1
|
Ahmadi Kamalabadi M, Ostadebrahimi H, Koosha F, Fatemidokht A, Menbari Oskuie I, Amin F, Shiralizadeh Dezfuli A. Gd-GQDs as nanotheranostic platform for the treatment of HPV-positive oropharyngeal cancer. Med Oncol 2024; 41:205. [PMID: 39037549 DOI: 10.1007/s12032-024-02431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
In this study, we developed new gadolinium-graphene quantum dot nanoparticles (Gd-GQDs) as a theranostic platform for magnetic resonance imaging and improved the efficiency of radiotherapy in HPV-positive oropharyngeal cancer. Based on cell toxicity results, Gd-GQD NPs were nontoxic for both cancer and normal cell lines up to 25 µg/ml. These NPs enhance the cytotoxic effect of radiation only on cancer cells but not on normal cells. The flow cytometry analysis indicated that cell death mainly occurred in the late phase of apoptosis. The immunocytochemical analysis was used to evaluate apoptosis pathway proteins. The Bcl-2 and p53 protein levels did not differ statistically significantly between radiation alone group and those that received irradiation in combination with NPs. In contrast, the combination group exhibited a significant increase in Bax protein expression, suggesting that cells could undergo apoptosis independent of the p53 pathway. Magnetic resonance (MR) imaging showed that Gd-GQD NPs, when used at low concentrations, enhanced T1-weighted signal intensity resulting from T1 shortening effects. At higher concentrations, the T2 shortening effect became predominant and was able to decrease the signal intensity. Gd-GQD appears to offer a novel approach for enhancing the effectiveness of radiation treatment and facilitating MR imaging for monitoring HPV-positive tumors.
Collapse
Affiliation(s)
- Mahdieh Ahmadi Kamalabadi
- Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Radiology, Faculty of Allied Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Ostadebrahimi
- Department of Pediatrics, Faculty of Medicine, Non-Communicable Disease Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Darband St, Ghods Sq., Tehran, 1971653313, Iran.
| | - Asieh Fatemidokht
- Department of Radiology, Faculty of Allied Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Iman Menbari Oskuie
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amin
- Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Amin Shiralizadeh Dezfuli
- Ronash Technology Pars Company (AMINBIC), Tehran University Science and Technology Park, North Campus of Tehran University, Farshi Moghadam St., North Kargar St, Tehran, 1439813204, Iran.
| |
Collapse
|
2
|
Ha Y. Exploiting the Potential of Magnetic Nanoparticles for Rapid Diagnosis Tests (RDTs): Nanoparticle-Antibody Conjugates and Color Development Strategies. Diagnostics (Basel) 2023; 13:3033. [PMID: 37835776 PMCID: PMC10572869 DOI: 10.3390/diagnostics13193033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have emerged as a promising material in disease diagnostics due to their potential to enhance detection sensitivity, facilitate concentration and purification of target substances in diverse samples, and enable favorable color-based detection. In this study, antibody-conjugated MNPs were successfully synthesized and validated through two appropriate methods: the measurement of MNPs' size and the use of phosphatase methods. Additionally, three methods were suggested and implemented for developing color in MNPs-based immunoassay, including the formation of MNP aggregations, utilization of MNPs' peroxidase-like activity, and synthesis of dually-conjugated MNPs with both enzyme and antibody. In particular, color development utilizing nanoparticle aggregations was demonstrated to result in a more yellowish color as virus concentration increased, while the peroxidase activity of MNPs exhibited a proportional increase in color intensity as the MNP concentration increased. This observation suggests the potential applicability of quantitative analysis using these methods. Furthermore, effective concentration and purification of target substances were demonstrated through the collection of MNPs using an external magnetic field, irrespective of factors such as antibody conjugation, dispersion medium, or virus binding. Finally, based on the key findings of this study, a design proposal for MNPs-based immunoassay is presented. Overall, MNPs-based immunoassays hold significant potential for advancing disease diagnostics.
Collapse
Affiliation(s)
- Yeonjeong Ha
- ICT Environment Convergence, Department of ICT Convergence, College of IT Engineering, Pyeongtaek University, 3825 Seodong-daero, Pyeongtaek-si 17869, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Wang S, Zhang J, Zhou H, Lu YC, Jin X, Luo L, You J. The role of protein corona on nanodrugs for organ-targeting and its prospects of application. J Control Release 2023; 360:15-43. [PMID: 37328008 DOI: 10.1016/j.jconrel.2023.06.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, nanodrugs become a hotspot in the high-end medical field. They have the ability to deliver drugs to reach their destination more effectively due to their unique properties and flexible functionalization. However, the fate of nanodrugs in vivo is not the same as those presented in vitro, which indeed influenced their therapeutic efficacy in vivo. When entering the biological organism, nanodrugs will first come into contact with biological fluids and then be covered by some biomacromolecules, especially proteins. The proteins adsorbed on the surface of nanodrugs are known as protein corona (PC), which causes the loss of prospective organ-targeting abilities. Fortunately, the reasonable utilization of PC may determine the organ-targeting efficiency of systemically administered nanodrugs based on the diverse expression of receptors on cells in different organs. In addition, the nanodrugs for local administration targeting diverse lesion sites will also form unique PC, which plays an important role in the therapeutic effect of nanodrugs. This article introduced the formation of PC on the surface of nanodrugs and summarized the recent studies about the roles of diversified proteins adsorbed on nanodrugs and relevant protein for organ-targeting receptor through different administration pathways, which may deepen our understanding of the role that PC played on organ-targeting and improve the therapeutic efficacy of nanodrugs to promote their clinical translation.
Collapse
Affiliation(s)
- Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yi Chao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xizhi Jin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| |
Collapse
|
4
|
Karageorgou MA, Bouziotis P, Stiliaris E, Stamopoulos D. Radiolabeled Iron Oxide Nanoparticles as Dual Modality Contrast Agents in SPECT/MRI and PET/MRI. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:503. [PMID: 36770463 PMCID: PMC9919131 DOI: 10.3390/nano13030503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
During the last decades, the utilization of imaging modalities such as single photon emission computed tomography (SPECT), positron emission tomography (PET), and magnetic resonance imaging (MRI) in every day clinical practice has enabled clinicians to diagnose diseases accurately at early stages. Radiolabeled iron oxide nanoparticles (RIONs) combine their intrinsic magnetic behavior with the extrinsic character of the radionuclide additive, so that they constitute a platform of multifaceted physical properties. Thus, at a practical level, RIONs serve as the physical parent of the so-called dual-modality contrast agents (DMCAs) utilized in SPECT/MRI and PET/MRI applications due to their ability to combine, at real time, the high sensitivity of SPECT or PET together with the high spatial resolution of MRI. This review focuses on the synthesis and in vivo investigation of both biodistribution and imaging efficacy of RIONs as potential SPECT/MRI or PET/MRI DMCAs.
Collapse
Affiliation(s)
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece
| | - Efstathios Stiliaris
- Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Dimosthenis Stamopoulos
- Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece
| |
Collapse
|
5
|
Mosleh-Shirazi S, Abbasi M, Moaddeli MR, Vaez A, Shafiee M, Kasaee SR, Amani AM, Hatam S. Nanotechnology Advances in the Detection and Treatment of Cancer: An Overview. Nanotheranostics 2022; 6:400-423. [PMID: 36051855 PMCID: PMC9428923 DOI: 10.7150/ntno.74613] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
Over the last few years, progress has been made across the nanomedicine landscape, in particular, the invention of contemporary nanostructures for cancer diagnosis and overcoming complexities in the clinical treatment of cancerous tissues. Thanks to their small diameter and large surface-to-volume proportions, nanomaterials have special physicochemical properties that empower them to bind, absorb and transport high-efficiency substances, such as small molecular drugs, DNA, proteins, RNAs, and probes. They also have excellent durability, high carrier potential, the ability to integrate both hydrophobic and hydrophilic compounds, and compatibility with various transport routes, making them especially appealing over a wide range of oncology fields. This is also due to their configurable scale, structure, and surface properties. This review paper discusses how nanostructures can function as therapeutic vectors to enhance the therapeutic value of molecules; how nanomaterials can be used as medicinal products in gene therapy, photodynamics, and thermal treatment; and finally, the application of nanomaterials in the form of molecular imaging agents to diagnose and map tumor growth.
Collapse
Affiliation(s)
- Sareh Mosleh-Shirazi
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad reza Moaddeli
- Assistant Professor, Department of Oral and Maxillofacial Surgery, School of Dentistry, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Shafiee
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Reza Kasaee
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Hatam
- Assistant Lecturer, Azad University, Zarghan Branch, Shiraz, Iran
- ExirBitanic, Science and Technology Park of Fars, Shiraz, Iran
| |
Collapse
|
6
|
Karageorgou MA, Rapsomanikis AN, Mirković M, Vranješ-Ðurić S, Stiliaris E, Bouziotis P, Stamopoulos D. 99mTc-Labeled Iron Oxide Nanoparticles as Dual-Modality Contrast Agent: A Preliminary Study from Synthesis to Magnetic Resonance and Gamma-Camera Imaging in Mice Models. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2728. [PMID: 35957159 PMCID: PMC9370270 DOI: 10.3390/nano12152728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The combination of two imaging modalities in a single agent has received increasing attention during the last few years, since its synergistic action guarantees both accurate and timely diagnosis. For this reason, dual-modality contrast agents (DMCAs), such as radiolabeled iron oxide (namely Fe3O4) nanoparticles, constitute a powerful tool in diagnostic applications. In this respect, here we focus on the synthesis of a potential single photon emission computed tomography/magnetic resonance imaging (SPECT/MRI) DMCA, which consists of Fe3O4 nanoparticles, surface functionalized with 2,3-dicarboxypropane-1,1-diphosphonic acid (DPD) and radiolabeled with 99mTc, [99mTc]Tc-DPD-Fe3O4. The in vitro stability results showed that this DMCA is highly stable after 24 h of incubation in phosphate buffer saline (~92.3% intact), while it is adequately stable after 24 h of incubation with human serum (~67.3% intact). Subsequently, [99mTc]Tc-DPD-Fe3O4 DMCA was evaluated in vivo in mice models through standard biodistribution studies, MR imaging and gamma-camera imaging. All techniques provided consistent results, clearly evidencing noticeable liver uptake. Our work documents that [99mTc]Tc-DPD-Fe3O4 has all the necessary characteristics to be a potential DMCA.
Collapse
Affiliation(s)
- Maria-Argyro Karageorgou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece
- Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | | | - Marija Mirković
- Laboratory for Radioisotopes, “Vinča” Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Sanja Vranješ-Ðurić
- Laboratory for Radioisotopes, “Vinča” Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Efstathios Stiliaris
- Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece
| | - Dimosthenis Stamopoulos
- Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece
| |
Collapse
|
7
|
Hatami Giklou Jajan L, Hosseini SN, Abolhassani M, Ghorbani M. Progress in affinity ligand-functionalized bacterial magnetosome nanoparticles for bio-immunomagnetic separation of HBsAg protein. PLoS One 2022; 17:e0267206. [PMID: 35877673 PMCID: PMC9312401 DOI: 10.1371/journal.pone.0267206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Efficient Bio-immunomagnetic separation (BIMS) of recombinant hepatitis B surface antigen (rHBsAg) with high binding capacity was studied using affinity ligand immobilized bacterial magnetosome nanoparticles (Magnetospirillum gryphiswaldense strain MSR-1 bacteria) as an immunomagnetic sorbent. Our results showed immunomagnetic adsorption, acted by affinity interactions with the immobilized monoclonal antibody, offered higher antigen adsorption and desorption capacities as compared with the commercially available immunoaffinity sorbents. Four different ligand densities of the Hep-1 monoclonal antibody were examined during covalent immobilization on Pyridyl Disulfide-functionalized magnetosome nanoparticles for HBsAg immunomagnetic separation. The average of adsorption capacity was measured as 3 mg/ml in optimized immunomagnetic sorbent (1.056 mg rHBsAg/ml immunomagneticsorbent/5.5 mg of total purified protein) and 5mg/ml in immunoaffinity sorbent (0.876 mg rHBsAg/ml immunosorbent/5.5 mg total purified protein during 8 runs. Immunomagnetic sorbent demonstrated ligand leakage levels below 3 ng Mab/Ag rHBsAg during 12 consecutive cycles of immunomagnetic separation (IMS). The results suggest that an immunomagnetic sorbent with a lower ligand density (LD = 3 mg Mab/ml matrix) could be the best substitute for the immunosorbent used in affinity purification of r-HBsAg there are significant differences in the ligand density (98.59% (p-value = 0.0182)), adsorption capacity (97.051% (p-value = 0.01834)), desorption capacity (96.06% (p-value = 0.036)) and recovery (98.97% (p-value = 0.0231)). This study indicates that the immunosorbent approach reduces the cost of purification of Hep-1 protein up to 50% as compared with 5 mg Mab/ml immunoaffinity sorbent, which is currently used in large-scale production. As well, these results demonstrate that bacterial magnetosome nanoparticles (BMs) represent a promising alternative product for the economical and efficient immobilization of proteins and the immunomagnetic separation of Biomolecules, promoting innovation in downstream processing.
Collapse
Affiliation(s)
- Leila Hatami Giklou Jajan
- Pasteur Institute of Iran, Dept. of Hepatitis B Vaccine Production, Research & Production Complex, Karaj, Iran
| | - Seyed Nezamedin Hosseini
- Pasteur Institute of Iran, Dept. of Hepatitis B Vaccine Production, Research & Production Complex, Karaj, Iran
| | - Mohsen Abolhassani
- Pasteur Institute of Iran, Dept. of Immunology, Hybridoma Lab, Tehran, Iran
- * E-mail: (MG); (MA)
| | - Masoud Ghorbani
- Pasteur Institute of Iran, Department of Research and Development, Production and Research Complex, Karaj, Iran
- * E-mail: (MG); (MA)
| |
Collapse
|
8
|
Volovat SR, Ursulescu CL, Moisii LG, Volovat C, Boboc D, Scripcariu D, Amurariti F, Stefanescu C, Stolniceanu CR, Agop M, Lungulescu C, Volovat CC. The Landscape of Nanovectors for Modulation in Cancer Immunotherapy. Pharmaceutics 2022; 14:397. [PMID: 35214129 PMCID: PMC8875018 DOI: 10.3390/pharmaceutics14020397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy represents a promising strategy for the treatment of cancer, which functions via the reprogramming and activation of antitumor immunity. However, adverse events resulting from immunotherapy that are related to the low specificity of tumor cell-targeting represent a limitation of immunotherapy's efficacy. The potential of nanotechnologies is represented by the possibilities of immunotherapeutical agents being carried by nanoparticles with various material types, shapes, sizes, coated ligands, associated loading methods, hydrophilicities, elasticities, and biocompatibilities. In this review, the principal types of nanovectors (nanopharmaceutics and bioinspired nanoparticles) are summarized along with the shortcomings in nanoparticle delivery and the main factors that modulate efficacy (the EPR effect, protein coronas, and microbiota). The mechanisms by which nanovectors can target cancer cells, the tumor immune microenvironment (TIME), and the peripheral immune system are also presented. A possible mathematical model for the cellular communication mechanisms related to exosomes as nanocarriers is proposed.
Collapse
Affiliation(s)
- Simona-Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
| | - Corina Lupascu Ursulescu
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.L.U.); (L.G.M.); (C.C.V.)
| | - Liliana Gheorghe Moisii
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.L.U.); (L.G.M.); (C.C.V.)
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
- Department of Medical Oncology, “Euroclinic” Center of Oncology, 2 Vasile Conta Str., 700106 Iaşi, Romania
| | - Diana Boboc
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
| | - Dragos Scripcariu
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania;
| | - Florin Amurariti
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.S.); (C.R.S.)
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.S.); (C.R.S.)
| | - Maricel Agop
- Physics Department, “Gheorghe Asachi” Technical University, Prof. Dr. Docent Dimitrie Mangeron Rd., No. 59A, 700050 Iaşi, Romania;
| | - Cristian Lungulescu
- Department of Medical Oncology, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Cristian Constantin Volovat
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.L.U.); (L.G.M.); (C.C.V.)
| |
Collapse
|
9
|
Farshbaf M, Valizadeh H, Panahi Y, Fatahi Y, Chen M, Zarebkohan A, Gao H. The impact of protein corona on the biological behavior of targeting nanomedicines. Int J Pharm 2022; 614:121458. [PMID: 35017025 DOI: 10.1016/j.ijpharm.2022.121458] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Abstract
For successful translation of targeting nanomedicines from bench to bedside, it is vital to address their most common drawbacks namely rapid clearance and off-target accumulation. These complications evidently originate from a phenomenon called "protein corona (PC) formation" around the surface of targeting nanoparticles (NPs) which happens once they encounter the bloodstream and interact with plasma proteins with high collision frequency. This phenomenon endows the targeting nanomedicines with a different biological behavior followed by an unexpected fate, which is usually very different from what we commonly observe in vitro. In addition to the inherent physiochemical properties of NPs, the targeting ligands could also remarkably dictate the amount and type of adsorbed PC. As very limited studies have focused their attention on this particular factor, the present review is tasked to discuss the best simulated environment and latest characterization techniques applied to PC analysis. The effect of PC on the biological behavior of targeting NPs engineered with different targeting moieties is further discussed. Ultimately, the recent progresses in manipulation of nano-bio interfaces to achieve the most favorite therapeutic outcome are highlighted.
Collapse
Affiliation(s)
- Masoud Farshbaf
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Valizadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yunes Panahi
- Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Sichuan 610041, China.
| |
Collapse
|
10
|
Singh N, Marets C, Boudon J, Millot N, Saviot L, Maurizi L. In vivo protein corona on nanoparticles: does the control of all material parameters orient the biological behavior? NANOSCALE ADVANCES 2021; 3:1209-1229. [PMID: 36132858 PMCID: PMC9416870 DOI: 10.1039/d0na00863j] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/13/2021] [Indexed: 05/18/2023]
Abstract
Nanomaterials have a huge potential in research fields from nanomedicine to medical devices. However, surface modifications of nanoparticles (NPs) and thus of their physicochemical properties failed to predict their biological behavior. This requires investigating the "missing link" at the nano-bio interface. The protein corona (PC), the set of proteins binding to the NPs surface, plays a critical role in particle recognition by the innate immune system. Still, in vitro incubation offers a limited understanding of biological interactions and fails to explain the in vivo fate. To date, several reports explained the impact of PC in vitro but its applications in the clinical field have been very limited. Furthermore, PC is often considered as a biological barrier reducing the targeting efficiency of nano vehicles. But the protein binding can actually be controlled by altering PC both in vitro and in vivo. Analyzing PC in vivo could accordingly provide a deep understanding of its biological effect and speed up the transfer to clinical applications. This review demonstrates the need for clarifications on the effect of PC in vivo and the control of its behavior by changing its physicochemical properties. It unfolds the recent in vivo developments to understand mechanisms and challenges at the nano-bio interface. Finally, it reports recent advances in the in vivo PC to overcome and control the limitations of the in vitro PC by employing PC as a boosting resource to prolong the NPs half-life, to improve their formulations and thereby to increase its use for biomedical applications.
Collapse
Affiliation(s)
- Nimisha Singh
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Célia Marets
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Julien Boudon
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Lucien Saviot
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Lionel Maurizi
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| |
Collapse
|
11
|
Abbas Abadi S, Alirezapour B, Kertész I, Rasaee MJ, Mohammadnejad J, Paknejad M, Yousefnia H, Zolghadri S. Preparation, quality control, and biodistribution assessment of [
111
In]In‐DOTA‐PR81 in BALB/c mice bearing breast tumors. J Labelled Comp Radiopharm 2021; 64:168-180. [DOI: 10.1002/jlcr.3897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 02/05/2023]
Affiliation(s)
| | - Behrouz Alirezapour
- Radiation Application Research School Nuclear Science and Technology Research Institute (NSTRI) Tehran Iran
| | - István Kertész
- Department of Nuclear Medicine University of Debrecen Debrecen Hungary
| | - Mohammad Javad Rasaee
- Department of Clinical Biochemistry, School of Medical Siences Tarbiat Modares University (TMU) Tehran Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering, Faculty of New Sciences & Technologies University of Tehran Tehran Iran
| | - Malihe Paknejad
- Department of Biochemistry, School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Hassan Yousefnia
- Radiation Application Research School Nuclear Science and Technology Research Institute (NSTRI) Tehran Iran
| | - Samaneh Zolghadri
- Material and Nuclear Fuel Research School Nuclear Science and Technology Research Institute (NSTRI) Tehran Iran
| |
Collapse
|
12
|
Kimura S, Khalil IA, Elewa YHA, Harashima H. Novel lipid combination for delivery of plasmid DNA to immune cells in the spleen. J Control Release 2021; 330:753-764. [PMID: 33422500 DOI: 10.1016/j.jconrel.2021.01.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/22/2022]
Abstract
This study reports on the development of a novel lipid combination that permits the efficient and highly selective delivery of plasmid DNA (pDNA) to immune cells in the spleen. Using DODAP, an ionizable lipid that was previously thought to be inefficient for gene delivery, we show for the first time, that this ignored lipid can be successfully used for efficient and targeted gene delivery in vivo, but only when combined with DOPE, a specific helper lipid. Using certain DODAP and DOPE ratios resulted in the formation of lipid nanoparticles (LNPs) with a ~ 1000-fold higher gene expression, and this expression was specific for the spleen, making it the most spleen-selective system for transfection using pDNA. The developed DODAP/DOPE-LNPs target immune cells in the spleen via receptors for complement C3 and this pathway is critical for efficient gene expression. We hypothesize that the high spleen transfection activity of DODAP/DOPE-LNPs is caused by the promotion of gene expression associated with B cell activation via complement receptors. LNPs encapsulating tumor-antigen encoding pDNA showed both prophylactic and therapeutic anti-tumor effects. The optimized LNPs resulted in the production of different cytokines and antigen-specific antibodies as well as exerting antigen-specific cytotoxic effects. This study revives the use of DODAP in gene delivery and highlights the importance of using appropriate lipid combinations for delivering genes to specific cells.
Collapse
Affiliation(s)
- Seigo Kimura
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Ikramy A Khalil
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Yaser H A Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt; Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Laboratory for Molecular Design of Pharmaceuticsx, Department of Biomedical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
13
|
Haghighi AH, Khorasani MT, Faghih Z, Farjadian F. Effects of different quantities of antibody conjugated with magnetic nanoparticles on cell separation efficiency. Heliyon 2020; 6:e03677. [PMID: 32280795 PMCID: PMC7136644 DOI: 10.1016/j.heliyon.2020.e03677] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/21/2019] [Accepted: 03/24/2020] [Indexed: 11/30/2022] Open
Abstract
Antibody-conjugated magnetic nanoparticles (Ab-MNPs) have received considerable attention in bioseparation and clinical diagnostics assays due to their unique ability to detect and isolate a variety of biomolecules and cells. Because antibodies can be expensive, a key challenge for bioconjugation is to determine the optimal amount of antibodies with reasonable antigen-capturing activity. We designed an approach to determine the minimum amounts of antibodies for efficient coating. Different quantities of Herceptin (anti-human epidermal growth factor receptor 2: HER2) antibody were applied and immobilized on the surface of MNPs. Antibody binding was then checked by using an anti-human antibody conjugated with fluorochrome and flow cytometry. When the ratio of MNPs to antibodies increased from 0.79 to 795.45, mean fluorescence intensity (MFI) of conjugated MNPs decreased markedly from 185.56 to 20.07, indicating lower surface antibody coverage. We then investigated the relation between antibody content and isolation efficiency. Three Ab-MNP samples with different MFI were used to isolate SK-BR-3, a HER2-positive breast cancer cell line, from mixtures of whole blood or mononuclear cells. After isolation in a magnetic field, separation efficiency was evaluated by fluorescence microscopy and flow cytometry-based techniques. Our results collectively showed that the amount of anti-HER2 antibodies for conjugation with MNPs could be decreased by as much as one-fifteenth without compromising isolation efficiency, which in turn can reduce the cost of immunoassay biosensors.
Collapse
Affiliation(s)
- Amir Hossein Haghighi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Zahra Faghih
- Shiraz Institute for Cancer Research, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Mikelez-Alonso I, Aires A, Cortajarena AL. Cancer Nano-Immunotherapy from the Injection to the Target: The Role of Protein Corona. Int J Mol Sci 2020; 21:E519. [PMID: 31947622 PMCID: PMC7014289 DOI: 10.3390/ijms21020519] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy has become a promising cancer therapy, improving the prognosis of patients with many different types of cancer and offering the possibility for long-term cancer remission. Nevertheless, some patients do not respond to these treatments and immunotherapy has shown some limitations, such as immune system resistance or limited bioavailability of the drug. Therefore, new strategies that include the use of nanoparticles (NPs) are emerging to enhance the efficacy of immunotherapies. NPs present very different pharmacokinetic and pharmacodynamic properties compared with free drugs and enable the use of lower doses of immune-stimulating molecules, minimizing their side effects. However, NPs face issues concerning stability in physiological conditions, protein corona (PC) formation, and accumulation in the target tissue. PC formation changes the physicochemical and biological properties of the NPs and in consequence their therapeutic effect. This review summarizes the recent advances in the study of the effects of PC formation in NP-based immunotherapy. PC formation has complex effects on immunotherapy since it can diminish ("immune blinding") or enhance the immune response in an uncontrolled manner ("immune reactivity"). Here, future perspectives of the field including the latest advances towards the use of personalized protein corona in cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Idoia Mikelez-Alonso
- CIC biomaGUNE, Parque Científico y Tecnológico de Gipuzkoa. Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain; (I.M.-A.); (A.A.)
- Immunopathology, BiocrucesBizkaia, Cruces Plaza, 48903 Barakaldo, Spain
| | - Antonio Aires
- CIC biomaGUNE, Parque Científico y Tecnológico de Gipuzkoa. Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain; (I.M.-A.); (A.A.)
| | - Aitziber L. Cortajarena
- CIC biomaGUNE, Parque Científico y Tecnológico de Gipuzkoa. Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain; (I.M.-A.); (A.A.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
15
|
Lahooti A, Shanehsazzadeh S, Laurent S. Preliminary studies of 68Ga-NODA-USPION-BBN as a dual-modality contrast agent for use in positron emission tomography/magnetic resonance imaging. NANOTECHNOLOGY 2020; 31:015102. [PMID: 31519003 DOI: 10.1088/1361-6528/ab4446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The aim of this study was to propose a new dual-modality nanoprobe for positron emission tomography/magnetic resonance imaging (PET/MRI) for the early diagnosis of breast cancer. For synthesis of the nanoprobe, polyethylene glycol-coated ultra-small superparamagnetic iron-oxide nanoparticles (USPION) armed with NODA-GA chelate and grafted with bombesin (BBN) were radiolabeled with 68Ga. After characterization, in vitro studies to evaluate the cell binding affinity of the nanoprobe were done by performing Perl's Prussian blue cell staining and MRI imaging. Finally, for in vivo studies, magnetic resonance images were taken in SCID mice bearing breast cancer tumor pre- and post-injection, and a multimodal nanoScan PET/computed tomography was used to perform preclinical imaging of the radiolabeled nanoparticles. Afterwards, a biodistribution study was done on sacrificed mice. The results showed that the highest r1 and r2 values were measured for USPIONs at 20 and 60 MHz, respectively. From the in vitro studies, the optical density of the cells after incubation increased with the increase of the iron concentration and the duration of incubation. However, the T2 values decreased when the iron concentration increased. Furthermore, from in vivo studies, the T2 and signal intensity decreased during the elapsed time post-injection in the tumor area. In this study, the in vitro studies showed that the affinity of cancer cells to nanoprobe increases meaningfully after conjugation with BBN, and also by increasing the duration of incubation and the iron concentration. Meanwhile, the in vivo results confirmed that the blood clearance of the nanoprobe happened during the first 120 min post-injection of the radiolabeled nanoprobe and also confirmed the targeting ability of that to a gastrin-releasing peptide receptor positive tumor.
Collapse
Affiliation(s)
- Afsaneh Lahooti
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 23 Place du Parc, B-7000, Mons, Belgium
| | | | | |
Collapse
|
16
|
Nuzhina JV, Shtil AA, Prilepskii AY, Vinogradov VV. Preclinical Evaluation and Clinical Translation of Magnetite-Based Nanomedicines. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Cai R, Chen C. The Crown and the Scepter: Roles of the Protein Corona in Nanomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805740. [PMID: 30589115 DOI: 10.1002/adma.201805740] [Citation(s) in RCA: 354] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/06/2018] [Indexed: 05/17/2023]
Abstract
Engineering nanomaterials are increasingly considered promising and powerful biomedical tools or devices for imaging, drug delivery, and cancer therapies, but few nanomaterials have been tested in clinical trials. This wide gap between bench discoveries and clinical application is mainly due to the limited understanding of the biological identity of nanomaterials. When they are exposed to the human body, nanoparticles inevitably interact with bodily fluids and thereby adsorb hundreds of biomolecules. A "biomolecular corona" forms on the surface of nanomaterials and confers a new biological identity for NPs, which determines the following biological events: cellular uptake, immune response, biodistribution, clearance, and toxicity. A deep and thorough understanding of the biological effects triggered by the protein corona in vivo will speed up their translation to the clinic. To date, nearly all studies have attempted to characterize the components of protein coronas depending on different physiochemical properties of NPs. Herein, recent advances are reviewed in order to better understand the impact of the biological effects of the nanoparticle-corona on nanomedicine applications. The recent development of the impact of protein corona formation on the pharmacokinetics of nanomedicines is also highlighted. Finally, the challenges and opportunities of nanomedicine toward future clinical applications are discussed.
Collapse
Affiliation(s)
- Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- National Center for Nanoscience and Technology, Chinese Academy of Science, No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- National Center for Nanoscience and Technology, Chinese Academy of Science, No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
18
|
Barui AK, Oh JY, Jana B, Kim C, Ryu J. Cancer‐Targeted Nanomedicine: Overcoming the Barrier of the Protein Corona. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900124] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ayan Kumar Barui
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Jun Yong Oh
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Batakrishna Jana
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Chaekyu Kim
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Ja‐Hyoung Ryu
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| |
Collapse
|
19
|
Rezaei G, Daghighi SM, Haririan I, Yousefi I, Raoufi M, Rezaee F, Dinarvand R. Protein corona variation in nanoparticles revisited: A dynamic grouping strategy. Colloids Surf B Biointerfaces 2019; 179:505-516. [PMID: 31009853 DOI: 10.1016/j.colsurfb.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 12/27/2022]
Abstract
Bio-nano interface investigation models are mainly based on the type of proteins present on corona, bio-nano interaction responses and the evaluation of final outcomes. Due to the extensive diversity in correlative models for investigation of nanoparticles biological responses, a comprehensive model considering different aspects of bio-nano interface from nanoparticles properties to protein corona fingerprints appeared to be essential and cannot be ignored. In order to minimize divergence in studies in the era of bio-nano interface and protein corona with following therapeutic implications, a useful investigation model on the basis of RADAR concept is suggested. The contents of RADAR concept consist of five modules: 1- Reshape of our strategy for synthesis of nanoparticles (NPs), 2- Application of NPs selected based on human fluid, 3- Delivery strategy of NPs selected based on target tissue, 4- Analysis of proteins present on corona using correct procedures and 5- Risk assessment and risk reduction upon the collection and analysis of results to increase drug delivery efficiency and drug efficacy. RADAR grouping strategy for revisiting protein corona phenomenon as a key of success will be discussed with respect to the current state of knowledge.
Collapse
Affiliation(s)
- Ghassem Rezaei
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Seyed Mojtaba Daghighi
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ismael Haririan
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Iman Yousefi
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Canada
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Farhad Rezaee
- Department of Gastroenterology-Hepatology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Yang CT, Ghosh KK, Padmanabhan P, Langer O, Liu J, Eng DNC, Halldin C, Gulyás B. PET-MR and SPECT-MR multimodality probes: Development and challenges. Theranostics 2018; 8:6210-6232. [PMID: 30613293 PMCID: PMC6299694 DOI: 10.7150/thno.26610] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/08/2018] [Indexed: 12/22/2022] Open
Abstract
Positron emission tomography (PET)-magnetic resonance (MR) or single photon emission computed tomography (SPECT)-MR hybrid imaging is being used in daily clinical practice. Due to its advantages over stand-alone PET, SPECT or MR imaging, in many areas such as oncology, the demand for hybrid imaging techniques is increasing dramatically. The use of multimodal imaging probes or biomarkers in a single molecule or particle to characterize the imaging subjects such as disease tissues certainly provides us with more accurate diagnosis and promotes therapeutic accuracy. A limited number of multimodal imaging probes are being used in preclinical and potential clinical investigations. The further development of multimodal PET-MR and SPECT-MR imaging probes includes several key elements: novel synthetic strategies, high sensitivity for accurate quantification and high anatomic resolution, favourable pharmacokinetic profile and target-specific binding of a new probe. This review thoroughly summarizes all recently available and noteworthy PET-MR and SPECT-MR multimodal imaging probes including small molecule bimodal probes, nano-sized bimodal probes, small molecular trimodal probes and nano-sized trimodal probes. To the best of our knowledge, this is the first comprehensive overview of all PET-MR and SPECT-MR multimodal probes. Since the development of multimodal PET-MR and SPECT-MR imaging probes is an emerging research field, a selection of 139 papers were recognized following the literature review. The challenges for designing multimodal probes have also been addressed in order to offer some future research directions for this novel interdisciplinary research field.
Collapse
Affiliation(s)
- Chang-Tong Yang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Industrial Technology and Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P.R. China, 315201
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608
| | - Krishna K. Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921
| | - Oliver Langer
- Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, A-1090, Vienna, Austria
- Center for Health and Bioresources, Biomedical Systems, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Jiang Liu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Industrial Technology and Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P.R. China, 315201
| | - David Ng Chee Eng
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608
- Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Christer Halldin
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921
- Karolinska Institutet, Department of Clinical Neuroscience, S-171 76, Stockholm, Sweden
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921
- Karolinska Institutet, Department of Clinical Neuroscience, S-171 76, Stockholm, Sweden
| |
Collapse
|
21
|
Lara S, Perez-Potti A. Applications of Nanomaterials for Immunosensing. BIOSENSORS-BASEL 2018; 8:bios8040104. [PMID: 30388865 PMCID: PMC6316038 DOI: 10.3390/bios8040104] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 12/28/2022]
Abstract
In biomedical science among several other growing fields, the detection of specific biological agents or biomolecular markers, from biological samples is crucial for early diagnosis and decision-making in terms of appropriate treatment, influencing survival rates. In this regard, immunosensors are based on specific antibody-antigen interactions, forming a stable immune complex. The antigen-specific detection antibodies (i.e., biomolecular recognition element) are generally immobilized on the nanomaterial surfaces and their interaction with the biomolecular markers or antigens produces a physico-chemical response that modulates the signal readout. Lowering the detection limits for particular biomolecules is one of the key parameters when designing immunosensors. Thus, their design by combining the specificity and versatility of antibodies with the intrinsic properties of nanomaterials offers a plethora of opportunities for clinical diagnosis. In this review, we show a comprehensive set of recent developments in the field of nanoimmunosensors and how they are progressing the detection and validation for a wide range of different biomarkers in multiple diseases and what are some drawbacks and considerations of the uses of such devices and their expansion.
Collapse
Affiliation(s)
- Sandra Lara
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, D04 V1W8 Dublin, Ireland.
| | - André Perez-Potti
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, D04 V1W8 Dublin, Ireland.
| |
Collapse
|
22
|
Aftab S, Shah A, Nadhman A, Kurbanoglu S, Aysıl Ozkan S, Dionysiou DD, Shukla SS, Aminabhavi TM. Nanomedicine: An effective tool in cancer therapy. Int J Pharm 2018; 540:132-149. [PMID: 29427746 DOI: 10.1016/j.ijpharm.2018.02.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/30/2018] [Accepted: 02/04/2018] [Indexed: 12/24/2022]
Abstract
Various types of nanoparticles (NPs) have been used in delivering anticancer drugs to the site of action. This area has become more attractive in recent years due to optimal size and negligible undesirable side effects caused by the NPs. The focus of this review is to explore various types of NPs and their surface/chemical modifications as well as attachment of targeting ligands for tuning their properties in order to facilitate targeted delivery to the cancer sites in a rate-controlled manner. Heme compatibility, biodistribution, longer circulation time, hydrophilic lipophilic balance for high bioavailability, prevention of drug degradation and leakage are important in transporting drugs to the targeted cancer sites. The review discusses advantages of polymeric, magnetic, gold, and mesoporous silica NPs in delivering chemotherapeutic agents over the conventional dosage formulations along with their shortcomings/risks and possible solutions/alternatives.
Collapse
Affiliation(s)
- Saima Aftab
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan; Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Tandogan, 06100 Ankara, Turkey.
| | - Akhtar Nadhman
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Sevinc Kurbanoglu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Tandogan, 06100 Ankara, Turkey
| | - Sibel Aysıl Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Tandogan, 06100 Ankara, Turkey
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0012, USA
| | - Shyam S Shukla
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA
| | - Tejraj M Aminabhavi
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA.
| |
Collapse
|
23
|
García-Díaz M, Birch D, Wan F, Nielsen HM. The role of mucus as an invisible cloak to transepithelial drug delivery by nanoparticles. Adv Drug Deliv Rev 2018; 124:107-124. [PMID: 29117511 DOI: 10.1016/j.addr.2017.11.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/03/2017] [Accepted: 11/01/2017] [Indexed: 01/05/2023]
Abstract
Mucosal administration of drugs and drug delivery systems has gained increasing interest. However, nanoparticles intended to protect and deliver drugs to epithelial surfaces require transport through the surface-lining mucus. Translation from bench to bedside is particularly challenging for mucosal administration since a variety of parameters will influence the specific barrier properties of the mucus including the luminal fluids, the microbiota, the mucus composition and clearance rate, and the condition of the underlying epithelia. Besides, after administration, nanoparticles interact with the mucosal components, forming a biomolecular corona that modulates their behavior and fate after mucosal administration. These interactions are greatly influenced by the nanoparticle properties, and therefore different designs and surface-engineering strategies have been proposed. Overall, it is essential to evaluate these biomolecule-nanoparticle interactions by complementary techniques using complex and relevant mucus barrier matrices.
Collapse
Affiliation(s)
- María García-Díaz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Ditlev Birch
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Feng Wan
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hanne Mørck Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
24
|
Lahooti A, Sarkar S, Laurent S, Shanehsazzadeh S. Dual nano-sized contrast agents in PET/MRI: a systematic review. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 11:428-447. [PMID: 28102031 DOI: 10.1002/cmmi.1719] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/23/2016] [Accepted: 11/09/2016] [Indexed: 12/18/2022]
Abstract
Nowadays molecular imaging plays a vital role in achieving a successful targeted and personalized treatment. Hence, the approach of combining two or more medical imaging modalities was developed. The objective of this review is to systematically compare recent dual contrast agents in Positron Emission Tomography (PET)/Magnetic Resonance Imaging (MRI) and in some cases Single photon emission computed tomography (SPECT)/MRI in terms of some their characteristics, such as tumor uptake, and reticuloendothelial system uptake (especially liver) and their relaxivity rates for early detection of primary cancer tumor. To the best of our knowledge, this is the first systematic and integrated overview of this field. Two reviewers individually directed the systematic review search using PubMed, MEDLINE and Google Scholar. Two other reviewers directed quality assessment, using the criteria checklist from the CAMARADES (Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies) tool, and differences were resolved by consensus. After reviewing all 49 studies, we concluded that a size range of 20-200 nm can be used for molecular imaging, although it is better to try to achieve as small a size as it is possible. Also, small nanoparticles with a hydrophilic coating and positive charge are suitable as a T2 contrast agent. According to our selected data, the most successful dual probes in terms of high targeting were with an average size of 40 nm, PEGylated using peptides as a biomarker and radiolabeled with copper 64 and gallium 68. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Afsaneh Lahooti
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Iran
| | - Saeed Sarkar
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Iran
| | - Sophie Laurent
- NMR and Molecular Imaging Laboratory, Department of General, Organic, and Biomedical Chemistry, University of Mons, Avenue Maistriau, 19, B-7000, Mons, Belgium.,Center for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8, B-6041, Gosselies, Belgium
| | - Saeed Shanehsazzadeh
- NMR and Molecular Imaging Laboratory, Department of General, Organic, and Biomedical Chemistry, University of Mons, Avenue Maistriau, 19, B-7000, Mons, Belgium
| |
Collapse
|
25
|
Wu M, Huang S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol Clin Oncol 2017; 7:738-746. [PMID: 29075487 PMCID: PMC5649002 DOI: 10.3892/mco.2017.1399] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/17/2017] [Indexed: 12/25/2022] Open
Abstract
In recent years, magnetic nanoparticles (MNPs) have demonstrated marked progress in the field of oncology. General nanoparticles are widely used in tumor targeting, and the intrinsic magnetic property of MNPs makes them the most promising nanomaterial to be used as contrast agents for magnetic resonance imaging (MRI) and induced magnetic hyperthermia. The properties of MNPs are fully exploited when they are used as drug delivery agents, wherein drugs may be targeted to the desired specific location in vivo by application of an external magnetic field. Early diagnosis of cancer may be achieved by MRI, therefore, individualized treatment may be combined with MRI, so as to achieve the precise definition and appropriate treatment. In the present review, research on MNPs in cancer diagnosis, drug delivery and treatment has been summarized. Furthermore, the future perspectives and challenges of MNPs in the field of oncology are also discussed.
Collapse
Affiliation(s)
- Meijia Wu
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| | - Shengwu Huang
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| |
Collapse
|
26
|
Yang WL, Lu Z, Bast RC. The role of biomarkers in the management of epithelial ovarian cancer. Expert Rev Mol Diagn 2017; 17:577-591. [PMID: 28468520 DOI: 10.1080/14737159.2017.1326820] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Despite advances in surgery and chemotherapy for ovarian cancer, 70% of women still succumb to the disease. Biomarkers have contributed to the management of ovarian cancer by monitoring response to treatment, detecting recurrence, distinguishing benign from malignant pelvic masses and attempting to detect disease at an earlier stage. Areas covered: This review focuses on recent advances in biomarkers and imaging for management of ovarian cancer with particular emphasis on early detection. Relevant literature has been reviewed and analyzed. Expert commentary: Rising or persistent CA125 blood levels provide a highly specific biomarker for epithelial ovarian cancer, but not an optimally sensitive biomarker. Addition of HE4, CA 72.4, anti-TP53 autoantibodies and other biomarkers can increase sensitivity for detecting early stage or recurrent disease. Detecting disease recurrence will become more important as more effective therapy is developed. Early detection will require the development not only of biomarker panels, but also of more sensitive and specific imaging strategies. Effective biomarker strategies are already available for distinguishing benign from malignant pelvic masses, but their use in identifying and referring patients with probable ovarian cancer to gynecologic oncologists for cytoreductive operations must be encouraged.
Collapse
Affiliation(s)
- Wei-Lei Yang
- a Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b Odyssey Program , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Zhen Lu
- a Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Robert C Bast
- a Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
27
|
Yang WL, Lu Z, Bast RC. The role of biomarkers in the management of epithelial ovarian cancer. Expert Rev Mol Diagn 2017. [PMID: 28468520 DOI: 10.1080/14737159.2017.1326820] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Despite advances in surgery and chemotherapy for ovarian cancer, 70% of women still succumb to the disease. Biomarkers have contributed to the management of ovarian cancer by monitoring response to treatment, detecting recurrence, distinguishing benign from malignant pelvic masses and attempting to detect disease at an earlier stage. Areas covered: This review focuses on recent advances in biomarkers and imaging for management of ovarian cancer with particular emphasis on early detection. Relevant literature has been reviewed and analyzed. Expert commentary: Rising or persistent CA125 blood levels provide a highly specific biomarker for epithelial ovarian cancer, but not an optimally sensitive biomarker. Addition of HE4, CA 72.4, anti-TP53 autoantibodies and other biomarkers can increase sensitivity for detecting early stage or recurrent disease. Detecting disease recurrence will become more important as more effective therapy is developed. Early detection will require the development not only of biomarker panels, but also of more sensitive and specific imaging strategies. Effective biomarker strategies are already available for distinguishing benign from malignant pelvic masses, but their use in identifying and referring patients with probable ovarian cancer to gynecologic oncologists for cytoreductive operations must be encouraged.
Collapse
Affiliation(s)
- Wei-Lei Yang
- a Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b Odyssey Program , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Zhen Lu
- a Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Robert C Bast
- a Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
28
|
Yang WL, Lu Z, Bast RC. The role of biomarkers in the management of epithelial ovarian cancer. Expert Rev Mol Diagn 2017. [PMID: 28468520 DOI: 10.1080/14737159.2017.1326820]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
INTRODUCTION Despite advances in surgery and chemotherapy for ovarian cancer, 70% of women still succumb to the disease. Biomarkers have contributed to the management of ovarian cancer by monitoring response to treatment, detecting recurrence, distinguishing benign from malignant pelvic masses and attempting to detect disease at an earlier stage. Areas covered: This review focuses on recent advances in biomarkers and imaging for management of ovarian cancer with particular emphasis on early detection. Relevant literature has been reviewed and analyzed. Expert commentary: Rising or persistent CA125 blood levels provide a highly specific biomarker for epithelial ovarian cancer, but not an optimally sensitive biomarker. Addition of HE4, CA 72.4, anti-TP53 autoantibodies and other biomarkers can increase sensitivity for detecting early stage or recurrent disease. Detecting disease recurrence will become more important as more effective therapy is developed. Early detection will require the development not only of biomarker panels, but also of more sensitive and specific imaging strategies. Effective biomarker strategies are already available for distinguishing benign from malignant pelvic masses, but their use in identifying and referring patients with probable ovarian cancer to gynecologic oncologists for cytoreductive operations must be encouraged.
Collapse
Affiliation(s)
- Wei-Lei Yang
- a Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b Odyssey Program , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Zhen Lu
- a Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Robert C Bast
- a Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
29
|
Rezaei G, Habibi-Anbouhi M, Mahmoudi M, Azadmanesh K, Moradi-Kalbolandi S, Behdani M, Ghazizadeh L, Abolhassani M, Shokrgozar MA. Development of anti-CD47 single-chain variable fragment targeted magnetic nanoparticles for treatment of human bladder cancer. Nanomedicine (Lond) 2017; 12:597-613. [DOI: 10.2217/nnm-2016-0302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: To develop a novel anti-CD47 single-chain variable fragment (scFv) functionalized magnetic nanoparticles (MNPs) for targeting bladder cell lines and its applicability in thermotherapy. Material & methods: An immunized murine antibody phage display library was constructed and screened to isolate anti-CD47 binders. A scFv was selected and conjugated to MNPs which was then utilized to discriminate CD47+ bladder cells along with assessing its efficacy in thermotherapy. Results: An scFv with high affinity to bladder cells was efficiently conjugated to MNPs. Following a hyperthermia treatment, the function of scFv–MNP conjugates led to a considerable reduction in cell viability. Conclusion: The anti-CD47 scFv–MNP conjugate was an effective cancer cell thermotherapy tool that might pave the way for development of bionano-based targeting techniques in both early detection and treatment of cancer.
Collapse
Affiliation(s)
- Gashin Rezaei
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | | | - Morteza Mahmoudi
- Nanotechnology Research Center & Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155–6451, Iran
| | - Kayhan Azadmanesh
- Biotechnology Research Center, Venom & Biotherapeutics Molecules Lab, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mahdi Behdani
- Immunology Department, Hybridoma Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Ghazizadeh
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Mohsen Abolhassani
- Immunology Department, Hybridoma Lab, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
30
|
Richards DA, Maruani A, Chudasama V. Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem Sci 2017; 8:63-77. [PMID: 28451149 PMCID: PMC5304706 DOI: 10.1039/c6sc02403c] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/05/2016] [Indexed: 12/13/2022] Open
Abstract
Recent advances in nanomedicine have shown that dramatic improvements in nanoparticle therapeutics and diagnostics can be achieved through the use of disease specific targeting ligands. Although immunoglobulins have successfully been employed for the generation of actively targeted nanoparticles, their use is often hampered by the suboptimal characteristics of the resulting complexes. Emerging data suggest that a switch in focus from full antibodies to antibody derived fragments could help to alleviate these problems and expand the potential of antibody-nanoparticle conjugates as biomedical tools. This review aims to highlight how antibody derived fragments have been utilised to overcome both fundamental and practical issues encountered during the design and application of antibody-targeted nanoparticles.
Collapse
Affiliation(s)
- Daniel A Richards
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; ; Tel: +44 (0)207 679 2077
| | - Antoine Maruani
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; ; Tel: +44 (0)207 679 2077
| | - Vijay Chudasama
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; ; Tel: +44 (0)207 679 2077
| |
Collapse
|
31
|
Dréau D, Moore LJ, Alvarez-Berrios MP, Tarannum M, Mukherjee P, Vivero-Escoto JL. Mucin-1-Antibody-Conjugated Mesoporous Silica Nanoparticles for Selective Breast Cancer Detection in a Mucin-1 Transgenic Murine Mouse Model. J Biomed Nanotechnol 2016; 12:2172-2184. [PMID: 28522938 PMCID: PMC5431076 DOI: 10.1166/jbn.2016.2318] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucin-1 (MUC1), a transmembrane glycoprotein is aberrantly expressed on ~90% of breast cancer and is an excellent target for nanoparticulate targeted imaging. In this study, the development of a dye-doped NIR emitting mesoporous silica nanoparticles platform conjugated to tumor-specific MUC1 antibody (ab-tMUC1-NIR-MSN) for in vivo optical detection of breast adenocarcinoma tissue is reported. The structural properties, the in vitro and in vivo performance of this nanoparticle-based probe were evaluated. In vitro studies showed that the MSN-based optical imaging nanoprobe is non-cytotoxic and targets efficiently mammary cancer cells overexpressing human tMUC1 protein. In vivo experiments with female C57BL/6 mice indicated that this platform accumulates mainly in the liver and did not induce short-term toxicity. In addition, we demonstrated that the ab-tMUC1-NIR-MSN nanoprobe specifically detects mammary gland tumors overexpressing human tMUC1 in a human MUC1 transgenic mouse model.
Collapse
Affiliation(s)
- Didier Dréau
- Department of Biological Sciences, The University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte NC 28223, USA
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte NC 28223, USA
| | - Laura Jeffords Moore
- Department of Biological Sciences, The University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte NC 28223, USA
| | - Merlis P. Alvarez-Berrios
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte NC 28223, USA; 9201 University City Blvd, Charlotte NC 28223, USA
| | - Mubin Tarannum
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte NC 28223, USA; 9201 University City Blvd, Charlotte NC 28223, USA
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte NC 28223, USA
| | - Pinku Mukherjee
- Department of Biological Sciences, The University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte NC 28223, USA
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte NC 28223, USA
| | - Juan L. Vivero-Escoto
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte NC 28223, USA; 9201 University City Blvd, Charlotte NC 28223, USA
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte NC 28223, USA
| |
Collapse
|
32
|
Pratt EC, Shaffer TM, Grimm J. Nanoparticles and radiotracers: advances toward radionanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:872-890. [PMID: 27006133 PMCID: PMC5035177 DOI: 10.1002/wnan.1402] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 12/27/2022]
Abstract
In this study, we cover the convergence of radiochemistry for imaging and therapy with advances in nanoparticle (NP) design for biomedical applications. We first explore NP properties relevant for therapy and theranostics and emphasize the need for biocompatibility. We then explore radionuclide-imaging modalities such as positron emission tomography (PET), single-photon emission computed tomography (SPECT), and Cerenkov luminescence (CL) with examples utilizing radiolabeled NP for imaging. PET and SPECT have served as diagnostic workhorses in the clinic, while preclinical NP design examples of multimodal imaging with radiotracers show promise in imaging and therapy. CL expands the types of radionuclides beyond PET and SPECT tracers to include high-energy electrons (β- ) for imaging purposes. These advances in radionanomedicine will be discussed, showing the potential for radiolabeled NPs as theranostic agents. WIREs Nanomed Nanobiotechnol 2016, 8:872-890. doi: 10.1002/wnan.1402 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Edwin C Pratt
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Travis M Shaffer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Chemistry, Hunter College and Graduate Center of the City University of New York, New York, NY, USA
| | - Jan Grimm
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
33
|
PEGylated superparamagnetic iron oxide nanoparticles labeled with 68Ga as a PET/MRI contrast agent: a biodistribution study. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-5058-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Hatamie S, Ahadian MM, Ghiass MA, Iraji zad A, Saber R, Parseh B, Oghabian MA, Shanehsazzadeh S. Graphene/cobalt nanocarrier for hyperthermia therapy and MRI diagnosis. Colloids Surf B Biointerfaces 2016; 146:271-9. [DOI: 10.1016/j.colsurfb.2016.06.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 11/17/2022]
|
35
|
Alric C, Aubrey N, Allard-Vannier É, di Tommaso A, Blondy T, Dimier-Poisson I, Chourpa I, Hervé-Aubert K. Covalent conjugation of cysteine-engineered scFv to PEGylated magnetic nanoprobes for immunotargeting of breast cancer cells. RSC Adv 2016. [DOI: 10.1039/c6ra06076e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Orientation- and site-directed covalent conjugation of cysteine-engineered scFv to PEGylated SPIONs allows antigen recognition while preserving colloidal properties of nanoprobes.
Collapse
Affiliation(s)
- Christophe Alric
- Université François Rabelais de Tours
- EA6295 ‘Nanomédicaments et Nanosondes’
- F 37200 Tours
- France
| | - Nicolas Aubrey
- Université François Rabelais de Tours
- UMR1282 INRA ‘Infectiologie et Santé Publique’
- F 37000 Tours
- France
| | - Émilie Allard-Vannier
- Université François Rabelais de Tours
- EA6295 ‘Nanomédicaments et Nanosondes’
- F 37200 Tours
- France
| | - Anne di Tommaso
- Université François Rabelais de Tours
- UMR1282 INRA ‘Infectiologie et Santé Publique’
- F 37000 Tours
- France
| | - Thibaut Blondy
- Université François Rabelais de Tours
- EA6295 ‘Nanomédicaments et Nanosondes’
- F 37200 Tours
- France
| | - Isabelle Dimier-Poisson
- Université François Rabelais de Tours
- UMR1282 INRA ‘Infectiologie et Santé Publique’
- F 37000 Tours
- France
| | - Igor Chourpa
- Université François Rabelais de Tours
- EA6295 ‘Nanomédicaments et Nanosondes’
- F 37200 Tours
- France
| | - Katel Hervé-Aubert
- Université François Rabelais de Tours
- EA6295 ‘Nanomédicaments et Nanosondes’
- F 37200 Tours
- France
| |
Collapse
|
36
|
Shanehsazzadeh S, Lahooti A, Hajipour MJ, Ghavami M, Azhdarzadeh M. External magnetic fields affect the biological impacts of superparamagnetic iron nanoparticles. Colloids Surf B Biointerfaces 2015; 136:1107-12. [DOI: 10.1016/j.colsurfb.2015.11.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/11/2015] [Accepted: 11/12/2015] [Indexed: 02/07/2023]
|
37
|
Development of [⁶⁴Cu]-DOTA-PR81 radioimmunoconjugate for MUC-1 positive PET imaging. Nucl Med Biol 2015; 43:73-80. [PMID: 26453525 DOI: 10.1016/j.nucmedbio.2015.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/29/2015] [Accepted: 07/29/2015] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Breast cancer radioimmunoscintigraphy targeting MUC1 expression is a growing field of work in nuclear medicine research. PR81 is a monoclonal antibody that binds with high affinity to MUC1, which is over expressed on breast tumors. In this study, we report production, quality control and preclinical qualifications of a copper-64 labeled PR81 for PET imaging of breast cancer. METHODS PR81 was conjugated with DOTA-NHS-ester and purified by molecular filtration followed by chelate:mAb ratio determination by spectrophotometric method. DOTA-PR81 was labeled with (64)Cu followed by radiochemical purity, in vitro stability, in vitro internalization and immunoreactivity determination. The tissue biodistribution of the (64)Cu-DOTA-PR81 and (64)Cu-DOTA-hIgG was evaluated in BALB/c mice with breast carcinoma tumors using tissue counting and imaging. RESULTS The radiochemical purity of radioimmunoconjugate was >95±1.9% (ITLC) (specific activity; 4.6 μCi/μg). The average number of chelators per antibody was 3.4±0.3:1. The (64)Cu-DOTA-PR81 showed immunoreactivity towards MUC1 antigen and MCF7 cell line with significant in vitro stability (>89% in PBS and 78±0.5% in human serum) over 48 h. Maximum internalized activity of radiolabeled PR81 in 4-8 h was 81.5%. The biodistribution and scintigraphy studies showed the accumulation of the complex at the site of tumors with high sensitivity and specificity compared to control probes. CONCLUSION The results showed that (64)Cu-DOTA-PR81 may be considered as a potential PET tracer for diagnosis and follow-up of MUC1 expression in oncology.
Collapse
|
38
|
Shanehsazzadeh S, Lahooti A, Yousefnia H, Geramifar P, Jalilian AR. Comparison of estimated human dose of (68)Ga-MAA with (99m)Tc-MAA based on rat data. Ann Nucl Med 2015; 29:745-53. [PMID: 26139003 DOI: 10.1007/s12149-015-0997-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/24/2015] [Indexed: 11/25/2022]
Abstract
OBJECTIVE (99m)Tc macroaggregated albumin ((99m)Tc-MAA) that had been used as a perfusion agent has been evaluated. In this study, we tried to estimate human absorbed dose of ⁶⁸Ga-MAA via commercially available kit from Pars-Isotopes, based on biodistribution data in wild-type rats, and compare our estimation with the available absorbed dose data from (99m)Tc-MAA. METHODS For biodistribution of ⁶⁸Ga-MAA, three rats were sacrificed at each selected times after injection (15, 30, 45, 60, and 120 min) and the percentage of injected dose per gram of each organ was measured by direct counting from rats data from 11 harvested organs. The medical internal radiation dose formulation was applied to extrapolate from rats to human and to project the absorbed radiation dose for various organs in humans. RESULTS The biodistribution data for ⁶⁸Ga-MAA showed that the most of the activity was taken up by the lung (more than 97 %) in no time. Our dose prediction shows that a 185-MBq injection of ⁶⁸Ga-MAA into humans might result in an estimated absorbed dose of 4.31 mGy in the whole body. The highest absorbed doses are observed in the adrenals, spleen, pancreas, and red marrow with 0.36, 0.34, 0.26, and 0.19 mGy, respectively. CONCLUSION Since the (99m)Tc-MAA remains longer than ⁶⁸Ga-MAA in the lung and ⁶⁸Ga-MAA has good image qualities and results in lower amounts of dose delivery to the critical organs such as gonads, red marrow, and adrenals, the use of ⁶⁸Ga-MAA is recommended.
Collapse
Affiliation(s)
- Saeed Shanehsazzadeh
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), P. O. Box: 11365-3486, Tehran, Iran.
| | - Afsaneh Lahooti
- Department of Medical Physics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Yousefnia
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), P. O. Box: 11365-3486, Tehran, Iran
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Jalilian
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), P. O. Box: 11365-3486, Tehran, Iran
| |
Collapse
|
39
|
Nosrati S, Shanehsazzadeh S, Yousefnia H, Gholami A, Grüttner C, Jalilian AR, Hosseini RH, Lahooti A. Biodistribution evaluation of 166Ho–DTPA–SPION in normal rats. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-4251-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
40
|
Comparison of estimated human effective dose of 67Ga- and 99mTc-labeled bombesin based on distribution data in mice. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-3995-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|