.L.); (C.-T.S.); (J.-Y.W.)
| |
Collapse
|
2
|
Chrzanowski G, Pasternak G, Aebisher D, Dynarowicz K, Myśliwiec A, Bartusik-Aebisher D, Sosna B, Cieślar G, Kawczyk-Krupka A, Filip R. An Analysis of the Content of Metalloproteinases in the Intestinal Wall of Patients with Crohn's Disease. Life (Basel) 2023; 13:2013. [PMID: 37895400 PMCID: PMC10608236 DOI: 10.3390/life13102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
One of the inflammatory bowel diseases is Crohn's disease. Although this term has been used in the medical community since 1932, a significant increase in the number of publications occurs at the end of the 20th century and the beginning of the 21st century. Crohn's disease is a disease that cannot be fully cured. In many cases, it is chronic, i.e., recurrent. All preventive and therapeutic measures taken by doctors are aimed at inhibiting the development of the disease and minimizing the occurrence of any potential "side effects" resulting from the developing disease. One of the diagnostic methods is the qualitative and quantitative determination of metalloproteinases in inflammatory tissues and in the blood. The aim of the study was the quantitative and qualitative determination of metalloproteinases in inflammatory bowel tissues in patients diagnosed with Crohn's disease. The in vitro study was performed on surgical tissues from patients diagnosed with Crohn's disease. The results show that in inflammatory tissues the concentration of metalloproteinases -3, -7, -8, -9 was higher compared to tissues taken from the resection margin without signs of inflammation, defined as healthy. The experiment confirmed that the biochemical test, which is the determination of metalloproteinases in tissues, is a useful diagnostic tool to differentiate inflammatory from non-inflammatory tissues.
Collapse
Affiliation(s)
- Grzegorz Chrzanowski
- Department of Biology, College of Natural Sciences, University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Grzegorz Pasternak
- Department of General Surgery, Provincial Clinical Hospital No. 2 in Rzeszów, 35-301 Rzeszów, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of University of Rzeszów, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland; (K.D.); (A.M.)
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland; (K.D.); (A.M.)
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of University of Rzeszów, University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Barbara Sosna
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (G.C.); (A.K.-K.)
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (G.C.); (A.K.-K.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (G.C.); (A.K.-K.)
| | - Rafał Filip
- Department of Internal Medicine, Medical College of University of Rzeszów, University of Rzeszów, 35-310 Rzeszów, Poland;
| |
Collapse
|
3
|
Kim S, Deep G. Optical Imaging of Matrix Metalloproteinases Activity in Prostate Tumors in Mice. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2413:7-12. [PMID: 35044649 DOI: 10.1007/978-1-0716-1896-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molecular characterization of cancer could have significant clinical benefits, including early diagnosis, making treatment decisions, and monitoring therapeutic response. In this regard, noninvasive assessment of expression/activity of specific molecules in tumors could be vital in managing cancer. Optical probes have demonstrated promise in the molecular imaging of cancer. Here, we have described a method to noninvasively assess the activity of matrix metalloproteinases (MMPs) in human prostate tumors in mice. We used an activatable probe MMPSense™ 750 FAST (MMPSense750) with fluorescent properties in the near-infrared (NIR) range with peak excitation at ~749 nm and peak emission ~775 nm. These optical properties offer the advantage of a higher depth of detection. This probe has shown immense potential in imaging MMPs activity in deeper tissue with high target-specific signal and low background autofluorescence. Therefore, this probe could be valuable in assessing MMPs activity in primary tumors and metastasis.
Collapse
Affiliation(s)
- Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA. .,Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
4
|
Megia-Fernandez A, Marshall A, Akram AR, Mills B, Chankeshwara SV, Scholefield E, Miele A, McGorum BC, Michaels C, Knighton N, Vercauteren T, Lacombe F, Dentan V, Bruce AM, Mair J, Hitchcock R, Hirani N, Haslett C, Bradley M, Dhaliwal K. Optical Detection of Distal Lung Enzyme Activity in Human Inflammatory Lung Disease. BME FRONTIERS 2021; 2021:9834163. [PMID: 37851586 PMCID: PMC10530652 DOI: 10.34133/2021/9834163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/10/2021] [Indexed: 10/19/2023] Open
Abstract
Objective and Impact Statement. There is a need to develop platforms delineating inflammatory biology of the distal human lung. We describe a platform technology approach to detect in situ enzyme activity and observe drug inhibition in the distal human lung using a combination of matrix metalloproteinase (MMP) optical reporters, fibered confocal fluorescence microscopy (FCFM), and a bespoke delivery device. Introduction. The development of new therapeutic agents is hindered by the lack of in vivo in situ experimental methodologies that can rapidly evaluate the biological activity or drug-target engagement in patients. Methods. We optimised a novel highly quenched optical molecular reporter of enzyme activity (FIB One) and developed a translational pathway for in-human assessment. Results. We demonstrate the specificity for matrix metalloproteases (MMPs) 2, 9, and 13 and probe dequenching within physiological levels of MMPs and feasibility of imaging within whole lung models in preclinical settings. Subsequently, in a first-in-human exploratory experimental medicine study of patients with fibroproliferative lung disease, we demonstrate, through FCFM, the MMP activity in the alveolar space measured through FIB One fluorescence increase (with pharmacological inhibition). Conclusion. This translational in situ approach enables a new methodology to demonstrate active drug target effects of the distal lung and consequently may inform therapeutic drug development pathways.
Collapse
Affiliation(s)
- Alicia Megia-Fernandez
- EaStCHEM, The University of Edinburgh School of Chemistry, Joseph Black Building, West Mains Road, Edinburgh, UK, EH9 3FJ
| | - Adam Marshall
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK, EH16 4TJ
| | - Ahsan R. Akram
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK, EH16 4TJ
| | - Bethany Mills
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK, EH16 4TJ
| | - Sunay V. Chankeshwara
- EaStCHEM, The University of Edinburgh School of Chemistry, Joseph Black Building, West Mains Road, Edinburgh, UK, EH9 3FJ
| | - Emma Scholefield
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK, EH16 4TJ
| | - Amy Miele
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK, EH16 4TJ
| | - Bruce C. McGorum
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK, EH25 9RG
| | - Chesney Michaels
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK, EH16 4TJ
| | - Nathan Knighton
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112, USA
| | - Tom Vercauteren
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK, SE1 7EH
| | | | | | - Annya M. Bruce
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK, EH16 4TJ
| | - Joanne Mair
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK, EH16 4TJ
| | - Robert Hitchcock
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112, USA
| | - Nik Hirani
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK, EH16 4TJ
| | - Chris Haslett
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK, EH16 4TJ
| | - Mark Bradley
- EaStCHEM, The University of Edinburgh School of Chemistry, Joseph Black Building, West Mains Road, Edinburgh, UK, EH9 3FJ
| | - Kevin Dhaliwal
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK, EH16 4TJ
| |
Collapse
|
5
|
Green D, Eyre H, Singh A, Taylor JT, Chu J, Jeys L, Sumathi V, Coonar A, Rassl D, Babur M, Forster D, Alzabin S, Ponthan F, McMahon A, Bigger B, Reekie T, Kassiou M, Williams K, Dalmay T, Fraser WD, Finegan KG. Targeting the MAPK7/MMP9 axis for metastasis in primary bone cancer. Oncogene 2020; 39:5553-5569. [PMID: 32655131 PMCID: PMC7426263 DOI: 10.1038/s41388-020-1379-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/24/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
Metastasis is the leading cause of cancer-related death. This multistage process involves contribution from both tumour cells and the tumour stroma to release metastatic cells into the circulation. Circulating tumour cells (CTCs) survive circulatory cytotoxicity, extravasate and colonise secondary sites effecting metastatic outcome. Reprogramming the transcriptomic landscape is a metastatic hallmark, but detecting underlying master regulators that drive pathological gene expression is a key challenge, especially in childhood cancer. Here we used whole tumour plus single-cell RNA-sequencing in primary bone cancer and CTCs to perform weighted gene co-expression network analysis to systematically detect coordinated changes in metastatic transcript expression. This approach with comparisons applied to data collected from cell line models, clinical samples and xenograft mouse models revealed mitogen-activated protein kinase 7/matrix metallopeptidase 9 (MAPK7/MMP9) signalling as a driver for primary bone cancer metastasis. RNA interference knockdown of MAPK7 reduces proliferation, colony formation, migration, tumour growth, macrophage residency/polarisation and lung metastasis. Parallel to these observations were reduction of activated interleukins IL1B, IL6, IL8 plus mesenchymal markers VIM and VEGF in response to MAPK7 loss. Our results implicate a newly discovered, multidimensional MAPK7/MMP9 signalling hub in primary bone cancer metastasis that is clinically actionable.
Collapse
Affiliation(s)
- Darrell Green
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Heather Eyre
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | | | - Jessica T Taylor
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Jason Chu
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Lee Jeys
- Orthopaedic Oncology, The Royal Orthopaedic Hospital, Birmingham, UK
| | - Vaiyapuri Sumathi
- Musculoskeletal Pathology, The Royal Orthopaedic Hospital, Birmingham, UK
| | - Aman Coonar
- Thoracic Surgery, The Royal Papworth Hospital, Cambridge, UK
| | - Doris Rassl
- Pathology, The Royal Papworth Hospital, Cambridge, UK
| | - Muhammad Babur
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Duncan Forster
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | | | | | - Adam McMahon
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Brian Bigger
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Tristan Reekie
- School of Chemistry, University of Sydney, Sydney, Australia
| | - Michael Kassiou
- School of Chemistry, University of Sydney, Sydney, Australia
| | - Kaye Williams
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - William D Fraser
- Norwich Medical School, University of East Anglia, Norwich, UK.
- Clinical Biochemistry, Norfolk and Norwich University Hospital, Norwich, UK.
- Diabetes and Endocrinology, Norfolk and Norwich University Hospital, Norwich, UK.
| | - Katherine G Finegan
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Liu F, Shen Y, Chen S, Yan G, Zhang Q, Guo Q, Gu Y. Tumor‐Targeting Fluorescent Probe Based on 1,8‐Naphthalimide and Porphyrin Groups. ChemistrySelect 2020. [DOI: 10.1002/slct.202001340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fan Liu
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
- School of MechanicalMedical & Process EngineeringScience and Engineering FacultyQueensland University of Technology Brisbane QLD 4001 Australia
| | - Yan‐Chun Shen
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
| | - Si Chen
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
| | - Guo‐Ping Yan
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
| | - Qiao Zhang
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
| | - Qing‐Zhong Guo
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
| | - Yuan‐Tong Gu
- School of MechanicalMedical & Process EngineeringScience and Engineering FacultyQueensland University of Technology Brisbane QLD 4001 Australia
| |
Collapse
|
7
|
Liu F, Yan JR, Chen S, Yan GP, Pan BQ, Zhang Q, Wang YF, Gu YT. Polypeptide-rhodamine B probes containing laminin/fibronectin receptor-targeting sequence (YIGSR/RGD) for fluorescent imaging in cancers. Talanta 2020; 212:120718. [DOI: 10.1016/j.talanta.2020.120718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022]
|
8
|
Molecular Imaging Probes Based on Matrix Metalloproteinase Inhibitors (MMPIs). Molecules 2019; 24:molecules24162982. [PMID: 31426440 PMCID: PMC6719134 DOI: 10.3390/molecules24162982] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc- and calcium-dependent endopeptidases which are secreted or anchored in the cell membrane and are capable of degrading the multiple components of the extracellular matrix (ECM). MMPs are frequently overexpressed or highly activated in numerous human diseases. Owing to the important role of MMPs in human diseases, many MMP inhibitors (MMPIs) have been developed as novel therapeutics, and some of them have entered clinical trials. However, so far, only one MMPI (doxycycline) has been approved by the FDA. Therefore, the evaluation of the activity of a specific subset of MMPs in human diseases using clinically relevant imaging techniques would be a powerful tool for the early diagnosis and assessment of the efficacy of therapy. In recent years, numerous MMPIs labeled imaging agents have emerged. This article begins by providing an overview of the MMP subfamily and its structure and function. The latest advances in the design of subtype selective MMPIs and their biological evaluation are then summarized. Subsequently, the potential use of MMPI-labeled diagnostic agents in clinical imaging techniques are discussed, including positron emission tomography (PET), single-photon emission computed tomography (SPECT) and optical imaging (OI). Finally, this article concludes with future perspectives and clinical utility.
Collapse
|
9
|
Schwenck J, Maier FC, Kneilling M, Wiehr S, Fuchs K. Non-invasive In Vivo Fluorescence Optical Imaging of Inflammatory MMP Activity Using an Activatable Fluorescent Imaging Agent. J Vis Exp 2017. [PMID: 28518078 DOI: 10.3791/55180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This paper describes a non-invasive method for imaging matrix metalloproteinases (MMP)-activity by an activatable fluorescent probe, via in vivo fluorescence optical imaging (OI), in two different mouse models of inflammation: a rheumatoid arthritis (RA) and a contact hypersensitivity reaction (CHR) model. Light with a wavelength in the near infrared (NIR) window (650 - 950 nm) allows a deeper tissue penetration and minimal signal absorption compared to wavelengths below 650 nm. The major advantages using fluorescence OI is that it is cheap, fast and easy to implement in different animal models. Activatable fluorescent probes are optically silent in their inactivated states, but become highly fluorescent when activated by a protease. Activated MMPs lead to tissue destruction and play an important role for disease progression in delayed-type hypersensitivity reactions (DTHRs) such as RA and CHR. Furthermore, MMPs are the key proteases for cartilage and bone degradation and are induced by macrophages, fibroblasts and chondrocytes in response to pro-inflammatory cytokines. Here we use a probe that is activated by the key MMPs like MMP-2, -3, -9 and -13 and describe an imaging protocol for near infrared fluorescence OI of MMP activity in RA and control mice 6 days after disease induction as well as in mice with acute (1x challenge) and chronic (5x challenge) CHR on the right ear compared to healthy ears.
Collapse
Affiliation(s)
- Johannes Schwenck
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen; Department of Nuclear Medicine, Eberhard Karls University of Tübingen
| | - Florian C Maier
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen
| | - Manfred Kneilling
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen; Department of Dermatology, Eberhard Karls University of Tübingen
| | - Stefan Wiehr
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen
| | - Kerstin Fuchs
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen;
| |
Collapse
|
10
|
Abstract
To many of us in the field, working on matrix metalloproteinases (MMPs) has felt like riding a roller coaster, traveling through times of both excitement and despair. I was fortunate to join the ride when it was a mere carousel of three activities thought to target the proteins that comprise the extracellular matrix (ECM). New technologies brought the thrills of discovery as we uncovered specific proteinase genes and defined specialized activities in different cellular processes. The MMPs and the sister families of "adisintegrin and metalloproteinase" (ADAMs), ADAMs with thrombospondin domains (ADAM-TS), and Astacins are now recognized as key signaling "scissors" that drive rapid changes in a plethora of cellular pathways. My many excellent colleagues and collaborators and I were enthused to contribute to the early development of the field and continue to be amazed at its growth and sophistication. In contrast, the hype and failure of early inhibitor discovery have dogged our standing with the pharmaceutical industry and grant-giving bodies. However, the true believers have kept going, and knowledge of particular functions of MMPs and their contributions to disease progression has progressed. Recognition of the strategic importance of proteinase function should inspire more work harnessing new technologies such as imaging, proteomics, and gene editing to generate a more precise understanding of individual situations. New approaches to inhibitor design and assessment are possible, and the consequent ability to precisely abrogate specific MMP activity could contribute to the fight against a number of pathologies with unmet needs. What a ride it could be!
Collapse
Affiliation(s)
- Gillian Murphy
- From the Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
11
|
Abadjian MCZ, Edwards WB, Anderson CJ. Imaging the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:229-257. [PMID: 29275475 DOI: 10.1007/978-3-319-67577-0_15] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The tumor microenvironment consists of tumor, stromal, and immune cells, as well as extracellular milieu. Changes in numbers of these cell types and their environments have an impact on cancer growth and metastasis. Non-invasive imaging of aspects of the tumor microenvironment can provide important information on the aggressiveness of the cancer, whether or not it is metastatic, and can also help to determine early response to treatment. This chapter provides an overview on non-invasive in vivo imaging in humans and mouse models of various cell types and physiological parameters that are unique to the tumor microenvironment. Current clinical imaging and research investigation are in the areas of nuclear imaging (positron emission tomography (PET) and single photon emission computed tomography (SPECT)), magnetic resonance imaging (MRI) and optical (near infrared (NIR) fluorescence) imaging. Aspects of the tumor microenvironment that have been imaged by PET, MRI and/or optical imaging are tumor associated inflammation (primarily macrophages and T cells), hypoxia, pH changes, as well as enzymes and integrins that are highly prevalent in tumors, stroma and immune cells. Many imaging agents and strategies are currently available for cancer patients; however, the investigation of novel avenues for targeting aspects of the tumor microenvironment in pre-clinical models of cancer provides the cancer researcher with a means to monitor changes and evaluate novel treatments that can be translated into the clinic.
Collapse
Affiliation(s)
| | - W Barry Edwards
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carolyn J Anderson
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Gerwien H, Hermann S, Zhang X, Korpos E, Song J, Kopka K, Faust A, Wenning C, Gross CC, Honold L, Melzer N, Opdenakker G, Wiendl H, Schafers M, Sorokin L. Imaging matrix metalloproteinase activity in multiple sclerosis as a specific marker of leukocyte penetration of the blood-brain barrier. Sci Transl Med 2016; 8:364ra152. [DOI: 10.1126/scitranslmed.aaf8020] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/03/2016] [Indexed: 12/19/2022]
|
13
|
Geven EJW, van den Bosch MHJ, Di Ceglie I, Ascone G, Abdollahi-Roodsaz S, Sloetjes AW, Hermann S, Schäfers M, van de Loo FAJ, van der Kraan PM, Koenders MI, Foell D, Roth J, Vogl T, van Lent PLEM. S100A8/A9, a potent serum and molecular imaging biomarker for synovial inflammation and joint destruction in seronegative experimental arthritis. Arthritis Res Ther 2016; 18:247. [PMID: 27776554 PMCID: PMC5078998 DOI: 10.1186/s13075-016-1121-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/13/2016] [Indexed: 12/16/2022] Open
Abstract
Background Seronegative joint diseases are characterized by a lack of well-defined biomarkers since autoantibodies are not elevated. Calprotectin (S100A8/A9) is a damage-associated molecular pattern (DAMP) which is released by activated phagocytes, and high levels are found in seronegative arthritides. In this study, we investigated the biomarker potential of systemic and local levels of these S100 proteins to assess joint inflammation and joint destruction in an experimental model for seronegative arthritis. Methods Serum levels of S100A8/A9 and various cytokines were monitored during disease development in interleukin-1 receptor antagonist (IL-1Ra)–/– mice using ELISA and multiplex bead-based immunoassay, and were correlated to macroscopic and microscopic parameters for joint inflammation, bone erosion, and cartilage damage. Local expression of S100A8 and S100A9 and matrix metalloproteinase (MMP)-mediated cartilage damage in the ankle joints were investigated by immunohistochemistry. In addition, local S100A8 and activated MMPs were monitored in vivo by optical imaging using anti-S100A8-Cy7 and AF489-Cy5.5, a specific tracer for activated MMPs. Results Serum levels of S100A8/A9 were significantly increased in IL-1Ra–/– mice and correlated with macroscopic joint swelling and histological inflammation, while serum levels of pro-inflammatory cytokines did not correlate with joint swelling. In addition, early serum S100A8/A9 levels were prognostic for disease outcome at a later stage. The increased serum S100A8/A9 levels were reflected by an increased expression of S100A8 and S100A9 within the ankle joint, as visualized by molecular imaging. Next to inflammatory processes, serum S100A8/A9 also correlated with histological parameters for bone erosion and cartilage damage. In addition, arthritic IL-1Ra–/– mice with increased synovial S100A8 and S100A9 expression showed increased cartilage damage that coincided with MMP-mediated neoepitope expression and in vivo imaging of activated MMPs. Conclusions Expression of S100A8 and S100A9 in IL-1Ra–/– mice strongly correlates with synovial inflammation, bone erosion, and cartilage damage, underlining the potential of S100A8/A9 as a systemic and local biomarker in seronegative arthritis not only for assessing inflammation but also for assessing severity of inflammatory joint destruction. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-1121-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edwin J W Geven
- Experimental Rheumatology, Radboud University Medical Center, PO Box 9101, 6525, GA, Nijmegen, The Netherlands
| | - Martijn H J van den Bosch
- Experimental Rheumatology, Radboud University Medical Center, PO Box 9101, 6525, GA, Nijmegen, The Netherlands
| | - Irene Di Ceglie
- Experimental Rheumatology, Radboud University Medical Center, PO Box 9101, 6525, GA, Nijmegen, The Netherlands
| | - Giuliana Ascone
- Experimental Rheumatology, Radboud University Medical Center, PO Box 9101, 6525, GA, Nijmegen, The Netherlands
| | - Shahla Abdollahi-Roodsaz
- Experimental Rheumatology, Radboud University Medical Center, PO Box 9101, 6525, GA, Nijmegen, The Netherlands
| | - Annet W Sloetjes
- Experimental Rheumatology, Radboud University Medical Center, PO Box 9101, 6525, GA, Nijmegen, The Netherlands
| | - Sven Hermann
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Fons A J van de Loo
- Experimental Rheumatology, Radboud University Medical Center, PO Box 9101, 6525, GA, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, PO Box 9101, 6525, GA, Nijmegen, The Netherlands
| | - Marije I Koenders
- Experimental Rheumatology, Radboud University Medical Center, PO Box 9101, 6525, GA, Nijmegen, The Netherlands
| | - Dirk Foell
- Department of Pediatric Rheumatology and Immunology, University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, PO Box 9101, 6525, GA, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Martelli C, Dico AL, Diceglie C, Lucignani G, Ottobrini L. Optical imaging probes in oncology. Oncotarget 2016; 7:48753-48787. [PMID: 27145373 PMCID: PMC5217050 DOI: 10.18632/oncotarget.9066] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/10/2016] [Indexed: 01/19/2023] Open
Abstract
Cancer is a complex disease, characterized by alteration of different physiological molecular processes and cellular features. Keeping this in mind, the possibility of early identification and detection of specific tumor biomarkers by non-invasive approaches could improve early diagnosis and patient management.Different molecular imaging procedures provide powerful tools for detection and non-invasive characterization of oncological lesions. Clinical studies are mainly based on the use of computed tomography, nuclear-based imaging techniques and magnetic resonance imaging. Preclinical imaging in small animal models entails the use of dedicated instruments, and beyond the already cited imaging techniques, it includes also optical imaging studies. Optical imaging strategies are based on the use of luminescent or fluorescent reporter genes or injectable fluorescent or luminescent probes that provide the possibility to study tumor features even by means of fluorescence and luminescence imaging. Currently, most of these probes are used only in animal models, but the possibility of applying some of them also in the clinics is under evaluation.The importance of tumor imaging, the ease of use of optical imaging instruments, the commercial availability of a wide range of probes as well as the continuous description of newly developed probes, demonstrate the significance of these applications. The aim of this review is providing a complete description of the possible optical imaging procedures available for the non-invasive assessment of tumor features in oncological murine models. In particular, the characteristics of both commercially available and newly developed probes will be outlined and discussed.
Collapse
Affiliation(s)
- Cristina Martelli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
| | - Alessia Lo Dico
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Umberto Veronesi Foundation, Milan, Italy
| | - Cecilia Diceglie
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
- Tecnomed Foundation, University of Milan-Bicocca, Monza, Italy
| | - Giovanni Lucignani
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Luisa Ottobrini
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
- Institute for Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| |
Collapse
|
15
|
Hugenberg V, Hermann S, Galla F, Schäfers M, Wünsch B, Kolb HC, Szardenings K, Lebedev A, Walsh JC, Mocharla VP, Gangadharmath UB, Kopka K, Wagner S. Radiolabeled hydroxamate-based matrix metalloproteinase inhibitors: How chemical modifications affect pharmacokinetics and metabolic stability. Nucl Med Biol 2016; 43:424-37. [PMID: 27179748 DOI: 10.1016/j.nucmedbio.2016.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/04/2016] [Accepted: 03/15/2016] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Dysregulated MMP expression or activation is associated with several diseases. To study MMP activity in vivo by means of PET a radiolabeled MMP inhibitor (MMPI) functioning as radiotracer has been developed by our group based on the lead structure CGS 25966. MATERIALS AND METHODS Aiming at the modification of the pharmacokinetics of this lipophilic model tracer a new class of MMPIs has been discovered, consisting of additional fluorinated hydrophilic substructures, such as mini-PEG and/or 1,2,3-triazole units. To identify the best candidate for further clinical applications, radiofluorinated compounds of each subgroup have been (radio) synthesized and evaluated regarding their biodistribution behavior and their metabolic stability. RESULTS Radiosyntheses of different triazole based MMPIs could be realized using two step "click chemistry" procedures. Compared to lead structure [(18)F]FEtO-CGS 25966 ([(18)F]1e, log D(exp) =2.02, IC50=2-50nM) all selected candidates showed increased hydrophilicities and inhibition potencies (log D(exp) =0.23-1.25, IC50=0.006-6nM). Interestingly, despite different hydrophilicities most triazole based MMPIs showed no significant differences in their in vivo biodistribution behavior and were cleared predominantly via the hepatobiliary excretion route. Biostability and metabolism studies in vitro and in vivo revealed significant higher metabolic stability for the triazole moiety compared to the benzyl ring in the lead structure. Cleavage of ethylene glycol subunits of the mini-PEG chain led to a faster metabolism of mini-PEG containing MMPIs. CONCLUSION The introduction of hydrophilic groups such as mini-PEG and 1,2,3-triazole units did not lead to a significant shift of the hepatobiliary elimination towards renal clearance. Particularly the introduction of mini-PEG chains led to an intense metabolic decomposition. Substitution of the benzyl moiety in lead structure 1e by a 1,2,3-trizole ring resulted in an increased metabolic stability. Therefore, the 1,2,3-triazole-1-yl-methyl substituted MMPI [(18)F]3a was found to be the most stable candidate in this series and should be chosen for further preclinical evaluation.
Collapse
Affiliation(s)
- Verena Hugenberg
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149, Münster, Germany; European Institute for Molecular Imaging, University of Münster, Waldeyerstraße 15, D-48149, Münster, Germany.
| | - Sven Hermann
- European Institute for Molecular Imaging, University of Münster, Waldeyerstraße 15, D-48149, Münster, Germany; DFG EXC 1003 Cluster of Excellence 'Cells in Motion', University of Münster, Münster, Germany
| | - Fabian Galla
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149, Münster, Germany; European Institute for Molecular Imaging, University of Münster, Waldeyerstraße 15, D-48149, Münster, Germany; DFG EXC 1003 Cluster of Excellence 'Cells in Motion', University of Münster, Münster, Germany
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Hartmuth C Kolb
- Siemens Medical Solutions USA, Inc., 6140 Bristol Parkway, Culver City, CA, 90230, USA
| | - Katrin Szardenings
- Siemens Medical Solutions USA, Inc., 6140 Bristol Parkway, Culver City, CA, 90230, USA
| | - Artem Lebedev
- Siemens Medical Solutions USA, Inc., 6140 Bristol Parkway, Culver City, CA, 90230, USA
| | - Joseph C Walsh
- Siemens Medical Solutions USA, Inc., 6140 Bristol Parkway, Culver City, CA, 90230, USA
| | - Vani P Mocharla
- Siemens Medical Solutions USA, Inc., 6140 Bristol Parkway, Culver City, CA, 90230, USA
| | - Umesh B Gangadharmath
- Siemens Medical Solutions USA, Inc., 6140 Bristol Parkway, Culver City, CA, 90230, USA
| | - Klaus Kopka
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149, Münster, Germany
| | - Stefan Wagner
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149, Münster, Germany
| |
Collapse
|
16
|
Near Infrared Fluorescence (NIRF) Molecular Imaging of Oxidized LDL with an Autoantibody in Experimental Atherosclerosis. Sci Rep 2016; 6:21785. [PMID: 26911995 PMCID: PMC4766560 DOI: 10.1038/srep21785] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/01/2016] [Indexed: 12/20/2022] Open
Abstract
We aimed to develop a quantitative antibody-based near infrared fluorescence (NIRF) approach for the imaging of oxidized LDL in atherosclerosis. LO1, a well- characterized monoclonal autoantibody that reacts with malondialdehyde-conjugated LDL, was labeled with a NIRF dye to yield LO1-750. LO1-750 specifically identified necrotic core in ex vivo human coronary lesions. Injection of LO1-750 into high fat (HF) fed atherosclerotic Ldlr−/− mice led to specific focal localization within the aortic arch and its branches, as detected by fluorescence molecular tomography (FMT) combined with micro-computed tomography (CT). Ex vivo confocal microscopy confirmed LO1-750 subendothelial localization of LO1-750 at sites of atherosclerosis, in the vicinity of macrophages. When compared with a NIRF reporter of MMP activity (MMPSense-645-FAST), both probes produced statistically significant increases in NIRF signal in the Ldlr−/− model in relation to duration of HF diet. Upon withdrawing the HF diet, the reduction in oxLDL accumulation, as demonstrated with LO1-750, was less marked than the effect seen on MMP activity. In the rabbit, in vivo injected LO1-750 localization was successfully imaged ex vivo in aortic lesions with a customised intra-arterial NIRF detection catheter. A partially humanized chimeric LO1-Fab-Cys localized similarly to the parent antibody in murine atheroma showing promise for future translation.
Collapse
|
17
|
Lebel R, Lepage M. A comprehensive review on controls in molecular imaging: lessons from MMP-2 imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 9:187-210. [PMID: 24700747 DOI: 10.1002/cmmi.1555] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/11/2013] [Accepted: 06/19/2013] [Indexed: 12/31/2022]
Abstract
Metalloproteinases (MMPs), including MMP-2, play critical roles in tissue remodeling and are involved in a large array of pathologies, including cancer, arthritis and atherosclerosis. Their prognostic value warranted a large investment or resources in the development of noninvasive detection methods, based on probes for many current clinical and pre-clinical imaging modalities. However, the potential of imaging techniques is only matched by the complexity of the data they generate. This complexity must be properly assessed and accounted for in the early steps of probe design and testing in order to accurately determine the efficacy and efficiency of an imaging strategy. This review proposes basic rules for the evaluation of novel probes by addressing the specific case of MMP targeted probes.
Collapse
Affiliation(s)
- Réjean Lebel
- Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | |
Collapse
|
18
|
Schwenck J, Griessinger CM, Fuchs K, Bukala D, Bauer N, Eichner M, Röcken M, Pichler BJ, Kneilling M. In vivo optical imaging of matrix metalloproteinase activity detects acute and chronic contact hypersensitivity reactions and enables monitoring of the antiinflammatory effects of N-acetylcysteine. Mol Imaging 2015; 13. [PMID: 25430819 DOI: 10.2310/7290.2014.00044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to determine whether the severity of contact hypersensitivity reactions (CHSRs) can be observed by noninvasive in vivo optical imaging of matrix metalloproteinase (MMP) activity and whether this is an appropriate tool for monitoring an antiinflammatory effect. Acute and chronic CHSRs were elicited by application of a 1% trinitrochlorobenzene (TNCB) solution for up to five times on the right ear of TNCB-sensitized mice. N-Acetylcysteine (NAC)-treated and sham-treated mice were monitored by measuring ear swelling and optical imaging of MMP activity. In addition, we performed hematoxylin-eosin staining and CD31 immunohistochemistry for histopathologic analysis of the antiinflammatory effects of NAC. The ear thickness and the MMP activity increased in line with the increasing severity of the CHSR. MMP activity was enhanced 2.5- to 2.7-fold during acute CHSR and 3.1- to 4.1-fold during chronic CHSR. NAC suppressed ear swelling and MMP signal intensity in mice with acute and chronic CHSR. During chronic CHSR, the vessel density was significantly reduced in ear sections derived from NAC-treated compared to sham-treated mice. In vivo optical imaging of MMP activity measures acute and chronic CHSR and is useful to monitor antiinflammatory effects.
Collapse
|
19
|
Mahajan A, Goh V, Basu S, Vaish R, Weeks AJ, Thakur MH, Cook GJ. Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine? Clin Radiol 2015; 70:1060-82. [PMID: 26187890 DOI: 10.1016/j.crad.2015.06.082] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 06/03/2015] [Accepted: 06/08/2015] [Indexed: 02/05/2023]
Abstract
Ongoing research on malignant and normal cell biology has substantially enhanced the understanding of the biology of cancer and carcinogenesis. This has led to the development of methods to image the evolution of cancer, target specific biological molecules, and study the anti-tumour effects of novel therapeutic agents. At the same time, there has been a paradigm shift in the field of oncological imaging from purely structural or functional imaging to combined multimodal structure-function approaches that enable the assessment of malignancy from all aspects (including molecular and functional level) in a single examination. The evolving molecular functional imaging using specific molecular targets (especially with combined positron-emission tomography [PET] computed tomography [CT] using 2- [(18)F]-fluoro-2-deoxy-D-glucose [FDG] and other novel PET tracers) has great potential in translational research, giving specific quantitative information with regard to tumour activity, and has been of pivotal importance in diagnoses and therapy tailoring. Furthermore, molecular functional imaging has taken a key place in the present era of translational cancer research, producing an important tool to study and evolve newer receptor-targeted therapies, gene therapies, and in cancer stem cell research, which could form the basis to translate these agents into clinical practice, popularly termed "theranostics". Targeted molecular imaging needs to be developed in close association with biotechnology, information technology, and basic translational scientists for its best utility. This article reviews the current role of molecular functional imaging as one of the main pillars of translational research.
Collapse
Affiliation(s)
- A Mahajan
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK; Department of Radiodiagnosis, Tata Memorial Centre, Mumbai, 400012, India.
| | - V Goh
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK
| | - S Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe, Mumbai, 400 012, India
| | - R Vaish
- Department of Head and Neck Surgical Oncology, Tata Memorial Centre, Mumbai, 400012, India
| | - A J Weeks
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK
| | - M H Thakur
- Department of Radiodiagnosis, Tata Memorial Centre, Mumbai, 400012, India
| | - G J Cook
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK; Department of Nuclear Medicine, Guy's and St Thomas NHS Foundation Trust Hospital, London, UK
| |
Collapse
|
20
|
van Duijnhoven SMJ, Robillard MS, Langereis S, Grüll H. Bioresponsive probes for molecular imaging: concepts and in vivo applications. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:282-308. [PMID: 25873263 DOI: 10.1002/cmmi.1636] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/24/2015] [Accepted: 02/03/2015] [Indexed: 12/30/2022]
Abstract
Molecular imaging is a powerful tool to visualize and characterize biological processes at the cellular and molecular level in vivo. In most molecular imaging approaches, probes are used to bind to disease-specific biomarkers highlighting disease target sites. In recent years, a new subset of molecular imaging probes, known as bioresponsive molecular probes, has been developed. These probes generally benefit from signal enhancement at the site of interaction with its target. There are mainly two classes of bioresponsive imaging probes. The first class consists of probes that show direct activation of the imaging label (from "off" to "on" state) and have been applied in optical imaging and magnetic resonance imaging (MRI). The other class consists of probes that show specific retention of the imaging label at the site of target interaction and these probes have found application in all different imaging modalities, including photoacoustic imaging and nuclear imaging. In this review, we present a comprehensive overview of bioresponsive imaging probes in order to discuss the various molecular imaging strategies. The focus of the present article is the rationale behind the design of bioresponsive molecular imaging probes and their potential in vivo application for the detection of endogenous molecular targets in pathologies such as cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Sander M J van Duijnhoven
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| | - Marc S Robillard
- Department of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| | - Sander Langereis
- Department of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| | - Holger Grüll
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| |
Collapse
|
21
|
Fukui T, Tenborg E, Yik JHN, Haudenschild DR. In-vitro and in-vivo imaging of MMP activity in cartilage and joint injury. Biochem Biophys Res Commun 2015; 460:741-6. [PMID: 25817731 DOI: 10.1016/j.bbrc.2015.03.100] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/18/2015] [Indexed: 12/26/2022]
Abstract
Non-destructive detection of cartilage-degrading activities represents an advance in osteoarthritis (OA) research, with implications in studies of OA pathogenesis, progression, and intervention strategies. Matrix metalloproteinases (MMPs) are principal cartilage degrading enzymes that contribute to OA pathogenesis. MMPSense750 is an in-vivo fluorimetric imaging probe with the potential to continuously and non-invasively trace real-time MMP activities, but its use in OA-related research has not been reported. Our objective is to detect and characterize the early degradation activities shortly after cartilage or joint injury with MMPSense750. We determined the appropriate concentration, assay time, and linear range using various concentrations of recombinant MMPs as standards. We then quantified MMP activity from cartilage explants subjected to either mechanical injury or inflammatory cytokine treatment in-vitro. Finally, we performed in-vivo MMP imaging of a mouse model of post-traumatic OA. Our in-vitro results showed that the optimal assay time was highly dependent on the MMP enzyme. In cartilage explant culture media, mechanical impact or cytokine treatment increased MMP activity. Injured knees of mice showed significantly higher fluorescent signal than uninjured knees. We conclude that MMPSense750 detects human MMP activities and can be used for in-vitro study with cartilage, as well as in-vivo studies of knee injury, and can offering real-time insight into the degradative processes that occurring within the joint before structural changes become evident radiographically.
Collapse
Affiliation(s)
- Tomoaki Fukui
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Medical Center, 4635 Second Avenue Suite 2000, Sacramento CA 95817, USA
| | - Elizabeth Tenborg
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Medical Center, 4635 Second Avenue Suite 2000, Sacramento CA 95817, USA
| | - Jasper H N Yik
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Medical Center, 4635 Second Avenue Suite 2000, Sacramento CA 95817, USA
| | - Dominik R Haudenschild
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Medical Center, 4635 Second Avenue Suite 2000, Sacramento CA 95817, USA.
| |
Collapse
|
22
|
Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov 2014; 13:904-27. [DOI: 10.1038/nrd4390] [Citation(s) in RCA: 524] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Steingräber AK, Schelhaas S, Faust A, Jacobs AH, Schäfers M, Goerge T. Molecular imaging reveals time course of matrix metalloproteinase activity in acute cutaneous vasculitis in vivo. Exp Dermatol 2014; 22:730-5. [PMID: 24112050 DOI: 10.1111/exd.12253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2013] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) play a critical role in various pathological conditions including cutaneous inflammation. Thus far, serial assessment of MMP activity in ongoing inflammation is hampered due to technical limitations. Here, we present an innovative method for longitudinal detection of MMP activity by in vivo imaging. First, we analysed skin sections from patients suffering from leucocytoclastic vasculitis (LcV) and detected a significant MMP signal via immunofluorescence staining. Then, we mimicked LcV in mice in a well-studied model of immune complex-mediated vasculitis (ICV). This acute inflammatory process was serially visualized in vivo using the fluorescence-labelled MMP tracer Cy5.5-AF443. The deposition of fluorescence-labelled immune complexes and MMP tracer distribution was visualized repeatedly and non-invasively by fluorescence reflectance imaging. In correlation with the presence of MMP-2 and MMP-9 in immunofluorescence stainings, Cy5.5-AF443 accumulated in ICV spots in the skin of C57BL/6 mice. This tracer accumulation could also be observed in mice equipped with a dorsal skinfold chamber, where microscopic observations revealed an increased recruitment of fluorescence-labelled leucocytes during ICV. The specificity of the MMP tracer was supported by (i) analysis of mice deficient in functional β2 -integrins (CD18(-/-) ) and (ii) subsequent MMP immunofluorescence staining. These findings let us conclude that MMP accumulation in the acute phase of ICV depends on β2 -mediated leucocyte recruitment. In summary, we show that MMPs are involved in ICV as determined by Cy5.5-AF443, a new optical marker to longitudinally and non-invasively follow MMP activity in acute skin inflammation in vivo.
Collapse
|
24
|
van Duijnhoven SMJ, Robillard MS, Nicolay K, Grüll H. In vivo biodistribution of radiolabeled MMP-2/9 activatable cell-penetrating peptide probes in tumor-bearing mice. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 10:59-66. [PMID: 24823643 DOI: 10.1002/cmmi.1605] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 03/05/2014] [Accepted: 03/20/2014] [Indexed: 01/12/2023]
Abstract
Matrix metalloproteinases (MMPs) play a pivotal role in cancer progression and present therefore an interesting biomarker for early diagnosis, staging and therapy evaluation. Consequently, MMP-specific molecular imaging probes have been proposed for noninvasive visualization and quantification of MMP activity. An interesting approach is MMP-2/9 activatable cell-penetrating peptides (ACPP) that accumulate in the tumor tissue after activation. However, a recent study revealed that probe activation occurred already in the vasculature followed by nonspecific tumor targeting. In the latter study, biodistribution was determined 6 and 24 h post-ACPP injection. An alternative explanation could still be that the kinetics of tumor-specific activation is faster than that of blood activation plus subsequent nonspecific uptake in tumor. The aim of this study was to assess if tumor-specific ACPP activation occurs in mice with MMP-2/9 positive subcutaneous HT-1080 tumors at 3 h post-injection. As control, we studied the MMP-2/9 sensitive ACPP in mice bearing subcutaneous BT-20 tumors with low MMP-2/9 expression to test if probe cleavage correlates with tumoral MMP expression. Ex vivo biodistribution showed no improved tumoral ACPP activation in HT-1080 tumor-bearing mice at 3 h post-injection compared with previous reported data collected at 24 h post-injection. Furthermore, tumoral uptake and relative tumoral activation for ACPP were similar in both BT-20 and HT-1080 tumor-bearing mice. In conclusion, this study suggests that tumoral ACPP uptake in these tumor models originates from probe activation in the vasculature instead of tumor-specific MMP activation. Novel ACPPs that target tissue-specific proteases without nonspecific activation may unleash the full potential of the elegant ACPP concept.
Collapse
Affiliation(s)
- Sander M J van Duijnhoven
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Center for Imaging Research and Education, Eindhoven, The Netherlands
| | | | | | | |
Collapse
|
25
|
Study of the binding interaction between fluorinated matrix metalloproteinase inhibitors and Human Serum Albumin. Eur J Med Chem 2014; 79:13-23. [DOI: 10.1016/j.ejmech.2014.03.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/18/2014] [Accepted: 03/21/2014] [Indexed: 11/18/2022]
|
26
|
Koonjoo N, Parzy E, Massot P, Lepetit-Coiffé M, Marque SRA, Franconi JM, Thiaudiere E, Mellet P. In vivo Overhauser-enhanced MRI of proteolytic activity. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 9:363-71. [PMID: 24729587 DOI: 10.1002/cmmi.1586] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/21/2013] [Accepted: 10/31/2013] [Indexed: 01/22/2023]
Abstract
There is an increasing interest in developing novel imaging strategies for sensing proteolytic activities in intact organisms in vivo. Overhauser-enhanced MRI (OMRI) offers the possibility to reveal the proteolysis of nitroxide-labeled macromolecules thanks to a sharp decrease of the rotational correlation time of the nitroxide moiety upon cleavage. In this paper, this concept is illustrated in vivo at 0.2 T using nitroxide-labeled elastin orally administered in mice. In vitro, this elastin derivative was OMRI-visible and gave rise to high Overhauser enhancements (19-fold at 18 mm nitroxide) upon proteolysis by pancreatic porcine elastase. In vivo three-dimensional OMRI detection of proteolysis was carried out. A keyhole fully balanced steady-state free precession sequence was used, which allowed 3D OMRI acquisition within 20 s at 0.125 mm(3) resolution. About 30 min after mouse gavage, proteolysis was detected in the duodenum, where Overhauser enhancements were 7.2 ± 2.4 (n = 7) and was not observed in the stomach. Conversely, orally administered free nitroxides or pre-digested nitroxide-labeled elastin were detected in the mouse's stomach by OMRI. Combined with specific molecular probes, this Overhauser-enhanced MRI technique can be used to evaluate unregulated proteolytic activities in various models of experimental diseases and for drug testing.
Collapse
Affiliation(s)
- Neha Koonjoo
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS Université Bordeaux Segalen, Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hugenberg V, Riemann B, Hermann S, Schober O, Schäfers M, Szardenings K, Lebedev A, Gangadharmath U, Kolb H, Walsh J, Zhang W, Kopka K, Wagner S. Inverse 1,2,3-Triazole-1-yl-ethyl Substituted Hydroxamates as Highly Potent Matrix Metalloproteinase Inhibitors: (Radio)synthesis, in Vitro and First in Vivo Evaluation. J Med Chem 2013; 56:6858-70. [DOI: 10.1021/jm4006753] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Verena Hugenberg
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus
1, Building A1, D-48149 Münster, Germany
| | - Burkhard Riemann
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus
1, Building A1, D-48149 Münster, Germany
| | - Sven Hermann
- European Institute for Molecular
Imaging, University of Münster,
Mendelstrasse 11, D-48149 Münster, Germany
| | - Otmar Schober
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus
1, Building A1, D-48149 Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular
Imaging, University of Münster,
Mendelstrasse 11, D-48149 Münster, Germany
- Interdisciplinary Centre of Clinical Research (IZKF), Albert-Schweitzer-Campus
1, Building D3, D-48149 Münster, Germany
| | - Katrin Szardenings
- Siemens Medical Solutions USA, Inc., 6100 Bristol Parkway, Culver City,
California 90230, United States
| | - Artem Lebedev
- Siemens Medical Solutions USA, Inc., 6100 Bristol Parkway, Culver City,
California 90230, United States
| | - Umesh Gangadharmath
- Siemens Medical Solutions USA, Inc., 6100 Bristol Parkway, Culver City,
California 90230, United States
| | - Hartmuth Kolb
- Siemens Medical Solutions USA, Inc., 6100 Bristol Parkway, Culver City,
California 90230, United States
| | - Joseph Walsh
- Siemens Medical Solutions USA, Inc., 6100 Bristol Parkway, Culver City,
California 90230, United States
| | - Wei Zhang
- Siemens Medical Solutions USA, Inc., 6100 Bristol Parkway, Culver City,
California 90230, United States
| | - Klaus Kopka
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus
1, Building A1, D-48149 Münster, Germany
| | - Stefan Wagner
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus
1, Building A1, D-48149 Münster, Germany
| |
Collapse
|
28
|
Casalini F, Fugazza L, Esposito G, Cabella C, Brioschi C, Cordaro A, D’Angeli L, Bartoli A, Filannino AM, Gringeri CV, Longo DL, Muzio V, Nuti E, Orlandini E, Figlia G, Quattrini A, Tei L, Digilio G, Rossello A, Maiocchi A. Synthesis and Preliminary Evaluation in Tumor Bearing Mice of New 18F-Labeled Arylsulfone Matrix Metalloproteinase Inhibitors as Tracers for Positron Emission Tomography. J Med Chem 2013; 56:2676-89. [DOI: 10.1021/jm4001743] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francesca Casalini
- Department of Science and Technological
Innovation, Università del Piemonte Orientale “Amedeo Avogadro”, Viale T. Michel 11,
I-15121 Alessandria, Italy
| | - Lorenza Fugazza
- Research and Development, Advanced Accelerator Applications, Via Ribes 5, I-10010
Colleretto Giacosa (TO), Italy
| | - Giovanna Esposito
- Molecular Imaging Centre, University of Torino, Via Nizza 52, I-10126 Torino,
Italy
| | - Claudia Cabella
- Centro Ricerche Bracco, Bracco Imaging S.p.A., Via Ribes 5, I-10010 Colleretto
Giacosa (TO), Italy
| | - Chiara Brioschi
- Centro Ricerche Bracco, Bracco Imaging S.p.A., Via Ribes 5, I-10010 Colleretto
Giacosa (TO), Italy
| | - Alessia Cordaro
- Centro Ricerche Bracco, Bracco Imaging S.p.A., Via Ribes 5, I-10010 Colleretto
Giacosa (TO), Italy
| | - Luca D’Angeli
- Molecular Imaging Centre, University of Torino, Via Nizza 52, I-10126 Torino,
Italy
| | - Antonietta Bartoli
- Molecular Imaging Centre, University of Torino, Via Nizza 52, I-10126 Torino,
Italy
| | - Azzurra M. Filannino
- Research and Development, Advanced Accelerator Applications, Via Ribes 5, I-10010
Colleretto Giacosa (TO), Italy
| | - Concetta V. Gringeri
- Department of Science and Technological
Innovation, Università del Piemonte Orientale “Amedeo Avogadro”, Viale T. Michel 11,
I-15121 Alessandria, Italy
| | - Dario L. Longo
- Molecular Imaging Centre, University of Torino, Via Nizza 52, I-10126 Torino,
Italy
| | - Valeria Muzio
- Research and Development, Advanced Accelerator Applications, Via Ribes 5, I-10010
Colleretto Giacosa (TO), Italy
| | - Elisa Nuti
- Department
of Pharmacy, University of Pisa, Via Bonanno
6, I-56126 Pisa, Italy
| | | | - Gianluca Figlia
- Institute of Experimental Neurology,
Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Angelo Quattrini
- Institute of Experimental Neurology,
Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Lorenzo Tei
- Department of Science and Technological
Innovation, Università del Piemonte Orientale “Amedeo Avogadro”, Viale T. Michel 11,
I-15121 Alessandria, Italy
| | - Giuseppe Digilio
- Department of Science and Technological
Innovation, Università del Piemonte Orientale “Amedeo Avogadro”, Viale T. Michel 11,
I-15121 Alessandria, Italy
- Molecular Imaging Centre, University of Torino, Via Nizza 52, I-10126 Torino,
Italy
| | - Armando Rossello
- Department
of Pharmacy, University of Pisa, Via Bonanno
6, I-56126 Pisa, Italy
| | - Alessandro Maiocchi
- Centro Ricerche Bracco, Bracco Imaging S.p.A., Via Ribes 5, I-10010 Colleretto
Giacosa (TO), Italy
| |
Collapse
|