1
|
Chitwood DG, Uy L, Fu W, Klaubert SR, Harcum SW, Saski CA. Dynamics of Amino Acid Metabolism, Gene Expression, and Circulomics in a Recombinant Chinese Hamster Ovary Cell Line Adapted to Moderate and High Levels of Extracellular Lactate. Genes (Basel) 2023; 14:1576. [PMID: 37628627 PMCID: PMC10454118 DOI: 10.3390/genes14081576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
The accumulation of metabolic wastes in cell cultures can diminish product quality, reduce productivity, and trigger apoptosis. The limitation or removal of unintended waste products from Chinese hamster ovary (CHO) cell cultures has been attempted through multiple process and genetic engineering avenues with varied levels of success. One study demonstrated a simple method to reduce lactate and ammonia production in CHO cells with adaptation to extracellular lactate; however, the mechanism behind adaptation was not certain. To address this profound gap, this study characterizes the phenotype of a recombinant CHO K-1 cell line that was gradually adapted to moderate and high levels of extracellular lactate and examines the genomic content and role of extrachromosomal circular DNA (eccDNA) and gene expression on the adaptation process. More than 500 genes were observed on eccDNAs. Notably, more than 1000 genes were observed to be differentially expressed at different levels of lactate adaptation, while only 137 genes were found to be differentially expressed between unadapted cells and cells adapted to grow in high levels of lactate; this suggests stochastic switching as a potential stress adaptation mechanism in CHO cells. Further, these data suggest alanine biosynthesis as a potential stress-mitigation mechanism for excess lactate in CHO cells.
Collapse
Affiliation(s)
- Dylan G. Chitwood
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (D.G.C.); (L.U.); (S.W.H.)
| | - Lisa Uy
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (D.G.C.); (L.U.); (S.W.H.)
| | - Wanfang Fu
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Stephanie R. Klaubert
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA;
| | - Sarah W. Harcum
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (D.G.C.); (L.U.); (S.W.H.)
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA;
| | - Christopher A. Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
2
|
Weber SM, Carroll SL. The Role of R-Ras Proteins in Normal and Pathologic Migration and Morphologic Change. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1499-1510. [PMID: 34111428 PMCID: PMC8420862 DOI: 10.1016/j.ajpath.2021.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
The contributions that the R-Ras subfamily [R-Ras, R-Ras2/teratocarcinoma 21 (TC21), and M-Ras] of small GTP-binding proteins make to normal and aberrant cellular functions have historically been poorly understood. However, this has begun to change with the realization that all three R-Ras subfamily members are occasionally mutated in Noonan syndrome (NS), a RASopathy characterized by the development of hematopoietic neoplasms and abnormalities affecting the immune, cardiovascular, and nervous systems. Consistent with the abnormalities seen in NS, a host of new studies have implicated R-Ras proteins in physiological and pathologic changes in cellular morphology, adhesion, and migration in the cardiovascular, immune, and nervous systems. These changes include regulating the migration and homing of mature and immature immune cells, vascular stabilization, clotting, and axonal and dendritic outgrowth during nervous system development. Dysregulated R-Ras signaling has also been linked to the pathogenesis of cardiovascular disease, intellectual disabilities, and human cancers. This review discusses the structure and regulation of R-Ras proteins and our current understanding of the signaling pathways that they regulate. It explores the phenotype of NS patients and their implications for the R-Ras subfamily functions. Next, it covers recent discoveries regarding physiological and pathologic R-Ras functions in key organ systems. Finally, it discusses how R-Ras signaling is dysregulated in cancers and mechanisms by which this may promote neoplasia.
Collapse
Affiliation(s)
- Shannon M Weber
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
3
|
A thirty-year quest for a role of R-Ras in cancer: from an oncogene to a multitasking GTPase. Cancer Lett 2017; 403:59-65. [DOI: 10.1016/j.canlet.2017.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/28/2017] [Accepted: 06/03/2017] [Indexed: 12/30/2022]
|
4
|
Sun L, Liu M, Sun GC, Yang X, Qian Q, Feng S, Mackey LV, Coy DH. Notch Signaling Activation in Cervical Cancer Cells Induces Cell Growth Arrest with the Involvement of the Nuclear Receptor NR4A2. J Cancer 2016; 7:1388-95. [PMID: 27471554 PMCID: PMC4964122 DOI: 10.7150/jca.15274] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/24/2016] [Indexed: 12/30/2022] Open
Abstract
Cervical cancer is a second leading cancer death in women world-wide, with most cases in less developed countries. Notch signaling is highly conserved with its involvement in many cancers. In the present study, we established stable cervical cell lines with Notch activation and inactivation and found that Notch activation played a suppressive role in cervical cancer cells. Meanwhile, the transient overexpression of the active intracellular domain of all four Notch receptors (ICN1, 2, 3, and 4) also induced the suppression of cervical cancer Hela cell growth. ICN1 also induced cell cycle arrest at phase G1. Notch1 signaling activation affected the expression of serial genes, especially the genes associated with cAMP signaling, with an increase of genes like THBS1, VCL, p63, c-Myc and SCG2, a decrease of genes like NR4A2, PCK2 and BCL-2. Particularly, The nuclear receptor NR4A2 was observed to induce cell proliferation via MTT assay and reduce cell apoptosis via FACS assay. Furthermore, NR4A2's activation could reverse ICN1-induced suppression of cell growth while erasing ICN1-induced increase of tumor suppressor p63. These findings support that Notch signaling mediates cervical cancer cell growth suppression with the involvement of nuclear receptor NR4A2. Notably, Notch/NR4A2/p63 signaling cascade possibly is a new signling pathway undisclosed.
Collapse
Affiliation(s)
- Lichun Sun
- 1. Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University; 801 He-Qing Rd., Shanghai 200240, China;; 2. Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, 421001, China;; 4. Department of Medicine, School of Medicine, Tulane Health Sciences Center, New Orleans, LA 70112-2699, USA
| | - Mingqiu Liu
- 3. State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China
| | - Guang-Chun Sun
- 1. Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University; 801 He-Qing Rd., Shanghai 200240, China
| | - Xu Yang
- 1. Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University; 801 He-Qing Rd., Shanghai 200240, China
| | - Qingqing Qian
- 1. Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University; 801 He-Qing Rd., Shanghai 200240, China
| | - Shuyu Feng
- 3. State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China
| | - L Vienna Mackey
- 4. Department of Medicine, School of Medicine, Tulane Health Sciences Center, New Orleans, LA 70112-2699, USA
| | - David H Coy
- 4. Department of Medicine, School of Medicine, Tulane Health Sciences Center, New Orleans, LA 70112-2699, USA
| |
Collapse
|
5
|
Salem JC, Reviriego-Mendoza MM, Santy LC. ARF-GEF cytohesin-2/ARNO regulates R-Ras and α5-integrin recycling through an EHD1-positive compartment. Mol Biol Cell 2015; 26:4265-79. [PMID: 26378252 PMCID: PMC4642859 DOI: 10.1091/mbc.e15-05-0278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/11/2015] [Indexed: 11/30/2022] Open
Abstract
R-Ras and cytohesin-2/ARNO coordinate in the control of epithelial cell adhesion, but the mechanism has been unclear. Cytohesin-2/ARNO regulates traffic through an EHD1-positive recycling compartment. Inhibition of cytohesin-2/ARNO activity traps R-Ras and integrins within the EHD1 compartment and impairs adhesion and spreading. When expressed in epithelial cells, cytohesin-2/ARNO, a guanine nucleotide exchange factor (GEF) for ARF small GTPases, causes a robust migration response. Recent evidence suggests that cytohesin-2/ARNO acts downstream of small the GTPase R-Ras to promote spreading and migration. We hypothesized that cytohesin-2/ARNO could transmit R-Ras signals by regulating the recycling of R-Ras through ARF activation. We found that Eps15-homology domain 1 (EHD1), a protein that associates with the endocytic recycling compartment (ERC), colocalizes with active R-Ras in transiently expressed HeLa cells. In addition, we show that EHD1-positive recycling endosomes are a novel compartment for cytohesin-2/ARNO. Knockdown or expression of GEF-inactive (E156K) cytohesin-2/ARNO causes R-Ras to accumulate on recycling endosomes containing EHD1 and inhibits cell spreading. E156K-ARNO also causes a reduction in focal adhesion size and number. Finally, we demonstrate that R-Ras/ARNO signaling is required for recycling of α5-integrin and R-Ras to the plasma membrane. These data establish a role for cytohesin-2/ARNO as a regulator of R-Ras and integrin recycling and suggest that ARF-regulated trafficking of R-Ras is required for R-Ras–dependent effects on spreading and adhesion formation.
Collapse
Affiliation(s)
- Joseph C Salem
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Marta M Reviriego-Mendoza
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Lorraine C Santy
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
6
|
Lysophosphatidic Acid Inhibits Apoptosis Induced by Cisplatin in Cervical Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:598386. [PMID: 26366416 PMCID: PMC4558435 DOI: 10.1155/2015/598386] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/17/2015] [Accepted: 04/28/2015] [Indexed: 12/19/2022]
Abstract
Cervical cancer is the second most common cause of cancer death in women worldwide. Lysophosphatidic acid (LPA) level has been found significantly increased in the serum of patients with ovarian, cervical, and colon cancers. LPA level in cervical cancer patients is significantly higher than in healthy controls. LPA receptors were found highly expressed in cervical cancer cells, suggesting LPA may play a role in the development of cervical cancer. The aim of this study is to investigate the effect of LPA on the apoptosis induced by cisplatin (DDP) in cervical cancer cell line and the underlying changes in signaling pathways. Our study found that cisplatin induced apoptosis of Hela cell through inhibiting expression of Bcl-2, upregulating the expression of Bax, Fas-L, and the enzyme activity of caspase-3 (p < 0.05); LPA significantly provided protection against the apoptosis induced by cisplatin by inhibiting the above alterations in apoptotic factor caused by cisplatin (p < 0.05). Moreover, PI3K/AKT pathway was found to be important for the LPA antiapoptosis effect, and administration of PI3K/AKT partially reversed the LPA-mediated protection against cisplatin-induced apoptosis (p < 0.05). These findings have shed new lights on the LPA bioactivity in cervical cancer cells and pointed to a possible sensitization scheme through combined administration of PI3K inhibitor and cisplatin for better treatment of cervical cancer patients, especially those with elevated LPA levels.
Collapse
|
7
|
Sawada J, Li F, Komatsu M. R-Ras protein inhibits autophosphorylation of vascular endothelial growth factor receptor 2 in endothelial cells and suppresses receptor activation in tumor vasculature. J Biol Chem 2015; 290:8133-45. [PMID: 25645912 DOI: 10.1074/jbc.m114.591511] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abnormal angiogenesis is associated with a broad range of medical conditions, including cancer. The formation of neovasculature with functionally defective blood vessels significantly impacts tumor progression, metastasis, and the efficacy of anticancer therapies. Vascular endothelial growth factor (VEGF) potently induces vascular permeability and vessel growth in the tumor microenvironment, and its inhibition normalizes tumor vasculature. In contrast, the signaling of the small GTPase R-Ras inhibits excessive angiogenic growth and promotes the maturation of regenerating blood vessels. R-Ras signaling counteracts VEGF-induced vessel sprouting, permeability, and invasive activities of endothelial cells. In this study, we investigated the effect of R-Ras on VEGF receptor 2 (VEGFR2) activation by VEGF, the key mechanism for angiogenic stimulation. We show that tyrosine phosphorylation of VEGFR2 is significantly elevated in the tumor vasculature and dermal microvessels of VEGF-injected skin in R-Ras knockout mice. In cultured endothelial cells, R-Ras suppressed the internalization of VEGFR2, which is required for full activation of the receptor by VEGF. Consequently, R-Ras strongly suppressed autophosphorylation of the receptor at all five major tyrosine phosphorylation sites. Conversely, silencing of R-Ras resulted in increased VEGFR2 phosphorylation. This effect of R-Ras on VEGFR2 was, at least in part, dependent on vascular endothelial cadherin. These findings identify a novel function of R-Ras to control the response of endothelial cells to VEGF and suggest an underlying mechanism by which R-Ras regulates angiogenesis.
Collapse
Affiliation(s)
- Junko Sawada
- From the Cardiovascular Pathobiology Program and Tumor Microenvironment and Metastasis Program, Sanford-Burnham Medical Research Institute at Lake Nona, Orlando, Florida 32827
| | - Fangfei Li
- From the Cardiovascular Pathobiology Program and Tumor Microenvironment and Metastasis Program, Sanford-Burnham Medical Research Institute at Lake Nona, Orlando, Florida 32827
| | - Masanobu Komatsu
- From the Cardiovascular Pathobiology Program and Tumor Microenvironment and Metastasis Program, Sanford-Burnham Medical Research Institute at Lake Nona, Orlando, Florida 32827
| |
Collapse
|
8
|
Alterations of the RRAS and ERCC1 genes at 19q13 in gemistocytic astrocytomas. J Neuropathol Exp Neurol 2014; 73:908-15. [PMID: 25192052 DOI: 10.1097/nen.0000000000000110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gemistocytic astrocytoma (World Health Organization grade II) is a rare variant of diffuse astrocytoma that is characterized by the presence of neoplastic gemistocytes and has a significantly less favorable prognosis. Other than frequent TP53 mutations (>80%), little is known about its molecular profile. Here, we show that gemistocytic astrocytomas carry a lower frequency of IDH mutations than fibrillary astrocytomas (74% vs 92%; p = 0.0255) but have profiles similar to those of fibrillary astrocytomas with respect to TERT promoter mutations (5% vs 0%), 1p/19q loss (10% vs 8%), and loss of heterozygosity 10q (10% vs 12%). Exome sequencing in 5 gemistocytic astrocytomas revealed homozygous deletion of genes at 19q13 (i.e. RRAS [related RAS viral oncogene homolog; 2 cases] and ERCC1 [excision repair cross-complementing rodent repair deficiency, complementation group 1; 1 case]). Further screening showed RRAS homozygous deletion in 7 of 42 (17%) gemistocytic astrocytomas and in 3 of 24 (13%) IDH1 mutated secondary glioblastomas. Patients with gemistocytic astrocytoma and secondary glioblastoma with an RRAS deletion tended to have shorter survival rates than those without deletion. Differential polymerase chain reaction and methylation-specific polymerase chain reaction revealed an ERCC1 homozygous deletion or promoter methylation in 10 of 42 (24%) gemistocytic astrocytomas and in 8 of 24 (33%) secondary glioblastomas. Alterations in RRAS and ERCC1 appear to be typical in gemistocytic astrocytomas and secondary glioblastomas, since they were not present in 49 fibrillary astrocytomas or 30 primary glioblastomas.
Collapse
|
9
|
SONG JIE, ZHENG BIN, BU XIAOBO, FEI YAOYUAN, SHI SHULIANG. Negative association of R-Ras activation and breast cancer development. Oncol Rep 2014; 31:2776-84. [DOI: 10.3892/or.2014.3121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/11/2014] [Indexed: 11/05/2022] Open
|
10
|
Down-regulation of c9orf86 in human breast cancer cells inhibits cell proliferation, invasion and tumor growth and correlates with survival of breast cancer patients. PLoS One 2013; 8:e71764. [PMID: 23977139 PMCID: PMC3743754 DOI: 10.1371/journal.pone.0071764] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 07/06/2013] [Indexed: 11/29/2022] Open
Abstract
C9orf86 which is a novel subfamily within the Ras superfamily of GTPases, is overexpressed in the majority of primary breast tumors. Few functional studies have focused on the C9orf86 protein; therefore, in this study, we explored the role of C9orf86 in breast carcinogenesis. In our study, we found that silencing of C9orf86 by siRNA in MCF-7 and SK-BR-3 cells resulted in suppressed cell proliferation as well as in vitro cell invasion capabilities. Moreover, knockdown of C9orf86 inhibited tumor growth in nude mice. Cell cycle and apoptotic assays showed that the anti-proliferative effect of C9orf86-siRNA was mediated by arresting cells in the G1 phase and promoting apoptosis. In addition, we found that patients with high levels of C9orf86 expression showed a significant trend towards worse survival compared to patients with low C9orf86 expression (P = 0.002). These results provide evidence that C9orf86 represents a novel and clinically useful biomarker for BC patients and plays an important role during the progression of BC.
Collapse
|
11
|
Rincon-Arano H, Halow J, Delrow JJ, Parkhurst SM, Groudine M. UpSET recruits HDAC complexes and restricts chromatin accessibility and acetylation at promoter regions. Cell 2012. [PMID: 23177352 DOI: 10.1016/j.cell.2012.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Developmental gene expression results from the orchestrated interplay between genetic and epigenetic mechanisms. Here, we describe upSET, a transcriptional regulator encoding a SET domain-containing protein recruited to active and inducible genes in Drosophila. However, unlike other Drosophila SET proteins associated with gene transcription, UpSET is part of an Rpd3/Sin3-containing complex that restricts chromatin accessibility and histone acetylation to promoter regions. In the absence of UpSET, active chromatin marks and chromatin accessibility increase and spread to genic and flanking regions due to destabilization of the histone deacetylase complex. Consistent with this, transcriptional noise increases, as manifest by activation of repetitive elements and off-target genes. Interestingly, upSET mutant flies are female sterile due to upregulation of key components of Notch signaling during oogenesis. Thus UpSET defines a class of metazoan transcriptional regulators required to fine tune transcription by preventing the spread of active chromatin.
Collapse
Affiliation(s)
- Hector Rincon-Arano
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
12
|
Franko-Tobin LG, Mackey LV, Huang W, Song X, Jin B, Luo J, Morris LM, Liu M, Fuselier JA, Coy DH, Wu L, Sun L. Notch1-mediated tumor suppression in cervical cancer with the involvement of SST signaling and its application in enhanced SSTR-targeted therapeutics. Oncologist 2012; 17:220-32. [PMID: 22291092 DOI: 10.1634/theoncologist.2011-0269] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The role of Notch signaling in cervical cancer is seemingly controversial. To confirm the function of Notch signaling in this type of cancer, we established a stable Notch1-activated cervical cancer HeLa cell line. We found that Notch1 activation resulted in apoptosis, cell cycle arrest, and tumor suppression. At the molecular level, we found that a variety of genes associated with cyclic AMP, G protein-coupled receptor, and cancer signaling pathways contributed to Notch1-mediated tumor suppression. We observed that the expression of somatostatin (SST) was dramatically induced by Notch1 signaling activation, which was accompanied by enhanced expression of the cognate SST receptor subtype 1 (SSTR1) and SSTR2. Certain genes, such as tumor protein 63 (TP63, p63), were upregulated, whereas others, such as B-cell lymphoma 2 (BCL-2), Myc, Akt, and STAT3, were downregulated. Subsequently, knockdown of Notch1-induced SST reversed Notch1-induced decrease of BCL-2 and increase of p63, indicating that Notch1-induced tumor suppression may be partly through upregulating SST signaling. Our findings support a possible crosstalk between Notch signaling and SST signaling. Moreover, Notch-induced SSTR activation could enhance SSTR-targeted cancer chemotherapy. Valproic acid (VPA), a histone deacetylase inhibitor, suppressed cell growth and upregulated the expression of Notch1 and SSTR2. A combination therapy with VPA and the SSTR2-targeting cytotoxic conjugate CPT-SST strongly led to greater suppression, as compared to each alone. Our findings thus provide us with a promising clinical opportunity for enhanced cancer therapy using combinations of Notch1-activating agents and SSTR2-targeting agents.
Collapse
Affiliation(s)
- Laura G Franko-Tobin
- Department of Medicine, Peptide Research Laboratories, Tulane Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gawecka JE, Griffiths GS, Ek-Rylander B, Ramos JW, Matter ML. R-Ras regulates migration through an interaction with filamin A in melanoma cells. PLoS One 2010; 5:e11269. [PMID: 20585650 PMCID: PMC2890414 DOI: 10.1371/journal.pone.0011269] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/03/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Changes in cell adhesion and migration in the tumor microenvironment are key in the initiation and progression of metastasis. R-Ras is one of several small GTPases that regulate cell adhesion and migration on the extracellular matrix, however the mechanism has not been completely elucidated. Using a yeast two-hybrid approach we sought to identify novel R-Ras binding proteins that might mediate its effects on integrins. METHODS AND FINDINGS We identified Filamin A (FLNa) as a candidate interacting protein. FLNa is an actin-binding scaffold protein that also binds to integrin beta1, beta2 and beta7 tails and is associated with diverse cell processes including cell migration. Indeed, M2 melanoma cells require FLNa for motility. We further show that R-Ras and FLNa interact in co-immunoprecipitations and pull-down assays. Deletion of FLNa repeat 3 (FLNaDelta3) abrogated this interaction. In M2 melanoma cells active R-Ras co-localized with FLNa but did not co-localize with FLNa lacking repeat 3. Thus, activated R-Ras binds repeat 3 of FLNa. The functional consequence of this interaction was that active R-Ras and FLNa coordinately increased cell migration. In contrast, co-expression of R-Ras and FLNaDelta3 had a significantly reduced effect on migration. While there was enhancement of integrin activation and fibronectin matrix assembly, cell adhesion was not altered. Finally, siRNA knockdown of endogenous R-Ras impaired FLNa-dependent fibronectin matrix assembly. CONCLUSIONS These data support a model in which R-Ras functionally associates with FLNa and thereby regulates integrin-dependent migration. Thus in melanoma cells R-Ras and FLNa may cooperatively promote metastasis by enhancing cell migration.
Collapse
Affiliation(s)
- Joanna E. Gawecka
- Natural Products and Cancer Biology, Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Genevieve S. Griffiths
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Barbro Ek-Rylander
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Joe W. Ramos
- Natural Products and Cancer Biology, Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Michelle L. Matter
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
14
|
García-García E, García-García PL, Rosales C. An fMLP receptor is involved in activation of phagocytosis by hemocytes from specific insect species. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:728-739. [PMID: 19166874 DOI: 10.1016/j.dci.2008.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 12/14/2008] [Accepted: 12/16/2008] [Indexed: 05/27/2023]
Abstract
In mammalian phagocytes, the bacterial formylated peptide fMLP functions both as a potent enhancer of phagocytosis and chemoattractant. fMLP has been reported to be chemotactic for hemocytes of two marine invertebrates, and of the insect Manduca sexta (Lepidoptera). Whether fMLP is also able to activate phagocytosis has not been explored in hemocytes of any invertebrate. To determine the effect of fMLP on insect hemocyte phagocytosis, in vitro phagocytosis assays were performed with hemocytes from the insects: Gromphadorhina portentosa (Blattodea), Acheta domesticus (Orthoptera), Zophobas morio (Coleoptera), and Galleria mellonella (Lepidoptera). Phagocytosis of latex, zymosan (yeast), Gram-positive and Gram-negative bacteria was measured by flow cytometry, in the presence of increasing fMLP concentrations. G. portentosa hemocytes showed no enhancement of phagocytosis by fMLP. A. domesticus hemocytes had increased phagocytosis of latex and Gram-negative bacteria in the presence of fMLP. Z. morio hemocytes increased phagocytosis of latex, yeast, and Gram-negative bacteria after fMLP stimulation. Galleria mellonella hemocytes increased phagocytosis of latex after fMLP stimulation. Treating hemocytes with Pertussis toxin, a known inhibitor of the signaling pathway initiated by the mammalian fMLP receptor, returned phagocytosis to basal levels. Also, hemocytes from all insect species tested presented a similar chemotactic response to fMLP. These data suggest that, whereas the ability of hemocytes to chemotactically-respond to fMLP is conserved in insects ranging from Blattodea to Lepidoptera, the ability to respond to fMLP by activating phagocytosis is restricted to specific insect species.
Collapse
Affiliation(s)
- Erick García-García
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | |
Collapse
|
15
|
Plexin B1 is repressed by oncogenic B-Raf signaling and functions as a tumor suppressor in melanoma cells. Oncogene 2009; 28:2697-709. [PMID: 19483722 PMCID: PMC3238492 DOI: 10.1038/onc.2009.133] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human melanomas show oncogenic B-Raf mutations which activate the B-Raf/MKK/ERK cascade. We screened microarrays to identify cellular targets of this pathway, and found that genes upregulated by B-Raf/MKK/ERK showed highest association with cell cycle regulators, whereas genes downregulated were most highly associated with axon guidance genes, including plexin-semaphorin family members. Plexin B1 was strongly inhibited by MAP kinase signaling in melanoma cells and melanocytes. In primary melanoma cells, plexin B1 blocked tumorigenesis as measured by growth of colonies in soft agar, spheroids in extracellular matrix, and xenograft tumors. Tumor suppression depended on residues in the C-terminal domain of plexin B1 which mediate receptor GAP activity, and also correlated with AKT inhibition. Interestingly, the inhibitory response to plexin B1 was reduced or absent in cells from a matched metastatic tumor, suggesting that changes occur in metastatic cells which bypass the tumor suppressor mechanisms. Plexin B1 also inhibited cell migration, but this was seen in metastatic cells and not in matched primary cells. Thus, plexin B1 has tumor suppressor function in early-stage cells, while suppressing migration in late-stage cells. Our findings suggest that B-Raf/MKK/ERK provides a permissive environment for melanoma genesis by modulating plexin B1.
Collapse
|
16
|
Rhee JS, Lee YM, Raisuddin S, Lee JS. Expression of R-ras oncogenes in the hermaphroditic fish Kryptolebias marmoratus, exposed to endocrine disrupting chemicals. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:433-9. [PMID: 19000778 DOI: 10.1016/j.cbpc.2008.10.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 10/06/2008] [Accepted: 10/07/2008] [Indexed: 12/25/2022]
Abstract
The hermaphroditic fish Krytolebias marmoratus is a potential fish model for study of tumour development. Recently, sequences and expression of some oncogenes and tumor suppressor gene have been studied in K. marmoratus. To get a better understanding of oncogene expression at different development stage, and in different tissues three R-ras genes were cloned and fully sequenced. Expression of these R-ras genes (R-ras1, R-ras2, R-ras3) was also studied in fish exposed to endocrine-disrupting chemicals (EDCs). Liver showed the highest level of expression compared to other tissues, even though each R-ras gene showed different expression patterns in tissues. Interestingly, in secondary male (ovary atresia stage), expression levels of three R-ras genes was lower compared to hermaphrodites. At different developmental stages, R-ras2 gene showed most pronounced expression at early embryogenesis but at stage 5 (hatchling stage) and juvenile stage, R-ras3 gene showed the highest expression. After the juvenile stage, R-ras1 gene was upregulated compared to other R-ras genes, which showed the highest expression at the hermaphroditic stage. When fish were exposed to 17-beta-estradiol (E2), a natural estrogen and tamoxifen, a nonsteroidal estrogen antagonist and three EDCs viz., 4-n-nonylphenol (NP), bisphenol A (BPA), and 4-tert-octylphenol (OP), all the three R-ras genes were induced, except in the fish exposed to tamoxifen. These results suggest that EDCs modulate the expression of R-ras genes and thus affect subsequent signal transduction and tumor development.
Collapse
Affiliation(s)
- Jae-Sung Rhee
- Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 133-791, South Korea
| | | | | | | |
Collapse
|
17
|
Magné N, Chargari C, Deutsch E, Castadot P, Ghalibafian M, Bourhis J, Haie-Meder C. Molecular profiling of uterine cervix carcinoma: an overview with a special focus on rationally designed target-based anticancer agents. Cancer Metastasis Rev 2008; 27:737-50. [DOI: 10.1007/s10555-008-9162-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Erdogan M, Pozzi A, Bhowmick N, Moses HL, Zent R. Transforming growth factor-beta (TGF-beta) and TGF-beta-associated kinase 1 are required for R-Ras-mediated transformation of mammary epithelial cells. Cancer Res 2008; 68:6224-31. [PMID: 18676846 DOI: 10.1158/0008-5472.can-08-0513] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transforming growth factor-beta (TGF-beta) cooperates with oncogenic members of the Ras superfamily to promote cellular transformation and tumor progression. Apart from the classic (H-, K-, and N-) Ras GTPases, only the R-Ras subfamily (R-Ras, R-Ras2/TC21, and R-Ras3/M-Ras) has significant oncogenic potential. In this study, we show that oncogenic R-Ras transformation of EpH4 cells requires TGF-beta signaling. When murine EpH4 cells were stably transfected with a constitutively active R-Ras(G38V) mutant, they were no longer sensitive to TGF-beta-mediated growth inhibition and showed increased proliferation and transformation in response to exogenous TGF-beta. R-Ras/EpH4 cells require TGF-beta signaling for transformation to occur and they produce significantly elevated levels of endogenous TGF-beta, which signals in an autocrine fashion. The effects of TGF-beta are independent of Smad2/3 activity and require activation of TGF-beta-associated kinase 1 (TAK1) and its downstream effectors c-Jun NH(2)-terminal kinase and p38 mitogen-activated protein kinase as well as the phosphoinositide 3-kinase/Akt and mammalian target of rapamycin pathways. Thus, TAK1 is a novel link between TGF-beta signaling and oncogenic R-Ras in the promotion of tumorigenesis.
Collapse
Affiliation(s)
- Mete Erdogan
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
19
|
Mora N, Rosales R, Rosales C. R-Ras promotes metastasis of cervical cancer epithelial cells. Cancer Immunol Immunother 2007; 56:535-44. [PMID: 16862428 PMCID: PMC11031036 DOI: 10.1007/s00262-006-0205-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 06/22/2006] [Indexed: 12/11/2022]
Abstract
Mutations in the small GTPase R-Ras that promote constitutive activation of this signaling molecule have been observed in a variety of invasive cancer cell types. We previously reported that expression of an oncogenic form of R-Ras (R-Ras87L) in a cell line of cervical cancer (C33A cells) augments cell growth in vitro and tumorigenicity in vivo. Because increased tumorigenicity in vivo often precedes metastasis, we now examined whether the expression of R-Ras87L also increased the metastatic potential of C33A cells. Accelerated tumor growth was observed in athymic mice after subcutaneous injection of R-Ras87L-expressing C33A cells. In addition, increased metastasis to the liver, in immunodeficient SCID mice, was observed after intravenous injection of R-Ras87L-expressing C33A cells. Also, R-Ras87L-expressing cells presented decreased membrane expression of MHC class I molecules, and beta1 integrins, but increased levels of PI 3-K and Akt activities. C33A cells expressing R-Ras87L also migrated more over collagen I in wound assays. Inhibition of the PI 3-K/Akt/mTOR pathway by pharmacological means blocked R-Ras87L-induced accelerated growth and migration over collagen I. These results suggest oncogenic R-Ras has a central role in cancer progression towards a metastatic phenotype, through the activation of the PI 3-K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Nancy Mora
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Cd. Universitaria, México City, 04510 Mexico
| | - Ricardo Rosales
- Molecular Biology and Biotechnology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Cd. Universitaria, México City, 04510 Mexico
| |
Collapse
|
20
|
Rody A, Holtrich U, Gaetje R, Gehrmann M, Engels K, von Minckwitz G, Loibl S, Diallo-Danebrock R, Ruckhäberle E, Metzler D, Ahr A, Solbach C, Karn T, Kaufmann M. Poor Outcome in Estrogen Receptor-Positive Breast Cancers Predicted by Loss of Plexin B1. Clin Cancer Res 2007; 13:1115-22. [PMID: 17317819 DOI: 10.1158/1078-0432.ccr-06-2433] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE A common characteristic of mammary carcinomas is an inverse relationship between the estrogen receptor (ER) status and the proliferative activity of the tumor. Yet, a subset of ER-positive breast cancers is characterized by a high proliferation, suggesting malfunctions in ER responsiveness that influence the biological and therapeutic behavior of tumor cells. The expression of several ER-dependent genes seems to be dysregulated among those "uncoupled" tumors. One of those genes is plexin B1, a cell-surface receptor for the semaphorin Sema4D (CD 100). However, the biological role of plexin B1 in breast cancer is largely unknown. EXPERIMENTAL DESIGN Expression data of plexin B1 were obtained from Affymetrix microarray analysis of n = 119 breast cancer specimens. Validation was done by quantitative real-time PCR and protein expression was evaluated by immunohistochemistry. Expression data were compared with clinical characteristics as well as follow-up data of the disease. RESULTS Low plexin B1 expression levels characterize a more aggressive tumor phenotype. The expression of plexin B1 is strongly correlated with the ER status. However, even among ER-positive tumors, loss of plexin B1 is associated with an impaired prognosis of breast cancer patients in both univariate (all patients, P = 0.0062; ER positive, P = 0.0107) and multivariate analyses (all patients, P = 0.032; ER positive, P = 0.022). Immunohistochemistry reveals that the tumor cells themselves and not the endothelial cells are the major source of plexin B1 expression in the tumor. CONCLUSION Plexin B1 acts not only as a new important prognostic but should also represent a predictive marker indicating an endocrine resistance. These data give a new insight in markers that could be involved in endocrine dysregulation of breast cancer.
Collapse
Affiliation(s)
- Achim Rody
- Department of Obstetrics and Gynecology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dam V, Morgan BT, Mazanek P, Hogarty MD. Mutations in PIK3CA are infrequent in neuroblastoma. BMC Cancer 2006; 6:177. [PMID: 16822308 PMCID: PMC1533846 DOI: 10.1186/1471-2407-6-177] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 07/05/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroblastoma is a frequently lethal pediatric cancer in which MYCN genomic amplification is highly correlated with aggressive disease. Deregulated MYC genes require co-operative lesions to foster tumourigenesis and both direct and indirect evidence support activated Ras signaling for this purpose in many cancers. Yet Ras genes and Braf, while often activated in cancer cells, are infrequent targets for activation in neuroblastoma. Recently, the Ras effector PIK3CA was shown to be activated in diverse human cancers. We therefore assessed PIK3CA for mutation in human neuroblastomas, as well as in neuroblastomas arising in transgenic mice with MYCN overexpressed in neural-crest tissues. In this murine model we additionally surveyed for Ras family and Braf mutations as these have not been previously reported. METHODS Sixty-nine human neuroblastomas (42 primary tumors and 27 cell lines) were sequenced for PIK3CA activating mutations within the C2, helical and kinase domain "hot spots" where 80% of mutations cluster. Constitutional DNA was sequenced in cases with confirmed alterations to assess for germline or somatic acquisition. Additionally, Ras family members (Hras1, Kras2 and Nras) and the downstream effectors Pik3ca and Braf, were sequenced from twenty-five neuroblastomas arising in neuroblastoma-prone transgenic mice. RESULTS We identified mutations in the PIK3CA gene in 2 of 69 human neuroblastomas (2.9%). Neither mutation (R524M and E982D) has been studied to date for effects on lipid kinase activity. Though both occurred in tumors with MYCN amplification the overall rate of PIK3CA mutations in MYCN amplified and single-copy tumors did not differ appreciably (2 of 31 versus 0 of 38, respectively). Further, no activating mutations were identified in a survey of Ras signal transduction genes (including Hras1, Kras2, Nras, Pik3ca, or Braf genes) in twenty-five neuroblastic tumors arising in the MYCN-initiated transgenic mouse model. CONCLUSION These data suggest that activating mutations in the Ras/Raf-MAPK/PI3K signaling cascades occur infrequently in neuroblastoma. Further, despite compelling evidence for MYC and RAS cooperation in vitro and in vivo to promote tumourigenesis, activation of RAS signal transduction does not constitute a preferred secondary pathway in neuroblastomas with MYCN deregulation in either human tumors or murine models.
Collapse
Affiliation(s)
- Vincent Dam
- Division of Oncology, The Children's Hospital of Philadelphia; Philadelphia, PA, USA
| | - Brian T Morgan
- Division of Oncology, The Children's Hospital of Philadelphia; Philadelphia, PA, USA
| | - Pavel Mazanek
- Pediatric Oncology Department, University Children's Hospital Brno, Brno, Czech Republic
| | - Michael D Hogarty
- Division of Oncology, The Children's Hospital of Philadelphia; Philadelphia, PA, USA
- Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
22
|
Oinuma I, Katoh H, Negishi M. Semaphorin 4D/Plexin-B1-mediated R-Ras GAP activity inhibits cell migration by regulating beta(1) integrin activity. ACTA ACUST UNITED AC 2006; 173:601-13. [PMID: 16702230 PMCID: PMC2063868 DOI: 10.1083/jcb.200508204] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plexins are cell surface receptors for semaphorins and regulate cell migration in many cell types. We recently reported that the semaphorin 4D (Sema4D) receptor Plexin-B1 functions as a GTPase-activating protein (GAP) for R-Ras, a member of Ras family GTPases implicated in regulation of integrin activity and cell migration (Oinuma, I., Y. Ishikawa, H. Katoh, and M. Negishi. 2004. Science. 305:862–865). We characterized the role of R-Ras downstream of Sema4D/Plexin-B1 in cell migration. Activation of Plexin-B1 by Sema4D suppressed the ECM-dependent R-Ras activation, R-Ras–mediated phosphatydylinositol 3-kinase activation, and β1 integrin activation through its R-Ras GAP domain, leading to inhibition of cell migration. In addition, inactivation of R-Ras by overexpression of the R-Ras–specific GAP or knockdown of R-Ras by RNA interference was sufficient for suppressing β1 integrin activation and cell migration in response to the ECM stimulation. Thus, we conclude that R-Ras activity is critical for ECM-mediated β1 integrin activation and cell migration and that inactivation of R-Ras by Sema4D/Plexin-B1–mediated R-Ras GAP activity controls cell migration by modulating the activity of β1 integrins.
Collapse
Affiliation(s)
- Izumi Oinuma
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
23
|
Wang L, Dittmer DP, Tomlinson CC, Fakhari FD, Damania B. Immortalization of Primary Endothelial Cells by the K1 Protein of Kaposi's Sarcoma–Associated Herpesvirus. Cancer Res 2006; 66:3658-66. [PMID: 16585191 DOI: 10.1158/0008-5472.can-05-3680] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is linked to three different human cancers: Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. The Kaposi's sarcoma lesion expresses high levels of angiogenic factors and is comprised of a mixed cell population, including endothelial cells that are infected with KSHV. We find that the KSHV K1 protein is expressed in Kaposi's sarcoma lesions and can immortalize and extend the life span of primary human umbilical vein endothelial cells in culture. Vascular endothelial growth factor (VEGF) is critical for the survival of endothelial cells, and we show that expression of K1 in endothelial cells resulted in increased levels of secreted VEGF and the activation of key signaling pathways, including the VEGF/VEGF receptor and the phosphatidylinositol-3'-OH-kinase (PI3K) pathway. The SH2 binding motifs present in the cytoplasmic tail of K1 were critical for K1's ability to activate these pathways. Activation of PI3K by K1 results in activation of Akt kinase and mammalian target of rapamycin and inactivation of the proapoptotic proteins FKHR, glycogen synthase kinase-3, and Bad, which are events indicative of cell survival. Because activation of the PI3K pathway is critical for transformation of many human cells, we suggest that PI3K activation by K1 is involved in endothelial cell immortalization and contributes to KSHV-associated tumorigenesis. We also report that K1 enhances angiogenesis in vivo and increases tumor vasculature and tumor size.
Collapse
Affiliation(s)
- Ling Wang
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
24
|
Dail M, Richter M, Godement P, Pasquale EB. Eph receptors inactivate R-Ras through different mechanisms to achieve cell repulsion. J Cell Sci 2006; 119:1244-54. [PMID: 16522685 DOI: 10.1242/jcs.02842] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eph receptor tyrosine kinases regulate the spatial organization of cells within tissues. Central to this function is their ability to modulate cell shape and movement in response to stimulation by the ephrin ligands. The EphB2 receptor was reported to inhibit cell-matrix adhesion by phosphorylating tyrosine 66 in the effector domain of R-Ras, a Ras family protein known to regulate cell adhesion and motility. Here, we further characterize the role of R-Ras downstream of both EphA and EphB receptors. Our data show that besides inhibiting R-Ras function through phosphorylation, Eph receptors can reduce R-Ras activity through the GTPase-activating protein, p120RasGAP. By using R-Ras mutants that cannot be inactivated by p120RasGAP and/or cannot be phosphorylated at tyrosine 66, we show that the two forms of R-Ras negative regulation - through increased GTP hydrolysis and phosphorylation - differentially contribute to various ephrin-mediated responses. Retraction of the COS cell periphery depends only on R-Ras inactivation through p120RasGAP. By contrast, both reduced R-Ras GTP levels and tyrosine 66 phosphorylation contribute to the ephrin inhibitory effects on COS cell migration and to ephrin-dependent growth cone collapse in primary neurons. Therefore, Eph receptors can regulate R-Ras in two different ways to achieve cell repulsion.
Collapse
Affiliation(s)
- Monique Dail
- The Burnham Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
25
|
Pozzi A, Coffa S, Bulus N, Zhu W, Chen D, Chen X, Mernaugh G, Su Y, Cai S, Singh A, Brissova M, Zent R. H-Ras, R-Ras, and TC21 differentially regulate ureteric bud cell branching morphogenesis. Mol Biol Cell 2006; 17:2046-56. [PMID: 16467383 PMCID: PMC1415315 DOI: 10.1091/mbc.e05-08-0800] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The collecting system of the kidney, derived from the ureteric bud (UB), undergoes repetitive bifid branching events during early development followed by a phase of tubular growth and elongation. Although members of the Ras GTPase family control cell growth, differentiation, proliferation, and migration, their role in development of the collecting system of the kidney is unexplored. In this study, we demonstrate that members of the R-Ras family of proteins, R-Ras and TC21, are expressed in the murine collecting system at E13.5, whereas H-Ras is only detected at day E17.5. Using murine UB cells expressing activated H-Ras, R-Ras, and TC21, we demonstrate that R-Ras-expressing cells show increased branching morphogenesis and cell growth, TC21-expressing cells branch excessively but lose their ability to migrate, whereas H-Ras-expressing cells migrated the most and formed long unbranched tubules. These differences in branching morphogenesis are mediated by differential regulation/activation of the Rho family of GTPases and mitogen-activated protein kinases. Because most branching of the UB occurs early in development, it is conceivable that R-Ras and TC-21 play a role in facilitating branching and growth in early UB development, whereas H-Ras might favor cell migration and elongation of tubules, events that occur later in development.
Collapse
Affiliation(s)
- Ambra Pozzi
- Department of Research Medicine, Veterans Affairs Hospital, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Semaphorins are secreted or transmembrane proteins that regulate cell motility and attachment in axon guidance, vascular growth, immune cell regulation and tumour progression. The main receptors for semaphorins are plexins, which have established roles in regulating Rho-family GTPases. Recent work shows that plexins can also influence R-Ras, which, in turn, can regulate integrins. Such regulation is probably a common feature of semaphorin signalling and contributes substantially to our understanding of semaphorin biology.
Collapse
Affiliation(s)
- Robert P Kruger
- Neuroscience Program and Institute of Gerontology, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
27
|
Nakada M, Niska JA, Tran NL, McDonough WS, Berens ME. EphB2/R-Ras signaling regulates glioma cell adhesion, growth, and invasion. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:565-76. [PMID: 16049340 PMCID: PMC1603577 DOI: 10.1016/s0002-9440(10)62998-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Eph receptor tyrosine kinases mediate neurodevelopmental processes such as boundary formation, vasculogenesis, and cell migration. Recently, we found that overexpression of EphB2 in glioma cells results in reduced cell adhesion and increased cell invasion. Since R-Ras has been shown to play a critical role in EphB2 regulation of integrin activity, we explored whether the biological role of EphB2 in glioma invasion is mediated by downstream R-Ras activation. On EphB2 activation, R-Ras associated with the receptor and became highly phosphorylated. Depletion of endogenous R-Ras expression by siRNA abrogated EphB2 effects on glioma cell adhesion, proliferation, and invasion in ex vivo rat brain slices. Anti-proliferative responses to EphB2 activation were consistent with suppressed mitogen-activated protein kinase activity. Moreover, R-Ras was highly phosphorylated in the invading glioma cells. In human brain tumor specimens, R-Ras expression and phosphorylation correlated with increasing grade of gliomas. Laser capture microdissection of invading glioblastoma cells revealed elevated R-Ras mRNA (1.5- to 26-fold) in 100% (eight of eight) of biopsy specimens, and immunohistochemistry revealed high R-Ras localization primarily in glioblastoma cells. The phosphorylation ratio of R-Ras positively correlated with the phosphorylation ratio of EphB2 in glioblastoma tissues. These results demonstrate that R-Ras plays an important role in glioma pathology, further suggesting the EphB2/R-Ras signaling pathway as a potential therapeutic target.
Collapse
Affiliation(s)
- Mitsutoshi Nakada
- Neuro-Oncology Research, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | | | | | | |
Collapse
|
28
|
Jeong HW, Nam JO, Kim IS. The COOH-terminal End of R-Ras Alters the Motility and Morphology of Breast Epithelial Cells through Rho/Rho-Kinase. Cancer Res 2005. [DOI: 10.1158/0008-5472.507.65.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
R-Ras has a high degree of sequence homology with Ras and other members of the Ras subfamily, including Rap, TC21, and M-Ras. Although R-Ras has been suggested to regulate cell adhesion, migration, and invasion, the biological mechanism has not been well assessed. In this report, we show that constitutively active R-Ras (38V) induces a more rounded cell shape and redistribution of focal adhesion, and enhances the phosphorylation of focal adhesion kinase and paxillin. Active R-Ras (38V) induces cell adhesion to type I collagen, but inhibits cell motility. In active R-Ras (38V) cells, the activity of RhoA is increased and accompanied with translocation to plasma membrane, but not that of Rac1 or Cdc42. In parallel, dominant-negative RhoA (N19RhoA) and Y27632, a specific inhibitor of Rho-associated kinase, dramatically reverse the rounded cell morphology to a spread cell shape and enhance motility. Furthermore, coincident with the formation of cortical actin filaments in active R-Ras (38V) cells, myosin light chain and Ser-19-phosphorylated myosin light chain mainly accumulate at the peripheral region, which is inhibited by the treatment of Y27632. Using H-Ras/R-Ras and R-Ras/H-Ras hybrid constructs, we show that the COOH-terminal region of R-Ras contains the specific signal for inducing changes in motility and morphology. Our results suggest that R-Ras in breast epithelial cells disrupts cell polarity and motility through the Rho/Rho–associated kinase pathway triggered by a signal from the COOH-terminal end of R-Ras.
Collapse
Affiliation(s)
- Ha-Won Jeong
- Cell and Matrix Biology National Research Laboratory, Department of Biochemistry, Kyungpook National University School of Medicine, Daegu, Korea
| | - Ju-Ock Nam
- Cell and Matrix Biology National Research Laboratory, Department of Biochemistry, Kyungpook National University School of Medicine, Daegu, Korea
| | - In-San Kim
- Cell and Matrix Biology National Research Laboratory, Department of Biochemistry, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
29
|
Wozniak MA, Kwong L, Chodniewicz D, Klemke RL, Keely PJ. R-Ras controls membrane protrusion and cell migration through the spatial regulation of Rac and Rho. Mol Biol Cell 2004; 16:84-96. [PMID: 15525681 PMCID: PMC539154 DOI: 10.1091/mbc.e04-04-0277] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although it is known that the spatial coordination of Rac and Rho activity is essential for cell migration, the molecular mechanisms regulating these GTPases during migration are unknown. We found that the expression of constitutively activated R-Ras (38V) blocked membrane protrusion and random migration. In contrast, expression of dominant negative R-Ras (41A) enhanced migrational persistence and membrane protrusion. Endogenous R-Ras is necessary for cell migration, as cells that were transfected with siRNA for R-Ras did not migrate. Expression of R-Ras (38V) decreased Rac activity and increased Rho activity around the entire cell periphery, whereas expression of dominant negative R-Ras (41A) showed the converse, suggesting that R-Ras can spatially activate Rho and inactivate Rac. Consistent with this role, endogenous R-Ras localized and was preferentially activated at the leading edge of migratory cells in response to adhesion. The effects of R-Ras on cell migration are mediated by PI3-Kinase, as an effector mutant that uncouples PI3-Kinase binding from R-Ras (38V) rescued migration. From these data, we hypothesize that R-Ras plays a key role in cell migration by locally regulating the switch from Rac to Rho activity after membrane protrusion and adhesion.
Collapse
Affiliation(s)
- Michele A Wozniak
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
30
|
Li KC, Yuan S. A functional genomic study on NCI's anticancer drug screen. THE PHARMACOGENOMICS JOURNAL 2004; 4:127-35. [PMID: 14993929 DOI: 10.1038/sj.tpj.6500235] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pharmacogenomics requires massive computer exploration on heterogeneous databases. COMPARE, the gateway to the NCI's anticancer drug screen database, allows users to correlate drug-sensitivity profiles with a functional genomic database. However, most drugs of known molecular mechanism turn out to be uncorrelated with their molecular-target gene expression. Based on a novel statistical concept, liquid association, we develop an on-line system to identify candidate genes that intervene, confound and weaken the drug-gene correlation. The system takes queries and returns button-clickable tables of functionally associated genes for rerouting to knowledgebases such as Locus Link, OMIM and PubMed. We report results that link methotrexate resistance to DNA component biosynthesis, and taxol sensitivity to genes associated with human immunodeficiency virus infection. The drug-sensitivity database can be synergistically coanalyzed with gene expression data to study proteins of poorly understood physiological roles. When applied to the human prion, a cellular context embroidered with the gene expression network of Alzheimer disease is revealed.
Collapse
Affiliation(s)
- K-C Li
- Department of Statistics, UCLA, Los Angeles, CA 90095-1554, USA.
| | | |
Collapse
|
31
|
Wang JS, Shi JS, Xu YZ, Duan XY, Zhang L, Wang J, Yang LM, Weng SF, Wu JG. FT-IR spectroscopic analysis of normal and cancerous tissues of esophagus. World J Gastroenterol 2003; 9:1897-9. [PMID: 12970871 PMCID: PMC4656639 DOI: 10.3748/wjg.v9.i9.1897] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the special Fourier transform infrared spectroscopy (FT-IR) spectra in normal and cancerous tissues of esophagus.
METHODS: Twenty-seven pairs of normal and cancerous tissues of esophagus were studied by using FT-IR and the special spectra characteristics were analyzed in different tissues.
RESULTS: Different spectra were found in normal and cancerous tissues. The peak at 1550/cm was weak and wide in cancerous tissues but strong and high in normal tissues.The ratio of I 1647/I 1550 was 2.0 in normal tissues and 2.36 in cancerous tissues (P < 0.05). The ratio of I 1550/I 1080 was 4.5 in normal tissues and 3.4 in cancerous tissues (P < 0.01). The peak at 1453/cm was higher than at 1402/cm in normal tissue and lower than at 1402/cm in cancerous tissues.
CONCLUSION: The results indicate that FTIR may be used in clinical diagnosis.
Collapse
Affiliation(s)
- Jian-Sheng Wang
- Department of Oncological Surgery, First Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|