1
|
Dhupar R, Powers AA, Eisenberg SH, Gemmill RM, Bardawil CE, Udoh HM, Cubitt A, Nangle LA, Soloff AC. Orchestrating Resilience: How Neuropilin-2 and Macrophages Contribute to Cardiothoracic Disease. J Clin Med 2024; 13:1446. [PMID: 38592275 PMCID: PMC10934188 DOI: 10.3390/jcm13051446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Immunity has evolved to balance the destructive nature of inflammation with wound healing to overcome trauma, infection, environmental insults, and rogue malignant cells. The inflammatory response is marked by overlapping phases of initiation, resolution, and post-resolution remodeling. However, the disruption of these events can lead to prolonged tissue damage and organ dysfunction, resulting long-term disease states. Macrophages are the archetypic phagocytes present within all tissues and are important contributors to these processes. Pleiotropic and highly plastic in their responses, macrophages support tissue homeostasis, repair, and regeneration, all while balancing immunologic self-tolerance with the clearance of noxious stimuli, pathogens, and malignant threats. Neuropilin-2 (Nrp2), a promiscuous co-receptor for growth factors, semaphorins, and integrins, has increasingly been recognized for its unique role in tissue homeostasis and immune regulation. Notably, recent studies have begun to elucidate the role of Nrp2 in both non-hematopoietic cells and macrophages with cardiothoracic disease. Herein, we describe the unique role of Nrp2 in diseases of the heart and lung, with an emphasis on Nrp2 in macrophages, and explore the potential to target Nrp2 as a therapeutic intervention.
Collapse
Affiliation(s)
- Rajeev Dhupar
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Surgical and Research Services, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Amy A. Powers
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Seth H. Eisenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Robert M. Gemmill
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Charles E. Bardawil
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Hannah M. Udoh
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Andrea Cubitt
- aTyr Pharma, San Diego, CA 92121, USA; (A.C.); (L.A.N.)
| | | | - Adam C. Soloff
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Surgical and Research Services, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
2
|
Khoushab S, Aghmiuni MH, Esfandiari N, Sarvandani MRR, Rashidi M, Taheriazam A, Entezari M, Hashemi M. Unlocking the potential of exosomes in cancer research: A paradigm shift in diagnosis, treatment, and prevention. Pathol Res Pract 2024; 255:155214. [PMID: 38430814 DOI: 10.1016/j.prp.2024.155214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
Exosomes, which are tiny particles released by cells, have the ability to transport various molecules, including proteins, lipids, and genetic material containing non-coding RNAs (ncRNAs). They are associated with processes like cancer metastasis, immunity, and tissue repair. Clinical trials have shown exosomes to be effective in treating cancer, inflammation, and chronic diseases. Mesenchymal stem cells (MSCs) and dendritic cells (DCs) are common sources of exosome production. Exosomes have therapeutic potential due to their ability to deliver cargo, modulate the immune system, and promote tissue regeneration. Bioengineered exosomes could revolutionize disease treatment. However, more research is needed to understand exosomes in tumor growth and develop new therapies. This paper provides an overview of exosome research, focusing on cancer and exosome-based therapies including chemotherapy, radiotherapy, and vaccines. It explores exosomes as a drug delivery system for cancer therapy, highlighting their advantages. The article discusses using exosomes for various therapeutic agents, including drugs, antigens, and RNAs. It also examines challenges with engineered exosomes. Analyzing exosomes for clinical purposes faces limitations in sensitivity, specificity, and purification. On the other hand, Nanotechnology offers solutions to overcome these challenges and unlock exosome potential in healthcare. Overall, the article emphasizes the potential of exosomes for personalized and targeted cancer therapy, while acknowledging the need for further research.
Collapse
Affiliation(s)
- Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esfandiari
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Ming‐Kun C, Zi‐Xian C, Mao‐Ping C, Hong C, Zhuang‐Fei C, Shan‐Chao Z. Engineered extracellular vesicles: A new approach for targeted therapy of tumors and overcoming drug resistance. Cancer Commun (Lond) 2024; 44:205-225. [PMID: 38155418 PMCID: PMC10876209 DOI: 10.1002/cac2.12518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023] Open
Abstract
Targeted delivery of anti-tumor drugs and overcoming drug resistance in malignant tumor cells remain significant clinical challenges. However, there are only few effective methods to address these issues. Extracellular vesicles (EVs), actively secreted by cells, play a crucial role in intercellular information transmission and cargo transportation. Recent studies have demonstrated that engineered EVs can serve as drug delivery carriers and showed promising application prospects. Nevertheless, there is an urgent need for further improvements in the isolation and purification of EVs, surface modification techniques, drug assembly processes, and precise recognition of tumor cells for targeted drug delivery purposes. In this review, we summarize the applications of engineered EVs in cancer treatment and overcoming drug resistance, and current challenges associated with engineered EVs are also discussed. This review aims to provide new insights and potential directions for utilizing engineered EVs as targeted delivery systems for anti-tumor drugs and overcoming drug resistance in the near future.
Collapse
Affiliation(s)
- Chen Ming‐Kun
- Department of UrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongP. R. China
- The Third Clinical CollegeSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Chen Zi‐Xian
- Department of UrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongP. R. China
- The Third Clinical CollegeSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Cai Mao‐Ping
- Department of UrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongP. R. China
- The Third Clinical CollegeSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Chen Hong
- Luoyang Key Laboratory of Organic Functional MoleculesCollege of Food and DrugLuoyang Normal UniversityLuoyangHenanP. R. China
| | - Chen Zhuang‐Fei
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Zhao Shan‐Chao
- Department of UrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongP. R. China
- The Third Clinical CollegeSouthern Medical UniversityGuangzhouGuangdongP. R. China
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| |
Collapse
|
4
|
Sharma S, Ehrlich M, Zhang M, Blobe GC, Henis YI. NRP1 interacts with endoglin and VEGFR2 to modulate VEGF signaling and endothelial cell sprouting. Commun Biol 2024; 7:112. [PMID: 38242992 PMCID: PMC10799020 DOI: 10.1038/s42003-024-05798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Endothelial cells express neuropilin 1 (NRP1), endoglin (ENG) and vascular endothelial growth factor receptor 2 (VEGFR2), which regulate VEGF-A-mediated vascular development and angiogenesis. However, the link between complex formation among these receptors with VEGF-A-induced signaling and biology is yet unclear. Here, we quantify surface receptor interactions by IgG-mediated immobilization of one receptor, and fluorescence recovery after photobleaching (FRAP) measurements of the mobility of another coexpressed receptor. We observe stable ENG/NRP1, ENG/VEGFR2, and NRP1/VEGFR2 complexes, which are enhanced by VEGF-A. ENG augments NRP1/VEGFR2 interactions, suggesting formation of tripartite complexes bridged by ENG. Effects on signaling are measured in murine embryonic endothelial cells expressing (MEEC+/+) or lacking (MEEC-/-) ENG, along with NRP1 and/or ENG overexpression or knockdown. We find that optimal VEGF-A-mediated phosphorylation of VEGFR2 and Erk1/2 requires ENG and NRP1. ENG or NRP1 increase VEGF-A-induced sprouting, becoming optimal in cells expressing all three receptors, and both processes are inhibited by a MEK1/2 inhibitor. We propose a model where the maximal potency of VEGF-A involves a tripartite complex where ENG bridges VEGFR2 and NRP1, providing an attractive therapeutic target for modulation of VEGF-A signaling and biological responses.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Manqi Zhang
- Department of Medicine, Duke University Medical Center, Durham, NC, 27708, USA
| | - Gerard C Blobe
- Department of Medicine, Duke University Medical Center, Durham, NC, 27708, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
5
|
Gastélum-López MDLÁ, Aguilar-Medina M, García Mata C, López-Gutiérrez J, Romero-Quintana G, Bermúdez M, Avendaño-Felix M, López-Camarillo C, Pérez-Plascencia C, Beltrán AS, Ramos-Payán R. Organotypic 3D Cell-Architecture Impacts the Expression Pattern of miRNAs-mRNAs Network in Breast Cancer SKBR3 Cells. Noncoding RNA 2023; 9:66. [PMID: 37987362 PMCID: PMC10661268 DOI: 10.3390/ncrna9060066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Currently, most of the research on breast cancer has been carried out in conventional two-dimensional (2D) cell cultures due to its practical benefits, however, the three-dimensional (3D) cell culture is becoming the model of choice in cancer research because it allows cell-cell and cell-extracellular matrix (ECM) interactions, mimicking the native microenvironment of tumors in vivo. METHODS In this work, we evaluated the effect of 3D cell organization on the expression pattern of miRNAs (by Small-RNAseq) and mRNAs (by microarrays) in the breast cancer SKBR3 cell line and analyzed the biological processes and signaling pathways regulated by the differentially expressed protein-coding genes (DE-mRNAs) and miRNAs (DE-microRNAs) found in the organoids. RESULTS We obtained well-defined cell-aggregated organoids with a grape cluster-like morphology with a size up to 9.2 × 105 μm3. The transcriptomic assays showed that cell growth in organoids significantly affected (all p < 0.01) the gene expression patterns of both miRNAs, and mRNAs, finding 20 upregulated and 19 downregulated DE-microRNAs, as well as 49 upregulated and 123 downregulated DE-mRNAs. In silico analysis showed that a subset of 11 upregulated DE-microRNAs target 70 downregulated DE-mRNAs. These genes are involved in 150 gene ontology (GO) biological processes such as regulation of cell morphogenesis, regulation of cell shape, regulation of canonical Wnt signaling pathway, morphogenesis of epithelium, regulation of cytoskeleton organization, as well as in the MAPK and AGE-RAGE signaling KEGG-pathways. Interestingly, hsa-mir-122-5p (Fold Change (FC) = 15.4), hsa-mir-369-3p (FC = 11.4), and hsa-mir-10b-5p (FC = 20.1) regulated up to 81% of the 70 downregulated DE-mRNAs. CONCLUSION The organotypic 3D cell-organization architecture of breast cancer SKBR3 cells impacts the expression pattern of the miRNAs-mRNAs network mainly through overexpression of hsa-mir-122-5p, hsa-mir-369-3p, and hsa-mir-10b-5p. All these findings suggest that the interaction between cell-cell and cell-ECM as well as the change in the culture architecture impacts gene expression, and, therefore, support the pertinence of migrating breast cancer research from conventional cultures to 3D models.
Collapse
Affiliation(s)
- María de los Ángeles Gastélum-López
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Maribel Aguilar-Medina
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Cristina García Mata
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Jorge López-Gutiérrez
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Geovanni Romero-Quintana
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Mercedes Bermúdez
- Faculty of Dentistry, Autonomous University of Chihuahua, Av. Escorza No. 900, Centro, Chihuahua 31125, Chihuahua, Mexico;
| | - Mariana Avendaño-Felix
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - César López-Camarillo
- Postgraduate in Genomic Sciences, Autonomous University of Mexico City, San Lorenzo 290, Col del Valle, Mexico City 03100, Mexico;
| | - Carlos Pérez-Plascencia
- National Cancer Institute, Av. San Fernando 22, Belisario Domínguez Sec. 16, Tlalpan, Mexico City 14080, Mexico;
- FES Iztacala, National Autonomous University of Mexico, Av. de los Barrios S/N, Los Reyes Ixtacala, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Adriana S Beltrán
- Human Pluripotent Stem Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| |
Collapse
|
6
|
Rodrigues EM, Giovanini AF, Ribas CAPM, Malafaia O, Roesler R, Isolan GR. The Nervous System Development Regulator Neuropilin-1 as a Potential Prognostic Marker and Therapeutic Target in Brain Cancer. Cancers (Basel) 2023; 15:4922. [PMID: 37894289 PMCID: PMC10605093 DOI: 10.3390/cancers15204922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Neuropilins are transmembrane glycoproteins that regulate developmental processes in the nervous system and other tissues. Overexpression of neuropilin-1 (NRP1) occurs in many solid tumor types and, in several instances, may predict patient outcome in terms of overall survival. Experimental inhibition of NRP1 activity can display antitumor effects in different cancer models. Here, we review NRP1 expression and function in adult and pediatric brain cancers, particularly glioblastomas (GBMs) and medulloblastomas, and present analyses of NRP1 transcript levels and their association with patient survival in GBMs. The case of NRP1 highlights the potential of regulators of neurodevelopment as biomarkers and therapeutic targets in brain cancer.
Collapse
Affiliation(s)
- Eduardo Mello Rodrigues
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil; (E.M.R.)
- The Center for Advanced Neurology and Neurosurgery (CEANNE), Porto Alegre 90560-010, RS, Brazil
| | - Allan Fernando Giovanini
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil; (E.M.R.)
| | | | - Osvaldo Malafaia
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil; (E.M.R.)
| | - Rafael Roesler
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Gustavo R. Isolan
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil; (E.M.R.)
- The Center for Advanced Neurology and Neurosurgery (CEANNE), Porto Alegre 90560-010, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- Spalt Therapeutics, Porto Alegre 90560-010, RS, Brazil
| |
Collapse
|
7
|
de Araújo MA, Malafaia O, Ribas Filho JM, Fratini L, Roesler R, Isolan GR. Low Expression of the NRP1 Gene Is Associated with Shorter Overall Survival in Patients with Sonic Hedgehog and Group 3 Medulloblastoma. Int J Mol Sci 2023; 24:11601. [PMID: 37511358 PMCID: PMC10380701 DOI: 10.3390/ijms241411601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Medulloblastoma (MB) is the most common type of malignant pediatric brain tumor. Neuropilin-1 (NRP1), encoded by the NRP1 gene, is a transmembrane glycoprotein overexpressed in several types of cancer. Previous studies indicate that NRP1 inhibition displays antitumor effects in MB models and higher NRP1 levels are associated with poorer prognosis in MB patients. Here, we used a large MB tumor dataset to examine NRP1 gene expression in different molecular subgroups and subtypes of MB. We found overall widespread NRP1 expression across MB samples. Tumors in the sonic hedgehog (SHH) subgroup showed significantly higher NRP1 transcript levels in comparison with Group 3 and Group 4 tumors, with SHH samples belonging to the α, β, Δ, and γ subtypes. When all MB subgroups were combined, lower NRP1 expression was associated with significantly shorter patient overall survival (OS). Further analysis showed that low NRP1 was related to poorer OS, specifically in MB subgroups SHH and Group 3 MB. Our findings indicate that patients with SHH and Group 3 tumors that show lower expression of NRP1 in MB have a worse prognosis, which highlights the need for subgroup-specific investigation of the NRP1 role in MB.
Collapse
Affiliation(s)
- Moisés Augusto de Araújo
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil
- The Center for Advanced Neurology and Neurosurgery (CEANNE), Porto Alegre 90560-010, RS, Brazil
| | - Osvaldo Malafaia
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil
| | - Jurandir M. Ribas Filho
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil
| | - Livia Fratini
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology–INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- Research Center, Moinhos de Vento Hospital, Porto Alegre 90035-001, RS, Brazil
| | - Rafael Roesler
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology–INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Gustavo R. Isolan
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil
- The Center for Advanced Neurology and Neurosurgery (CEANNE), Porto Alegre 90560-010, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology–INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- Spalt Therapeutics, Porto Alegre 90560-010, RS, Brazil
| |
Collapse
|
8
|
Zhang M, Hu S, Liu L, Dang P, Liu Y, Sun Z, Qiao B, Wang C. Engineered exosomes from different sources for cancer-targeted therapy. Signal Transduct Target Ther 2023; 8:124. [PMID: 36922504 PMCID: PMC10017761 DOI: 10.1038/s41392-023-01382-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
Exosome is a subgroup of extracellular vesicles, which has been serving as an efficient therapeutic tool for various diseases. Engineered exosomes are the sort of exosomes modified with surface decoration and internal therapeutic molecules. After appropriate modification, engineered exosomes are able to deliver antitumor drugs to tumor sites efficiently and precisely with fewer treatment-related adverse effects. However, there still exist many challenges for the clinical translation of engineered exosomes. For instance, what sources and modification strategies could endow exosomes with the most efficient antitumor activity is still poorly understood. Additionally, how to choose appropriately engineered exosomes in different antitumor therapies is another unresolved problem. In this review, we summarized the characteristics of engineered exosomes, especially the spatial and temporal properties. Additionally, we concluded the recent advances in engineered exosomes in the cancer fields, including the sources, isolation technologies, modification strategies, and labeling and imaging methods of engineered exosomes. Furthermore, the applications of engineered exosomes in different antitumor therapies were summarized, such as photodynamic therapy, gene therapy, and immunotherapy. Consequently, the above provides the cancer researchers in this community with the latest ideas on engineered exosome modification and new direction of new drug development, which is prospective to accelerate the clinical translation of engineered exosomes for cancer-targeted therapy.
Collapse
Affiliation(s)
- Menghui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Lin Liu
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.,Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Pengyuan Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yang Liu
- Department of Radiotherapy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450001, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China. .,Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Bingbing Qiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Chengzeng Wang
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China. .,Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
9
|
Szczerba K, Stokowa-Soltys K. What Is the Correlation between Preeclampsia and Cancer? The Important Role of Tachykinins and Transition Metal Ions. Pharmaceuticals (Basel) 2023; 16:366. [PMID: 36986466 PMCID: PMC10058266 DOI: 10.3390/ph16030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Metal ions are irreplaceable in many biological processes. They are components of numerous metalloproteins and serve as cofactors or structural elements for enzymes. Interestingly, iron, copper and zinc play important roles in accelerating or preventing neoplastic cell transformation. Noteworthily, a lot of proliferative and invasive mechanisms are exploited by both malignant tumors and pregnancy. Cancer cells, as well as developing placenta cells, create a microenvironment supportive of immunologic privilege and angiogenesis. Therefore, pregnancy and cancer progression share many similarities. Moreover, during preeclampsia and cancer, significant changes in relevant trace element concentrations, tachykinin levels, expressions of neurokinin receptors, oxidative stress and angiogenic imbalance are observed. This sheds a new light on the role of metal ions and tachykinins in cancer progression and pregnancy, especially in preeclamptic women.
Collapse
Affiliation(s)
| | - Kamila Stokowa-Soltys
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
10
|
Benwell CJ, Johnson RT, Taylor JA, Price CA, Robinson SD. Endothelial VEGFR Coreceptors Neuropilin-1 and Neuropilin-2 Are Essential for Tumor Angiogenesis. CANCER RESEARCH COMMUNICATIONS 2022; 2:1626-1640. [PMID: 36970722 PMCID: PMC10036134 DOI: 10.1158/2767-9764.crc-22-0250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/16/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Neuropilin (NRP) expression is highly correlated with poor outcome in multiple cancer subtypes. As known coreceptors for VEGFRs, core drivers of angiogenesis, past investigations have alluded to their functional roles in facilitating tumorigenesis by promoting invasive vessel growth. Despite this, it remains unclear as to whether NRP1 and NRP2 act in a synergistic manner to enhance pathologic angiogenesis. Here we demonstrate, using NRP1 ECKO , NRP2 ECKO , and NRP1/NRP2 ECKO mouse models, that maximum inhibition of primary tumor development and angiogenesis is achieved when both endothelial NRP1 and NRP2 are targeted simultaneously. Metastasis and secondary site angiogenesis were also significantly inhibited in NRP1/NRP2 ECKO animals. Mechanistic studies revealed that codepleting NRP1 and NRP2 in mouse-microvascular endothelial cells stimulates rapid shuttling of VEGFR-2 to Rab7+ endosomes for proteosomal degradation. Our results highlight the importance of targeting both NRP1 and NRP2 to modulate tumor angiogenesis. Significance The findings presented in this study demonstrate that tumor angiogenesis and growth can be arrested completely by cotargeting endothelial NRP1 and NRP2. We provide new insight into the mechanisms of action regulating NRP-dependent tumor angiogenesis and signpost a novel approach to halt tumor progression.
Collapse
Affiliation(s)
- Christopher J. Benwell
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Robert T. Johnson
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - James A.G.E. Taylor
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Christopher A. Price
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Stephen D. Robinson
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
11
|
A Circulating Risk Score, Based on Combined Expression of Exo-miR-130a-3p and Fibrinopeptide A, as Predictive Biomarker of Relapse in Resectable Non-Small Cell Lung Cancer Patients. Cancers (Basel) 2022; 14:cancers14143412. [PMID: 35884472 PMCID: PMC9317031 DOI: 10.3390/cancers14143412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary To date, the five-year survival rate of early stages of non-small cell lung cancer (NSCLC) is still disappointing and reliable prognostic factors are mandatory. Here, we performed in-depth high-throughput analyses of plasma circulating markers, including exosomal microRNAs and peptidome to identify a prognostic score. The miRnome profile selected the Exo-miR-130a-3p as the most overexpressed in relapsed patients. Peptidome analysis identified four progressively more degraded forms of fibrinopeptide A (FpA), which were depleted in relapse patients. Notably, a stepwise algorithm selected Exo-miR-130a-3p and the greatest FpA (2–16) to build a prognostic score, where high-risk patients had 18 months of median disease-free survival. Overexpression of miR-130a-3p cells led to a deregulation of pathways such as angiogenesis as well as the coagulation and metalloprotease, which might be linked to FpA reduction. The risk score integrating circulating markers may help clinicians predict early-stage NSCLC patients who are more likely to relapse after surgery. Abstract To date, the 5-year overall survival rate of 60% for early-stage non-small cell lung cancer (NSCLC) is still unsatisfactory. Therefore, reliable prognostic factors are needed. Growing evidence shows that cancer progression may depend on an interconnection between cancer cells and the surrounding tumor microenvironment; hence, circulating molecules may represent promising markers of cancer recurrence. In order to identify a prognostic score, we performed in-depth high-throughput analyses of plasma circulating markers, including exosomal microRNAs (Exo-miR) and peptides, in 67 radically resected NSCLCs. The miRnome profile selected the Exo-miR-130a-3p as the most overexpressed in relapsed patients. Peptidome analysis identified four progressively more degraded forms of fibrinopeptide A (FpA), which were depleted in progressing patients. Notably, stepwise Cox regression analysis selected Exo-miR-130a-3p and the greatest FpA (2-16) to build a score predictive of recurrence, where high-risk patients had 18 months of median disease-free survival. Moreover, in vitro transfections showed that higher levels of miR-130a-3p lead to a deregulation of pathways involved in metastasis and angiogenesis, including the coagulation process and metalloprotease increase which might be linked to FpA reduction. In conclusion, by integrating circulating markers, the identified risk score may help clinicians predict early-stage NSCLC patients who are more likely to relapse after primary surgery.
Collapse
|
12
|
Islam R, Mishra J, Bodas S, Bhattacharya S, Batra SK, Dutta S, Datta K. Role of Neuropilin-2-mediated signaling axis in cancer progression and therapy resistance. Cancer Metastasis Rev 2022; 41:771-787. [PMID: 35776228 PMCID: PMC9247951 DOI: 10.1007/s10555-022-10048-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/16/2022] [Indexed: 12/12/2022]
Abstract
Neuropilins (NRPs) are transmembrane proteins involved in vascular and nervous system development by regulating angiogenesis and axon guidance cues. Several published reports have established their role in tumorigenesis. NRPs are detectable in tumor cells of several cancer types and participate in cancer progression. NRP2 is also expressed in endothelial and immune cells in the tumor microenvironment and promotes functions such as lymphangiogenesis and immune suppression important for cancer progression. In this review, we have taken a comprehensive approach to discussing various aspects of NRP2-signaling in cancer, including its regulation, functional significance in cancer progression, and how we could utilize our current knowledge to advance the studies and target NRP2 to develop effective cancer therapies.
Collapse
Affiliation(s)
- Ridwan Islam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Juhi Mishra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanika Bodas
- Department of Molecular Genetics and Cell Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sreyashi Bhattacharya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
13
|
Paskeh MDA, Entezari M, Mirzaei S, Zabolian A, Saleki H, Naghdi MJ, Sabet S, Khoshbakht MA, Hashemi M, Hushmandi K, Sethi G, Zarrabi A, Kumar AP, Tan SC, Papadakis M, Alexiou A, Islam MA, Mostafavi E, Ashrafizadeh M. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol 2022; 15:83. [PMID: 35765040 PMCID: PMC9238168 DOI: 10.1186/s13045-022-01305-4] [Citation(s) in RCA: 229] [Impact Index Per Article: 114.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, and the factors responsible for its progression need to be elucidated. Exosomes are structures with an average size of 100 nm that can transport proteins, lipids, and nucleic acids. This review focuses on the role of exosomes in cancer progression and therapy. We discuss how exosomes are able to modulate components of the tumor microenvironment and influence proliferation and migration rates of cancer cells. We also highlight that, depending on their cargo, exosomes can suppress or promote tumor cell progression and can enhance or reduce cancer cell response to radio- and chemo-therapies. In addition, we describe how exosomes can trigger chronic inflammation and lead to immune evasion and tumor progression by focusing on their ability to transfer non-coding RNAs between cells and modulate other molecular signaling pathways such as PTEN and PI3K/Akt in cancer. Subsequently, we discuss the use of exosomes as carriers of anti-tumor agents and genetic tools to control cancer progression. We then discuss the role of tumor-derived exosomes in carcinogenesis. Finally, we devote a section to the study of exosomes as diagnostic and prognostic tools in clinical courses that is important for the treatment of cancer patients. This review provides a comprehensive understanding of the role of exosomes in cancer therapy, focusing on their therapeutic value in cancer progression and remodeling of the tumor microenvironment.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohamad Javad Naghdi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sina Sabet
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Khoshbakht
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia.,AFNP Med Austria, Vienna, Austria
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey.
| |
Collapse
|
14
|
Haider M, Elsherbeny A, Pittalà V, Consoli V, Alghamdi MA, Hussain Z, Khoder G, Greish K. Nanomedicine Strategies for Management of Drug Resistance in Lung Cancer. Int J Mol Sci 2022; 23:1853. [PMID: 35163777 PMCID: PMC8836587 DOI: 10.3390/ijms23031853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer (LC) is one of the leading causes of cancer occurrence and mortality worldwide. Treatment of patients with advanced and metastatic LC presents a significant challenge, as malignant cells use different mechanisms to resist chemotherapy. Drug resistance (DR) is a complex process that occurs due to a variety of genetic and acquired factors. Identifying the mechanisms underlying DR in LC patients and possible therapeutic alternatives for more efficient therapy is a central goal of LC research. Advances in nanotechnology resulted in the development of targeted and multifunctional nanoscale drug constructs. The possible modulation of the components of nanomedicine, their surface functionalization, and the encapsulation of various active therapeutics provide promising tools to bypass crucial biological barriers. These attributes enhance the delivery of multiple therapeutic agents directly to the tumor microenvironment (TME), resulting in reversal of LC resistance to anticancer treatment. This review provides a broad framework for understanding the different molecular mechanisms of DR in lung cancer, presents novel nanomedicine therapeutics aimed at improving the efficacy of treatment of various forms of resistant LC; outlines current challenges in using nanotechnology for reversing DR; and discusses the future directions for the clinical application of nanomedicine in the management of LC resistance.
Collapse
Affiliation(s)
- Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Amr Elsherbeny
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Valeria Pittalà
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.P.); (V.C.)
| | - Valeria Consoli
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.P.); (V.C.)
| | - Maha Ali Alghamdi
- Department of Biotechnology, College of Science, Taif University, Taif 21974, Saudi Arabia;
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain;
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Khaled Greish
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain;
| |
Collapse
|
15
|
The Role of Neuropilin-2 in the Epithelial to Mesenchymal Transition of Colorectal Cancer: A Systematic Review. Biomedicines 2022; 10:biomedicines10010172. [PMID: 35052853 PMCID: PMC8773800 DOI: 10.3390/biomedicines10010172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
Neuropilin-2 (NRP-2) expression has been found in various investigations on the expression and function of NRP-2 in colorectal cancer. The link between NRP-2 and colorectal cancer, as well as the mechanism that regulates it, is still mostly unclear. This systematic review was carried out according to the Cochrane guidelines for systematic reviews. We searched PubMed, Embase®, MEDLINE, Allied & Complementary MedicineTM, Medical Toxicology & Environmental Health, DH-DATA: Health Administration for articles published before 1 October 2021. The following search terms were used: “neuropilin-2” “neuropilin 2”, “NRP2” and “NRP-2”, “colorectal cancer”, “colon cancer”. Ten articles researching either tumor tissue samples, cell lines, or mice models were included in this review. The majority of human primary and metastatic colon cancer cell lines expressed NRP-2 compared to the normal colonic mucosa. NRPs have been discovered in human cancers as well as neovasculature. The presence of NRP-2 appears to be connected to the epithelial–mesenchymal transition’s function in cancer dissemination and metastatic evolution. The studies were heterogeneous, but the data assessed indicates NRP-2 might have an impact on the metastatic potential of colorectal cancer cells. Nevertheless, further research is needed.
Collapse
|
16
|
Chapoval SP, Keegan AD. Perspectives and potential approaches for targeting neuropilin 1 in SARS-CoV-2 infection. Mol Med 2021; 27:162. [PMID: 34961486 PMCID: PMC8711287 DOI: 10.1186/s10020-021-00423-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel type b coronavirus responsible for the COVID-19 pandemic. With over 224 million confirmed infections with this virus and more than 4.6 million people dead because of it, it is critically important to define the immunological processes occurring in the human response to this virus and pathogenetic mechanisms of its deadly manifestation. This perspective focuses on the contribution of the recently discovered interaction of SARS-CoV-2 Spike protein with neuropilin 1 (NRP1) receptor, NRP1 as a virus entry receptor for SARS-CoV-2, its role in different physiologic and pathologic conditions, and the potential to target the Spike-NRP1 interaction to combat virus infectivity and severe disease manifestations.
Collapse
Affiliation(s)
- Svetlana P Chapoval
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 West Baltimore Street, Baltimore, MD, 21201, USA.
- Program in Oncology at the Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
- SemaPlex LLC, Ellicott City, MD, USA.
| | - Achsah D Keegan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 West Baltimore Street, Baltimore, MD, 21201, USA
- Program in Oncology at the Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, USA
| |
Collapse
|
17
|
Karpińska K, Gielata M, Gwiazdowska A, Boryń Ł, Kobielak A. Catulin Based Reporter System to Track and Characterize the Population of Invasive Cancer Cells in the Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2021; 23:ijms23010140. [PMID: 35008571 PMCID: PMC8745103 DOI: 10.3390/ijms23010140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive tumor with a poor prognosis due to late diagnosis and loco-regional metastasis. Partial or more complete epithelial-mesenchymal transition (EMT) plays a role in tumor progression; however, it remains a challenge to observe the EMT in vivo, due to its transient nature. Here, we developed a novel catulin promoter-based reporter system that allows us to isolate and characterize in vivo a small fraction of invasive cancer cells. The analyses of tumors revealed that Catulin-green fluorescent protein (GFP)-positive cells were enriched in clusters of cells at the tumor invasion front. A functional genomic study unveiled genes involved in cellular movement and invasion providing a molecular profile of HNSCC invasive cells. This profile overlapped partially with the expression of signature genes related to the partial EMT available from the single cell analysis of human HNSCC specimens, highlighting the relevance of our data to the clinical disease progression state. Interestingly, we also observed upregulations of genes involved in axonal guidance-L1 cell adhesion molecule (L1CAM), neuropilin-1, semaphorins, and ephrins, indicating potential interactions of cancer cells and neuronal components of the stroma. Taken together, our data indicated that the catulin reporter system marked a population of invasive HNSCC cells with a molecular profile associated with cancer invasion.
Collapse
Affiliation(s)
- Kamila Karpińska
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
| | - Mateusz Gielata
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
| | - Aleksandra Gwiazdowska
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
| | - Łukasz Boryń
- Laboratory of Stem Cells, Tissue Development and Regeneration, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland;
| | - Agnieszka Kobielak
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
- Correspondence: ; Tel.: +48-22-55-43-735
| |
Collapse
|
18
|
H19- and hsa-miR-338-3p-mediated NRP1 expression is an independent predictor of poor prognosis in glioblastoma. PLoS One 2021; 16:e0260103. [PMID: 34843522 PMCID: PMC8629300 DOI: 10.1371/journal.pone.0260103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and also the most invasive brain cancer. GBM progression is rapid and its prognosis is poor. Therefore, finding molecular targets in GBM is a critical goal that could also play important roles in clinical diagnostics and treatments to improve patient prognosis. We jointly analyzed the GSE103227, GSE103229, and TCGA databases for differentially expressed RNA species, obtaining 52 long non-coding RNAs (lncRNAs), 31 microRNAs (miRNAs), and 186 mRNAs, which were used to build a competing endogenous RNA network. Kaplan–Meier and receiver operating characteristic (ROC) analyses revealed five survival-related lncRNAs: H19, LINC01574, LINC01614, RNF144A-AS1, and OSMR-AS1. With multiple optimization mRNAs, we found the H19-hsa-miR-338-3P-NRP1 regulatory pathway. Additionally, we noted high NRP1 expression in GBM patients, and Kaplan–Meier and ROC analyses showed that NRP1 expression was associated with GBM prognosis. Cox analysis indicated that NRP1 is an independent prognostic factor in GBM patients. In conclusion, H19 and hsa-miR-338-3P regulate NRP1 expression, and this pathway plays an important role in GBM.
Collapse
|
19
|
Chai JY, Sugumar V, Alshawsh MA, Wong WF, Arya A, Chong PP, Looi CY. The Role of Smoothened-Dependent and -Independent Hedgehog Signaling Pathway in Tumorigenesis. Biomedicines 2021; 9:1188. [PMID: 34572373 PMCID: PMC8466551 DOI: 10.3390/biomedicines9091188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
The Hedgehog (Hh)-glioma-associated oncogene homolog (GLI) signaling pathway is highly conserved among mammals, with crucial roles in regulating embryonic development as well as in cancer initiation and progression. The GLI transcription factors (GLI1, GLI2, and GLI3) are effectors of the Hh pathway and are regulated via Smoothened (SMO)-dependent and SMO-independent mechanisms. The SMO-dependent route involves the common Hh-PTCH-SMO axis, and mutations or transcriptional and epigenetic dysregulation at these levels lead to the constitutive activation of GLI transcription factors. Conversely, the SMO-independent route involves the SMO bypass regulation of GLI transcription factors by external signaling pathways and their interacting proteins or by epigenetic and transcriptional regulation of GLI transcription factors expression. Both routes of GLI activation, when dysregulated, have been heavily implicated in tumorigenesis of many known cancers, making them important targets for cancer treatment. Hence, this review describes the various SMO-dependent and SMO-independent routes of GLI regulation in the tumorigenesis of multiple cancers in order to provide a holistic view of the paradigms of hedgehog signaling networks involving GLI regulation. An in-depth understanding of the complex interplay between GLI and various signaling elements could help inspire new therapeutic breakthroughs for the treatment of Hh-GLI-dependent cancers in the future. Lastly, we have presented an up-to-date summary of the latest findings concerning the use of Hh inhibitors in clinical developmental studies and discussed the challenges, perspectives, and possible directions regarding the use of SMO/GLI inhibitors in clinical settings.
Collapse
Affiliation(s)
- Jian Yi Chai
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
| | - Vaisnevee Sugumar
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia;
| | | | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Aditya Arya
- School of Biosciences, Faculty of Science, Building 184, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
| |
Collapse
|
20
|
Benwell CJ, Taylor JAGE, Robinson SD. Endothelial neuropilin-2 influences angiogenesis by regulating actin pattern development and α5-integrin-p-FAK complex recruitment to assembling adhesion sites. FASEB J 2021; 35:e21679. [PMID: 34314542 DOI: 10.1096/fj.202100286r] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023]
Abstract
The ability to form a variety of cell-matrix connections is crucial for angiogenesis to take place. Without stable anchorage to the extracellular matrix (ECM), endothelial cells (ECs) are unable to sense, integrate and disseminate growth factor stimulated responses that drive growth of a vascular bed. Neuropilin-2 (NRP2) is a widely expressed membrane-bound multifunctional non-tyrosine kinase receptor, which has previously been implicated in influencing cell adhesion and migration by interacting with α5-integrin and regulating adhesion turnover. α5-integrin, and its ECM ligand fibronectin (FN) are both known to be upregulated during the formation of neo-vasculature. Despite being descriptively annotated as a candidate biomarker for aggressive cancer phenotypes, the EC-specific roles for NRP2 during developmental and pathological angiogenesis remain unexplored. The data reported here support a model whereby NRP2 actively promotes EC adhesion and migration by regulating dynamic cytoskeletal remodeling and by stimulating Rab11-dependent recycling of α5-integrin-p-FAK complexes to newly assembling adhesion sites. Furthermore, temporal depletion of EC-NRP2 in vivo impairs primary tumor growth by disrupting vessel formation. We also demonstrate that EC-NRP2 is required for normal postnatal retinal vascular development, specifically by regulating cell-matrix adhesion. Upon loss of endothelial NRP2, vascular outgrowth from the optic nerve during superficial plexus formation is disrupted, likely due to reduced FAK phosphorylation within sprouting tip cells.
Collapse
Affiliation(s)
- Christopher J Benwell
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - James A G E Taylor
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Stephen D Robinson
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
21
|
Napolitano V, Russo D, Morra F, Merolla F, Varricchio S, Ilardi G, Di Crescenzo RM, Martino F, Mascolo M, Celetti A, Tamagnone L, Staibano S. Neuropilin-1 Expression Associates with Poor Prognosis in HNSCC and Elicits EGFR Activation upon CDDP-Induced Cytotoxic Stress. Cancers (Basel) 2021; 13:3822. [PMID: 34359721 PMCID: PMC8345038 DOI: 10.3390/cancers13153822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) includes a group of aggressive malignancies characterized by the overexpression of the epidermal growth factor receptor (EGFR) in 90% of cases. Neuropilin-1 (NRP-1) acts as an EGFR co-receptor, enhancing, upon ligand stimulation, EGFR signaling in several cellular models. However, NRP-1 remains poorly characterized in HNSCC. By utilizing in vitro cellular models of HNSCC, we report that NRP-1 is involved in the regulation of EGFR signaling. In fact, NRP-1 can lead to cisplatin-induced EGFR phosphorylation, an escape mechanism activated by cancer cells upon cytotoxic stress. Furthermore, we evaluated Neuropilin-1 staining in tissue samples of an HNSCC case series (n = 218), unraveling a prognostic value for the Neuropilin-1 tissue expression. These data suggest a potential role for NRP-1 in HNSCC cancer progression, expanding the repertoire of signaling in which NRP-1 is involved and eliciting the need for further investigations on NRP-1 as a suitable target for HNSCC novel therapeutic approaches.
Collapse
Affiliation(s)
- Virginia Napolitano
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (V.N.); (L.T.)
| | - Daniela Russo
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Francesco Morra
- Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore”, CNR, 80131 Napoli, Italy; (F.M.); (A.C.)
| | - Francesco Merolla
- Dipartimento di Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Silvia Varricchio
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Gennaro Ilardi
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Rosa Maria Di Crescenzo
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Francesco Martino
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Massimo Mascolo
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Angela Celetti
- Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore”, CNR, 80131 Napoli, Italy; (F.M.); (A.C.)
| | - Luca Tamagnone
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (V.N.); (L.T.)
- Fondazione Policlinico “A. Gemelli”, IRCCS, 00168 Roma, Italy
| | - Stefania Staibano
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| |
Collapse
|
22
|
Douyère M, Chastagner P, Boura C. Neuropilin-1: A Key Protein to Consider in the Progression of Pediatric Brain Tumors. Front Oncol 2021; 11:665634. [PMID: 34277411 PMCID: PMC8281001 DOI: 10.3389/fonc.2021.665634] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropilins are transmembrane glycoproteins that play important roles in cardiovascular and neuronal development, as well as in immunological system regulations. NRP1 functions as a co-receptor, binding numerous ligands, such as SEMA 3 or VEGF and, by doing so, reinforcing their signaling pathways and can also interface with the cytoplasmic protein synectin. NRP1 is expressed in many cancers, such as brain cancers, and is associated with poor prognosis. The challenge today for patients with pediatric brain tumors is to improve their survival rate while minimizing the toxicity of current treatments. The aim of this review is to highlight the involvement of NRP1 in pediatric brain cancers, focusing essentially on the roles of NRP1 in cancer stem cells and in the regulation of the immune system. For this purpose, recent literature and tumor databases were analyzed to show correlations between NRP1 and CD15 (a stem cancer cells marker), and between NRP1 and PDL1, for various pediatric brain tumors, such as high- and low-grade gliomas, medulloblastomas, and ependymomas. Finally, this review suggests a relevant role for NRP1 in pediatric brain tumors progression and identifies it as a potential diagnostic or therapeutic target to improve survival and life quality of these young patients.
Collapse
Affiliation(s)
| | - Pascal Chastagner
- Université de Lorraine, CNRS, CRAN, Nancy, France.,Service d'Onco-Hématologie Pédiatrique, CHRU-Nancy, Nancy, France
| | - Cédric Boura
- Université de Lorraine, CNRS, CRAN, Nancy, France
| |
Collapse
|
23
|
Chatterjee G, Dudakia V, Ghogale S, Deshpande N, Girase K, Chaturvedi A, Shetty D, Senger M, Jain H, Bagal B, Bonda A, Punatar S, Gokarn A, Khattry N, Patkar NV, Gujral S, Subramanian PG, Tembhare PR. Expression of CD304/neuropilin-1 in adult b-cell lymphoblastic leukemia/lymphoma and its utility for the measurable residual disease assessment. Int J Lab Hematol 2021; 43:990-999. [PMID: 33432783 DOI: 10.1111/ijlh.13456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/27/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Many new markers are being evaluated to increase the sensitivity and applicability of multicolor flow cytometry (MFC)-based measurable residual disease (MRD) monitoring. However, most of the studies are limited to childhood B-cell lymphoblastic leukemia/lymphoma (B-ALL), and reports in adult B-ALL are extremely scarce and limited to small cohorts. We studied the expression of CD304/neuropilin-1 in a large cohort of adult B-ALL patients and evaluated its practical utility in MFC-based MRD analysis. METHODS CD304 was studied in blasts from adult B-ALL patients and normal precursor B cells (NPBC) from non-B-ALL bone marrow samples using MFC. CD304 expression intensity and pattern were studied with normalized-mean fluorescent intensity (nMFI) and coefficient of variation of immunofluorescence (CVIF), respectively. MFC-based MRD was performed at end of induction (EOI; day-35), end of consolidation (EOC; day 78-80), and subsequent follow-up (SFU) time points. RESULTS CD304 was positive in 120/214(56.07%) and was significantly associated with BCR-ABL1 fusion (P = .001). EOI-MRD and EOC-MRD were positive in 129/214(60.3%) and 50/81(61.72%), respectively. CD304 was positive in a significant percentage of EOI (48%, 62/129) and EOC (52%, 26/50) MRD-positive B-ALL samples. Its expression was retained, lost, and gained in 73.7%, 26.3%, and 11.3% of EOI-MRD and 85.7%, 14.3%, and none of EOC-MRD samples, respectively. Low-level MRD (<0.01%) was detectable in 34 of all (EOI + EOC + SFU = 189) MRD-positive samples, and CD304 was found useful in 50% of these samples. CONCLUSION CD304 is commonly expressed in adult B-ALL and clearly distinguish B-ALL blasts from normal precursor B cells. It is a stable MRD marker and distinctly useful in the detection of MFC-based MRD monitoring, especially in high-sensitivity MRD assay.
Collapse
Affiliation(s)
- Gaurav Chatterjee
- Department of Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, India
| | - Vishesh Dudakia
- Department of Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, India
| | - Sitaram Ghogale
- Department of Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, India
| | - Nilesh Deshpande
- Department of Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, India
| | - Karishma Girase
- Department of Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, India
| | - Anumeha Chaturvedi
- Department of Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, India
| | - Dhanlaxmi Shetty
- Department of Department of Cancer Cytogenetics, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, India
| | - Manju Senger
- Department of Medical Oncology, Tata Memorial Center, HBNI University, Mumbai, India
| | - Hasmukh Jain
- Department of Medical Oncology, Tata Memorial Center, HBNI University, Mumbai, India
| | - Bhausaheb Bagal
- Department of Medical Oncology, Tata Memorial Center, HBNI University, Mumbai, India
| | - Avinash Bonda
- Department of Medical Oncology, Tata Memorial Center, HBNI University, Mumbai, India
| | - Sachin Punatar
- Department of Medical Oncology, Tata Memorial Center, HBNI University, Mumbai, India
| | - Anant Gokarn
- Department of Medical Oncology, Tata Memorial Center, HBNI University, Mumbai, India
| | - Navin Khattry
- Department of Medical Oncology, Tata Memorial Center, HBNI University, Mumbai, India
| | - Nikhil V Patkar
- Department of Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, India
| | - Sumeet Gujral
- Department of Pathology, Tata Memorial Center, HBNI University, Mumbai, India
| | - Papagudi G Subramanian
- Department of Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, India
| | - Prashant R Tembhare
- Department of Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, India
| |
Collapse
|
24
|
Eloranta K, Nousiainen R, Cairo S, Pakarinen MP, Wilson DB, Pihlajoki M, Heikinheimo M. Neuropilin-2 Is Associated With Increased Hepatoblastoma Cell Viability and Motility. Front Pediatr 2021; 9:660482. [PMID: 34239847 PMCID: PMC8257959 DOI: 10.3389/fped.2021.660482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/27/2021] [Indexed: 12/29/2022] Open
Abstract
The neuropilins NRP1 and NRP2 are multifunctional glycoproteins that have been implicated in several cancer-related processes including cell survival, migration, and invasion in various tumor types. Here, we examine the role of neuropilins in hepatoblastoma (HB), the most common pediatric liver malignancy. Using a combination of immunohistochemistry, RNA analysis and western blotting, we observed high level expression of NRP1 and NRP2 in 19 of 20 HB specimens and in a majority of human HB cell lines (HUH6 and five cell lines established from patient-derived xenografts) studied but not in normal hepatocytes. Silencing of NRP2 expression in HUH6 and HB-282 HB cells resulted in decreased cell viability, impaired cytoskeleton remodeling, and reduced cell motility, suggesting that NRP2 contributes to the malignant phenotype. We propose that neuropilins warrant further investigation as biomarkers of HB and potential therapeutic targets.
Collapse
Affiliation(s)
- Katja Eloranta
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Ruth Nousiainen
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Stefano Cairo
- XenTech, Evry, France.,Istituto di Ricerca Pediatrica, Padova, Italy
| | - Mikko P Pakarinen
- Pediatric Surgery, and Pediatric Liver and Gut Research Group, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - David B Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO, United States.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Marjut Pihlajoki
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Markku Heikinheimo
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO, United States
| |
Collapse
|
25
|
Early urinary protein changes during tumor formation in a NuTu-19 tail vein injection rat model. Sci Rep 2020; 10:11709. [PMID: 32678190 PMCID: PMC7367258 DOI: 10.1038/s41598-020-68674-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Early detection of cancer is essential for effective intervention. Urine has been used to reflect early changes in various tumor-bearing models. However, urine has not been used to predict whether tumors will form in animal models. In this study, a cancer model was established by tail vein injection of 2 million NuTu-19 tumor cells. Urine samples were randomly selected from tumor-forming and non-tumor-forming rats on day 0/12/27/39/52 and were analyzed by label-free and parallel reaction monitoring targeted proteomic quantitative analyses. In tumor-forming rats, differential proteins were associated with tumor cell migration, TGF-β signaling and the STAT3 pathway. A total of 9 urinary proteins showed significant changes in the early phase of lung tumor formation in all eight tumor-bearing rats. Differential proteins in non-tumor-forming rats were associated with glutathione biosynthesis, IL-12 signaling and vitamin metabolism. A total of 12 urinary proteins changed significantly in the early phase in all seven non-tumor-forming rats. Our small-scale pilot study indicated that (1) the urinary proteome reflects early changes during lung tumor formation and that (2) the urinary proteome can distinguish early tumor-forming rats from non-tumor-forming rats.
Collapse
|
26
|
Zhang X, Shao S, Li L. Characterization of Class-3 Semaphorin Receptors, Neuropilins and Plexins, as Therapeutic Targets in a Pan-Cancer Study. Cancers (Basel) 2020; 12:cancers12071816. [PMID: 32640719 PMCID: PMC7409005 DOI: 10.3390/cancers12071816] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
Class-3 semaphorins (SEMA3s), initially characterized as axon guidance cues, have been recognized as key regulators for immune responses, angiogenesis, tumorigenesis and drug responses. The functions of SEMA3s are attributed to the activation of downstream signaling cascades mainly mediated by cell surface receptors neuropilins (NRPs) and plexins (PLXNs), yet their roles in human cancers are not completely understood. Here, we provided a detailed pan-cancer analysis of NRPs and PLXNs in their expression, and association with key signal transducers, patient survival, tumor microenvironment (TME), and drug responses. The expression of NRPs and PLXNs were dysregulated in many cancer types, and the majority of them were further dysregulated in metastatic tumors, indicating a role in metastatic progression. Importantly, the expression of these genes was frequently associated with key transducers, patient survival, TME, and drug responses; however, the direction of the association varied for the particular gene queried and the specific cancer type/subtype tested. Specifically, NRP1, NRP2, PLXNA1, PLXNA3, PLXNB3, PLXNC1, and PLXND1 were primarily associated with aggressive phenotypes, whereas the rest were more associated with favorable prognosis. These data highlighted the need to study each as a separate entity in a cancer type- and subtype-dependent manner.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH 43210, USA;
- Correspondence:
| | - Shuai Shao
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43201, USA;
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH 43210, USA;
| |
Collapse
|
27
|
Bai J, Duan J, Liu R, Du Y, Luo Q, Cui Y, Su Z, Xu J, Xie Y, Lu W. Engineered targeting tLyp-1 exosomes as gene therapy vectors for efficient delivery of siRNA into lung cancer cells. Asian J Pharm Sci 2020; 15:461-471. [PMID: 32952669 PMCID: PMC7486479 DOI: 10.1016/j.ajps.2019.04.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/12/2019] [Accepted: 04/27/2019] [Indexed: 12/20/2022] Open
Abstract
Natural exosomes can express specific proteins and carbohydrate molecules on the surface and hence have demonstrated the great potentials for gene therapy of cancer. However, the use of natural exosomes is restricted by their low transfection efficiency. Here, we report a novel targeting tLyp-1 exosome by gene recombinant engineering for delivery of siRNA to cancer and cancer stem cells. To reach such a purpose, the engineered tLyp-1-lamp2b plasmids were constructed and amplified in Escherichia coli. The tLyp-1-lamp2b plasmids were further used to transfect HEK293T tool cells and the targeting tLyp-1 exosomes were isolated from secretion of the transfected HEK293T cells. Afterwards, the artificially synthesized siRNA was encapsulated into targeting tLyp-1 exosomes by electroporation technology. Finally, the targeting siRNA tLyp-1 exosomes were used to transfect cancer or cancer stem cells. Results showed that the engineered targeting tLyp-1 exosomes had a nanosized structure (approximately 100 nm) and high transfection efficiency into lung cancer and cancer stem cells. The function verifications demonstrated that the targeting siRNA tLyp-1 exosomes were able to knock-down the target gene of cancer cells and to reduce the stemness of cancer stem cells. In conclusion, the targeting tLyp-1 exosomes are successfully engineered, and can be used for gene therapy with a high transfection efficiency. Therefore, the engineered targeting tLyp-1 exosomes offer a promising gene delivery platform for future cancer therapy.
Collapse
Affiliation(s)
- Jing Bai
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialun Duan
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Rui Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yafei Du
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qian Luo
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yinuo Cui
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhanbo Su
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiarui Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying Xie
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wanliang Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
28
|
Alghamdi AAA, Benwell CJ, Atkinson SJ, Lambert J, Johnson RT, Robinson SD. NRP2 as an Emerging Angiogenic Player; Promoting Endothelial Cell Adhesion and Migration by Regulating Recycling of α5 Integrin. Front Cell Dev Biol 2020; 8:395. [PMID: 32528960 PMCID: PMC7264094 DOI: 10.3389/fcell.2020.00395] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/29/2020] [Indexed: 01/01/2023] Open
Abstract
Angiogenesis relies on the ability of endothelial cells (ECs) to migrate over the extracellular matrix via integrin receptors to respond to an angiogenic stimulus. Of the two neuropilin (NRP) orthologs to be identified, both have been reported to be expressed on normal blood and lymphatic ECs, and to play roles in the formation of blood and lymphatic vascular networks during angiogenesis. Whilst the role of NRP1 and its interactions with integrins during angiogenesis has been widely studied, the role of NRP2 in ECs is poorly understood. Here we demonstrate that NRP2 promotes Rac-1 mediated EC adhesion and migration over fibronectin (FN) matrices in a mechanistically distinct fashion to NRP1, showing no dependence on β3 integrin (ITGB3) expression, or VEGF stimulation. Furthermore, we highlight evidence of a regulatory crosstalk between NRP2 and α5 integrin (ITGA5) in ECs, with NRP2 depletion eliciting an upregulation of ITGA5 expression and disruptions in ITGA5 cellular organization. Finally, we propose a mechanism whereby NRP2 promotes ITGA5 recycling in ECs; NRP2 depleted ECs were found to exhibit reduced levels of total ITGA5 subunit recycling compared to wild-type (WT) ECs. Our findings expose NRP2 as a novel angiogenic player by promoting ITGA5-mediated EC adhesion and migration on FN.
Collapse
Affiliation(s)
- Abdullah A A Alghamdi
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Christopher J Benwell
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Samuel J Atkinson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jordi Lambert
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Robert T Johnson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Stephen D Robinson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.,Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
29
|
Puszko AK, Sosnowski P, Raynaud F, Hermine O, Hopfgartner G, Lepelletier Y, Misicka A. Does Cysteine Rule (CysR) Complete the CendR Principle? Increase in Affinity of Peptide Ligands for NRP-1 Through the Presence of N-Terminal Cysteine. Biomolecules 2020; 10:biom10030448. [PMID: 32183142 PMCID: PMC7175122 DOI: 10.3390/biom10030448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/23/2020] [Accepted: 03/05/2020] [Indexed: 01/13/2023] Open
Abstract
The structure-activity relationship of branched H-Lys(hArg)-Dab-Dhp-Arg-OH sequence analogues, modified with Cys-Asp or Cys at N-terminal amino acids (Lys, hArg), in VEGF-A165/Neuropilin-1 complex inhibition is presented. The addition of Cys residue led to a 100-fold decrease in the IC50 value, compared to the parent peptide. The change occurred regardless of coupling Cys to the free N-terminal amino group present in the main or the side chain. A few analogues extended by the attachment of Cys at the N-terminus of several potent NRP-1 peptide ligands documented in the literature are also presented. In all studied cases, the enhancement of inhibitory properties after the addition of Cys at the N-terminus is observed. It is particularly evident for the tetrapeptide derived from the C-terminus of VEGF-A165 (KPRR), suggesting that extending the K/RXXK/R motif (CendR) with the Cys moiety can significantly improve affinity to NRP-1 of CendR peptides.
Collapse
Affiliation(s)
- Anna K. Puszko
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - Piotr Sosnowski
- Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 4 Geneva, Switzerland; (P.S.); (G.H.)
| | - Françoise Raynaud
- Imagine Institute, Université de Paris, 24 boulevard Montparnasse, 75015 Paris, France; (F.R.); (O.H.)
- INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications, 24 boulevard Montparnasse, 75015 Paris, France
- CNRS ERL 8254, 24 boulevard Montparnasse, 75015 Paris, France
| | - Olivier Hermine
- Imagine Institute, Université de Paris, 24 boulevard Montparnasse, 75015 Paris, France; (F.R.); (O.H.)
- INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications, 24 boulevard Montparnasse, 75015 Paris, France
- CNRS ERL 8254, 24 boulevard Montparnasse, 75015 Paris, France
| | - Gérard Hopfgartner
- Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 4 Geneva, Switzerland; (P.S.); (G.H.)
| | - Yves Lepelletier
- Imagine Institute, Université de Paris, 24 boulevard Montparnasse, 75015 Paris, France; (F.R.); (O.H.)
- INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications, 24 boulevard Montparnasse, 75015 Paris, France
- CNRS ERL 8254, 24 boulevard Montparnasse, 75015 Paris, France
- Correspondence: (Y.L.); (A.M.); Tel.: +33-14275-4283 (Y.L.); +48-22-552-6424 (A.M.)
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
- Correspondence: (Y.L.); (A.M.); Tel.: +33-14275-4283 (Y.L.); +48-22-552-6424 (A.M.)
| |
Collapse
|
30
|
Neuropilin: Handyman and Power Broker in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:31-67. [PMID: 32030684 DOI: 10.1007/978-3-030-35582-1_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neuropilin-1 and neuropilin-2 form a small family of transmembrane receptors, which, due to the lack of a cytosolic protein kinase domain, act primarily as co-receptors for various ligands. Performing at the molecular level both the executive and organizing functions of a handyman as well as of a power broker, they are instrumental in controlling the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. In this setting, the various neuropilin ligands and interaction partners on various cells of the tumor microenvironment, such as cancer cells, endothelial cells, cancer-associated fibroblasts, and immune cells, are surveyed. The suitability of various neuropilin-targeting substances and the intervention in neuropilin-mediated interactions is considered as a possible building block of tumor therapy.
Collapse
|
31
|
Gudapati P, Khanka T, Chatterjee G, Ghogale S, Badrinath Y, Deshpande N, Patil J, Narula G, Shetty D, Banavali S, Patkar NV, Gujral S, Subramanian PG, Tembhare PR. CD304/neuropilin‐1 is a very useful and dependable marker for the measurable residual disease assessment of B‐cell precursor acute lymphoblastic leukemia. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 98:328-335. [DOI: 10.1002/cyto.b.21866] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/27/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Pratyusha Gudapati
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
- Homi Bhabha National Institute Mumbai Maharashtra
| | - Twinkle Khanka
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
- Homi Bhabha National Institute Mumbai Maharashtra
| | - Gaurav Chatterjee
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
- Homi Bhabha National Institute Mumbai Maharashtra
| | - Sitaram Ghogale
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
- Homi Bhabha National Institute Mumbai Maharashtra
| | - Yajamanam Badrinath
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
- Homi Bhabha National Institute Mumbai Maharashtra
| | - Nilesh Deshpande
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
- Homi Bhabha National Institute Mumbai Maharashtra
| | - Jagruti Patil
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
- Homi Bhabha National Institute Mumbai Maharashtra
| | - Gaurav Narula
- Homi Bhabha National Institute Mumbai Maharashtra
- Department of Pediatric OncologyTata Memorial Center, Tata Memorial Hospital, Parel Mumbai India
| | - Dhanalaxmi Shetty
- Homi Bhabha National Institute Mumbai Maharashtra
- Department of Cancer Cytogenetics, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
| | - Shripad Banavali
- Homi Bhabha National Institute Mumbai Maharashtra
- Department of Pediatric OncologyTata Memorial Center, Tata Memorial Hospital, Parel Mumbai India
| | - Nikhil V. Patkar
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
- Homi Bhabha National Institute Mumbai Maharashtra
| | - Sumeet Gujral
- Homi Bhabha National Institute Mumbai Maharashtra
- Hematopathology LaboratoryTata Memorial Center, Tata Memorial Hospital Mumbai India
| | - Papagudi G. Subramanian
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
- Homi Bhabha National Institute Mumbai Maharashtra
| | - Prashant R. Tembhare
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
- Homi Bhabha National Institute Mumbai Maharashtra
| |
Collapse
|
32
|
Metabolic Remodelling: An Accomplice for New Therapeutic Strategies to Fight Lung Cancer. Antioxidants (Basel) 2019; 8:antiox8120603. [PMID: 31795465 PMCID: PMC6943435 DOI: 10.3390/antiox8120603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Metabolic remodelling is a hallmark of cancer, however little has been unravelled in its role in chemoresistance, which is a major hurdle to cancer control. Lung cancer is a leading cause of death by cancer, mainly due to the diagnosis at an advanced stage and to the development of resistance to therapy. Targeted therapeutic agents combined with comprehensive drugs are commonly used to treat lung cancer. However, resistance mechanisms are difficult to avoid. In this review, we will address some of those therapeutic regimens, resistance mechanisms that are eventually developed by lung cancer cells, metabolic alterations that have already been described in lung cancer and putative new therapeutic strategies, and the integration of conventional drugs and genetic and metabolic-targeted therapies. The oxidative stress is pivotal in this whole network. A better understanding of cancer cell metabolism and molecular adaptations underlying resistance mechanisms will provide clues to design new therapeutic strategies, including the combination of chemotherapeutic and targeted agents, considering metabolic intervenients. As cancer cells undergo a constant metabolic adaptive drift, therapeutic regimens must constantly adapt.
Collapse
|
33
|
Oplawski M, Dziobek K, Grabarek B, Zmarzły N, Dąbruś D, Januszyk P, Brus R, Tomala B, Boroń D. Expression of NRP-1 and NRP-2 in Endometrial Cancer. Curr Pharm Biotechnol 2019; 20:254-260. [PMID: 30806307 PMCID: PMC6635647 DOI: 10.2174/1389201020666190219121602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/25/2018] [Accepted: 02/10/2019] [Indexed: 01/23/2023]
Abstract
Background: Neuropilins (NRPs) participate in many processes related to cancer development such as angiogenesis, lymphangiogenesis and metastasis. Although endometrial cancer is one of the most common gynecological cancers, it has not been studied in terms of NRPs expression. Objective: The aim of this study was to investigate the potential utility of NRPs as important factors in the diagnosis and treatment of endometrial cancer. Methods: Our study consisted of 45 women diagnosed with endometrial cancer at the following degrees of histological differentiation: G1, 17; G2, 15; G3, 13 cases. The control group included 15 women without neoplastic changes. The immunohistochemical reactions were evaluated using light microscopy. Results: We did not detect the expression of NRP-1 and NRP-2 in the control group. NRP-1 expression was found exclusively in cancer cells. It was higher in G2 and G3 and reached about 190% of G1. NRP-2 expression was observed in the endothelium and was similar across all three cancer grades. In cancer cells, NRP-2 expression increased with the degree of histological differentiation. Conclusion: NRP1 and NRP2 are candidates for complementary diagnostic molecular markers and promising new targets for molecular, personalized anticancer therapies.
Collapse
Affiliation(s)
- Marcin Oplawski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| | - Konrad Dziobek
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| | - Beniamin Grabarek
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Nikola Zmarzły
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Dariusz Dąbruś
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Piotr Januszyk
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Ryszard Brus
- Department of Nurse, High School of Strategic Planning, Koscielna 6, 41-303, Dabrowa Gornicza, Poland
| | - Barbara Tomala
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Dariusz Boroń
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland.,Department of Histology and Cell Pathology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland.,Katowice School of Technology, The University of Science and Art, Katowice, Poland
| |
Collapse
|
34
|
Puszko AK, Sosnowski P, Pułka-Ziach K, Hermine O, Hopfgartner G, Lepelletier Y, Misicka A. Urea moiety as amide bond mimetic in peptide-like inhibitors of VEGF-A 165/NRP-1 complex. Bioorg Med Chem Lett 2019; 29:2493-2497. [PMID: 31326342 DOI: 10.1016/j.bmcl.2019.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 12/23/2022]
Abstract
NRP-1 is an important co-receptor of vascular endothelial growth factor receptor-2 (VEGFR-2). Many reports suggested that NRP-1 might also serve as a separate receptor for VEGF-A165 causing stimulation of tumour growth and metastasis. Therefore, compounds interfering with VEGF-A165/NRP-1 complex triggered interest in the design of new molecules, including peptides, as anti-angiogenic and anti-tumour drugs. Here, we report the synthesis, affinity and stability evaluation of the urea-peptide hybrids, based on general Lys(hArg)-AA2-AA3-Arg sequence, where hArg residue was substituted by Arg urea unit. Such substitution does not substantially affected affinity of compounds for NRP-1 but significantly increased their proteolytic stability in plasma.
Collapse
Affiliation(s)
- Anna K Puszko
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Piotr Sosnowski
- Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland; Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | | | - Olivier Hermine
- Université de Paris, Imagine Institute, 24 Boulevard Montparnasse, 75015 Paris, France; INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications, 24 Boulevard Montparnasse, 75015 Paris, France; CNRS ERL 8254, 24 Boulevard Montparnasse, 75015 Paris, France
| | - Gérard Hopfgartner
- Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Yves Lepelletier
- Université de Paris, Imagine Institute, 24 Boulevard Montparnasse, 75015 Paris, France; INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications, 24 Boulevard Montparnasse, 75015 Paris, France; CNRS ERL 8254, 24 Boulevard Montparnasse, 75015 Paris, France
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland.
| |
Collapse
|
35
|
Demin DE, Afanasyeva MA, Uvarova AN, Prokofjeva MM, Gorbachova AM, Ustiugova AS, Klepikova AV, Putlyaeva LV, Tatosyan KA, Belousov PV, Schwartz AM. Constitutive Expression of NRAS with Q61R Driver Mutation Activates Processes of Epithelial-Mesenchymal Transition and Leads to Substantial Transcriptome Change of Nthy-ori 3-1 Thyroid Epithelial Cells. BIOCHEMISTRY (MOSCOW) 2019; 84:416-425. [PMID: 31228933 DOI: 10.1134/s0006297919040096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Q61R mutation of the NRAS gene is one of the most frequent driver mutations of thyroid cancer. Tumors with this mutation are characterized by invasion into blood vessels and formation of distant metastases. To study the role of this mutation in the growth of thyroid cancer, we developed a model system on the basis of thyroid epithelial cell line Nthy-ori 3-1 transduced by a lentiviral vector containing the NRAS gene with the Q61R mutation. It was found that the expression of NRAS(Q61R) in thyroid epithelial cells has a profound influence on groups of genes involved in the formation of intercellular contacts, as well as in processes of epithelial-mesenchymal transition and cell invasion. The alteration in the expression of these genes affects the phenotype of the model cells, which acquire traits of mesenchymal cells and demonstrate increased ability for survival and growth without attachment to the substrate. The key regulators of these processes are transcription factors belonging to families SNAIL, ZEB, and TWIST, and in different types of tumors the contribution of each individual factor can vary greatly. In our model system, phenotype change correlates with an increase in the expression of SNAIL2 and TWIST2 factors, which indicates their possible role in regulating invasive growth of thyroid cancer with the mutation of NRAS(Q61R).
Collapse
Affiliation(s)
- D E Demin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Moscow Institute of Physics and Technology, Moscow, 141701, Russia
| | - M A Afanasyeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - A N Uvarova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - M M Prokofjeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - A M Gorbachova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - A S Ustiugova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - A V Klepikova
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - L V Putlyaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - K A Tatosyan
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - P V Belousov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - A M Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia. .,Moscow Institute of Physics and Technology, Moscow, 141701, Russia
| |
Collapse
|
36
|
Napolitano V, Tamagnone L. Neuropilins Controlling Cancer Therapy Responsiveness. Int J Mol Sci 2019; 20:ijms20082049. [PMID: 31027288 PMCID: PMC6515012 DOI: 10.3390/ijms20082049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/17/2022] Open
Abstract
Neuropilins (NRPs) are cell surface glycoproteins, acting as co-receptors for secreted Semaphorins (SEMAs) and for members of the vascular endothelial growth factor (VEGF) family; they have been initially implicated in axon guidance and angiogenesis regulation, and more recently in cancer progression. In addition, NRPs have been shown to control many other fundamental signaling pathways, especially mediated by tyrosine kinase receptors (RTKs) of growth factors, such as HGF (hepatocyte growth factor), PDGF (platelet derived growth factor) and EGF (epidermal growth factor). This enables NRPs to control a range of pivotal mechanisms in the cancer context, from tumor cell proliferation and metastatic dissemination, to tumor angiogenesis and immune escape. Moreover, cancer treatment failures due to resistance to innovative oncogene-targeted drugs is typically associated with the activity of alternative RTK-dependent pathways; and neuropilins’ capacity to control oncogenic signaling cascades supports the hypothesis that they could elicit such mechanisms in cancer cells, in order to escape cytotoxic stress and therapeutic attacks. Intriguingly, several studies have recently assayed the impact of NRPs inhibition in combination with diverse anti-cancer drugs. In this minireview, we will discuss the state-of-art about the relevance of NRPs as potential predictive biomarkers of drug response, and the rationale to target these proteins in combination with other anticancer therapies.
Collapse
Affiliation(s)
- Virginia Napolitano
- Cancer Cell Biology Laboratory, Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo, Italy.
| | - Luca Tamagnone
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, 10168 Rome, Italy.
- Fondazione Policlinico Universitario Agostino Gemelli, 10168 Rome, Italy.
| |
Collapse
|
37
|
Ding Z, Zhu J, Zeng Y, Du W, Zhang Y, Tang H, Zheng Y, Qin H, Liu Z, Huang JA. The regulation of Neuropilin 1 expression by miR-338-3p promotes non-small cell lung cancer via changes in EGFR signaling. Mol Carcinog 2019; 58:1019-1032. [PMID: 30811684 PMCID: PMC6593466 DOI: 10.1002/mc.22990] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Neuropilin 1 (NRP1) is a transmembrane glycoprotein that acts as a co‐receptor for multiple extracellular ligands and typically performs growth‐promoting functions in cancer cells. Accumulating evidence indicates that NRP1 is upregulated, and may be an independent predictor of cancer relapse and poor survival, in many cancer types, including non‐small cell lung cancer (NSCLC). Recent evidence suggests that NRP1 affects tumour cell viability via the epidermal growth factor receptor (EGFR) and Erb‐B2 receptor tyrosine kinase 2 (ErbB2) signalling pathways in venous endothelial cells and in multiple cancer cells. In the present study, we aimed to evaluate the role of NRP1 in NSCLC tumourigenesis and to explore a new post‐transcriptional mechanism of NRP1 regulation via a microRNA that mediates EGFR signalling regulation in lung carcinogenesis. The results showed that miR‐338‐3p is poorly expressed and NRP1 is overexpressed in NSCLC tissues relative to their levels in adjacent noncancerous tissues. Luciferase reporter assays, quantitative real‐time reverse transcription PCR, and Western blot analyses showed that NRP1 is a direct target of miR‐338‐3p. Overexpression of miR‐338‐3p in NSCLC cell lines inhibited cell proliferation in vitro and in vivo. Moreover, cell migration and invasion were inhibited by miR‐338‐3p overexpression. These effects occurred via the EGF signalling pathway. Our data revealed a new post‐transcriptional mechanism by which miR‐338‐3p directly targets NRP1; this mechanism plays a role in enhancing drug sensitivity in EGFR wild‐type patients with NSCLC.
Collapse
Affiliation(s)
- Zongli Ding
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China.,Department of Respiratory Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Jianjie Zhu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Yuanyuan Zeng
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Wenwen Du
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China
| | - Yang Zhang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China
| | - Haicheng Tang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yulong Zheng
- Department of Respiratory Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Hualong Qin
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zeyi Liu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Jian-An Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| |
Collapse
|
38
|
Niland S, Eble JA. Neuropilins in the Context of Tumor Vasculature. Int J Mol Sci 2019; 20:ijms20030639. [PMID: 30717262 PMCID: PMC6387129 DOI: 10.3390/ijms20030639] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 01/09/2023] Open
Abstract
Neuropilin-1 and Neuropilin-2 form a small family of plasma membrane spanning receptors originally identified by the binding of semaphorin and vascular endothelial growth factor. Having no cytosolic protein kinase domain, they function predominantly as co-receptors of other receptors for various ligands. As such, they critically modulate the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. This review highlights the diverse neuropilin ligands and interacting partners on endothelial cells, which are relevant in the context of the tumor vasculature and the tumor microenvironment. In addition to tumor cells, the latter contains cancer-associated fibroblasts, immune cells, and endothelial cells. Based on the prevalent neuropilin-mediated interactions, the suitability of various neuropilin-targeted substances for influencing tumor angiogenesis as a possible building block of a tumor therapy is discussed.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
39
|
Kiso M, Tanaka S, Saji S, Toi M, Sato F. Long isoform of VEGF stimulates cell migration of breast cancer by filopodia formation via NRP1/ARHGAP17/Cdc42 regulatory network. Int J Cancer 2018; 143:2905-2918. [PMID: 29971782 PMCID: PMC6282968 DOI: 10.1002/ijc.31645] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 05/15/2018] [Accepted: 05/24/2018] [Indexed: 01/04/2023]
Abstract
VEGF stimulates endothelial cells as a key molecule in angiogenesis. VEGF also works as a multifunction molecule, which targets a variety of cell members in the tumor microenvironment. We aimed to reveal VEGF-related molecular mechanisms on breast cancer cells. VEGF-knocked-out MDA-MB-231 cells (231 VEGFKOex3 ) showed rounded morphology and shorter perimeter (1.6-fold, p < 0.0001). The 231 VEGFKOex3 cells also showed impaired cell migration (2.6-fold, p = 0.002). Bevacizumab treatment did not induce any change in morphology and mobility. Soluble neuropilin-1 overexpressing MDA-MB-231 cells (231 sNRP1 ) exhibited rounded morphology and shorter perimeter (1.3-fold, p < 0.0001). The 231 sNRP1 cells also showed impaired cell migration (1.7-fold, p = 0.003). These changes were similar to that of 231 VEGFKOex3 cells. As MDA-MB-231 cells express almost no VEGFR, these results indicate that the interaction between NRP1 and long isoform of VEGF containing a NRP-binding domain regulates the morphology and migration ability of MDA-MB-231 cells. Genome-wide gene expression profiling identified ARHGAP17 as one of the target genes in the downstream of the VEGF/NRP1 signal. We also show that VEGF/NRP1 signal controls filopodia formation of the cells by modulating Cdc42 activity via ARHGAP17. Among 1,980 breast cancer cases from a public database, the ratio of VEGF and SEMA3A in primary tumors (n = 450) of hormone-receptor-negative breast cancer is associated with ARHGAP17 expression inversely, and with disease free survival. Altogether, the bevacizumab-independent VEGF/NRP1/ARHGAP17/Cdc42 regulatory network plays important roles in malignant behavior of breast cancer.
Collapse
Affiliation(s)
- Marina Kiso
- Department of Breast SurgeryGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Sunao Tanaka
- Department of Breast SurgeryGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Shigehira Saji
- Department of Medical OncologyFukushima Medical UniversityFukushimaJapan
| | - Masakazu Toi
- Department of Breast SurgeryGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Fumiaki Sato
- Department of Breast SurgeryGraduate School of Medicine, Kyoto UniversityKyotoJapan
| |
Collapse
|
40
|
Kowalczuk O, Laudanski J, Laudanski W, Niklinska WE, Kozlowski M, Niklinski J. Lymphatics-associated genes are downregulated at transcription level in non-small cell lung cancer. Oncol Lett 2018; 15:6752-6762. [PMID: 29849784 DOI: 10.3892/ol.2018.8159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 10/17/2017] [Indexed: 12/30/2022] Open
Abstract
The present study aimed to verify a possibility of ongoing lymphangiogenesis in non-small cell lung cancer (NSCLC) via examination of mRNA levels of a number of lymphangiogenesis-associated genes in tumors. It was hypothesized that transcriptional activation of these genes would occur in tumors that stimulate new lymphatic vessel formation. The study was performed on 140 pairs of fresh-frozen surgical specimens of cancer and unaffected lung tissues derived from NSCLC stage I-IIIA patients. mRNA levels were evaluated with the reverse transcription-quantitative polymerase chain reaction method and expressed as fold change differences between the tumor and normal tissues. Possible associations between expression and patient clinicopathological characteristics and survival were analyzed. In the NSCLC tissue samples, vascular endothelial growth factor (VEGF) C, VEGFD, VEGFR3, VEGFR2, VEGFR1, lymphatic vessel endothelial hyaluronan receptor 1, integrin subunit α 9, FOX2, neuropilin 2, fibroblast growth factor 2 genes were significantly downregulated (P<0.001 for all) compared with matched normal lung tissues, whereas mRNA levels for VEGFA, spleen associated tyrosine kinase, podoplanin, and prospero homeobox 1 genes were similar in both tissues. Neither lymph node status, nor disease pathological stage influenced expression, whereas more profound suppression of gene activities appeared to occur in squamous cell carcinomas compared with adenocarcinomas. The VEGFR1 mRNA expression level was significantly connected with patient survival in the univariate analysis, and was an independent prognostic factor for overall survival in the multivariate Cox's proportional hazards model (HR 2.103; 95% confidence interval: 1.005-4.401; P=0.049). The results support a hypothesis of absence of new lymphatic vessel formation inside growing NSCLC tumor mass, however do not exclude a possibility of lymphangiogenesis in narrow marginal tumor parts.
Collapse
Affiliation(s)
- Oksana Kowalczuk
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jerzy Laudanski
- Department of Thoracic Surgery, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Wojciech Laudanski
- Department of Thoracic Surgery, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Wieslawa Ewa Niklinska
- Department of Histology and Embryology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Miroslaw Kozlowski
- Department of Thoracic Surgery, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
41
|
Xiong K, Shao LH, Zhang HQ, Jin L, Wei W, Dong Z, Zhu YQ, Wu N, Jin SZ, Xue LX. MicroRNA-9 functions as a tumor suppressor and enhances radio-sensitivity in radio-resistant A549 cells by targeting neuropilin 1. Oncol Lett 2018; 15:2863-2870. [PMID: 29435012 PMCID: PMC5778782 DOI: 10.3892/ol.2017.7705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 11/10/2017] [Indexed: 01/06/2023] Open
Abstract
Radiotherapy is commonly used to treat lung cancer but may not kill all cancer cells, which may be attributed to the radiotherapy resistance that often occurs in non-small cell lung cancer (NSCLC). At present, the molecular mechanism of radio-resistance remains unclear. Neuropilin 1 (NRP1), a co-receptor for vascular endothelial growth factor (VEGF), was demonstrated to be associated with radio-resistance of NSCLC cells via the VEGF-phosphoinositide 3-kinase-nuclear factor-κB pathway in our previous study. It was hypothesized that certain microRNAs (miRs) may serve crucial functions in radio-sensitivity by regulating NRP1. Bioinformatics predicted that NRP1 was a potential target of miR-9, and this was validated by luciferase reporter assays. Functionally, miR-9-transfected A549 cells exhibited a decreased proliferation rate, increased apoptosis rate and attenuated migratory and invasive abilities. Additionally, a high expression of miR-9 also significantly enhanced the radio-sensitivity of A549 cells in vitro and in vivo. These data improve understanding of the mechanisms of cell radio-resistance, and suggest that miR-9 may be a molecular target for the prediction of radio-sensitivity in NSCLC.
Collapse
Affiliation(s)
- Kai Xiong
- Department of Radiation Oncology, Medical Research Center, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Li Hong Shao
- Key Laboratory of Radiobiology, Ministry of Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hai Qin Zhang
- Key Laboratory of Radiobiology, Ministry of Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Linlin Jin
- Key Laboratory of Radiobiology, Ministry of Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei Wei
- Key Laboratory of Radiobiology, Ministry of Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhuo Dong
- Key Laboratory of Radiobiology, Ministry of Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yue Quan Zhu
- Department of Radiation Oncology, Medical Research Center, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Ning Wu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Shun Zi Jin
- Key Laboratory of Radiobiology, Ministry of Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Li Xiang Xue
- Department of Radiation Oncology, Medical Research Center, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
42
|
Vivekanandhan S, Mukhopadhyay D. Genetic status of KRAS influences Transforming Growth Factor-beta (TGF-β) signaling: An insight into Neuropilin-1 (NRP1) mediated tumorigenesis. Semin Cancer Biol 2018; 54:72-79. [PMID: 29409705 DOI: 10.1016/j.semcancer.2018.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
Oncogenic RAS and deregulated transforming growth factor-beta (TGF)-β signaling have been implicated in several cancers. So far, attempts to target either one of them therapeutically have been futile as both of them are involved in multiple fundamental cellular processes and the normal forms are expressed by almost all cells. Hence, their inhibition would disrupt several physiological processes. Besides, their downregulation stimulates the tumor cells to develop adaptive mechanisms and would most likely be ineffective as therapeutic targets. Furthermore, growing literature suggests that both of these signaling pathways converge to enhance tumor development. Therefore, a lot of interest has been generated to explore the areas where these pathways interface that might identify new molecules that could potentially serve as novel therapeutic targets. In this review, we focus on such convergent signaling and cross-interaction that is mediated by neuropilin-1 (NRP1), a receptor that can interact with multiple growth factors including TGF-β for promoting tumorigenesis process.
Collapse
Affiliation(s)
- Sneha Vivekanandhan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States.
| |
Collapse
|
43
|
Wang J, Huang Y, Zhang J, Xing B, Xuan W, Wang H, Huang H, Yang J, Tang J. NRP-2 in tumor lymphangiogenesis and lymphatic metastasis. Cancer Lett 2018; 418:176-184. [PMID: 29339213 DOI: 10.1016/j.canlet.2018.01.040] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/13/2022]
Abstract
Neuropilin-2 (NRP-2) not only functions as a receptor for semaphorins, a family of neural axon guidance factors, but also interacts with VEGFs, a family of vascular endothelial growth factors. As an independent receptor or a co-receptor, NRP-2 binds to ligands VEGF-C/D, activates the VEGF-C/D-NRP-2 signaling axis, and further regulates lymphangiogenesis-associated factors in both lymphatic endothelial cells (LECs) and some tumor cells during tumor progression. Via VEGF-C/D-NRP-2 axis, NRP-2 induces LEC proliferation, reconstruction and lymphangiogenesis and subsequently promotes tumor cell migration, invasion and lymphatic metastasis. There are similarities and differences among NRP-1, NRP-2 and VEGFR-3 in chemical structure, ligand specificity, chromosomal location, soluble protein forms, cellular functions and expression profiles. High expression of NRP-2 in LECs and tumor cells has been observed in different anatomic sites, histological patterns and progression stages of various tumors, especially during tumor lymphangiogenesis and lymphatic metastasis, and therefore the NRP-2 and VEGF-C/D-NRP-2 axis are closely related to tumor development, progression, invasion, and metastasis. In addition, it is important for prognosis of tumor. The studies on NRP-2 targeted therapy have recently achieved some successes, utilizing NRP-2 blocking antibodies, NRP-2 inhibitory peptides, soluble NRP-2 antagonists, small molecule inhibitors and various NRP-2 gene therapeutic strategies.
Collapse
Affiliation(s)
- Jingwen Wang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China; Institute of Medical Technology, Ningbo College of Health Science, No.51, XueFu Road, Ningbo Zhejiang 315100, China
| | - Yuhong Huang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Jun Zhang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Boyi Xing
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Wei Xuan
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Honghai Wang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - He Huang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Jiayu Yang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Jianwu Tang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China.
| |
Collapse
|
44
|
Genetic status of KRAS modulates the role of Neuropilin-1 in tumorigenesis. Sci Rep 2017; 7:12877. [PMID: 29018205 PMCID: PMC5635066 DOI: 10.1038/s41598-017-12992-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/04/2017] [Indexed: 12/16/2022] Open
Abstract
Neuropilin-1 (NRP1), a non-tyrosine kinase receptor, is overexpressed in many cancers including pancreatic and lung cancers. Inhibition of NRP1 expression, however, has differing pro-tumor vs. anti-tumor effects, depending on the cancer types. To understand the differential role of NRP1 in tumorigenesis process, we utilized cells from two different cancer types, pancreatic and lung, each containing either wild type KRAS (KRAS wt) or mutant KRAS (KRAS mt). Inhibition of NRP1 expression by shRNA in both pancreatic and lung cancer cells containing dominant active KRAS mt caused increased cell viability and tumor growth. On the contrary, inhibition of NRP1, in the tumor cells containing KRAS wt showed decreased tumor growth. Importantly, concurrent inhibition of KRAS mt and NRP1 in the tumor cells reverses the increased viability and leads to tumor inhibition. We found that NRP1 shRNA expressing KRAS mt tumor cells caused increased cell viability by decreasing SMAD2 phosphorylation. Our findings demonstrate that the effects of NRP1 knockdown in cancer cells are dependent on the genetic status of KRAS.
Collapse
|
45
|
Ni Q, Sun J, Ma C, Li Y, Ju J, Sun M. The Neuropilins and Their Ligands in Hematogenous Metastasis of Salivary Adenoid Cystic Carcinoma-An Immunohistochemical Study. J Oral Maxillofac Surg 2017; 76:569-579. [PMID: 28961428 DOI: 10.1016/j.joms.2017.08.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022]
Abstract
PURPOSE We investigated the expression of neuropilin-1 (NRP1), neuropilin-2 (NRP2), vascular endothelial growth factor-A (VEGF-A), semaphorin-3A (Sema-3A), and semaphorin-3F (Sema-3F) in normal salivary gland (NSG) tissue, nonmetastatic salivary adenoid cystic carcinoma (SACC), and metastatic SACC to better understand their role in intratumoral angiogenesis and hematogenous metastasis of SACC. PATIENTS AND METHODS The study included 60 SACC patients, equally divided between nonmetastatic SACC and metastatic SACC. We used 30 NSG samples as the control. The expression of cytokines was studied by immunohistochemistry and compared using the integrated optical density. The relationship between NRP1, NRP2, VEGF-A, and Sema-3A expression and microvessel density (MVD) was analyzed in the 3 groups. RESULTS In metastatic SACC, the expression levels of NRP1 and VEGF-A were significantly greater than those in nonmetastatic SACC and NSG. The expression of Sema-3A and Sema-3F was significantly lower in metastatic SACC than that in nonmetastatic SACC and NSG (P < .0001). No significant differences were found in NRP2 expression among the 3 groups (P = .43). The MVD of metastatic SACC was significantly greater than that of nonmetastatic SACC and NSG (P < .0001). However, the lymphatic vessel density of the 3 groups was not significantly different statistically. The relationship between MVD and NRP1 or VEGF-A showed a significant positive correlation (P < .0001, for both). However, a significant negative correlation was found between the MVD and Sema-3A or Sema-3F expression (P < .0001, for both). CONCLUSIONS Hematogenous metastasis of SACC is correlated with high expression of NRP1 and VEGF-A and low expression of Sema-3A and Sema-3F. The increased numbers of microvessels induced by VEGF-A signaling, combined with NRP1, could be one of the key reasons leading to the enhanced hematogenous metastasis in SACC.
Collapse
Affiliation(s)
- Qianwei Ni
- Resident, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China; and Department of Oral and Maxillofacial Surgery, General Hospital of Xinjiang Military Region, Urumqi, People's Republic of China
| | - Jinlong Sun
- Resident, Department of Stomatology, Navy General Hospital, Beijing, People's Republic of China
| | - Chao Ma
- Resident, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yun Li
- Resident, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jun Ju
- Resident, Center of Otolaryngology of PLA, Navy General Hospital, Beijing, People's Republic of China
| | - Moyi Sun
- Professor, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China.
| |
Collapse
|
46
|
Noncanonical GLI1 signaling promotes stemness features and in vivo growth in lung adenocarcinoma. Oncogene 2017; 36:4641-4652. [PMID: 28368412 PMCID: PMC5558095 DOI: 10.1038/onc.2017.91] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/04/2017] [Accepted: 02/26/2017] [Indexed: 02/07/2023]
Abstract
Aberrant Hedgehog/GLI signaling has been implicated in a diverse spectrum of human cancers, but its role in lung adenocarcinoma (LAC) is still under debate. We show that the downstream effector of the Hedgehog pathway, GLI1, is expressed in 76% of LACs, but in roughly half of these tumors, the canonical pathway activator, Smoothened, is expressed at low levels, possibly owing to epigenetic silencing. In LAC cells including the cancer stem cell compartment, we show that GLI1 is activated noncanonically by MAPK/ERK signaling. Different mechanisms can trigger the MAPK/ERK/GLI1 cascade including KRAS mutation and stimulation of NRP2 by VEGF produced by the cancer cells themselves in an autocrine loop or by stromal cells as paracrine cross talk. Suppression of GLI1, by silencing or drug-mediated, inhibits LAC cells proliferation, attenuates their stemness and increases their susceptibility to apoptosis in vitro and in vivo. These findings provide insight into the growth of LACs and point to GLI1 as a downstream effector for oncogenic pathways. Thus, strategies involving direct inhibition of GLI1 may be useful in the treatment of LACs.
Collapse
|
47
|
Tu DG, Chang WW, Jan MS, Tu CW, Lu YC, Tai CK. Promotion of metastasis of thyroid cancer cells via NRP-2-mediated induction. Oncol Lett 2016; 12:4224-4230. [PMID: 27895796 DOI: 10.3892/ol.2016.5153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/08/2016] [Indexed: 01/06/2023] Open
Abstract
Tumor-node-metastasis is one of the leading causes of morbidity and mortality in thyroid cancer patients. Upregulation of vascular endothelial growth factor-C (VEGF-C) increases the migratory ability of thyroid cancer cells to lymph nodes. Expression of neuropilin-2 (NRP-2), the co-receptor of VEGF-C, has been reported to be correlated with lymph node metastasis in human thyroid cancer. The present study investigated the role of VEGF-C/NRP-2 signaling in the regulation of metastasis of two different types of human thyroid cancer cells. The results indicated that the VEGF-C/NRP-2 axis significantly promoted the metastatic activities of papillary thyroid carcinoma cells through the activation of the mitogen-activated protein kinase (MAPK) kinase (MEK)/extracellular signal-regulated kinase and p38 MAPK signaling cascades. However, neither MEK or p38 MAPK inhibitors produced significant inhibition of the migratory activity and invasiveness regulated by the VEGF-C/NRP-2 axis in follicular thyroid carcinoma cells. Finally, VEGF-C/NRP-2-mediated invasion and migration of thyroid cancer cells required the expression of NRP-2. The present results demonstrate that the promotion of metastasis by VEGF-C is mainly due to the upregulation of NRP-2 in thyroid cancer cells, and this metastatic activity regulated by the VEGF-C/NRP-2 axis provides further insight into the process of tumor metastasis.
Collapse
Affiliation(s)
- Dom-Gene Tu
- Department of Nuclear Medicine, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan, R.O.C.; Department of Food Science and Technology, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan, R.O.C.; College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan, R.O.C
| | - Wen-Wei Chang
- School of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Ming-Shiou Jan
- Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C.; Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C.; Division of Allergy, Immunology and Rheumatology, Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan, R.O.C
| | - Chi-Wen Tu
- Department of Surgery, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan, R.O.C
| | - Yin-Che Lu
- Department of Hematology-Oncology, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan, R.O.C
| | - Chien-Kuo Tai
- Department of Life Science, Institutes of Molecular Biology and Biomedical Science, National Chung Cheng University, Min-Hsiung, Chia-Yi 621, Taiwan, R.O.C
| |
Collapse
|
48
|
Gunatillake T, Yong HEJ, Dunk CE, Keogh RJ, Borg AJ, Cartwright JE, Whitley GS, Murthi P. Homeobox gene TGIF-1 is increased in placental endothelial cells of human fetal growth restriction. Reproduction 2016; 152:457-65. [PMID: 27539603 DOI: 10.1530/rep-16-0068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/18/2016] [Indexed: 01/09/2023]
Abstract
Aberrant placental angiogenesis is associated with fetal growth restriction (FGR). In mice, targeted disruption of the homeobox gene, transforming growth β-induced factor (Tgif-1), which is also a transcription factor, causes defective placental vascularisation. Nevertheless, the role of TGIF-1 in human placental angiogenesis is unclear. We have previously reported increased TGIF-1 expression in human FGR placentae and demonstrated localisation of TGIF-1 protein in placental endothelial cells (ECs). However, its functional role remains to be investigated. In this study, we aimed to specifically compare TGIF-1 mRNA expression in placental ECs isolated from human FGR-affected pregnancies with gestation-matched control pregnancies in two independent cohorts from Australia and Canada and to identify the functional role of TGIF-1 in placental angiogenesis using the human umbilical vein endothelial cell-derived cell line, SGHEC-7, and primary human umbilical vein ECs. Real-time PCR revealed that TGIF-1 mRNA expression was significantly increased in ECs isolated from FGR-affected placentae compared with that of controls. The functional roles of TGIF-1 were determined in ECs after TGIF-1 siRNA transfection. TGIF-1 inactivation in ECs significantly reduced TGIF-1 at both the mRNA and protein levels, as well as the proliferative and invasive potential, but significantly increased the angiogenic potential. Using angiogenesis PCR screening arrays, we identified ITGAV, NRP-1, ANPGT-1 and ANPGT-2 as novel downstream targets of TGIF-1, after TGIF-1 inactivation in ECs. Collectively, these results show that TGIF-1 regulates EC function and the expression of angiogenic molecules; and when abnormally expressed, may contribute to the aberrant placental angiogenesis observed in FGR.
Collapse
Affiliation(s)
- Tilini Gunatillake
- Department of Maternal-Fetal Medicine Pregnancy Research CentreThe Royal Women's Hospital, Parkville, Victoria, Australia Department of Obstetrics and GynaecologyThe University of Melbourne, Parkville, Victoria, Australia
| | - Hannah E J Yong
- Department of Maternal-Fetal Medicine Pregnancy Research CentreThe Royal Women's Hospital, Parkville, Victoria, Australia Department of Obstetrics and GynaecologyThe University of Melbourne, Parkville, Victoria, Australia
| | - Caroline E Dunk
- Lunenfeld Tanenbaum-Research InstituteMount Sinai Hospital, Toronto, Ontario, Canada
| | - Rosemary J Keogh
- Department of Maternal-Fetal Medicine Pregnancy Research CentreThe Royal Women's Hospital, Parkville, Victoria, Australia Department of Obstetrics and GynaecologyThe University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Borg
- Department of Maternal-Fetal Medicine Pregnancy Research CentreThe Royal Women's Hospital, Parkville, Victoria, Australia
| | - Judith E Cartwright
- Institute of Cardiovascular and Cell SciencesSt George's, University of London, London, UK
| | - Guy S Whitley
- Institute of Cardiovascular and Cell SciencesSt George's, University of London, London, UK
| | - Padma Murthi
- Department of Maternal-Fetal Medicine Pregnancy Research CentreThe Royal Women's Hospital, Parkville, Victoria, Australia Department of Obstetrics and GynaecologyThe University of Melbourne, Parkville, Victoria, Australia Department of MedicineSchool of Clinical Sciences, Monash University, Clayton, Victoria, Australia The Ritchie CentreHudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
49
|
Dong P, Cai H, Chen L, Li Y, Yuan C, Wu X, Shen G, Zhou H, Zhang W, Li L. Biodistribution and evaluation of 131 I-labeled neuropilin-binding peptide for targeted tumor imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:467-474. [PMID: 27527756 DOI: 10.1002/cmmi.1708] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 06/26/2016] [Accepted: 07/01/2016] [Indexed: 02/05/2023]
Abstract
Neuropilin-1 (NRP-1) is overexpressed in several kinds of cancer cell and contributes to tumor aggressiveness. Recently, the arginine/lysine-rich peptide with C-terminal motifs (R/K)XX(R/K) indicated promising penetrating and transporting capability into NRP-1 positive cancer cells. In the present study, we describe a 131 I-labeled C-end rule motif peptide conjugate, Tyr-tLyp-1, for NRP-1 positive tumor targeting and imaging properties. Briefly, a truncated Lyp-1 peptide was designed to expose its C-end motif and conjugated to tyrosine for radiolabeling after structural modification. The peptide indicated specific binding to A549 cancer cells at 2 μM concentration, and its binding was dependent on NRP-1 expression and could be inhibited by other NRP-1-binding peptides. In vivo imaging of 131 I-labeled Tyr-tLyp-1peptide showed that a subcutaneous A549 xenograft tumor could be visualized using a SPECT/CT scanner. The tumor uptake of 131 I-Tyr-tLyp-1 was 4.77 times higher than the uptake in muscles by SPECT/CT software quantification at 6 h post injection. Together, this study indicated that truncated Lyp-1 peptide could specifically localize in NRP-1 positive tumors and successfully mediate the 131 I radionuclide diagnosis, indicating promising targeted imaging capability for NRP-1 positive tumors. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ping Dong
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Huawei Cai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yalun Li
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Cen Yuan
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaoai Wu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Guohua Shen
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Huijun Zhou
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Lin Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| |
Collapse
|
50
|
Yang Y, Chen N, Li Z, Wang XJ, Wang SY, Tingwu, Luo FH, Yan JH. Preparation, Purification, and Identification of a Monoclonal Antibody Against NRP2 b1b2 Domain. Monoclon Antib Immunodiagn Immunother 2016; 34:354-9. [PMID: 26492624 DOI: 10.1089/mab.2015.0025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
First identified as a high-affinity kinase-deficient receptor for class-3 semaphorins and vascular endothelial growth factor (VEGF) families, Neuropilin2 (NRP2) is a transmembrane non-tyrosine-kinase glycoprotein that has a vital function in neuronal patterning. Furthermore, NRP2 expression is often upregulated in cancer tissues and correlated with poor prognosis. In the present study, we report the establishment of a monoclonal antibody specific for NRP2b1b2 domain (NRP2 MAb) through hybridoma method. NRP2 MAb is measured to have a titer of 5.12 × 10(5) against NRP2b1b2 in indirect ELISA. Western blotting, flow cytometry, and immunofluorescence analysis indicate that NRP2 MAb can combine full-length NRP2 in LoVo and SW480 cells. Besides helping further understand NRP2-related pathological mechanisms and cell-signaling pathways, NRP2 MAb may act as a therapeutic agent for cancer in the future.
Collapse
Affiliation(s)
- Yun Yang
- Cancer Research Center, Medical College, Xiamen University , Xiamen, Fujian, China
| | - Na Chen
- Cancer Research Center, Medical College, Xiamen University , Xiamen, Fujian, China
| | - Zhe Li
- Cancer Research Center, Medical College, Xiamen University , Xiamen, Fujian, China
| | - Xian-Jiang Wang
- Cancer Research Center, Medical College, Xiamen University , Xiamen, Fujian, China
| | - Sheng-Yu Wang
- Cancer Research Center, Medical College, Xiamen University , Xiamen, Fujian, China
| | - Tingwu
- Cancer Research Center, Medical College, Xiamen University , Xiamen, Fujian, China
| | - Fang-Hong Luo
- Cancer Research Center, Medical College, Xiamen University , Xiamen, Fujian, China
| | - Jiang-Hua Yan
- Cancer Research Center, Medical College, Xiamen University , Xiamen, Fujian, China
| |
Collapse
|