1
|
Hallmarks of Cancer Affected by the MIF Cytokine Family. Cancers (Basel) 2023; 15:cancers15020395. [PMID: 36672343 PMCID: PMC9856758 DOI: 10.3390/cancers15020395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
New diagnostic methods and treatments have significantly decreased the mortality rates of cancer patients, but further improvements are warranted based on the identification of novel tumor-promoting molecules that can serve as therapeutic targets. The macrophage migration inhibitory factor (MIF) family of cytokines, comprising MIF and DDT (also known as MIF2), are overexpressed in almost all cancer types, and their high expressions are related to a worse prognosis for the patients. MIF is involved in 9 of the 10 hallmarks of cancer, and its inhibition by antibodies, nanobodies, or small synthetic molecules has shown promising results. Even though DDT is also proposed to be involved in several of the hallmarks of cancer, the available information about its pro-tumoral role and mechanism of action is more limited. Here, we provide an overview of the involvement of both MIF and DDT in cancer, and we propose that blocking both cytokines is needed to obtain the maximum anti-tumor response.
Collapse
|
2
|
Parol-Kulczyk M, Gzil A, Maciejewska J, Bodnar M, Grzanka D. Clinicopathological significance of the EMT-related proteins and their interrelationships in prostate cancer. An immunohistochemical study. PLoS One 2021; 16:e0253112. [PMID: 34157052 PMCID: PMC8219170 DOI: 10.1371/journal.pone.0253112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 05/29/2021] [Indexed: 11/19/2022] Open
Abstract
The chronic inflammation influences a microenvironment, where as a result of losing control over tissue homeostatic mechanisms, the carcinogenesis process may be induced. Inflammatory response cells can secrete a number of factors that support both initiation and progression of cancer and also they may consequently induct an epithelial-mesenchymal transition (EMT), the process responsible for development of distant metastasis. Macrophage migration inhibitory factor (MIF) acts as a pro-inflammatory cytokine that is considered as a link between chronic inflammation and tumor development. MIF can function as a modulator of important cancer-related genes expression, as well as an activator of signaling pathways that promotes the development of prostate cancer. The study was performed on FFPE tissues resected from patients who underwent radical prostatectomy. To investigate the relationship of studied proteins with involvement in tumor progression and initiation of epithelial-to-mesenchymal transition (EMT) process, we selected clinicopathological parameters related to tumor progression. Immunohistochemical analyses of MIF, SOX-4, β-catenin and E-cadherin were performed on TMA slides. We found a statistically significant correlation of overall β-catenin expression with the both lymph node metastasis (p<0.001) and presence of angioinvasion (p = 0.012). Membrane β-catenin expression was associated with distant metastasis (p = 0.021). In turn, nuclear MIF was correlated with lymph node metastasis (p = 0.003). The positive protein-protein correlations have been shown between the total β-catenin protein expression level with level of nuclear SOX-4 protein expression (r = 0.27; p<0.05) as well as negative correlation of β-catenin expression with level of nuclear MIF protein expression (r = -0.23; p<0.05). Our results seem promising and strongly highlight the potential role of MIF in development of nodal metastases as well as may confirm an involvement of β-catenin in disease spread in case of prostate cancer.
Collapse
Affiliation(s)
- Martyna Parol-Kulczyk
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Arkadiusz Gzil
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Joanna Maciejewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| |
Collapse
|
3
|
Usman RM, Razzaq F, Akbar A, Farooqui AA, Iftikhar A, Latif A, Hassan H, Zhao J, Carew JS, Nawrocki ST, Anwer F. Role and mechanism of autophagy-regulating factors in tumorigenesis and drug resistance. Asia Pac J Clin Oncol 2021; 17:193-208. [PMID: 32970929 DOI: 10.1111/ajco.13449] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/26/2020] [Indexed: 12/19/2022]
Abstract
A hallmark feature of tumorigenesis is uncontrolled cell division. Autophagy is regulated by more than 30 genes and it is one of several mechanisms by which cells maintain homeostasis. Autophagy promotes cancer progression and drug resistance. Several genes play important roles in autophagy-induced tumorigenesis and drug resistance including Beclin-1, MIF, HMGB1, p53, PTEN, p62, RAC3, SRC3, NF-2, MEG3, LAPTM4B, mTOR, BRAF and c-MYC. These genes alter cell growth, cellular microenvironment and cell division. Mechanisms involved in tumorigenesis and drug resistance include microdeletions, genetic mutations, loss of heterozygosity, hypermethylation, microsatellite instability and translational modifications at a molecular level. Disrupted or altered autophagy has been reported in hematological malignancies like lymphoma, leukemia and myeloma as well as multiple solid organ tumors like colorectal, hepatocellular, gall bladder, pancreatic, gastric and cholangiocarcinoma among many other malignancies. In addition, defects in autophagy also play a role in drug resistance in cancers like osteosarcoma, ovarian and lung carcinomas following treatment with drugs such as doxorubicin, paclitaxel, cisplatin, gemcitabine and etoposide. Therapeutic approaches that modulate autophagy are a novel future direction for cancer drug development that may help to prevent issues with disease progression and overcome drug resistance.
Collapse
Affiliation(s)
- Rana Muhammad Usman
- Department of Medicine, The University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Faryal Razzaq
- Foundation University Medical College, Islamabad, Pakistan
| | - Arshia Akbar
- Department of Medical Intensive Care, Holy Family Hospital, Rawalpindi, Pakistan
| | | | - Ahmad Iftikhar
- Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Azka Latif
- Department of Medicine, Crieghton University, Omaha, NE, USA
| | - Hamza Hassan
- Department of Hematology & Medical Oncology, Boston University Medical Center, Boston, MA, USA
| | - Jianjun Zhao
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Jennifer S Carew
- Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | | | - Faiz Anwer
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
4
|
Salman A, Shaaban HED, Salman M, M Seif El Nasr S, Soliman A, Salem A, Tag El-Din M, Mikhail HMS, El Domiaty H, Abd Allah N, GabAllah GMK, Youssef A. Changes in Plasma Growth Differentiation Factor-15 After Laparoscopic Sleeve Gastrectomy in Morbidly Obese Patients: A Prospective Study. J Inflamm Res 2021; 14:1365-1373. [PMID: 33880052 PMCID: PMC8052116 DOI: 10.2147/jir.s304929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose This study aimed to assess the potential changes of Growth differentiation factor 15 (GDF15) after laparoscopic sleeve gastrectomy (LSG) in morbidly obese patients. Methods We conducted a prospective study on 68 patients who underwent LSG and 58 cases, who were enrolled as a control group, to whom conservative measures of weight loss were adopted. Both groups were followed for 12 months. Results At the baseline, the serum GDF15 was comparable between LSG and conservative groups (409.93±119 versus 385.8±120.2 pg/mL, p =0.246). However, at 12 months after the operation, the serum GDF15 was significantly higher in the LSG than conservative groups (699.941 ±193.5 versus 559 ±159.7; p <0.001). The degree of serum GDF15 increase was higher in the LSG group (290.01 ±189.9 versus 173.14 ±116.7; p <0.001). The degree of serum GDF15 increase correlated negatively with the final BMI (r = −0.352, p =0.001) and weight loss (r = −0.793, p =0.001) at 12 months after the operation. The correlation analysis demonstrated that the initial GFD15 did not correlate with any baseline parameters. Multiple regression analysis of change in serum GDF15 showed a statistical significance of the weight loss after 12 months. Conclusion The present work confirms the impact of successful weight loss on the circulating level of GDF15. Our study demonstrated that the circulating GDF15 increased significantly after LSG and it was correlated to the degree of weight loss.
Collapse
Affiliation(s)
- Ahmed Salman
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hossam El-Din Shaaban
- Gastroenterology Department, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Mohamed Salman
- General Surgery Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sayed M Seif El Nasr
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Soliman
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Abdoh Salem
- General Surgery Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed Tag El-Din
- General Surgery Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Heba El Domiaty
- Clinical Physiology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Nesrin Abd Allah
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Ghada M K GabAllah
- Medical Biochemistry Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Ahmed Youssef
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Wen Y, Cai W, Yang J, Fu X, Putha L, Xia Q, Windsor JA, Phillips AR, Tyndall JDA, Du D, Liu T, Huang W. Targeting Macrophage Migration Inhibitory Factor in Acute Pancreatitis and Pancreatic Cancer. Front Pharmacol 2021; 12:638950. [PMID: 33776775 PMCID: PMC7992011 DOI: 10.3389/fphar.2021.638950] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine implicated in the pathogenesis of inflammation and cancer. It is produced by various cells and circulating MIF has been identified as a biomarker for a range of diseases. Extracellular MIF mainly binds to the cluster of differentiation 74 (CD74)/CD44 to activate downstream signaling pathways. These in turn activate immune responses, enhance inflammation and can promote cancer cell proliferation and invasion. Extracellular MIF also binds to the C-X-C chemokine receptors cooperating with or without CD74 to activate chemokine response. Intracellular MIF is involved in Toll-like receptor and inflammasome-mediated inflammatory response. Pharmacological inhibition of MIF has been shown to hold great promise in treating inflammatory diseases and cancer, including small molecule MIF inhibitors targeting the tautomerase active site of MIF and antibodies that neutralize MIF. In the current review, we discuss the role of MIF signaling pathways in inflammation and cancer and summarize the recent advances of the role of MIF in experimental and clinical exocrine pancreatic diseases. We expect to provide insights into clinical translation of MIF antagonism as a strategy for treating acute pancreatitis and pancreatic cancer.
Collapse
Affiliation(s)
- Yongjian Wen
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China.,Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Wenhao Cai
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China.,Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jingyu Yang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Lohitha Putha
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China
| | - John A Windsor
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anthony R Phillips
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Dan Du
- West China-Washington Mitochondria and Metabolism Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China.,Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Zhou Y, Liu L, Tao S, Yao Y, Wang Y, Wei Q, Shao A, Deng Y. Parthanatos and its associated components: Promising therapeutic targets for cancer. Pharmacol Res 2020; 163:105299. [PMID: 33171306 DOI: 10.1016/j.phrs.2020.105299] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Parthanatos is a PARP1-dependent, caspase-independent, cell-death pathway that is distinct from apoptosis, necrosis, or other known forms of cell death. Parthanatos is a multistep pathway that plays a pivotal role in tumorigenesis. There are many molecules in the parthanatos cascade that can be exploited to create therapeutic interventions for cancer management, including PARP1, PARG, ARH3, AIF, and MIF. These critical molecules are involved in tumor cell proliferation, progression, invasion, and metastasis. Therefore, these molecular signals in the parthanatos cascade represent promising therapeutic targets for cancer therapy. In addition, intimate interactions occur between parthanatos and other forms of cancer cell death, such as apoptosis and autophagy. Thus, co-targeting a combination of parthanatos and other death pathways may further provide a new avenue for cancer precision treatment. In this review, we elaborate on the signaling pathways of canonical parthanatos and briefly introduce the non-canonical parthanatos. We also shed light on the role parthanatos and its associated components play in tumorigenesis, particularly with respect to the aforementioned five molecules, and discuss the promise targeted therapy of parthanatos and its associated components holds for cancer therapy.
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Lihong Liu
- Department of Radiation Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Sifeng Tao
- Department of Surgical Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yihan Yao
- Department of Surgical Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yali Wang
- Department of Surgical Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Qichun Wei
- Department of Radiation Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Anwen Shao
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Yongchuan Deng
- Department of Surgical Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
7
|
Macrophage migration inhibitory factor inhibition as a novel therapeutic approach against triple-negative breast cancer. Cell Death Dis 2020; 11:774. [PMID: 32943608 PMCID: PMC7498597 DOI: 10.1038/s41419-020-02992-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
Triple-negative breast cancer (TNBC), defined as loss of estrogen, progesterone, and Her2 receptors, is a subtype of highly aggressive breast cancer with worse prognosis and poor survival rate. Macrophage migration inhibitory factor (MIF) is a pleiotropic pro-inflammatory cytokine aberrantly expressed in many solid tumors and known to promote tumor progression and metastasis. However, its role in TNBC progression and metastasis is unexplored. Here we have shown that in TNBC patients, MIF expression was significantly enriched in the tumor compared to adjacent normal tissue. Using publically available patient datasets, we showed that MIF overexpression correlates with worse survival in TNBC compared to other hormonal status. Orthotopic implantation of TNBC cells into MIF knockout mice showed reduced tumor growth compared to wild-type mice. In addition, we have shown that MIF downregulation inhibits TNBC growth and progression in a syngeneic mouse model. We further showed that CPSI-1306, a small-molecule MIF inhibitor, inhibits the growth of TNBC cells in vitro. Mechanistic studies revealed that CPSI-1306 induces intrinsic apoptosis by alteration in mitochondrial membrane potential, cytochrome c (Cyt c) release, and activation of different caspases. In addition, CPSI-1306 inhibits the activation of cell survival and proliferation-related molecules. CPSI-1306 treatment also reduced the tumor growth and metastasis in orthotopic mouse models of mammary carcinoma. CPSI-1306 treatment of tumor-bearing mice significantly inhibited TNBC growth and pulmonary metastasis in a dose-dependent manner. Histological analysis of xenograft tumors revealed a higher number of apoptotic cells in CPSI-1306-treated tumors compared to vehicle controls. Our studies, for the first time, show that MIF overexpression in TNBC enhances growth and metastasis. Taken together, our results indicate that using small molecular weight MIF inhibitors could be a promising strategy to inhibit TNBC progression and metastasis.
Collapse
|
8
|
Chillà A, Margheri F, Biagioni A, Del Rosso T, Fibbi G, Del Rosso M, Laurenzana A. Cell-Mediated Release of Nanoparticles as a Preferential Option for Future Treatment of Melanoma. Cancers (Basel) 2020; 12:cancers12071771. [PMID: 32630815 PMCID: PMC7408438 DOI: 10.3390/cancers12071771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 01/15/2023] Open
Abstract
Targeted and immune therapies have unquestionably improved the prognosis of melanoma patients. However the treatment of this neoplasm still requires approaches with a higher therapeutic index, in order to reduce shortcomings related to toxic effects and aspecific targeting. This means developing therapeutic tools derived with high affinity molecules for tumor components differentially expressed in melanoma cells with respect to their normal counterpart. Nanomedicine has sought to address this problem owing to the high modulability of nanoparticles. This approach exploits not only the enhanced permeability and retention effect typical of the tumor microenvironment (passive targeting), but also the use of specific "molecular antennas" that recognize some tumor-overexpressed molecules (active targeting). This line of research has given rise to the so-called "smart nanoparticles," some of which have already passed the preclinical phase and are under clinical trials in melanoma patients. To further improve nanoparticles partition within tumors, for some years now a line of thought is exploiting the molecular systems that regulate the innate tumor-homing activity of platelets, granulocytes, monocytes/macrophages, stem cells, endothelial-colony-forming cells, and red blood cells loaded with nanoparticles. This new vision springs from the results obtained with some of these cells in regenerative medicine, an approach called "cell therapy." This review takes into consideration the advantages of cell therapy as the only one capable of overcoming the limits of targeting imposed by the increased interstitial pressure of tumors.
Collapse
Affiliation(s)
- Anastasia Chillà
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
| | - Tommaso Del Rosso
- Department of Physics, Pontifical Catholic University of Rio de Janeiro, 22451-900 Rio de Janeiro-RJ, Brazil;
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
- Correspondence: (M.D.R.); (A.L.)
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
- Correspondence: (M.D.R.); (A.L.)
| |
Collapse
|
9
|
D'Amato-Brito C, Cipriano D, Colin DJ, Germain S, Seimbille Y, Robert JH, Triponez F, Serre-Beinier V. Role of MIF/CD74 signaling pathway in the development of pleural mesothelioma. Oncotarget 2017; 7:11512-25. [PMID: 26883190 PMCID: PMC4905490 DOI: 10.18632/oncotarget.7314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 01/24/2016] [Indexed: 11/25/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine implicated in acute and chronic inflammatory diseases. MIF is overexpressed in various tumors. It displays a number of functions that provide a direct link between the process of inflammation and tumor growth. Our group recently identified the MIF-receptor CD74 as an independent prognostic factor for overall survival in patients with malignant pleural mesothelioma. In the present study, we compared the levels of expression of MIF and CD74 in different human mesothelioma cell lines and investigated their physiopathological functions in vitro and in vivo. Human mesothelioma cells expressed more CD74 and secreted less MIF than non tumoral MeT5A cells, suggesting a higher sensitivity to MIF. In mesothelioma cells, high MIF levels were associated with a high multiplication rate of cells. In vitro, reduction of MIF or CD74 levels in both mesothelioma cell lines showed that the MIF/CD74 signaling pathway promoted tumor cell proliferation and protected MPM cells from apoptosis. Finally, mesothelioma cell lines expressing high CD74 levels had a low tumorigenic potential after xenogeneic implantation in athymic nude mice. All these data highlight the complexity of the MIF/CD74 signaling pathway in the development of mesothelioma.
Collapse
Affiliation(s)
- Cintia D'Amato-Brito
- Department of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Davide Cipriano
- Department of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Didier J Colin
- MicroPET/SPECT/CT Imaging Laboratory, Centre for BioMedical Imaging (CIBM), University Hospitals and University of Geneva, Geneva, Switzerland
| | - Stéphane Germain
- MicroPET/SPECT/CT Imaging Laboratory, Centre for BioMedical Imaging (CIBM), University Hospitals and University of Geneva, Geneva, Switzerland
| | - Yann Seimbille
- Cyclotron Unit, University Hospitals and University of Geneva, Geneva, Switzerland
| | - John H Robert
- Department of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Frédéric Triponez
- Department of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Véronique Serre-Beinier
- Department of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Ma DL, Dong ZZ, Vellaisamy K, Cheung KM, Yang G, Leung CH. Luminescent Strategies for Label-Free G-Quadruplex-Based Enzyme Activity Sensing. CHEM REC 2017; 17:1135-1145. [PMID: 28467681 DOI: 10.1002/tcr.201700014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Indexed: 12/30/2022]
Abstract
By catalyzing highly specific and tightly controlled chemical reactions, enzymes are essential to maintaining normal cellular physiology. However, aberrant enzymatic activity can be linked to the pathogenesis of various diseases. Therefore, the unusual activity of particular enzymes can represent testable biomarkers for the diagnosis or screening of certain diseases. In recent years, G-quadruplex-based platforms have attracted wide attention for the monitoring of enzymatic activities. In this Personal Account, we discuss our group's works on the development of G-quadruplex-based sensing system for enzyme activities by using mainly iridium(III) complexes as luminescent label-free probes. These studies showcase the versatility of the G-quadruplex for developing assays for a variety of different enzymes.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Zhen-Zhen Dong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | - Ka-Man Cheung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Guanjun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| |
Collapse
|
11
|
Roger T, Schlapbach LJ, Schneider A, Weier M, Wellmann S, Marquis P, Vermijlen D, Sweep FCGJ, Leng L, Bucala R, Calandra T, Giannoni E. Plasma Levels of Macrophage Migration Inhibitory Factor and d-Dopachrome Tautomerase Show a Highly Specific Profile in Early Life. Front Immunol 2017; 8:26. [PMID: 28179905 PMCID: PMC5263165 DOI: 10.3389/fimmu.2017.00026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/06/2017] [Indexed: 12/15/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic, constitutively expressed, pro-inflammatory cytokine and an important regulator of immune responses. d-dopachrome tautomerase (DDT), a newly described member of the MIF protein superfamily, shares sequence homology and biological activities with MIF. We recently reported that high expression levels of MIF sustain innate immune responses in newborns. Here, we elected to further characterize age-dependent MIF expression and to define whether DDT shares a similar expression profile with MIF. Therefore, we delineated the circulating concentrations of MIF and DDT throughout life using a large cohort of 307 subjects including fetuses, newborns, infants, children, and adults. Compared to levels measured in healthy adults (median: 5.7 ng/ml for MIF and 16.8 ng/ml for DDT), MIF and DDT plasma concentrations were higher in fetuses (median: 48.9 and 29.6 ng/ml), increased further at birth (median: 82.6 and 52.0 ng/ml), reached strikingly elevated levels on postnatal day 4 (median: 109.5 and 121.6 ng/ml), and decreased to adult levels during the first months of life. A strong correlation was observed between MIF and DDT concentrations in all age groups (R = 0.91, P < 0.0001). MIF and DDT levels correlated with concentrations of vascular endothelial growth factor, a protein upregulated under low oxygen tension and implicated in vascular and lung development (R = 0.70, P < 0.0001 for MIF and R = 0.65, P < 0.0001 for DDT). In very preterm infants, lower levels of MIF and DDT on postnatal day 6 were associated with an increased risk of developing bronchopulmonary dysplasia and late-onset neonatal sepsis. Thus, MIF and DDT plasma levels show a highly specific developmental profile in early life, supporting an important role for these cytokines during the neonatal period.
Collapse
Affiliation(s)
- Thierry Roger
- Infectious Diseases Service, Lausanne University Hospital , Lausanne , Switzerland
| | - Luregn J Schlapbach
- Paediatric Intensive Care Unit, Lady Cilento Children's Hospital, Children's Health Queensland, South Brisbane, QLD, Australia; Paediatric Critical Care Research Group, Mater Research Institute, University of Queensland, Brisbane, QLD, Australia; Department of Pediatrics, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anina Schneider
- Infectious Diseases Service, Lausanne University Hospital, Lausanne, Switzerland; Service of Neonatology, Lausanne University Hospital, Lausanne, Switzerland
| | - Manuela Weier
- Infectious Diseases Service, Lausanne University Hospital, Lausanne, Switzerland; Service of Neonatology, Lausanne University Hospital, Lausanne, Switzerland
| | - Sven Wellmann
- Department of Neonatology, University of Basel Children's Hospital (UKBB) , Basel , Switzerland
| | - Patrick Marquis
- Service of Neonatology, Lausanne University Hospital , Lausanne , Switzerland
| | - David Vermijlen
- Department of Biopharmacy, Institute for Medical Immunology, Université Libre de Bruxelles (ULB) , Brussels , Belgium
| | - Fred C G J Sweep
- Department of Laboratory Medicine, Radboud University Medical Centre , Nijmegen , Netherlands
| | - Lin Leng
- Department of Medicine, Yale University , New Haven, CT , USA
| | - Richard Bucala
- Department of Medicine, Yale University , New Haven, CT , USA
| | - Thierry Calandra
- Infectious Diseases Service, Lausanne University Hospital , Lausanne , Switzerland
| | - Eric Giannoni
- Infectious Diseases Service, Lausanne University Hospital, Lausanne, Switzerland; Service of Neonatology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
12
|
Johler SM, Fuchs J, Seitz G, Armeanu-Ebinger S. Macrophage migration inhibitory factor (MIF) is induced by cytotoxic drugs and is involved in immune escape and migration in childhood rhabdomyosarcoma. Cancer Immunol Immunother 2016; 65:1465-1476. [PMID: 27629595 PMCID: PMC11029580 DOI: 10.1007/s00262-016-1896-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 08/26/2016] [Indexed: 12/15/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is known to be involved in oncogenic transformation, tumour progression, and immunosuppression and is overexpressed in many solid tumours, including paediatric rhabdomyosarcoma (RMS). We investigated the function of MIF in RMS during treatment with cytotoxic drugs. RMS cell lines were analysed by flow cytometry, immunofluorescence staining, and ELISA. We demonstrated the overexpression of MIF in RMS cells and the enhanced expression and secretion after treatment with cytotoxic agents. Migration assays of RMS cells revealed that inhibitors of MIF (ISO-1, Ant.III 4-IPP, Ant.V, sulforaphane (SF)) and blocking antibodies caused reduced migration, indicating a role for MIF in metastatic invasion. Additionally, we investigated the function of MIF in immune escape. The development of a population containing immunosuppressive myeloid-derived suppressor cells was promoted by incubation in conditioned medium of RMS cells comprising MIF and was reversed by MIF inhibitors but not by antibodies. Although most inhibitors may restore immune activity, Ant.III and 10 µM SF disturbed T cell proliferation in a CFSE assay, whereas T cell proliferation was not reduced by 3 µM SF, ISO-1 or antibodies. However, the inhibition of MIF by blocking antibodies did not increase the killing activity of allogenic PBMCs co-cultured with RMS cells. Our results reveal that MIF may be involved in an immune escape mechanism and demonstrate the involvement of MIF in immunogenic cell death during treatment with cytotoxic drugs. Targeting MIF may contribute to the restoration of immune sensitivity and the control of migration and metastatic invasion.
Collapse
Affiliation(s)
- Sarah Maria Johler
- Department of Pediatric Surgery and Urology, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Jörg Fuchs
- Department of Pediatric Surgery and Urology, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Guido Seitz
- Department of Pediatric Surgery and Urology, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Sorin Armeanu-Ebinger
- Department of Pediatric Surgery and Urology, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
| |
Collapse
|
13
|
Wang CD, Li TM, Ren ZJ, Ji YL, Zhi LS. Contribution of Macrophage Migration Inhibitory Factor -173G/C Gene Polymorphism to the Risk of Cancer in Chinese Population. Asian Pac J Cancer Prev 2016; 16:4597-601. [PMID: 26107210 DOI: 10.7314/apjcp.2015.16.11.4597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) -173G/C (rs755622) gene polymorphism has been associated with cancer risk. Previous studies have revealed that MIF -173G/C gene polymorphism may increase cancer in the Chinese population, while results of individual published studies remain inconsistent and inconclusive.We performed this meta-analysis to derive a more precise estimation of the relationship. MATERIALS AND METHODS We conducted a search on PubMed, Embase, MEDLINE, Cochrane Library ,Chinese National Knowledge Infrastructure (CNKI), Wanfang, Weipu on Dec 31, 2014.Odds ratio (OR) and 95% confidence interval (95% CI) were used to assess the association. A total of eight studies including 2,186 cases and 2,285 controls were involved in this meta-analysis. RESULTS The pooled results indicated the significant association between MIF -173G/C polymorphism and the risk of cancer for Chinese population (CC + CG vs GG: OR=1.14, 95%CI=1.02-127, pheterogeneity<0.01; P =0.023; CC vs CG+GG: OR=1.12, 95%CI=1.02- 1.23, pheterogeneity< 001; P =0.017;CC vs GG: OR=1.18, 95%CI=1.04-1.33, pheterogeneity<001; P =0.008; CG vs GG:OR=1.03, 95%CI=0.91-1.15, pheterogeneity<001; P =0.656; C vs G:OR=1.24, 95%CI=1.14-1.25, pheterogeneity<001; P <001). Subgroup analysis showed that in patients with "solid tumors", heterogeneity was very large (OR=0.94,95%CI=0.83-1.06,pheterogeneity=0.044; p=0.297). Within "non-solid tumors", the association became even stronger (OR=6.62, 95 % CI=4.32-10.14, pheterogeneity<0.001; p <0.001). CONCLUSIONS This study suggested that MIF ?173G/C gene polymorphism may increase increase cancer in the Chinese population.Furthermore, more larger sample and representative population-based casees and well-matched controls are needed to validate our results.
Collapse
Affiliation(s)
- Cheng-Di Wang
- Department of Respiratory Medicine, West China Hospital ,Sichuan University, Chengdu, Sichuan, China E-mail :
| | | | | | | | | |
Collapse
|
14
|
O'Reilly C, Doroudian M, Mawhinney L, Donnelly SC. Targeting MIF in Cancer: Therapeutic Strategies, Current Developments, and Future Opportunities. Med Res Rev 2016; 36:440-60. [PMID: 26777977 DOI: 10.1002/med.21385] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/28/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022]
Abstract
Strong evidence has been presented linking chronic inflammation to the onset and pathogenesis of cancer. The multifunctional pro-inflammatory protein macrophage migration inhibitory factor (MIF) occupies a central role in the inflammatory pathway and has been implicated in the tumorigenesis, angiogenesis, and metastasis of many cancer phenotypes. This review highlights the current state of the art, which presents MIF, and the second member of the MIF structural superfamily, D-DT (MIF2), as significant mediators in the inflammatory-cancer axis. Although the mechanism by which MIF asserts its biological activity has yet to be fully understood, it has become clear in recent years that for certain phenotypes of cancer, MIF represents a valid therapeutic target. Current research efforts have focused on small molecule approaches that target MIF's unique tautomerase active site and neutralization of MIF with anti-MIF antibodies. These approaches have yielded promising results in a number of preclinical murine cancer models and have helped to increase our understanding of MIF biological activity. More recently, MIF's involvement in a number of key protein-protein interactions, such as with CD74 and HSP90, has been highlighted and provides a novel platform for the development of anti-MIF chemotherapeutic strategies in the future.
Collapse
Affiliation(s)
- Ciaran O'Reilly
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Mohammad Doroudian
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Leona Mawhinney
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Seamas C Donnelly
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.,Department of Clinical Medicine, Trinity Centre for Health Sciences, Tallaght Hospital, Tallaght, Dublin 24, Ireland
| |
Collapse
|
15
|
Macrophage Migration Inhibitory Factor Secretion Is Induced by Ionizing Radiation and Oxidative Stress in Cancer Cells. PLoS One 2016; 11:e0146482. [PMID: 26741693 PMCID: PMC4704778 DOI: 10.1371/journal.pone.0146482] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 12/17/2015] [Indexed: 12/22/2022] Open
Abstract
The macrophage migration inhibitory factor (MIF) has been increasingly implicated in cancer development and progression by promoting inflammation, angiogenesis, tumor cell survival and immune suppression. MIF is overexpressed in a variety of solid tumor types in part due to its responsiveness to hypoxia inducible factor (HIF) driven transcriptional activation. MIF secretion, however, is a poorly understood process owing to the fact that MIF is a leaderless polypeptide that follows a non-classical secretory pathway. Better understanding of MIF processing and release could have therapeutic implications. Here, we have discovered that ionizing radiation (IR) and other DNA damaging stresses can induce robust MIF secretion in several cancer cell lines. MIF secretion by IR appears independent of ABCA1, a cholesterol efflux pump that has been implicated previously in MIF secretion. However, MIF secretion is robustly induced by oxidative stress. Importantly, MIF secretion can be observed both in cell culture models as well as in tumors in mice in vivo. Rapid depletion of MIF from tumor cells observed immunohistochemically is coincident with elevated circulating MIF detected in the blood sera of irradiated mice. Given the robust tumor promoting activities of MIF, our results suggest that an innate host response to genotoxic stress may mitigate the beneficial effects of cancer therapy, and that MIF inhibition may improve therapeutic responses.
Collapse
|
16
|
Lourenco S, Teixeira VH, Kalber T, Jose RJ, Floto RA, Janes SM. Macrophage migration inhibitory factor-CXCR4 is the dominant chemotactic axis in human mesenchymal stem cell recruitment to tumors. THE JOURNAL OF IMMUNOLOGY 2015; 194:3463-74. [PMID: 25712213 DOI: 10.4049/jimmunol.1402097] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mesenchymal stromal cells (MSCs) are inherently tumor homing and can be isolated, expanded, and transduced, making them viable candidates for cell therapy. This tumor tropism has been used to deliver anticancer therapies to various tumor models. In this study, we sought to discover which molecules are the key effectors of human MSC tumor homing in vitro and using an in vivo murine model. In this study, we discover a novel role for macrophage migration inhibitory factor (MIF) as the key director of MSC migration and infiltration toward tumor cells. We have shown this major role for MIF using in vitro migration and invasion assays, in presence of different receptor inhibitors and achieving a drastic decrease in both processes using MIF inhibitor. Additionally, we demonstrate physical interaction between MIF and three receptors: CXCR2, CXCR4, and CD74. CXCR4 is the dominant receptor used by MIF in the homing tumor context, although some signaling is observed through CXCR2. We demonstrate downstream activation of the MAPK pathway necessary for tumor homing. Importantly, we show that knockdown of either CXCR4 or MIF abrogates MSC homing to tumors in an in vivo pulmonary metastasis model, confirming the in vitro two-dimensional and three-dimensional assays. This improved understanding of MSC tumor tropism will further enable development of novel cellular therapies for cancers.
Collapse
Affiliation(s)
- Sofia Lourenco
- Lungs for Living Research Centre, Division of Medicine, University College London, London WC1E 6JF, United Kingdom;
| | - Vitor H Teixeira
- Lungs for Living Research Centre, Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| | - Tammy Kalber
- Lungs for Living Research Centre, Division of Medicine, University College London, London WC1E 6JF, United Kingdom; University College London Centre of Advanced Biomedical Imaging, University College London, London WC1E 6DD, United Kingdom
| | - Ricardo J Jose
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London WC1E 6JF, United Kingdom; and
| | - R Andres Floto
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
| | - Sam M Janes
- Lungs for Living Research Centre, Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| |
Collapse
|
17
|
DE Souza MB, Curioni OA, Kanda JL, DE Carvalho MB. Serum and salivary macrophage migration inhibitory factor in patients with oral squamous cell carcinoma. Oncol Lett 2014; 8:2267-2275. [PMID: 25289107 PMCID: PMC4186499 DOI: 10.3892/ol.2014.2513] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/01/2014] [Indexed: 12/14/2022] Open
Abstract
The overexpression of macrophage migration inhibitory factor (MIF) has been identified in a variety of tumors and the investigation of its molecular mechanisms in tumor progression is a key topic of research. The present study aimed to investigate MIF as a potential marker for disease control or recurrence, and to assess the association between serum and salivary MIF and the clinicopathological characteristics of patients with oral squamous cell carcinoma (OSCC). Serum and salivary samples were collected prior to and following the surgical treatment of 50 patients with OSCC. MIF concentrations were assessed by enzyme-linked immunosorbent assay and the adopted level of statistical significance was P<0.05. The results revealed that serum MIF concentrations were significantly reduced following tumor resection in OSCC patients. Furthermore, higher preoperative salivary MIF concentrations were observed in patients with larger tumors and in those who succumbed to the disease. In conclusion, high salivary and serological MIF concentrations were identified in patients with OSCC. Nevertheless, only serological MIF concentrations may be considered as a potential marker for the early detection of OSCC recurrence once the salivary levels, prior and following treatment, do not show any significant differences.
Collapse
Affiliation(s)
- Mariana Barbosa DE Souza
- Department of Radiology and Oncology, Medical School, University of São Paulo, São Paulo 01246903, Brazil ; Laboratory of Molecular Biology, Heliópolis Hospital, São Paulo 04231030, Brazil
| | - Otávio Alberto Curioni
- Laboratory of Molecular Biology, Heliópolis Hospital, São Paulo 04231030, Brazil ; Department of Head and Neck Surgery and Otorhinolaryngology, Heliópolis Hospital, São Paulo 04231030, Brazil
| | - Jossi Ledo Kanda
- Department of Head and Neck Surgery, Padre Anchieta Teaching Hospital, ABC Medical School, São Bernardo do Campo 09715090, Brazil
| | - Marcos Brasilino DE Carvalho
- Laboratory of Molecular Biology, Heliópolis Hospital, São Paulo 04231030, Brazil ; Department of Head and Neck Surgery and Otorhinolaryngology, Heliópolis Hospital, São Paulo 04231030, Brazil
| |
Collapse
|
18
|
Twu O, Dessí D, Vu A, Mercer F, Stevens GC, de Miguel N, Rappelli P, Cocco AR, Clubb RT, Fiori PL, Johnson PJ. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses. Proc Natl Acad Sci U S A 2014; 111:8179-84. [PMID: 24843155 PMCID: PMC4050605 DOI: 10.1073/pnas.1321884111] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human-infective parasite Trichomonas vaginalis causes the most prevalent nonviral sexually transmitted infection worldwide. Infections in men may result in colonization of the prostate and are correlated with increased risk of aggressive prostate cancer. We have found that T. vaginalis secretes a protein, T. vaginalis macrophage migration inhibitory factor (TvMIF), that is 47% similar to human macrophage migration inhibitory factor (HuMIF), a proinflammatory cytokine. Because HuMIF is reported to be elevated in prostate cancer and inflammation plays an important role in the initiation and progression of cancers, we have explored a role for TvMIF in prostate cancer. Here, we show that TvMIF has tautomerase activity, inhibits macrophage migration, and is proinflammatory. We also demonstrate that TvMIF binds the human CD74 MIF receptor with high affinity, comparable to that of HuMIF, which triggers activation of ERK, Akt, and Bcl-2-associated death promoter phosphorylation at a physiologically relevant concentration (1 ng/mL, 80 pM). TvMIF increases the in vitro growth and invasion through Matrigel of benign and prostate cancer cells. Sera from patients infected with T. vaginalis are reactive to TvMIF, especially in males. The presence of anti-TvMIF antibodies indicates that TvMIF is released by the parasite and elicits host immune responses during infection. Together, these data indicate that chronic T. vaginalis infections may result in TvMIF-driven inflammation and cell proliferation, thus triggering pathways that contribute to the promotion and progression of prostate cancer.
Collapse
Affiliation(s)
| | - Daniele Dessí
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100 Sassari, Italy; and
| | - Anh Vu
- Department of Microbiology, Immunology, and Molecular Genetics, and
| | - Frances Mercer
- Department of Microbiology, Immunology, and Molecular Genetics, and
| | - Grant C Stevens
- Department of Microbiology, Immunology, and Molecular Genetics, and
| | - Natalia de Miguel
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, 1650 Chascomús, Argentina
| | - Paola Rappelli
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100 Sassari, Italy; and
| | - Anna Rita Cocco
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100 Sassari, Italy; and
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Pier Luigi Fiori
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100 Sassari, Italy; and
| | - Patricia J Johnson
- Molecular Biology Institute,Department of Microbiology, Immunology, and Molecular Genetics, and
| |
Collapse
|
19
|
Stephan C, Ralla B, Jung K. Prostate-specific antigen and other serum and urine markers in prostate cancer. Biochim Biophys Acta Rev Cancer 2014; 1846:99-112. [PMID: 24727384 DOI: 10.1016/j.bbcan.2014.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 03/24/2014] [Accepted: 04/01/2014] [Indexed: 11/16/2022]
Abstract
Prostate-specific antigen (PSA) is one of the most widely used tumor markers, and strongly correlates with the risk of harboring from prostate cancer (PCa). This risk is visible already several years in advance but PSA has severe limitations for PCa detection with its low specificity and low negative predictive value. There is an urgent need for new biomarkers especially to detect clinically significant and aggressive PCa. From all PSA-based markers, the FDA-approved Prostate Health Index (phi) shows improved specificity over percent free and total PSA. Other serum kallikreins or sarcosine in serum or urine show more diverging data. In urine, the FDA-approved prostate cancer gene 3 (PCA3) has also proven its utility in the detection and management of early PCa. However, some aspects on its correlation with aggressiveness and the low sensitivity at very high values have to be re-examined. The detection of a fusion of the androgen regulated TMPRSS2 gene with the ERG oncogene (from the ETS family), which acts as transcription factor gene, in tissue of ~50% of all PCa patients was one milestone in PCa research. When combining the urinary assays for TMPRSS2:ERG and PCA3, an improved accuracy for PCa detection is visible. PCA3 and phi as the best available PCa biomarkers show an equal performance in direct comparisons.
Collapse
Affiliation(s)
- Carsten Stephan
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute for Urologic Research, Berlin, Germany.
| | - Bernhard Ralla
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus Jung
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute for Urologic Research, Berlin, Germany
| |
Collapse
|
20
|
Otterstrom C, Soltermann A, Opitz I, Felley-Bosco E, Weder W, Stahel RA, Triponez F, Robert JH, Serre-Beinier V. CD74: a new prognostic factor for patients with malignant pleural mesothelioma. Br J Cancer 2014; 110:2040-6. [PMID: 24594996 PMCID: PMC3992494 DOI: 10.1038/bjc.2014.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/28/2013] [Accepted: 02/10/2014] [Indexed: 12/29/2022] Open
Abstract
Background: The pro-inflammatory cytokine migration inhibitory factor (MIF) and its receptor CD74 have been proposed as possible therapeutic targets in several cancers. We studied the expression of MIF and CD74 together with calretinin in specimens of malignant pleural mesothelioma (MPM), correlating their expression levels with clinico-pathologic parameters, in particular overall survival (OS). Methods: Migration inhibitory factor, CD74, and calretinin immunoreactivity were investigated in a tissue microarray of 352 patients diagnosed with MPM. Protein expression intensities were semiquantitatively scored in the tumour cells and in the peritumoral stroma. Markers were matched with OS, age, gender, and histological subtype. Results: Clinical data from 135 patients were available. Tumour cell expressions of MIF and CD74 were observed in 95% and 98% of MPM specimens, respectively, with a homogenous distribution between the different histotypes. CD74 (P<0.001) but not MIF overexpression (P=0.231) emerged as an independent prognostic factor for prolonged OS. High expression of tumour cell calretinin correlated with the epithelioid histotype and was also predictive of longer OS (P<0.001). When compared with previously characterised putative epithelial-to-mesenchymal transition markers, CD74 correlated positively with tumoral PTEN and podoplanin expressions, but was inversely related with periostin expression. Conclusions: High expression of CD74 is an independent prognostic factor for prolonged OS in mesothelioma patients.
Collapse
Affiliation(s)
- C Otterstrom
- Division of Thoracic Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - A Soltermann
- Institute of Surgical Pathology, University Hospital Zürich, Zürich, Switzerland
| | - I Opitz
- Division of Thoracic Surgery, University Hospital Zürich, Zürich, Switzerland
| | - E Felley-Bosco
- Laboratory of Molecular Oncology, Clinic for Oncology, University Hospital Zürich, Zürich, Switzerland
| | - W Weder
- Division of Thoracic Surgery, University Hospital Zürich, Zürich, Switzerland
| | - R A Stahel
- Laboratory of Molecular Oncology, Clinic for Oncology, University Hospital Zürich, Zürich, Switzerland
| | - F Triponez
- Division of Thoracic Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - J H Robert
- Division of Thoracic Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - V Serre-Beinier
- Division of Thoracic Surgery, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Sobierajski J, Hendgen-Cotta UB, Luedike P, Stock P, Rammos C, Meyer C, Kraemer S, Stoppe C, Bernhagen J, Kelm M, Rassaf T. Assessment of macrophage migration inhibitory factor in humans: protocol for accurate and reproducible levels. Free Radic Biol Med 2013; 63:236-42. [PMID: 23707455 DOI: 10.1016/j.freeradbiomed.2013.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/10/2013] [Accepted: 05/10/2013] [Indexed: 12/21/2022]
Abstract
The analytical validation of a possible biomarker is the first step in the long translational process from basic science to clinical routine. Although the chemokine-like cytokine macrophage migration inhibitory factor (MIF) has been investigated intensively in experimental approaches to various disease conditions, its transition into clinical research is just at the very beginning. Because of its presence in preformed storage pools, MIF is the first cytokine to be released under various stimulation conditions. In the first proof-of-concept studies, MIF levels correlated with the severity and outcome of various disease states. In a recent small study with acute coronary syndrome patients, elevation of MIF was described as a new factor for risk assessment. When these studies are compared, not only MIF levels in diseased patients differ, but also MIF levels in healthy control groups are inconsistent. Blood MIF concentrations in control groups vary between 0.56 and 95.6 ng/ml, corresponding to a 170-fold difference. MIF concentrations in blood were analyzed by ELISA. Other than the influence of this approach due to method-based variations, the impact of preanalytical processing on MIF concentrations is unclear and has not been systematically studied yet. Before large randomized studies are performed to determine the impact of circulating MIF on prognosis and outcome and before MIF is characterized as a diagnostic marker, an accurate protocol for the determination of reproducible MIF levels needs to be validated. In this study, the measurement of MIF in the blood of healthy volunteers was investigated focusing on the potential influence of critical preanalytical factors such as anticoagulants, storage conditions, freeze/thaw stability, hemolysis, and dilution. We show how to avoid pitfalls in the measurement of MIF and that MIF concentrations are highly susceptible to preanalytical factors. MIF serum concentrations are higher than plasma concentrations and show broader ranges. MIF concentrations are higher in samples processed with latency than in those processed directly and strongly correlate with hemoglobin in plasma. Neither storage temperature nor storage length or dilution or repeated freezing and thawing influenced MIF concentrations in plasma. Preanalytical validation of MIF is essential. In summary, we suggest using plasma and not serum samples when determining circulating MIF and avoiding hemolysis by processing samples immediately after blood drawing.
Collapse
Affiliation(s)
- Julia Sobierajski
- Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Guo Y, Hou J, Luo Y, Wang D. Functional disruption of macrophage migration inhibitory factor (MIF) suppresses proliferation of human H460 lung cancer cells by caspase-dependent apoptosis. Cancer Cell Int 2013; 13:28. [PMID: 23522304 PMCID: PMC3695853 DOI: 10.1186/1475-2867-13-28] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/28/2013] [Indexed: 12/16/2022] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) is important in regulating cell proliferation and apoptosis in both normal and cancerous cells, and may be important in cancer progression and metastasis. In human non-small cell lung cancer (NSCLC), the underlying mechanisms responsible for MIF-dependent regulation of cellular proliferation, and cell death remain poorly appreciated. Methods The human H460 lung cancer cell-line was treated with an optimally determined dose of 50 pmol/ml MIF siRNA, following which cell proliferation, cell cycle and apoptosis were analyzed. Additionally, known pathways of apoptosis including expression of Annexin-V, enhanced production of caspases-3 and −4 and expression of the Akt signaling protein were assessed in an attempt to provide insights into the signaling pathways involved in apoptosis following disruption of MIF expression. Results Specific siRNA sequences markedly decreased MIF expression in H460 cells by 2 to 5-fold as compared with the negative control. Moreover, MIF miRNA dampened not only cellular proliferation, but increased the frequency of apoptotic cells as assessed by cell-surface Annexin-V expression. Entry of cells into apoptosis was partly dependent on enhanced production of caspases −3 and −4 while not affecting the expression of either caspase-8 or the Akt signaling pathway. Conclusions In a model of NSCLC, knockdown of MIF mRNA expression dampened H460 proliferation by mechanisms partly dependent on entry of cells into apoptosis and enhanced production of caspase-3 and −4. MIF expression may thus be important in NSCLC progression. Targeting MIF may have clinical utility in the management of human lung cancer.
Collapse
Affiliation(s)
- Yubiao Guo
- Department of Pulmonary Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China.
| | | | | | | |
Collapse
|
23
|
Du W, Wright BM, Li X, Finke J, Rini BI, Zhou M, He H, Lal P, Welford SM. Tumor-derived macrophage migration inhibitory factor promotes an autocrine loop that enhances renal cell carcinoma. Oncogene 2012; 32:1469-74. [PMID: 22543583 DOI: 10.1038/onc.2012.143] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The macrophage migration inhibitory factor (MIF) is a hypoxia regulated gene that has a variety of tumorigenic functions. In clear cell renal carcinoma (CCRC), hypoxic signaling is constitutively active because of the frequent loss of function of the von Hippel-Lindau tumor suppressor protein. We therefore sought to assess the expression of MIF in CCRC and its biological functions. We stained tumor tissue microarrays comprising sections of 128 CCRC tumors and found MIF to be moderately or highly expressed in >98%. MIF expression was further found to be dramatically elevated in blood plasma of individuals with CCRC compared with healthy controls, suggesting that measurement of MIF levels in the blood may have utility as a diagnostic marker in CCRC. At a functional level, MIF has been reported to engage the CD74 and CD44 receptors and induce signal transduction. In CCRC cell lines, depletion of MIF, CD74 or CD44 by small hairpin RNA led to a significant reduction in growth rate, and clonogenic survival, coinciding with the degree of knockdown. Interruption of the MIF pathway also decreased tumorigenic potential. Biochemically, we found that in CCRC cells MIF signaling leads to activation of the mitogen-activated protein kinase pathway and to Src phosphorylation, which is critical for regulation of p27. Together, our studies establish MIF as a protumorigenic signaling molecule that functions in an autocrine fashion to promote renal cell carcinoma and may be useful as a minimally invasive marker of disease status.
Collapse
Affiliation(s)
- W Du
- Department of Radiation Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wu MY, Fu J, Xu J, O'Malley BW, Wu RC. Steroid receptor coactivator 3 regulates autophagy in breast cancer cells through macrophage migration inhibitory factor. Cell Res 2012; 22:1003-21. [PMID: 22430150 DOI: 10.1038/cr.2012.44] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
SRC-3/AIB1 (steroid receptor coactivator 3/amplified in breast cancer 1) is an authentic oncogene that contributes to the development of drug resistance and poor disease-free survival in cancer patients. Autophagy is also an important cell death mechanism that has tumor suppressor function. In this study, we identified macrophage migration inhibitory factor (MIF) as a novel target gene of SRC-3 and demonstrated its importance in cell survival. Specifically, we showed that MIF is a strong suppressor of autophagic cell death. We further showed that suppression of MIF, in turn, induced autophagic cell death, enhanced chemosensitivity and inhibited tumorigenesis in a xenograft mouse tumorigenesis model. Our study demonstrated that regulation of MIF expression and suppression of autophagic cell death is a potent mechanism by which SRC-3 contributes to increased chemoresistance and tumorigenicity.
Collapse
Affiliation(s)
- Mei-Yi Wu
- Department of Biochemistry and Molecular Biology, George Washington University, Washington, DC 20037, USA.
| | | | | | | | | |
Collapse
|
25
|
Xiao DZ, Dai B, Chen J, Luo Q, Liu XY, Lin QX, Li XH, Huang W, Yu XY. Loss of macrophage migration inhibitory factor impairs the growth properties of human HeLa cervical cancer cells. Cell Prolif 2011; 44:582-90. [PMID: 21991924 DOI: 10.1111/j.1365-2184.2011.00787.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES This study aims to determine the role of macrophage migration inhibitory factor (MIF), a proinflammatory cytokine associated with cell proliferation and tumour growth in vivo. MATERIALS AND METHODS Our team used RNA interference technology to knock down MIF expression in human HeLa cervical cancer cells and to establish a stable cell line lacking MIF function. RESULTS Our results showed that long-term loss of MIF had little effect on cell morphology, but significantly inhibited their population growth and proliferation. The HeLa MIF-knockdown cells retained normal apoptotic signalling pathways in response to TNF-alpha treatment; however, they exhibited unique DNA profiles following doxorubicin treatment, suggesting that MIF may regulate a cell cycle checkpoint upon DNA damage. Our data also showed that knockdown of MIF expression in HeLa cells led to increased cell adhesion and therefore impaired their migratory capacity. More importantly, cells lacking MIF failed to either proliferate in soft agar or form tumours in vivo, when administered to nude mice. CONCLUSION MIF plays a pivotal role in proliferation and tumourigenesis of human HeLa cervical carcinoma cells, and may represent a promising therapeutic target for cancer intervention.
Collapse
Affiliation(s)
- D Z Xiao
- Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vera PL, Meyer-Siegler KL. Association between macrophage migration inhibitory factor promoter region polymorphism (-173 G/C) and cancer: a meta-analysis. BMC Res Notes 2011; 4:395. [PMID: 22168770 PMCID: PMC3238298 DOI: 10.1186/1756-0500-4-395] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/11/2011] [Indexed: 12/21/2022] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine upstream of many inflammatory cytokines. MIF is implicated in several acute and chronic inflammatory conditions. MIF's promoter region has functional single nucleotide polymorphisms that controls MIF expression and protein levels. Since increased plasma MIF levels are associated with cancer, studies have examined the association between Mif promoter polymorphisms and cancer. This study is a meta-analysis of the available studies on such an association. Results A total of 5 studies were included in this meta-analysis to include 1116 cases (cancer patients) and 1728 controls (no cancer). Carrying any C allele in the Mif -173 G/C promoter polymorphism resulted in a significantly greater risk for developing cancer [OR = 1.89 (1.15-3.11), p = 0.012)] when compared to the (G/G) genotype. Subgroup analysis revealed that this association was significant only for "solid" tumors (including gastric and prostate cancers) [OR = 2.67 (1.26-5.65), p = 0.010] but not for "non-solid" tumors (leukemia) [OR = 1.21 (0.95-1.55), p = 0.122]. Furthermore, when only prostate tumor studies were included in the analysis, the association became even stronger [OR = 3.72 (2.55-5.41), p < 0.0001]. Conclusions Meta-analysis suggests there is an association between any C allele in the Mif -173 G/C promoter polymorphism and an increased risk of cancer, particularly for solid tumors. The association appeared stronger for prostate cancer, specifically. Future studies that include different types of cancers are needed to support and extend these observations.
Collapse
Affiliation(s)
- Pedro L Vera
- The Bay Pines VA Healthcare System, Research & Development, Bay Pines, Florida, USA.
| | | |
Collapse
|
27
|
Wang XB, Tian XY, Li Y, Li B, Li Z. Elevated expression of macrophage migration inhibitory factor correlates with tumor recurrence and poor prognosis of patients with gliomas. J Neurooncol 2011; 106:43-51. [PMID: 21725855 DOI: 10.1007/s11060-011-0640-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
Abstract
Macrophage migration inhibitory factor (MIF) plays a critical role in tumorigenesis. We aim to examine the association of MIF with tumor recurrence and survival of gliomas, and to determine whether MIF is a valuable prognostic predictor for glioma patients. The expression of MIF and interleukin 8 (IL-8) was evaluated in 36 high-grade gliomas (20 glioblastoma multiforme, 13 anaplastic astrocytoma, and 3 anaplastic oligoastrocytoma) and 32 low-grade gliomas (18 fibrillary astrocytoma, 5 pilocytic astrocytoma, 5 oligodendroglioma, 3 ependymoma and 1 pleomorphic xanthoastrocytoma) by immunostaining. Intratumoral microvessel density (IMD) of tumors in relation to immunostainings and clinicopathological factors were analyzed statistically as well as the follow-up data of patients. High expression of both MIF (58.8%) and IL-8 (52.9%) was significantly associated with high-grade gliomas and increased microvessels in tumors, but only high expression of MIF was closely related to tumor recurrence (P = 0.001). High expression of IL-8 exhibited a close correlation with high expression of MIF in tumors (P = 0.001). Histological grading, high expression of MIF and IL-8 correlated with patients' overall survival in univariate analysis. However, only histological grading and MIF expression exhibited a relationship with survival of patients as independent prognostic factors of glioma by multivariate analysis; the hazard ratios were 28.012 (P = 0.001) and 11.782 (P = 0.001), respectively. Elevated production of MIF in glioma tumor cells may contribute to tumor recurrence and a worse prognosis. MIF may serve as an independent predictive factor for prognosis of glioma patients.
Collapse
Affiliation(s)
- Xiao-Bing Wang
- Department of Pathology, Guangdong General Hospital, 106, Zhongshan Road II, Guangzhou, China
| | | | | | | | | |
Collapse
|
28
|
Hawkins O, Verma B, Lightfoot S, Jain R, Rawat A, McNair S, Caseltine S, Mojsilovic A, Gupta P, Neethling F, Almanza O, Dooley W, Hildebrand W, Weidanz J. An HLA-presented fragment of macrophage migration inhibitory factor is a therapeutic target for invasive breast cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:6607-16. [PMID: 21515791 DOI: 10.4049/jimmunol.1003995] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This report describes a novel HLA/peptide complex with potential prognostic and therapeutic roles for invasive breast cancer. Macrophage migration inhibitory factor (MIF) mediates inflammation and immunity, and MIF overexpression is observed in breast cancer. We hypothesized that the HLA class I of cancerous breast epithelial cells would present MIF-derived peptides. Consistent with this hypothesis, the peptide FLSELTQQL (MIF(19-27)) was eluted from the HLA-A*0201 (HLA-A2) of breast cancer cell lines. We posited that if this MIF(19-27)/HLA-A2 complex was exclusively found in invasive breast cancer, it could be a useful prognostic indicator. To assess the presentation of MIF peptides by the HLA of various cells and tissues, mice were immunized with the MIF(19-27)/HLA-A2 complex. The resulting mAb (RL21A) stained invasive ductal carcinoma (IDC) but not ductal carcinoma in situ, fibroadenoma, or normal breast tissues. RL21A did not stain WBCs (total WBCs) or normal tissues from deceased HLA-A2 donors, substantiating the tumor-specific nature of this MIF/HLA complex. As this MIF/HLA complex appeared specific to the surface of IDC, RL21A was tested as an immunotherapeutic for breast cancer in vitro and in vivo. In vitro, RL21A killed the MDA-MB-231 cell line via complement and induction of apoptosis. In an in vivo orthotopic mouse model, administration of RL21A reduced MDA-MB-231 and BT-20 tumor burden by 5-fold and by >2-fold, respectively. In summary, HLA-presented MIF peptides show promise as prognostic cell surface indicators for IDC and as targets for immunotherapeutic intervention.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibody Affinity/immunology
- Antibody Specificity/immunology
- Apoptosis/drug effects
- Apoptosis/immunology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Ductal, Breast/immunology
- Carcinoma, Ductal, Breast/pathology
- Cell Line
- Cell Line, Tumor
- Cell Survival/drug effects
- Cell Survival/immunology
- Dose-Response Relationship, Drug
- Female
- HLA-A Antigens/immunology
- HLA-A Antigens/metabolism
- HLA-A2 Antigen
- Humans
- Kinetics
- Macrophage Migration-Inhibitory Factors/chemistry
- Macrophage Migration-Inhibitory Factors/immunology
- Macrophage Migration-Inhibitory Factors/metabolism
- Mice
- Mice, Nude
- Peptides/immunology
- Peptides/metabolism
- Prognosis
- Protein Binding/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Oriana Hawkins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Xie L, Qiao X, Wu Y, Tang J. β-Arrestin1 mediates the endocytosis and functions of macrophage migration inhibitory factor. PLoS One 2011; 6:e16428. [PMID: 21283538 PMCID: PMC3026819 DOI: 10.1371/journal.pone.0016428] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 12/16/2010] [Indexed: 12/21/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine, regulating inflammatory and immune responses. MIF binds to cell surface receptor CD74, resulting in both rapid and sustained ERK activation. It was reported that MIF-induced rapid ERK activation requires its co-receptor CD44. But the exact mechanism underlying sustained ERK activation is not well understood. In the current study, we described a detailed mechanism of MIF mediated sustained ERK activation. We found that β-arrestin1, a scaffold protein involved in the activation of the MAPK cascade, interacts with CD74 upon MIF stimulation, resulting in CD74-mediated MIF endocytosis in a chlorpromazine (CPZ)-sensitive manner. β-arrestin1 is also involved in endocytotic MIF signaling, leading to sustained ERK activation. Therefore β-arrestin1 plays a central role in coupling MIF endocytosis to sustained ERK activation.
Collapse
Affiliation(s)
- Lishi Xie
- Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
- Graduate University, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaohang Qiao
- Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
- Graduate University, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yanfang Wu
- Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jie Tang
- Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
30
|
Liao B, Zhong BL, Li Z, Tian XY, Li Y, Li B. Macrophage migration inhibitory factor contributes angiogenesis by up-regulating IL-8 and correlates with poor prognosis of patients with primary nasopharyngeal carcinoma. J Surg Oncol 2011; 102:844-51. [PMID: 20872800 DOI: 10.1002/jso.21728] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND OBJECTIVES We aim at the association of macrophage migration inhibitory factor (MIF) with neovascularization and survival of nasopharyngeal carcinoma (NPC), and determine whether MIF is a valuable prognostic predictor for NPC patients. METHODS One hundred and forty one cases of NPC and 25 normal tissues of nasopharynx were collected. The expression of MIF and interleukin 8 (IL-8) was evaluated in tissues microarray by immunostaining. Intratumoral microvessel density (IMD) in relation to immunostainings and clinicopathological factors were analyzed statistically as well as the follow-up data of patients. RESULTS High-expression of both MIF (69.5%) and IL-8 (56.0%) were significantly associated with increased microvessels and lymph node metastasis. High-expression of MIF, IL-8 and higher level of IMD were correlated with either patients' overall survival or disease-specific survival in univariate analysis, but only angiogenesis and lymph node status exhibited in relation to survival of patients as independent prognostic factor of NPC by multivariate analysis. In addition, high-expression of MIF and higher level of IMD were closely associated with locoregional failure of NPC patients. CONCLUSIONS MIF may contribute to lymph node metastasis in NPC by inducing angiogenesis through the way of upregulation of IL-8 expression in an autocrine EBV-independent pathway.
Collapse
Affiliation(s)
- Bing Liao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
31
|
Tarnowski M, Grymula K, Liu R, Tarnowska J, Drukala J, Ratajczak J, Mitchell RA, Ratajczak MZ, Kucia M. Macrophage migration inhibitory factor is secreted by rhabdomyosarcoma cells, modulates tumor metastasis by binding to CXCR4 and CXCR7 receptors and inhibits recruitment of cancer-associated fibroblasts. Mol Cancer Res 2010; 85:472-83. [PMID: 20861157 DOI: 10.1111/j.1600-0609.2010.01531.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The overexpression of macrophage migration inhibitory factor (MIF) has been observed in many tumors and is implicated in oncogenic transformation and tumor progression. MIF activates CXCR2 and CD74 receptors and, as recently reported, may also bind to the stromal-derived factor-1 (SDF-1)-binding receptor CXCR4. Here, we report that human rhabdomyosarcoma (RMS) cell lines secrete MIF and that this chemokine (a) induces phosphorylation of mitogen-activated protein kinase (MAPK) p42/44 and AKT, (b) stimulates RMS cell adhesion, (c) enhances tumor vascularization, but surprisingly (d) decreases recruitment of cancer-associated fibroblasts (CAF). Because RMS cells used in our studies do not express CXCR2 and CD74 receptors, the biological effects of MIF on RMS cells depend on its interaction with CXCR4, and as we report here for the first time, MIF may also engage another SDF-1-binding receptor (CXCR7) as well. Interestingly, downregulation of MIF in RMS cells inoculated into immunodeficient mice led to formation of larger tumors that displayed higher stromal cell support. Based on these observations, we postulate that MIF is an important autocrine/paracrine factor that stimulates both CXCR4 and CXCR7 receptors to enhance the adhesiveness of RMS cells. We also envision that when locally secreted by a growing tumor, MIF prevents responsiveness of RMS to chemoattractants secreted outside the growing tumor (e.g., SDF-1) and thereby prevents release of cells into the circulation. On the other hand, despite its obvious proangiopoietic effects, MIF inhibits in CXCR2/CD74-dependent manner recruitment of CAFs to the growing tumor. Our data indicate that therapeutic inhibition of MIF in RMS may accelerate metastasis and tumor growth.
Collapse
Affiliation(s)
- Maciej Tarnowski
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tarnowski M, Grymula K, Liu R, Tarnowska J, Drukala J, Ratajczak J, Mitchell RA, Ratajczak MZ, Kucia M. Macrophage migration inhibitory factor is secreted by rhabdomyosarcoma cells, modulates tumor metastasis by binding to CXCR4 and CXCR7 receptors and inhibits recruitment of cancer-associated fibroblasts. Mol Cancer Res 2010; 8:1328-43. [PMID: 20861157 DOI: 10.1158/1541-7786.mcr-10-0288] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The overexpression of macrophage migration inhibitory factor (MIF) has been observed in many tumors and is implicated in oncogenic transformation and tumor progression. MIF activates CXCR2 and CD74 receptors and, as recently reported, may also bind to the stromal-derived factor-1 (SDF-1)-binding receptor CXCR4. Here, we report that human rhabdomyosarcoma (RMS) cell lines secrete MIF and that this chemokine (a) induces phosphorylation of mitogen-activated protein kinase (MAPK) p42/44 and AKT, (b) stimulates RMS cell adhesion, (c) enhances tumor vascularization, but surprisingly (d) decreases recruitment of cancer-associated fibroblasts (CAF). Because RMS cells used in our studies do not express CXCR2 and CD74 receptors, the biological effects of MIF on RMS cells depend on its interaction with CXCR4, and as we report here for the first time, MIF may also engage another SDF-1-binding receptor (CXCR7) as well. Interestingly, downregulation of MIF in RMS cells inoculated into immunodeficient mice led to formation of larger tumors that displayed higher stromal cell support. Based on these observations, we postulate that MIF is an important autocrine/paracrine factor that stimulates both CXCR4 and CXCR7 receptors to enhance the adhesiveness of RMS cells. We also envision that when locally secreted by a growing tumor, MIF prevents responsiveness of RMS to chemoattractants secreted outside the growing tumor (e.g., SDF-1) and thereby prevents release of cells into the circulation. On the other hand, despite its obvious proangiopoietic effects, MIF inhibits in CXCR2/CD74-dependent manner recruitment of CAFs to the growing tumor. Our data indicate that therapeutic inhibition of MIF in RMS may accelerate metastasis and tumor growth.
Collapse
Affiliation(s)
- Maciej Tarnowski
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Grieb G, Merk M, Bernhagen J, Bucala R. Macrophage migration inhibitory factor (MIF): a promising biomarker. ACTA ACUST UNITED AC 2010; 23:257-64. [PMID: 20520854 DOI: 10.1358/dnp.2010.23.4.1453629] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an immunoregulatory cytokine, the effect of which on arresting random immune cell movement was recognized several decades ago. Despite its historic name, MIF also has a direct chemokine-like function and promotes cell recruitment. Multiple clinical studies have indicated the utility of MIF as a biomarker for different diseases that have an inflammatory component; these include systemic infections and sepsis, autoimmune diseases, cancer, and metabolic disorders such as type 2 diabetes and obesity. The identification of functional promoter polymorphisms in the MIF gene (MIF) and their association with the susceptibility or severity of different diseases has not only served to validate MIF's role in disease development but also opened the possibility of using MIF genotype information to better predict risk and outcome. In this article, we review the clinical data of MIF and discuss its potential as a biomarker for different disease applications.
Collapse
Affiliation(s)
- Gerrit Grieb
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | |
Collapse
|
34
|
Xia HHX, Yang Y, Chu KM, Gu Q, Zhang YY, He H, Wong WM, Leung SY, Yuen ST, Yuen MF, Chan AOO, Wong BCY. Serum macrophage migration-inhibitory factor as a diagnostic and prognostic biomarker for gastric cancer. Cancer 2009; 115:5441-9. [PMID: 19685530 DOI: 10.1002/cncr.24609] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND This study aimed to determine the potential diagnostic value of migration-inhibitory factor (MIF) for gastric cancer in patients presenting with dyspepsia and its prognostic value for gastric cancer. METHODS A cohort of 97 patients with histologically confirmed gastric adenocarcinoma and 222 patients with dyspepsia were recruited. Enzyme-linked immunosorbent assay was used to measure serum MIF and carcinoembryonic antigen (CEA). RESULTS The serum MIF concentrations were 6554.0 +/- 204.1 pg/mL and 1453.7 +/- 79.9 pg/mL, respectively, in gastric cancer patients and dyspeptic patients (P < .001). Serum MIF levels increased with the advancing gastric pathologies (P < .001). With the cutoff value of 3230 pg/mL, serum MIF had sensitivity, specificity, and accuracy of 83.5%, 92.3%, and 89.7%, respectively, in diagnosing gastric cancer, whereas the rates were 60.8%, 83.3%, and 76.5%, respectively, for serum CEA. Gastric cancer patients with serum MIF levels above 6600 pg/mL had a lower 5-year survival rate than those with serum MIF level below that level (P = .012). Higher serum CEA levels were also associated with poor survival. The prediction for 5-year survival was even better (P = .0001), using a combination of serum MIF and CEA. CONCLUSIONS Serum MIF level, which correlates with gastric MIF expression, is a better molecular marker than CEA in diagnosing gastric cancer in patients presenting with dyspepsia. A combination of serum MIF and CEA predicts 5-year survival better than the individual test.
Collapse
|
35
|
Meyer-Siegler KL, Cox J, Leng L, Bucala R, Vera PL. Macrophage migration inhibitory factor anti-thrombin III complexes are decreased in bladder cancer patient serum: Complex formation as a mechanism of inactivation. Cancer Lett 2009; 290:49-57. [PMID: 19762145 DOI: 10.1016/j.canlet.2009.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 01/11/2023]
Abstract
Mounting evidence suggests that the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF) may serve as an important link between chronic inflammation and carcinogenesis as evidenced by the increase in serum MIF found in patients with various cancers. The present study identifies anti-thrombin III (ATIII) as an endogenous MIF binding protein, which reduces MIF biological activity. Serum MIF in bladder cancer patients (TCC stage II, n=50) was increased when compared to normal patients (n=50), while ATIII-MIF complexes were decreased in bladder cancer patient serum. These data suggest that increased circulating levels of bioactive MIF are present in bladder cancer patient serum.
Collapse
|
36
|
Lugrin J, Ding XC, Le Roy D, Chanson AL, Sweep FCGJ, Calandra T, Roger T. Histone deacetylase inhibitors repress macrophage migration inhibitory factor (MIF) expression by targeting MIF gene transcription through a local chromatin deacetylation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1749-58. [PMID: 19747950 DOI: 10.1016/j.bbamcr.2009.09.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/30/2009] [Accepted: 09/03/2009] [Indexed: 12/20/2022]
Abstract
The cytokine macrophage migration inhibitory factor plays a central role in inflammation, cell proliferation and tumorigenesis. Moreover, macrophage migration inhibitory factor levels correlate with tumor aggressiveness and metastatic potential. Histone deacetylase inhibitors are potent antitumor agents recently introduced in the clinic. Therefore, we hypothesized that macrophage migration inhibitory factor would represent a target of histone deacetylase inhibitors. Confirming our hypothesis, we report that histone deacetylase inhibitors of various chemical classes strongly inhibited macrophage migration inhibitory factor expression in a broad range of cell lines, in primary cells and in vivo. Nuclear run on, transient transfection with macrophage migration inhibitory factor promoter reporter constructs and transduction with macrophage migration inhibitory factor expressing adenovirus demonstrated that trichostatin A (a prototypical histone deacetylase inhibitor) inhibited endogenous, but not episomal, MIF gene transcription. Interestingly, trichostatin A induced a local and specific deacetylation of macrophage migration inhibitory factor promoter-associated H3 and H4 histones which did not affect chromatin accessibility but was associated with an impaired recruitment of RNA polymerase II and Sp1 and CREB transcription factors required for basal MIF gene transcription. Altogether, this study describes a new molecular mechanism by which histone deacetylase inhibitors inhibit MIF gene expression, and suggests that macrophage migration inhibitory factor inhibition by histone deacetylase inhibitors may contribute to the antitumorigenic effects of histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Jérôme Lugrin
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
37
|
Ding GX, Zhou SQ, Xu Z, Feng NH, Song NH, Wang XJ, Yang J, Zhang W, Wu HF, Hua LX. The association between MIF-173 G>C polymorphism and prostate cancer in southern Chinese. J Surg Oncol 2009; 100:106-10. [PMID: 19475570 DOI: 10.1002/jso.21304] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Accumulating epidemiological and molecular evidence suggests that inflammation is an important component in the etiology of PCa. Macrophage migration inhibitory factor (MIF) plays an important role in the pro- and anti-inflammatory response to infection. This study is aimed at investigating the potential association between MIF-173 G>C polymorphism, Gleason score, clinical stage, and prostate-specific antigen (PSA) value with respect to PCa incidence among the Han nationality in Southern China. METHODS Genotyping was performed by using tetraprimer polymerase chain reaction (PCR) on 259 PCa patients and 301 cancer-free controls. RESULTS We found that the MIF-173*C variant allele was significantly associated with an increased risk of PCa [adjusted odd ratio (OR) = 2.99, 95% confident interval (CI): 1.94-4.60] and higher Gleason scores from the PCa subjects (adjusted OR = 10.72, 95% CI: 5.35-21.49). In addition, we noted that the MIF -173*C variant allele was related to higher clinical stages and PSA values in PCa patients (adjusted OR = 15.68, 95% CI: 7.40-33.23; adjusted OR = 4.37, 95% CI: 2.41-7.92, respectively). CONCLUSION Our data suggest that MIF-173 polymorphisms may be associated with a higher incidence of prostate cancer compared to controls, and appears to be associated with higher Gleason scores, higher clinical stages, and PSA values in those with prostate cancer.
Collapse
Affiliation(s)
- G X Ding
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Identification of macrophage migration inhibitory factor and human neutrophil peptides 1-3 as potential biomarkers for gastric cancer. Br J Cancer 2009; 101:295-302. [PMID: 19550422 PMCID: PMC2720195 DOI: 10.1038/sj.bjc.6605138] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Proteomic methods have the potential to meet the urgent need for better cancer biomarkers. We have used a range of proteomic analyses of serum and tissue from gastric cancer patients and relevant controls to discover biomarkers for gastric cancer. Methods: Surface-enhanced laser desorption/ionisation time-of-flight mass spectrometry (SELDI) and antibody arrays were used to compare protein expression in 21 pairs of gastric cancer tissue and adjacent normal mucosa and serum from 51 gastric cancer patients and 29 patients with benign gastric diseases. Expression differences were confirmed by enzyme-linked immunosorbent assay. Results: Tissue analysis shows human neutrophil peptides 1–3 (HNPs 1–3) elevated 10-fold (P=0.001) in gastric cancer relative to adjacent normal mucosa. Macrophage migration inhibitory factor (MIF) was increased five-fold (P=1.84 × 10−7) in the serum of gastric cancer patients relative to individuals with benign gastric disease. The large increase in MIF concentration in serum gives an area under the receiver operating characteristic curve of 0.85. Conclusions: Proteomic analyses of serum and tissue indicate that HNPs 1–3 and MIF have potential as biomarkers for gastric cancer. In particular MIF may be useful, either alone or in combination with other markers, for diagnosing and monitoring gastric cancer.
Collapse
|
39
|
Bach JP, Deuster O, Balzer-Geldsetzer M, Meyer B, Dodel R, Bacher M. The role of macrophage inhibitory factor in tumorigenesis and central nervous system tumors. Cancer 2009; 115:2031-40. [PMID: 19326434 DOI: 10.1002/cncr.24245] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Macrophage migration inhibitory factor (MIF) has been described as a protein that plays an important role in both innate and acquired immunity. Further research has shown that MIF plays a particularly critical part in cell cycle regulation and therefore in tumorigenesis as well. Over the past few years, the significance of the role of MIF in a variety of both solid and hematologic tumors has been established. More recently, interest has increased in the role of MIF in the development of central nervous system (CNS) tumors, in which it appears to influence cell cycle control. In addition, MIF has been identified as an essential actor in metastasis and angiogenesis. Vascular growth factor concentration raises because of increased levels of MIF in brain tumors. Recently, the MIF receptor complex has been described, and it appears that this may be a suitable drug target for treatment of brain tumors. In light of these findings, the authors chose to conduct a systematic search for information regarding MIF that has been published within the past 15 years using the terms "inflammation," "glioblastoma," "brain tumor," "astrocytoma," "microglia," "glioblastoma," "immune system and brain tumors," "glioblastoma and MIF," and "brain tumor and MIF." The aim of this article was thus to present a detailed review of current knowledge regarding the role of MIF in CNS tumor pathophysiology.
Collapse
Affiliation(s)
- Jan-Philipp Bach
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Hunter JM, Paramithiotis E. Protein biomarker quantification by mass spectrometry. ACTA ACUST UNITED AC 2009; 4:11-20. [DOI: 10.1517/17530050902929214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Rendon BE, Willer SS, Zundel W, Mitchell RA. Mechanisms of macrophage migration inhibitory factor (MIF)-dependent tumor microenvironmental adaptation. Exp Mol Pathol 2009; 86:180-5. [PMID: 19186177 DOI: 10.1016/j.yexmp.2009.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Indexed: 01/08/2023]
Abstract
Since its activity was first reported in the mid-1960s, macrophage migration inhibitory factor (MIF) has gone from a cytokine activity modulating monocyte motility to a pleiotropic regulator of a vast array of cellular and biological processes. Studies in recent years suggest that MIF contributes to malignant disease progression on several different levels. Both circulating and intracellular MIF protein levels are elevated in cancer patients and MIF expression reportedly correlates with stage, metastatic spread and disease-free survival. Additionally, MIF expression positively correlates with angiogenic growth factor expression, microvessel density and tumor-associated neovascularization. Not coincidentally, MIF has recently been shown to contribute to tumoral hypoxic adaptation by promoting hypoxia-induced HIF-1alpha stabilization. Intriguingly, hypoxia is a strong regulator of MIF expression and secretion, suggesting that hypoxia-induced MIF acts as an amplifying factor for both hypoxia and normoxia-associated angiogenic growth factor expression in human malignancies. Combined, these findings suggest that MIF overexpression contributes to tumoral hypoxic adaptation and, by extension, therapeutic responsiveness and disease prognosis. This review summarizes recent literature on the contributions of MIF to tumor-associated angiogenic growth factor expression, neovascularization and hypoxic adaptation. We also will review recent efforts aimed at identifying and employing small-molecule antagonists of MIF as a novel approach to cancer therapeutics.
Collapse
Affiliation(s)
- Beatriz E Rendon
- JG Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
42
|
Krockenberger M, Dombrowski Y, Weidler C, Ossadnik M, Hönig A, Häusler S, Voigt H, Becker JC, Leng L, Steinle A, Weller M, Bucala R, Dietl J, Wischhusen J. Macrophage migration inhibitory factor contributes to the immune escape of ovarian cancer by down-regulating NKG2D. THE JOURNAL OF IMMUNOLOGY 2008; 180:7338-48. [PMID: 18490733 DOI: 10.4049/jimmunol.180.11.7338] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The proinflammatory cytokine macrophage migration inhibitory factor (MIF) stimulates tumor cell proliferation, migration, and metastasis; promotes tumor angiogenesis; suppresses p53-mediated apoptosis; and inhibits antitumor immunity by largely unknown mechanisms. We here describe an overexpression of MIF in ovarian cancer that correlates with malignancy and the presence of ascites. Functionally, we find that MIF may contribute to the immune escape of ovarian carcinoma by transcriptionally down-regulating NKG2D in vitro and in vivo which impairs NK cell cytotoxicity toward tumor cells. Together with the additional tumorigenic properties of MIF, this finding provides a rationale for novel small-molecule inhibitors of MIF to be used for the treatment of MIF-secreting cancers.
Collapse
|
43
|
Lanoix J, Paramithiotis E. Secretory vesicle analysis for discovery of low abundance plasma biomarkers. ACTA ACUST UNITED AC 2008; 2:475-85. [DOI: 10.1517/17530059.2.5.475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
Meyer-Siegler KL, Vera PL, Iczkowski KA, Bifulco C, Lee A, Gregersen PK, Leng L, Bucala R. Macrophage migration inhibitory factor (MIF) gene polymorphisms are associated with increased prostate cancer incidence. Genes Immun 2007; 8:646-52. [PMID: 17728788 DOI: 10.1038/sj.gene.6364427] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recurrent or persistent inflammation has emerged as an important factor in cancer development. Overexpression of macrophage migration inhibitory factor (MIF), an upstream regulator of innate immunity with pleiotropic effects on cell proliferation, has been implicated in prostate cancer (CaP). Two polymorphisms in the promoter of the MIF gene (-173G to C transition and seven copies of the -794 CATT repeat) are associated with increased MIF expression in vivo and poor prognosis in autoimmune diseases. We conducted a retrospective analysis of 131 CaP patients and 128 controls from a group of Veterans' Administration patients undergoing routine prostate-specific antigen screening. Patients with CaP were enrolled regardless of treatment. Inclusion criteria for the control group were absence of documented diagnosis of cancer and/or chronic inflammation within patient computerized records. Logistic regression demonstrated a significant association between CaP and the -173G/C, the -173C/C and the -794 7-CATT MIF polymorphisms (P<0.001). Patients with the -794 7-CATT allele had an increased risk of CaP recurrence at 5 years. Individuals with -173G/C, -173C/C and -794 7-CATT MIF genotypes have an increased incidence of CaP and these genotypes may serve as an independent marker for cancer recurrence.
Collapse
Affiliation(s)
- K L Meyer-Siegler
- Research and Development 151, Bay Pines VA Healthcare System, Bay Pines, FL 33744, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Rendon BE, Roger T, Teneng I, Zhao M, Al-Abed Y, Calandra T, Mitchell RA. Regulation of human lung adenocarcinoma cell migration and invasion by macrophage migration inhibitory factor. J Biol Chem 2007; 282:29910-8. [PMID: 17709373 DOI: 10.1074/jbc.m704898200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is expressed and secreted in response to mitogens and integrin-dependent cell adhesion. Once released, autocrine MIF promotes the activation of RhoA GTPase leading to cell cycle progression in rodent fibroblasts. We now report that small interfering RNA-mediated knockdown of MIF and MIF small molecule antagonism results in a greater than 90% loss of both the migratory and invasive potential of human lung adenocarcinoma cells. Correlating with these phenotypes is a substantial reduction in steady state as well as serum-induced effector binding activity of the Rho GTPase family member, Rac1, in MIF-deficient cells. Conversely, MIF overexpression by adenovirus in human lung adenocarcinoma cells induces a dramatic enhancement of cell migration, and co-expression of a dominant interfering mutant of Rac1 (Rac1(N17)) completely abrogates this effect. Finally, our results indicate that MIF depletion results in defective partitioning of Rac1 to caveolin-containing membrane microdomains, raising the possibility that MIF promotes Rac1 activity and subsequent tumor cell motility through lipid raft stabilization.
Collapse
Affiliation(s)
- Beatriz E Rendon
- Molecular Targets Program, J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Stephan C, Cammann H, Meyer HA, Lein M, Jung K. PSA and new biomarkers within multivariate models to improve early detection of prostate cancer. Cancer Lett 2007; 249:18-29. [PMID: 17292541 DOI: 10.1016/j.canlet.2006.12.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 12/14/2006] [Indexed: 11/20/2022]
Abstract
This review gives an overview of the use of prostate-specific antigen (PSA) and percent free-PSA (%fPSA)-based artificial neural networks (ANNs) and logistic regression models (LR) to reduce unnecessary prostate biopsies. There is a clear advantage in including clinical data such as age, digital rectal examination and transrectal ultrasound (TRUS) variables like prostate volume and PSA density as additional factors to tPSA and %fPSA within ANNs and LR models. There is also positive impact of tPSA and fPSA assays on the outcome of ANNs. New markers provide additional value within ANNs but to prove their clinical usefulness further testing is necessary.
Collapse
Affiliation(s)
- Carsten Stephan
- Department of Urology, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Charitéplatz 1, D-10098 Berlin, Germany.
| | | | | | | | | |
Collapse
|
47
|
Meyer-Siegler KL, Iczkowski KA, Leng L, Bucala R, Vera PL. Inhibition of macrophage migration inhibitory factor or its receptor (CD74) attenuates growth and invasion of DU-145 prostate cancer cells. THE JOURNAL OF IMMUNOLOGY 2007; 177:8730-9. [PMID: 17142775 DOI: 10.4049/jimmunol.177.12.8730] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, is overexpressed in prostate cancer, but the mechanism by which MIF exerts effects on tumor cells remains undetermined. MIF interacts with its identified membrane receptor, CD74, in association with CD44, resulting in ERK 1/2 activation. Therefore, we hypothesized that increased expression or surface localization of CD74 and MIF overexpression by prostate cancer cells regulated tumor cell viability. Prostate cancer cell lines (LNCaP and DU-145) had increased MIF gene expression and protein levels compared with normal human prostate or benign prostate epithelial cells (p < 0.01). Although MIF, CD74, and CD44 variant 9 expression were increased in both androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells, cell surface of CD74 was only detected in androgen-independent (DU-145) prostate cancer cells. Therefore, treatments aimed at blocking CD74 and/or MIF (e.g., inhibition of MIF or CD74 expression by RNA interference or treatment with anti-MIF- or anti-CD74- neutralizing Abs or MIF-specific inhibitor, ISO-1) were only effective in androgen-independent prostate cancer cells (DU-145), resulting in decreased cell proliferation, MIF protein secretion, and invasion. In DU-145 xenografts, ISO-1 significantly decreased tumor volume and tumor angiogenesis. Our results showed greater cell surface CD74 in DU-145 prostate cancer cells that bind to MIF and, thus, mediate MIF-activated signal transduction. DU-145 prostate cancer cell growth and invasion required MIF activated signal transduction pathways that were not necessary for growth or viability of androgen-dependent prostate cells. Thus, blocking MIF either at the ligand (MIF) or receptor (CD74) may provide new, targeted specific therapies for androgen-independent prostate cancer.
Collapse
Affiliation(s)
- Katherine L Meyer-Siegler
- Research and Development (151), The Bay Pines Veterans Affairs Healthcare System, 10000 Bay Pines Boulevard, Bay Pines, FL 33744, USA.
| | | | | | | | | |
Collapse
|
48
|
Stephan C, Xu C, Brown DA, Breit SN, Michael A, Nakamura T, Diamandis EP, Meyer H, Cammann H, Jung K. Three new serum markers for prostate cancer detection within a percent free PSA-based artificial neural network. Prostate 2006; 66:651-9. [PMID: 16388506 DOI: 10.1002/pros.20381] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND We aimed to evaluate the value of macrophage inhibitory cytokine 1 (MIC-1), human kallikrein 11 (hK11) migration inhibitor factor (MIF) in comparison to prostate-specific antigen (PSA) and % fPSA and also to develop a % fPSA-based ANN with the new input factors to determine whether these additional markers can further eliminate unnecessary prostate biopsies. METHODS Serum samples from 371 patients with prostate cancer (PCa, n=135) or benign prostate hyperplasia (BPH, n=236) within the PSA range 0.5-20 microg/L were analyzed for total PSA, free PSA, MIC-1, hK11, and MIF. 'Leave one out' ANN models with these variables and prostate volume were constructed and compared to logistic regression (LR) and all single parameters. RESULTS The discriminatory power of MIC-1, hK11, and MIF was less than that for PSA despite significant differences in BPH compared to PCa patients. At 90% and 95% sensitivity, the artificial neural networks (ANNs) were only significantly better than % fPSA if prostate volume was included. CONCLUSIONS ANNs with the novel input factors of MIC-1, MIF, and/or hK11 and additional use of prostate volume demonstrated significant advantage compared with % fPSA and tPSA and may lead to a reduction in unnecessary prostate biopsies.
Collapse
Affiliation(s)
- Carsten Stephan
- Department of Urology, University Hospital Charité Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Meyer-Siegler KL, Iczkowski KA, Vera PL. Macrophage Migration Inhibitory Factor is Increased in the Urine of Patients With Urinary Tract Infection: Macrophage Migration Inhibitory Factor-Protein Complexes in Human Urine. J Urol 2006; 175:1523-8. [PMID: 16516040 DOI: 10.1016/s0022-5347(05)00650-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Indexed: 11/18/2022]
Abstract
PURPOSE MIF is a proinflammatory cytokine present in preformed stores in human urothelium. In animal models of bladder inflammation, including bacterial cystitis, MIF is up-regulated in the bladder and released from the bladder as a high molecular weight complex. We compared urine MIF amounts in patients with UTI to that in patients without UTI, and we examined and identified MIF-protein complexes in urine. MATERIALS AND METHODS Using enzyme-linked immunosorbent assay we compared MIF levels in the urine of 14 patients with UTI to levels in 16 controls with no UTI. Western blotting under native, denaturing and reducing conditions was done to examine MIF complexes found in urine. Mass spectrometry identified MIF associated proteins in urine, while co-immunoprecipitation confirmed the associations. RESULTS Mean urine MIF amounts +/- SEM determined by enzyme-linked immunosorbent assay were significantly greater in 14 patients with UTI compared to that in 16 controls (1.96 +/- 0.40 vs 0.59 +/- 0.09 ng/mg creatinine, p <0.01). Western blotting under denaturing conditions showed several high molecular weight complexes (100 to 165 kDa) that increased in UTI urine as well as typical, monomeric MIF (12 kDa). Mass spectrometry identified associated MIF proteins, including ceruloplasmin, albumin and uromodulin. Co-immunoprecipitation confirmed mass spectrometry findings and also identified MIF interaction with alpha-2-macroglobulin. CONCLUSIONS Increased urine MIF amounts in patients with bacterial cystitis support our experimental evidence showing a role for MIF in pelvic visceral inflammation. The novel finding of an association of MIF with other urine proteins suggest that the physiologically relevant form of MIF may be an MIF-protein complex.
Collapse
|
50
|
Skogstrand K, Thorsen P, Nørgaard-Pedersen B, Schendel DE, Sørensen LC, Hougaard DM. Simultaneous Measurement of 25 Inflammatory Markers and Neurotrophins in Neonatal Dried Blood Spots by Immunoassay with xMAP Technology. Clin Chem 2005; 51:1854-66. [PMID: 16081507 DOI: 10.1373/clinchem.2005.052241] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Inflammatory reactions and other events in early life may be part of the etiology of late-onset diseases, including cerebral palsy, autism, and type 1 diabetes. Most neonatal screening programs for congenital disorders are based on analysis of dried blood spot samples (DBSS), and stored residual DBSS constitute a valuable resource for research into the etiology of these diseases. The small amount of blood available, however, limits the number of analytes that can be determined by traditional immunoassay methodologies.
Methods: We used new multiplexed sandwich immunoassays based on flowmetric Luminex® xMAP technology to measure inflammatory markers and neutrophins in DBSS.
Results: The high-capacity 25-plex multianalyte method measured 23 inflammatory and trophic cytokines, triggering receptor expressed on myeloid cells-1 (TREM-1), and C-reactive protein in two 3.2-mm punches from DBSS. It also measured 26 cytokines and TREM-1 in serum. Standards Recovery in the 25-plex method were 90%–161% (mean, 105%). The low end of the working range for all 25 analytes covered concentrations found in DBSS from healthy newborns. Mean recovery of exogenous analytes added at physiologic concentrations in DBSS models was 174%, mean intra- and interassay CVs were 6.2% and 16%, respectively, and the mean correlation between added and measured analytes was r2 = 0.91. In DBSS routinely collected on days 5–7 from 8 newborns with documented inflammatory reactions at birth, the method detected significantly changed concentrations of inflammatory cytokines. Measurements on DBSS stored at −24 °C for >20 years showed that most cytokines are detectable in equal concentrations over time.
Conclusions: The method can reliably measure 25 inflammatory markers and growth factors in DBSS. It has a large potential for high-capacity analysis of DBSS in epidemiologic case–control studies and, with further refinements, in neonatal screening.
Collapse
Affiliation(s)
- Kristin Skogstrand
- Department of Clinical Biochemistry, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|