1
|
Moderate electric field-assisted hydro-distillation of thyme essential oil: Characterization of microstructural changes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Shimoyama K, Tsuchiya T, Watanabe H, Ergalad A, Iwatake M, Miyazaki T, Hashimoto Y, Hsu YI, Hatachi G, Matsumoto K, Ishii M, Mizoguchi S, Doi R, Tomoshige K, Yamaoka T, Nagayasu T. Donor and Recipient Adipose-Derived Mesenchymal Stem Cell Therapy for Rat Lung Transplantation. Transplant Proc 2022; 54:1998-2007. [PMID: 36041932 DOI: 10.1016/j.transproceed.2022.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/03/2022] [Accepted: 05/22/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are beginning to be proven as immunosuppressant in the field of organ transplantation. However, the effects of MSC origin (donor or recipient) on immunosuppression are not clear. Hence, we investigated the effects of recipient and donor adipose-derived MSCs (ADMSCs) on immunosuppression in a rat lung transplantation model. METHODS Subjects were divided into no treatment, tacrolimus administration, recipient ADMSC administration, donor ADMSC administration, and mixed donor and recipient ADMSC administration groups. ADMSC-administered groups were also treated with tacrolimus. Histologic study, immunofluorescence, immunohistochemistry, enzyme-linked immunosorbent assay, and polymerase chain reaction were used for various analyses. RESULTS Fluorescently labeled ADMSCs were predominant in the grafted donor lung, but not in the recipient lung, on day 5. On day 7, the pathologic rejection grades of the grafted donor lung were significantly lower in the ADMSC-administered groups (P < .05) and did not differ among these groups. Although serum hepatocyte growth factor and vascular endothelial growth factor levels did not differ among the groups, interleukin 10 level was slightly higher in the ADMSC-administered groups. The numbers of infiltrating regulatory T cells in the grafted lung were significantly higher in the ADMSC-administered groups (P < .05) but did not differ with cell origin. Transcriptional analysis suggested interleukin 6 suppression to be the main overlapping immunosuppressive mechanism, regardless of origin. Therefore, a donor or recipient origin may not influence the immunosuppressive efficacy of ADMSCs in our rat lung transplantation model. CONCLUSIONS Collectively, the results indicate that allogenic ADMSCs, regardless of their origin, may exert similar immunosuppressive effects in clinical organ transplantation.
Collapse
Affiliation(s)
- Koichiro Shimoyama
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Medical-Engineering Hybrid Professional Development Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoshi Tsuchiya
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Division of Nucleic Acid Drug Development, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan.
| | - Hironosuke Watanabe
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Abdelmotagaly Ergalad
- Center for Preclinical Surgical and Interventional Research, Texas Heart Institute, Houston, Texas
| | - Mayumi Iwatake
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takuro Miyazaki
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasumasa Hashimoto
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Medical-Engineering Hybrid Professional Development Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yu-I Hsu
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Go Hatachi
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Keitaro Matsumoto
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Medical-Engineering Hybrid Professional Development Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mitsutoshi Ishii
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Medical-Engineering Hybrid Professional Development Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Satoshi Mizoguchi
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Medical-Engineering Hybrid Professional Development Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ryoichiro Doi
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koichi Tomoshige
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Takeshi Nagayasu
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Medical-Engineering Hybrid Professional Development Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
3
|
Liu J, Li C, Brans T, Harizaj A, Van de Steene S, De Beer T, De Smedt S, Szunerits S, Boukherroub R, Xiong R, Braeckmans K. Surface Functionalization with Polyethylene Glycol and Polyethyleneimine Improves the Performance of Graphene-Based Materials for Safe and Efficient Intracellular Delivery by Laser-Induced Photoporation. Int J Mol Sci 2020; 21:E1540. [PMID: 32102402 PMCID: PMC7073198 DOI: 10.3390/ijms21041540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/20/2022] Open
Abstract
Nanoparticle mediated laser-induced photoporation is a physical cell membrane disruption approach to directly deliver extrinsic molecules into living cells, which is particularly promising in applications for both adherent and suspension cells. In this work, we explored surface modifications of graphene quantum dots (GQD) and reduced graphene oxide (rGO) with polyethylene glycol (PEG) and polyethyleneimine (PEI) to enhance colloidal stability while retaining photoporation functionality. After photoporation with FITC-dextran 10 kDa (FD10), the percentage of positive HeLa cells (81% for GQD-PEG, 74% for rGO-PEG and 90% for rGO-PEI) increased approximately two-fold compared to the bare nanomaterials. While for Jurkat suspension cells, the photoporation efficiency with polymer-modified graphene-based nanomaterial reached as high as 80%. Cell viability was >80% in all these cases. In addition, polymer functionalization proved to be beneficial for the delivery of larger macromolecules (FD70 and FD500) as well. Finally, we show that rGO is suitable for photoporation using a near-infrared laser to reach 80% FD10 positive HeLa cells at 80% cell viability. We conclude that modification of graphene-based nanoparticles with PEG and especially PEI provide better colloidal stability in cell medium, resulting in more uniform transfection and overall increased efficiency.
Collapse
Affiliation(s)
- Jing Liu
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium; (J.L.); (T.B.); (A.H.); (S.D.S.); (R.X.)
| | - Chengnan Li
- University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, UMR 8520-IEMN, F-59000 Lille, France; (C.L.); (S.S.); (R.B.)
| | - Toon Brans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium; (J.L.); (T.B.); (A.H.); (S.D.S.); (R.X.)
| | - Aranit Harizaj
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium; (J.L.); (T.B.); (A.H.); (S.D.S.); (R.X.)
| | - Shana Van de Steene
- Laboratory of Pharmaceutical Process Analytical Technology, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium (T.D.B.)
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium (T.D.B.)
| | - Stefaan De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium; (J.L.); (T.B.); (A.H.); (S.D.S.); (R.X.)
- Centre for Advanced Light Microscopy, Ghent University, B-9000 Ghent, Belgium
- Joint Laboratory of Advanced Biomedical Technology (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Sabine Szunerits
- University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, UMR 8520-IEMN, F-59000 Lille, France; (C.L.); (S.S.); (R.B.)
| | - Rabah Boukherroub
- University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, UMR 8520-IEMN, F-59000 Lille, France; (C.L.); (S.S.); (R.B.)
| | - Ranhua Xiong
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium; (J.L.); (T.B.); (A.H.); (S.D.S.); (R.X.)
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium; (J.L.); (T.B.); (A.H.); (S.D.S.); (R.X.)
- Centre for Advanced Light Microscopy, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
4
|
Mahara A, Kobayashi N, Hirano Y, Yamaoka T. Sonoporation-based labeling of mesenchymal stem cells with polymeric MRI contrast agents for live-cell tracking. Polym J 2019. [DOI: 10.1038/s41428-019-0177-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Influence of Molecular Mobility on Contrast Efficiency of Branched Polyethylene Glycol Contrast Agent. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2018:1259325. [PMID: 30627056 PMCID: PMC6305028 DOI: 10.1155/2018/1259325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/10/2018] [Accepted: 10/19/2018] [Indexed: 12/02/2022]
Abstract
For a water-soluble polyethylene glycol (PEG) magnetic resonance imaging (MRI) contrast agent, it has been demonstrated that the contrast efficiency was increased with increased branched structure of the contrast agent. However, the cause of enhanced contrast efficiency by the branched structure has not been clarified. Hence, we investigate the cause of the contrast agent enhancement by changing the Gd introduction ratio of the eight-arm PEG from 1.97 to 4.07; furthermore, the terminal mobility of the contrast agents with different structures was evaluated using proton nuclear magnetic resonance (1H-NMR) spectroscopy. It was shown that the relaxivity and contrast luminance of the synthesized branched PEG-Gd contrast agents are larger than those of linear PEG-Gd and commercially available contrast agents. Additionally, the change in the Gd introduction ratio did not affect the contrast efficiency. The terminal mobility results measured by NMR show that the linewidth at half height became broader with an increased number of branches, implying that the mobility of branched PEG-Gd is slower than that of linear PEG-Gd. Interestingly, the linewidth at half height of different structures did not change in an organic solvent; this phenomenon appeared specifically in water. It is suggested that the stable branched structure enabled the improvement in the relaxivity and contrast luminance.
Collapse
|
6
|
Mahara A, Enmi JI, Hsu YI, Kobayashi N, Hirano Y, Iida H, Yamaoka T. Superfine Magnetic Resonance Imaging of the Cerebrovasculature Using Self-Assembled Branched Polyethylene Glycol-Gd Contrast Agent. Macromol Biosci 2018; 18:e1700391. [PMID: 29665311 DOI: 10.1002/mabi.201700391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/15/2018] [Indexed: 12/12/2022]
Abstract
Magnetic resonance angiography is an attractive method for the visualization of the cerebrovasculature, but small-sized vessels are hard to visualize with the current clinically approved agents. In this study, a polymeric contrast agent for the superfine imaging of the cerebrovasculature is presented. Eight-arm polyethylene glycol with a molecular weight of ≈17 000 Da conjugated with a Gd chelate and fluorescein (F-8-arm PEG-Gd) is used. The relaxivity rate is 9.3 × 10-3 m-1 s-1 , which is threefold higher than that of free Gd chelate. Light scattering analysis reveals that F-8-arm PEG-Gd is formed by self-assembly. When the F-8-arm PEG-Gd is intravenously injected, cerebrovasculature as small as 100 µm in diameter is clearly visualized. However, signals are not enhanced when Gd chelate and Gd chelate-conjugated 8-arm PEG are injected. Furthermore, small vasculature around infarct region in rat stroke model can be visualized. These results suggest that F-8-arm PEG-Gd enhances the MR imaging of cerebrovasculature.
Collapse
Affiliation(s)
- Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Jun-Ichiro Enmi
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Yu-I Hsu
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Naoki Kobayashi
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita, Osaka, 565-8680, Japan
| | - Yoshiaki Hirano
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita, Osaka, 565-8680, Japan
| | - Hidehiro Iida
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| |
Collapse
|
7
|
Dzhardimalieva GI, Uflyand IE. Design Strategies of Metal Complexes Based on Chelating Polymer Ligands and Their Application in Nanomaterials Science. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0841-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Batista Napotnik T, Miklavčič D. In vitro electroporation detection methods – An overview. Bioelectrochemistry 2018; 120:166-182. [DOI: 10.1016/j.bioelechem.2017.12.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022]
|
9
|
Cellular Uptake of Plain and SPION-Modified Microbubbles for Potential Use in Molecular Imaging. Cell Mol Bioeng 2017; 10:537-548. [PMID: 29151981 PMCID: PMC5662700 DOI: 10.1007/s12195-017-0504-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 08/01/2017] [Indexed: 12/31/2022] Open
Abstract
Introduction Both diagnostic ultrasound (US) and magnetic resonance imaging (MRI) accuracy can be improved by using contrast enhancement. For US gas-filled microbubbles (MBs) or silica nanoparticles (SiNPs), and for MRI superparamagnetic or paramagnetic agents, contribute to this. However, interactions of MBs with the vascular wall and cells are not fully known for all contrast media. Methods We studied the in vitro interactions between three types of non-targeted air-filled MBs with a polyvinyl-alcohol shell and murine macrophages or endothelial cells. The three MB types were plain MBs and two types that were labelled (internally and externally) with superparamagnetic iron oxide nanoparticles (SPIONs) for US/MRI bimodality. Cells were incubated with MBs and imaged by microscopy to evaluate uptake and adhesion. Interactions were quantified and the MB internalization was confirmed by fluorescence quenching of non-internalized MBs. Results Macrophages internalized each MB type within different time frames: plain MBs 6 h, externally labelled MBs 25 min and internally labelled MBs 2 h. An average of 0.14 externally labelled MBs per cell were internalized after 30 min and 1.34 after 2 h; which was 113% more MBs than the number of internalized internally labelled MBs. The macrophages engulfed these three differently modified new MBs at various rate, whereas endothelial cells did not engulf MBs. Conclusions Polyvinyl-alcohol MBs are not taken up by endothelial cells. The MB uptake by macrophages is promoted by SPION labelling, in particular external such, which may be important for macrophage targeting.
Collapse
|
10
|
Zhang Y, Zhang H, Ding L, Zhang H, Zhang P, Jiang H, Tan B, Deng Z. MRI reveals slow clearance of dead cell transplants in mouse forelimb muscles. Mol Med Rep 2017; 16:4068-4074. [PMID: 28765924 PMCID: PMC5646989 DOI: 10.3892/mmr.2017.7100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/07/2017] [Indexed: 12/23/2022] Open
Abstract
A small molecule tetraazacyclododecane-1,4,7,10-tetraacetic acid (Gd-DOTA)4-TPP agent is used to label human mesenchymal stem cells (hMSCs) via electroporation (EP). The present study assessed the cytotoxicity of cell labeling, in addition to its effect on cell differentiation potential. There were no significant adverse effects on cell viability or differentiation induced by either EP or cellular uptake of (Gd-DOTA)4-TPP. Labeled live and dead hMSCs were transplanted into mouse forelimb muscles. T2-weighted magnetic resonance imaging (MRI) was used to track the in vivo fate of the cell transplants. The labeling and imaging strategy allowed long term tracking of the cell transplants and unambiguous distinguishing of the cell transplants from their surrounding tissues. Cell migration was observed for live hMSCs injected into subcutaneous tissues, however not for either live or dead hMSCS injected into limb muscles. A slow clearance process occurred of the dead cell transplants in the limb muscular tissue. The MRI results therefore reveal that the fate and physiological activities of cell transplants depend on the nature of their host tissue.
Collapse
Affiliation(s)
- Yanhui Zhang
- College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Hongyan Zhang
- CAS Key Laboratory of Nano‑Bio Interface and Division of Nanobionics Research, Suzhou Institute of Nano‑Tech and Nano‑Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, P.R. China
| | - Lijun Ding
- Center for Reproductive Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Hailu Zhang
- CAS Key Laboratory of Nano‑Bio Interface and Division of Nanobionics Research, Suzhou Institute of Nano‑Tech and Nano‑Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, P.R. China
| | - Pengli Zhang
- College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Haizhen Jiang
- College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Bo Tan
- CAS Key Laboratory of Nano‑Bio Interface and Division of Nanobionics Research, Suzhou Institute of Nano‑Tech and Nano‑Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, P.R. China
| | - Zongwu Deng
- CAS Key Laboratory of Nano‑Bio Interface and Division of Nanobionics Research, Suzhou Institute of Nano‑Tech and Nano‑Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
11
|
Tachibana Y, Enmi JI, Agudelo CA, Iida H, Yamaoka T. Long-Term/Bioinert Labeling of Rat Mesenchymal Stem Cells with PVA-Gd Conjugates and MRI Monitoring of the Labeled Cell Survival after Intramuscular Transplantation. Bioconjug Chem 2014; 25:1243-51. [DOI: 10.1021/bc400463t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yoichi Tachibana
- Department of Biomedical Engineering and ‡Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Jun-ichiro Enmi
- Department of Biomedical Engineering and ‡Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Carlos A. Agudelo
- Department of Biomedical Engineering and ‡Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Hidehiro Iida
- Department of Biomedical Engineering and ‡Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering and ‡Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| |
Collapse
|
12
|
Figueiredo S, Cutrin JC, Rizzitelli S, De Luca E, Moreira JN, Geraldes CFGC, Aime S, Terreno E. MRI tracking of macrophages labeled with glucan particles entrapping a water insoluble paramagnetic Gd-based agent. Mol Imaging Biol 2014. [PMID: 23179092 DOI: 10.1007/s11307-012-0603-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE This study is aimed at demonstrating the in vivo potential of Gd(III)-loaded glucan particles (Gd-GPs) as magnetic resonance imaging (MRI)-positive agents for labeling and tracking phagocytic cells. PROCEDURE GPs were obtained from Saccharomyces cerevisae and loaded with the water-insoluble complex Gd-DOTAMA(C18)2. The uptake kinetics of Gd-GPs by murine macrophages was studied in vitro and the internalization mechanism was assessed by competition assays. The in vivo performance of Gd-GPs was tested at 7.05 T on a mouse model of acute liver inflammation. RESULTS The minimum number of Gd-GPs-labeled J774.A1 macrophages detected in vitro by MRI was ca. 300 cells/μl of agar, which is the lowest number ever reported for cells labeled with a positive T1 agent. Intravenous injection of macrophages labeled with Gd-GPs in a mouse model of liver inflammation enabled the MRI visualization of the cellular infiltration in the diseased area. CONCLUSIONS Gd-GPs represent a promising platform for tracking macrophages by MRI as a T1 alternative to the golden standard T2-based iron oxide particles.
Collapse
Affiliation(s)
- Sara Figueiredo
- Department of Molecular Biotechnology and Health Sciences and Molecular and Preclinical Imaging Centers, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ligand-mediated endocytosis of nanoparticles in neural stem cells: implications for cellular magnetic resonance imaging. Biotechnol Lett 2013; 35:1997-2004. [PMID: 23907672 DOI: 10.1007/s10529-013-1304-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/04/2013] [Indexed: 02/01/2023]
Abstract
Neural stem cells (NSCs) have great prospects in therapy for neurological disorders. However, the correlation between improved function and stem cell transplantation has not been fully elucidated. A non-invasive method for stem cell tracking is crucial for clinical studies. In the present study, NSCs were infected with lentiviral vectors, and the expression of transferrin receptor (TfR) in neural stem cells after lentivirus transfection (TfR-NSC) was confirmed by western blot analysis. TfR-NSCs were incubated with 1.8 nM ultra-small super-paramagnetic iron oxide nanoparticles (USPIOs) or transferrin (Tf)-conjugate of USPIO nanoparticles (Tf-USPIOs). Tf-USPIO enhanced the cellular iron content in TfR-NSCs 80 ± 18 % compared to USPIOs. These results demonstrated that TfR overexpressed in neural stem cells specifically internalized Tf-USPIOs. Furthermore, the results indicate that TfR reporter imaging may be a valuable way to evaluate the efficacy of neural stem cell treatment.
Collapse
|
14
|
Avti PK, Caparelli ED, Sitharaman B. Cytotoxicity, cytocompatibility, cell-labeling efficiency, and in vitro cellular magnetic resonance imaging of gadolinium-catalyzed single-walled carbon nanotubes. J Biomed Mater Res A 2013; 101:3580-91. [PMID: 23686792 DOI: 10.1002/jbm.a.34643] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/22/2012] [Accepted: 01/09/2013] [Indexed: 12/17/2022]
Abstract
Cell tracking by magnetic resonance imaging (MRI) is an emerging technique that typically requires the use of MRI contrast agents (CAs). A MRI CA for cellular imaging should label cells efficiently at potentially safe concentrations, have high relaxivity, and not affect the cellular machinery. In this article, we report the cytotoxicity, cytocompatibility, and cell labeling efficiency in NIH/3T3 fibroblasts of novel, single-walled carbon nanotubes synthesized using gadolinium nanoparticles as catalysts (Gd-SWCNTs). Cells incubated with the Gd-SWCNT showed a dose- (50-100 µg/mL nanotube concentration) and time- (12-48 h) dependent decrease in viability. 30% cell death was observed for cells incubated with Gd-SWCNTs at the maximum dose of 100 µg/mL for 48 h. Cells incubated with the Gd-SWCNTs at concentrations between 1-10 μg/mL for 48 h showed no change in viability or proliferation compared to untreated controls. Additionally, at these potentially safe concentrations, up to 48 h, the cells showed no phosphatidyl serine externalization (pre-apoptotic condition), caspase-3 activity (point of no return for apoptosis), genetic damage, or changes in their division cycle. Localization of Gd-SWCNTs within the cells was confirmed by transmission electron microscopy (TEM) and Raman microscopy, and these results show 100% cell labeling efficiency. Elemental analysis also indicates significant uptake of Gd-SWCNTs by the cells (10(8) -10(9) Gd(3+) ions per cell). Finally, T1 -weighted MRI at 3 T of Gd-SWCNT-labelled cells show up to a four-fold increase in MR signal intensities as compared to untreated cells. These results indicate that Gd-SWCNTs label cells efficiently at potentially safe concentrations, and enhance MRI contrast without any structural damage to the cells.
Collapse
Affiliation(s)
- Pramod K Avti
- Department of Biomedical Engineering, Rm #115, Bioengineering Building, Stony Brook University, Stony Brook, New York 11794-5281
| | | | | |
Collapse
|
15
|
Dekaban GA, Hamilton AM, Fink CA, Au B, de Chickera SN, Ribot EJ, Foster PJ. Tracking and evaluation of dendritic cell migration by cellular magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:469-83. [PMID: 23633389 DOI: 10.1002/wnan.1227] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/28/2013] [Accepted: 03/19/2013] [Indexed: 01/15/2023]
Abstract
Cellular magnetic resonance imaging (MRI) is a means by which cells labeled ex vivo with a contrast agent can be detected and tracked over time in vivo. This technology provides a noninvasive method with which to assess cell-based therapies in vivo. Dendritic cell (DC)-based vaccines are a promising cancer immunotherapy, but its success is highly dependent on the injected DC migrating to a secondary lymphoid organ such as a nearby lymph node. There the DC can interact with T cells to elicit a tumor-specific immune response. It is important to verify DC migration in vivo using a noninvasive imaging modality, such as cellular MRI, so that important information regarding the anatomical location and persistence of the injected DC in a targeted lymph node can be provided. An understanding of DC biology is critical in ascertaining how to label DC with sufficient contrast agent to render them detectable by MRI. While iron oxide nanoparticles provide the best sensitivity for detection of DC in vivo, a clinical grade iron oxide agent is not currently available. A clinical grade (19) Fluorine-based perfluorcarbon nanoemulsion is available but is less sensitive, and its utility to detect DC migration in humans remains to be demonstrated using clinical scanners presently available. The ability to quantitatively track DC migration in vivo can provide important information as to whether different DC maturation and activation protocols result in improved DC migration efficiency which will determine the vaccine's immunogenicity and ultimately the tumor immunotherapy's outcome in humans.
Collapse
Affiliation(s)
- Gregory A Dekaban
- BioTherapeutics Research Laboratories, Robarts Research Institute and Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Agudelo CA, Tachibana Y, Yamaoka T. Synthesis, properties, and endothelial progenitor cells labeling stability of dextranes as polymeric magnetic resonance imaging contrast agents. J Biomater Appl 2012; 28:473-80. [DOI: 10.1177/0885328212462259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Magnetic resonance imaging is one of the most important fields for cellular imaging due to its non-invasive capacity, spatial resolution, and sensibility to visualized transplanted cells. An enhanced magnetic resonance image can be achieved by using contrast agents containing paramagnetic gadolinium chelates, which have the widest clinical use. To obtain a better contrast-enhancement and reduce the concentration of Gd for payload, one strategy is to conjugate the gadolinium(III) chelate to polymeric materials that will lead into an increase in the rotational correlation time and therefore improve the relaxivity. Four series of dextran gadolinium chelates were synthesized which are of interest as potential MRI contrast agents to track bone marrow-derived endothelial progenitor cells in vivo. The dextranes with molecular weights were characterized, introduced into the endothelial progenitor cells by electroporation, and injected in aqueous solution into rats to acquire the MR images. We have shown that by selecting polymers of the appropriate molecular weight, stability into the cell after labeling, relaxivity, and retention into the body can be accomplished.
Collapse
Affiliation(s)
- Carlos A Agudelo
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | | | | |
Collapse
|
17
|
Illy N, Majonis D, Herrera I, Ornatsky O, Winnik MA. Metal-Chelating Polymers by Anionic Ring-Opening Polymerization and Their Use in Quantitative Mass Cytometry. Biomacromolecules 2012; 13:2359-69. [DOI: 10.1021/bm300613x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Nicolas Illy
- Department
of Chemistry, University
of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S3H6
| | - Daniel Majonis
- Department
of Chemistry, University
of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S3H6
| | - Isaac Herrera
- Department
of Chemistry, University
of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S3H6
| | - Olga Ornatsky
- Department
of Chemistry, University
of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S3H6
| | - Mitchell A. Winnik
- Department
of Chemistry, University
of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S3H6
| |
Collapse
|
18
|
Agudelo CA, Tachibana Y, Hurtado AF, Ose T, Iida H, Yamaoka T. The use of magnetic resonance cell tracking to monitor endothelial progenitor cells in a rat hindlimb ischemic model. Biomaterials 2011; 33:2439-48. [PMID: 22206594 DOI: 10.1016/j.biomaterials.2011.11.075] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 11/25/2011] [Indexed: 10/14/2022]
Abstract
A water-soluble magnetic resonance imaging (MRI) contrast agent, Dextran mono-N-succinimidyl 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate-gadolinium(3+) (Dex-DOTA-Gd(3+)), was shown to enable monitoring of the anatomical migration and the survival period of transplanted stem cells for up to 1 month. Gadolinium molecules in the cells were rapidly eliminated from the site and excreted upon cell death. Endothelial progenitor cells (EPCs) transplanted into the inguinal femoral muscle of rats migrated distally through the knee in rats after hindlimb ischemia but did not migrate in non-ischemic rats. Interestingly, the survival period of transplanted EPCs was notably prolonged in the ischemic limb, indicating that EPCs are required by the ischemic tissues and that the fate of transplanted EPCs was affected by the disease. Compared to the commonly used particle type of MRI contrast agents, the system described in this study is expected to be invaluable to help clarifying the process of stem cell transplantation therapy.
Collapse
Affiliation(s)
- Carlos A Agudelo
- Department of Biomedical Engineering, National Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Agudelo CA, Tachibana Y, Noboru T, Iida H, Yamaoka T. Long-term in vivo magnetic resonance imaging tracking of endothelial progenitor cells transplanted in rat ischemic limbs and their angiogenic potential. Tissue Eng Part A 2011; 17:2079-89. [PMID: 21466415 DOI: 10.1089/ten.tea.2010.0482] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Stem cell therapy has been used to repair ischemic tissues in the limbs, in myocardial infarctions, and in the brain. To understand the mechanisms of healing, a contrast agent capable of inducing sufficient magnetic resonance (MR) contrast would be useful in providing fundamental information about the cell migration and incorporation into the ischemic tissue. A magnetic resonance imaging contrast agent composed of dextran and gadolinium chelate was synthesized. Hydroxyl groups of dextran were activated with 1,1'-carbonylbis-1H-imidazole and reacted with propanediamine to obtain aminated dextran. This modified polymer was then reacted with mono-N-succinimidyl 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate, then with fluorescein isothiocyanate, and finally reacted with gadolinium chloride solution (Dex-DOTA-Gd3(+)). Endothelial progenitor cells (EPCs) were selected as a stem cell model for magnetic resonance imaging tracking. Cells were isolated from the bone marrow harvested from the femurs and tibias of rats. Dex-DOTA-Gd3(+) was then introduced into the EPCs by electroporation. The intracellular stability and cytotoxicity of Dex-DOTA-Gd3(+) were evaluated in vitro. Dex-DOTA-Gd3(+)-labeled EPCs were transplanted into a rat model of ischemic limb, and MR images were acquired. Dex-DOTA-Gd3(+) was found to efficiently label EPCs over a long duration without significant cytotoxicity. This provides an MR signal sufficient for tracking the EPCs intramuscularly injected into the limb.
Collapse
Affiliation(s)
- Carlos A Agudelo
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|