1
|
Satofuka H, Suzuki H, Tanaka T, Li G, Kaneko MK, Kato Y. Development of an anti-human EphA2 monoclonal antibody Ea 2Mab-7 for multiple applications. Biochem Biophys Rep 2025; 42:101998. [PMID: 40236294 PMCID: PMC11999297 DOI: 10.1016/j.bbrep.2025.101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/12/2025] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
Ephrin type A receptor 2 (EphA2) binds to membrane-bound ligands, ephrin A1, A2, and A5, eliciting bidirectional signaling. This signaling regulates many physiological processes, such as tissue development, homeostasis, and regeneration. The dysregulation of the EphA2-ephrins axis contributes to various diseases, including cancers. The high expression of EphA2 is observed in various cancers, which promotes cancer malignancy, whereas its levels are relatively low in most normal adult tissues. Therefore, EphA2 is a promising target for cancer therapy. We developed anti-human EphA2 monoclonal antibodies in this study using the Cell-Based Immunization and Screening method. Among them, a clone Ea2Mab-7 (IgG1, κ) exhibited a high affinity and sensitivity in flow cytometry. The dissociation constant values of Ea2Mab-7 for CHO/EphA2 and MDA-MB-231 cells were determined as 6.2 ± 1.3 × 10-9 M and 1.6 ± 0.4 × 10-9 M, respectively. Furthermore, Ea2Mab-7 can detect endogenous EphA2 in Western blot and immunohistochemistry. Therefore, the Ea2Mab-7 is highly versatile for basic research and is expected to contribute to clinical applications, such as antibody therapy and tumor diagnosis.
Collapse
Affiliation(s)
- Hiroyuki Satofuka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Guanjie Li
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
2
|
Miyamae C, Isozaki Y, Tsumoto K, Tomita M. Dual generation of stereo- and linear-specific monoclonal antibodies through B-cell receptors by DNA and cell immunization for therapeutic applications. Biochim Biophys Acta Gen Subj 2025:130822. [PMID: 40412732 DOI: 10.1016/j.bbagen.2025.130822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 04/08/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025]
Abstract
The optimized stereospecific targeting (SST) technique features selective generation of conformation-specific monoclonal antibodies against membranous proteins with high specificity after DNA and cell immunization. This technology consists of two critical steps, which are specific selection of sensitized B lymphocytes by antigen-expressing myeloma cells through B-cell receptors (BCRs) and selective fusion of B cell-myeloma cell complexes by electrical pulses to produce hybridoma cells secreting stereospecific monoclonal antibodies. Here we were able to verify the critical step for the selection of B lymphocytes by intact antigen-expressing myeloma cells by a double-label immunofluorescence analysis. Interestingly, the cell complex was a single attachment. Furthermore, we newly found the new progress that the optimized SST technique offered dual production of anti-intact and anti-linear specific monoclonal antibodies against a human ephrin type-A receptor 2 (hEphA2), . The optimized SST technique may be useful for producing not only stereospecific monoclonal antibodies, but also primary-specific monoclonal antibodies based on the selection of sensitized B lymphocytes by the target intact antigen through BCRs. It would elicit more advanced medical applications by generating dual monoclonal antibodies against the intact antigen.
Collapse
Affiliation(s)
- Chiho Miyamae
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| | - Yushi Isozaki
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan; Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako Hyogo 678-1297, Japan.
| | - Kanta Tsumoto
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| | - Masahiro Tomita
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| |
Collapse
|
3
|
Ho KW, Liu YL, Huang BC, Hong ST, Yang SH, Liao TY, Liu ES, Chen YT, Huang YZ, Leu YL, Chen CY, Chen BM, Roffler SR, Cheng TL. Targeted internalization and activation of glycosidic switch liposomes by a biological macromolecule mPEG×EphA2 increases therapeutic efficacy against lung cancer. Int J Biol Macromol 2025; 300:140138. [PMID: 39842595 DOI: 10.1016/j.ijbiomac.2025.140138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Glycosidic switch liposome (GSL) technology efficiently encapsulates and stabilizes potent anticancer drugs in liposomes using a reversible glucuronide ester. Enzymatic hydrolysis of the glucuronide switch in target cell lysosomes produces parental drug. Our study examined the potential of a bispecific macromolecule, a polyethylene glycol (PEG) engager (mPEG×EphA2), generated by fusing a humanized anti-methoxy PEG (mPEG) Fab with an anti-EphA2 single-chain antibody, to increase GSL uptake into cancer cells and boost the anticancer activity by targeting PEG on GSL and an internalizing tumor antigen. Combining GSL with the PEG engager creates αEphA2/GSL, targeting cancer cells to generate topoisomerase I poison 9-aminocamptothecin (9 AC) for cell killing. Targeted liposomes can bind CL1-5 human lung adenocarcinoma cells and increase GSL internalization from 0 % to 62.4 % in 60 min. αEphA2/GSL showed slightly higher cellular cytotoxicity than non-targeted GSL, but targeted GSL increased 9 AC intratumoral concentrations by 8.4 fold at 24 h. The 9 AC tumor/blood ratio of αEphA2/GSL was nearly 6-fold higher than αDNS/GSL (control engager GSL). Using targeted GSL, five of seven mice with solid CL1-5 tumors were cured. The mPEG×EphA2 engager can enhance GSL drug uptake and generation, boosting lung cancer treatment efficacy, suggesting that αEphA2/GSL is a promising treatment for tumors overexpressing EphA2.
Collapse
Affiliation(s)
- Kai-Wen Ho
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Ling Liu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bo-Cheng Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Shih-Ting Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Hung Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taiwan
| | - Tzu-Yi Liao
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - En-Shuo Liu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Tung Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Zhong Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Lin Leu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chiao-Yun Chen
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Steve R Roffler
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Tian-Lu Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
4
|
Sakuraba S, Koizumi A, Iwasawa T, Ito T, Kato K. Serum EphA2 as a Promising Biomarker for the Early Detection and Diagnosis of Colorectal Cancer. Biomolecules 2024; 14:1504. [PMID: 39766211 PMCID: PMC11673381 DOI: 10.3390/biom14121504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND EphA2, a receptor-type tyrosine kinase, is overexpressed in several cancers, including colorectal cancer (CRC), and can be detected as soluble EphA2 in serum. This study aimed to investigate the relationship between soluble EphA2 and CRC. METHODS Serum samples were collected from 65 patients with CRC and 19 healthy individuals. Time-series changes in soluble EphA2 levels were measured in CRC cell lines to verify the release of EphA2 into the culture medium. RESULTS Soluble EphA2 levels were significantly higher in patients than in healthy individuals (p < 0.0001). Specifically, even in early-stage cancer, there was a notable difference between healthy individuals and patients with Stage I CRC (p = 0.00298), highlighting the potential of EphA2 as a biomarker for early detection. Additionally, correlations were observed with tumor size (p = 0.0346), depth of invasion (p = 0.0311), and lymphatic invasion (p = 0.0431). A receiver operating characteristic (ROC) analysis yielded an area under the curve (AUC) of 0.90 with 93.8% sensitivity and 78.9% specificity at a cutoff value of 448 pg/mL. CONCLUSIONS These findings suggest that serum EphA2 could serve as a valuable biomarker for the early detection of CRC, offering a practical and minimally invasive alternative to conventional tumor markers.
Collapse
Affiliation(s)
- Shunsuke Sakuraba
- Department of Surgery, Juntendo University Medical School, Shizuoka Hospital, Shizuoka 410-2295, Japan; (S.S.); (T.I.)
- Shizuoka Medical Research Center for Disaster, Shizuoka 410-2295, Japan;
| | - Akihiro Koizumi
- Department of Surgery, Juntendo University Medical School, Shizuoka Hospital, Shizuoka 410-2295, Japan; (S.S.); (T.I.)
| | - Takumi Iwasawa
- Shizuoka Medical Research Center for Disaster, Shizuoka 410-2295, Japan;
- Institute of Life Innovation Studies, Toyo University, Tokyo 115-8650, Japan
| | - Tomoaki Ito
- Department of Surgery, Juntendo University Medical School, Shizuoka Hospital, Shizuoka 410-2295, Japan; (S.S.); (T.I.)
- Shizuoka Medical Research Center for Disaster, Shizuoka 410-2295, Japan;
| | - Kazunori Kato
- Institute of Life Innovation Studies, Toyo University, Tokyo 115-8650, Japan
- Department of Nutrition Sciences, Graduate School of Health and Sports Sciences, Toyo University, Tokyo 115-8650, Japan
| |
Collapse
|
5
|
Zhang YK, Shi R, Meng RY, Lin SL, Zheng M. Erythropoietin-induced hepatocyte receptor A2 regulates effect of pyroptosis on gastrointestinal colorectal cancer occurrence and metastasis resistance. World J Gastrointest Oncol 2024; 16:3781-3797. [PMID: 39350985 PMCID: PMC11438782 DOI: 10.4251/wjgo.v16.i9.3781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/30/2024] [Accepted: 07/24/2024] [Indexed: 09/09/2024] Open
Abstract
Erythropoietin-induced hepatocyte receptor A2 (EphA2) is a receptor tyrosine kinase that plays a key role in the development and progression of a variety of tumors. This article reviews the expression of EphA2 in gastrointestinal (GI) colorectal cancer (CRC) and its regulation of pyroptosis. Pyroptosis is a form of programmed cell death that plays an important role in tumor suppression. Studies have shown that EphA2 regulates pyrodeath through various signaling pathways, affecting the occurrence, development and metastasis of GI CRC. The overexpression of EphA2 is closely related to the aggressiveness and metastasis of GI CRC, and the inhibition of EphA2 can induce pyrodeath and improve the sensitivity of cancer cells to treatment. In addition, EphA2 regulates intercellular communication and the microenvironment through interactions with other cytokines and receptors, further influencing cancer progression. The role of EphA2 in GI CRC and its underlying mechanisms provide us with new perspectives and potential therapeutic targets, which have important implications for future cancer treatment.
Collapse
Affiliation(s)
- Yu-Kun Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong Province, China
| | - Ran Shi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong Province, China
| | - Ruo-Yu Meng
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Shui-Li Lin
- Department of Ana and Intestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Mei Zheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong Province, China
| |
Collapse
|
6
|
Veiga RN, de Azevedo ALK, de Oliveira JC, Gradia DF. Targeting EphA2: a promising strategy to overcome chemoresistance and drug resistance in cancer. J Mol Med (Berl) 2024; 102:479-493. [PMID: 38393661 DOI: 10.1007/s00109-024-02431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/24/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Erythropoietin-producing hepatocellular A2 (EphA2) is a vital member of the Eph tyrosine kinase receptor family and has been associated with developmental processes. However, it is often overexpressed in tumors and correlates with cancer progression and worse prognosis due to the activation of its noncanonical signaling pathway. Throughout cancer treatment, the emergence of drug-resistant tumor cells is relatively common. Since the early 2000s, researchers have focused on understanding the role of EphA2 in promoting drug resistance in different types of cancer, as well as finding efficient and secure EphA2 inhibitors. In this review, the current knowledge regarding induced resistance by EphA2 in cancer treatment is summarized, and the types of cancer that lead to the most cancer-related deaths are highlighted. Some EphA2 inhibitors were also investigated. Regardless of whether the cancer treatment has reached a drug-resistance stage in EphA2-overexpressing tumors, once EphA2 is involved in cancer progression and aggressiveness, targeting EphA2 is a promising therapeutic strategy, especially in combination with other target-drugs for synergistic effect. For that reason, monoclonal antibodies against EphA2 and inhibitors of this receptor should be investigated for efficacy and drug toxicity.
Collapse
Affiliation(s)
- Rafaela Nasser Veiga
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics. Department of Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Alexandre Luiz Korte de Azevedo
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics. Department of Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Jaqueline Carvalho de Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics. Department of Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Daniela Fiori Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics. Department of Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil.
| |
Collapse
|
7
|
Li A, Wang S, Nie J, Xiao S, Xie X, Zhang Y, Tong W, Yao G, Liu N, Dan F, Shu Z, Liu J, Liu Z, Yang F. USP3 promotes osteosarcoma progression via deubiquitinating EPHA2 and activating the PI3K/AKT signaling pathway. Cell Death Dis 2024; 15:235. [PMID: 38531846 PMCID: PMC10965993 DOI: 10.1038/s41419-024-06624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Ubiquitin-specific protease 3 (USP3) plays an important role in the progression of various tumors. However, the role of USP3 in osteosarcoma (OS) remains poorly understood. The aim of this study was to explore the biological function of USP3 in OS and the underlying molecular mechanism. We found that OS had higher USP3 expression compared with that of normal bone tissue, and high expression of USP3 was associated with poor prognosis in patients with OS. Overexpression of USP3 significantly increased OS cell proliferation, migration, and invasion. Mechanistically, USP3 led to the activation of the PI3K/AKT signaling pathway in OS by binding to EPHA2 and then reducing its protein degradation. Notably, the truncation mutant USP3-F2 (159-520) interacted with EPHA2, and amino acid 203 was found to play an important role in this process. And knockdown of EPHA2 expression reversed the pro-tumour effects of USP3-upregulating. Thus, our study indicates the USP3/EPHA2 axis may be a novel potential target for OS treatment.
Collapse
Affiliation(s)
- Anan Li
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shijiang Wang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiangbo Nie
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shining Xiao
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xinsheng Xie
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu Zhang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Weilai Tong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Geliang Yao
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ning Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fan Dan
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhiguo Shu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiaming Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhili Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Feng Yang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
8
|
Szymanowski W, Szymanowska A, Bielawska A, Lopez-Berestein G, Rodriguez-Aguayo C, Amero P. Aptamers as Potential Therapeutic Tools for Ovarian Cancer: Advancements and Challenges. Cancers (Basel) 2023; 15:5300. [PMID: 37958473 PMCID: PMC10647731 DOI: 10.3390/cancers15215300] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Ovarian cancer (OC) is the most common lethal gynecologic cause of death in women worldwide, with a high mortality rate and increasing incidence. Despite advancements in the treatment, most OC patients still die from their disease due to late-stage diagnosis, the lack of effective diagnostic methods, and relapses. Aptamers, synthetic, short single-stranded oligonucleotides, have emerged as promising anticancer therapeutics. Their ability to selectively bind to target molecules, including cancer-related proteins and receptors, has revolutionized drug discovery and biomarker identification. Aptamers offer unique insights into the molecular pathways involved in cancer development and progression. Moreover, they show immense potential as drug delivery systems, enabling targeted delivery of therapeutic agents to cancer cells while minimizing off-target effects and reducing systemic toxicity. In the context of OC, the integration of aptamers with non-coding RNAs (ncRNAs) presents an opportunity for precise and efficient gene targeting. Additionally, the conjugation of aptamers with nanoparticles allows for accurate and targeted delivery of ncRNAs to specific cells, tissues, or organs. In this review, we will summarize the potential use and challenges associated with the use of aptamers alone or aptamer-ncRNA conjugates, nanoparticles, and multivalent aptamer-based therapeutics for the treatment of OC.
Collapse
Affiliation(s)
- Wojciech Szymanowski
- Department of Biotechnology, Medical University of Bialystok, 15-222 Bialystok, Poland; (W.S.); (A.B.)
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, 15-222 Bialystok, Poland; (W.S.); (A.B.)
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
| |
Collapse
|
9
|
Son JS, Chow R, Kim H, Lieu T, Xiao M, Kim S, Matuszewska K, Pereira M, Nguyen DL, Petrik J. Liposomal delivery of gene therapy for ovarian cancer: a systematic review. Reprod Biol Endocrinol 2023; 21:75. [PMID: 37612696 PMCID: PMC10464441 DOI: 10.1186/s12958-023-01125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
OBJECTIVE To systematically identify and narratively synthesize the evidence surrounding liposomal delivery of gene therapy and the outcome for ovarian cancer. METHODS An electronic database search of the Embase, MEDLINE and Web of Science from inception until July 7, 2023, was conducted to identify primary studies that investigated the effect of liposomal delivery of gene therapy on ovarian cancer outcomes. Retrieved studies were assessed against the eligibility criteria for inclusion. RESULTS The search yielded 564 studies, of which 75 met the inclusion criteria. Four major types of liposomes were identified: cationic, neutral, polymer-coated, and ligand-targeted liposomes. The liposome with the most evidence involved cationic liposomes which are characterized by their positively charged phospholipids (n = 37, 49.3%). Similarly, those with neutrally charged phospholipids, such as 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine, were highly researched as well (n = 25, 33.3%). Eight areas of gene therapy research were identified, evaluating either target proteins/transcripts or molecular pathways: microRNAs, ephrin type-A receptor 2 (EphA2), interleukins, mitogen-activated protein kinase (MAPK), human-telomerase reverse transcriptase/E1A (hTERT/EA1), suicide gene, p53, and multidrug resistance mutation 1 (MDR1). CONCLUSION Liposomal delivery of gene therapy for ovarian cancer shows promise in many in vivo studies. Emerging polymer-coated and ligand-targeted liposomes have been gaining interest as they have been shown to have more stability and specificity. We found that gene therapy involving microRNAs was the most frequently studied. Overall, liposomal genetic therapy has been shown to reduce tumor size and weight and improve survivability. More research involving the delivery and targets of gene therapy for ovarian cancer may be a promising avenue to improve patient outcomes.
Collapse
Affiliation(s)
- Jin Sung Son
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada
| | - Ryan Chow
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Helena Kim
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada
| | - Toney Lieu
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada
| | - Maria Xiao
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada
| | - Sunny Kim
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada
| | - Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Madison Pereira
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - David Le Nguyen
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jim Petrik
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada.
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.
- Department of Obstetrics and Gynecology, University of McMaster, Hamilton, ON, Canada.
| |
Collapse
|
10
|
Santana-Viera L, Dassie JP, Rosàs-Lapeña M, Garcia-Monclús S, Chicón-Bosch M, Pérez-Capó M, Pozo LD, Sanchez-Serra S, Almacellas-Rabaiget O, Maqueda-Marcos S, López-Alemany R, Thiel WH, Giangrande PH, Tirado OM. Combination of protein and cell internalization SELEX identifies a potential RNA therapeutic and delivery platform to treat EphA2-expressing tumors. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:758-772. [PMID: 37251690 PMCID: PMC10213179 DOI: 10.1016/j.omtn.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
The EphA2 receptor tyrosine kinase is overexpressed in most solid tumors and acts as the major driver of tumorigenesis. In this study, we developed a novel approach for targeting the EphA2 receptor using a 2'-fluoro-modified pyrimidine RNA aptamer termed ATOP. We identified the ATOP EphA2 aptamer using a novel bioinformatics strategy that compared aptamers enriched during a protein SELEX using recombinant human EphA2 and a cell-internalization SELEX using EphA2-expressing MDA231 tumor cells. When applied to EphA2-expressing tumor cell lines, the ATOP EphA2 aptamer attenuated tumor cell migration and clonogenicity. In a mouse model of spontaneous metastasis, the ATOP EphA2 aptamer slowed primary tumor growth and significantly reduced the number of lung metastases. The EphA2 ATOP aptamer represents a promising candidate for the development of next-generation targeted therapies that provide safer and more effective treatment of EphA2-overexpressing tumors.
Collapse
Affiliation(s)
- Laura Santana-Viera
- Sarcoma Research Group, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, Oncobell, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Justin P. Dassie
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, IA 52242, USA
| | - Marta Rosàs-Lapeña
- Sarcoma Research Group, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, Oncobell, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Silvia Garcia-Monclús
- Sarcoma Research Group, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, Oncobell, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Mariona Chicón-Bosch
- Sarcoma Research Group, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, Oncobell, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Marina Pérez-Capó
- Sarcoma Research Group, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, Oncobell, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Lidia del Pozo
- Sarcoma Research Group, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, Oncobell, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Sara Sanchez-Serra
- Sarcoma Research Group, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, Oncobell, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Olga Almacellas-Rabaiget
- Sarcoma Research Group, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, Oncobell, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Susana Maqueda-Marcos
- Sarcoma Research Group, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, Oncobell, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Roser López-Alemany
- Sarcoma Research Group, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, Oncobell, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - William H. Thiel
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, IA 52242, USA
| | - Paloma H. Giangrande
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, IA 52242, USA
| | - Oscar M. Tirado
- Sarcoma Research Group, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, Oncobell, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- CIBERONC, Carlos III Institute of Health (ISCIII), Madrid, Spain
- Institut Català d’Oncologia (ICO), L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
11
|
Bhardwaj V, Zhang X, Pandey V, Garg M. Neo-vascularization-based therapeutic perspectives in advanced ovarian cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188888. [PMID: 37001618 DOI: 10.1016/j.bbcan.2023.188888] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023]
Abstract
The process of angiogenesis is well described for its potential role in the development of normal ovaries, and physiological functions as well as in the initiation, progression, and metastasis of ovarian cancer (OC). In advanced stages of OC, cancer cells spread outside the ovary to the pelvic, abdomen, lung, or multiple secondary sites. This seriously limits the efficacy of therapeutic options contributing to fatal clinical outcomes. Notably, a variety of angiogenic effectors are produced by the tumor cells to initiate angiogenic processes leading to the development of new blood vessels, which provide essential resources for tumor survival, dissemination, and dormant micro-metastasis of tumor cells. Multiple proangiogenic effectors and their signaling axis have been discovered and functionally characterized for potential clinical utility in OC. In this review, we have provided the current updates on classical and emerging proangiogenic effectors, their signaling axis, and the immune microenvironment contributing to the pathogenesis of OC. Moreover, we have comprehensively reviewed and discussed the significance of the preclinical strategies, drug repurposing, and clinical trials targeting the angiogenic processes that hold promising perspectives for the better management of patients with OC.
Collapse
Affiliation(s)
- Vipul Bhardwaj
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute of Biopharmaceutical and Bioengineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, PR China
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute of Biopharmaceutical and Bioengineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Sector-125, Noida 201301, India.
| |
Collapse
|
12
|
Zhai T, Mitamura T, Wang L, Kubota SI, Murakami M, Tanaka S, Watari H. Combination therapy with bevacizumab and a CCR2 inhibitor for human ovarian cancer: An in vivo validation study. Cancer Med 2023; 12:9697-9708. [PMID: 36810973 PMCID: PMC10166889 DOI: 10.1002/cam4.5674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Anti-angiogenic therapy with bevacizumab (BEV), an anti-VEGF antibody, plays a critical role in the treatment of ovarian cancer. However, despite an encouraging initial response, most tumors become resistant to BEV over time, and a new strategy that enables sustainable treatment using BEV is therefore needed. METHODS To overcome the resistance to BEV in patients with ovarian cancer, we performed a validation study of combination therapy with BEV (10 mg/kg) and the CCR2 inhibitor BMS CCR2 22 (20 mg/kg) (BEV/CCR2i) using 3 consecutive patient-derived xenografts (PDXs) of immunodeficient mice. RESULTS BEV/CCR2i demonstrated a significant effect of growth suppression in the BEV-resistant serous PDX and BEV-sensitive serous PDX compared with BEV (30.4% after the second cycle and 15.5% after the first cycle, respectively), and treatment cessation did not attenuate this effect. Tissue clearing and immunohistochemistry with an anti-α-SMA antibody suggested that BEV/CCR2i suppressed angiogenesis from the host mice more than BEV. In addition, human CD31 immunohistochemistry revealed that BEV/CCR2i decreased microvessels originating from the patients to a significantly greater degree than BEV. Regarding the BEV-resistant clear cell PDX, the effect of BEV/CCR2i was unclear during the first five cycles, but the following two cycles of increased-dose BEV/CCR2i (CCR2i 40 mg/kg) significantly suppressed tumor growth compared with BEV (28.3%) by inhibiting the CCR2B-MAPK pathway. CONCLUSIONS BEV/CCR2i showed a sustained anticancer immunity-independent effect in human ovarian cancer that was more significant in serous carcinoma than in clear cell carcinoma.
Collapse
Affiliation(s)
- Tianyue Zhai
- Department of Obstetrics and Gynecology, Hokkaido University Faculty of Medicine, Hokkaido University, Hokkaido, Sapporo, Japan
| | - Takashi Mitamura
- Department of Obstetrics and Gynecology, Hokkaido University Faculty of Medicine, Hokkaido University, Hokkaido, Sapporo, Japan
| | - Lei Wang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Hokkaido, Sapporo, Japan.,Department of Cancer Pathology, Hokkaido University Faculty of Medicine, Hokkaido University, Hokkaido, Sapporo, Japan
| | - Shimpei I Kubota
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido, Sapporo, Japan.,Group of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido, Sapporo, Japan.,Group of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan.,Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Hokkaido, Sapporo, Japan.,Department of Cancer Pathology, Hokkaido University Faculty of Medicine, Hokkaido University, Hokkaido, Sapporo, Japan
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University Faculty of Medicine, Hokkaido University, Hokkaido, Sapporo, Japan
| |
Collapse
|
13
|
The EPH/Ephrin System in Gynecological Cancers: Focusing on the Roots of Carcinogenesis for Better Patient Management. Int J Mol Sci 2022; 23:ijms23063249. [PMID: 35328669 PMCID: PMC8949008 DOI: 10.3390/ijms23063249] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Gynecological cancers represent some of the most common types of malignancy worldwide. Erythropoietin-producing hepatocellular receptors (EPHs) comprise the largest subfamily of receptor tyrosine kinases, binding membrane-bound proteins called ephrins. EPHs/ephrins exhibit widespread expression in different cell types, playing an important role in carcinogenesis. The aim of the current review was to examine the dysregulation of the EPH/ephrin system in gynecological cancer, clarifying its role in ovarian, endometrial, and cervical carcinogenesis. In order to identify relevant studies, a literature review was conducted using the MEDLINE and LIVIVO databases. The search terms ephrin, ephrin receptor, ovarian cancer, endometrial cancer, and cervical cancer were employed and we were able to identify 57 studies focused on gynecological cancer and published between 2001 and 2021. All researched ephrins seemed to be upregulated in gynecological cancer, whereas EPHs showed either significant overexpression or extensive loss of expression in gynecological tumors, depending on the particular receptor. EPHA2, the most extensively studied EPH in ovarian cancer, exhibited overexpression both in ovarian carcinoma cell lines and patient tissue samples, while EPHB4 was found to be upregulated in endometrial cancer in a series of studies. EPHs/ephrins were shown to exert their role in different stages of gynecological cancer and to influence various clinicopathological parameters. The analysis of patients’ gynecological cancer tissue samples, most importantly, revealed the significant role of the EPH/ephrin system in the development and progression of gynecological cancer, as well as overall patient survival. In conclusion, the EPH/ephrin system represents a large family of biomolecules with promising applications in the fields of diagnosis, prognosis, disease monitoring, and treatment of gynecological cancer, with an established important clinical impact.
Collapse
|
14
|
Wen Y, Chelariu-Raicu A, Umamaheswaran S, Nick AM, Stur E, Hanjra P, Jiang D, Jennings NB, Chen X, Corvigno S, Glassman D, Lopez-Berestein G, Liu J, Hung MC, Sood AK. Endothelial p130cas confers resistance to anti-angiogenesis therapy. Cell Rep 2022; 38:110301. [PMID: 35081345 PMCID: PMC8860355 DOI: 10.1016/j.celrep.2022.110301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/02/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Anti-angiogenic therapies, such as anti-VEGF antibodies (AVAs), have shown promise in clinical settings. However, adaptive resistance to such therapies occurs frequently. We use orthotopic ovarian cancer models with AVA-adaptive resistance to investigate the underlying mechanisms. Genomic profiling of AVA-resistant tumors guides us to endothelial p130cas. We find that bevacizumab induces cleavage of VEGFR2 in endothelial cells by caspase-10 and that VEGFR2 fragments internalize into the nucleus and autophagosomes. Nuclear VEGFR2 and p130cas fragments, together with TNKS1BP1 (tankyrase-1-binding protein), initiate endothelial cell death. Blockade of autophagy in AVA-resistant endothelial cells retains VEGFR2 at the membrane with bevacizumab treatment. Targeting host p130cas with RGD (Arg-Gly-Asp)-tagged nanoparticles or genomic ablation of vascular p130cas in p130casflox/floxTie2Cre mice significantly extends the survival of mice with AVA-resistant ovarian tumors. Higher vascular p130cas is associated with shorter survival of individuals with ovarian cancer. Our findings identify opportunities for new strategies to overcome adaptive resistance to AVA therapy.
Collapse
Affiliation(s)
- Yunfei Wen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA.
| | - Anca Chelariu-Raicu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Sujanitha Umamaheswaran
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Alpa M Nick
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Elaine Stur
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Pahul Hanjra
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Dahai Jiang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas B Jennings
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Xiuhui Chen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Sara Corvigno
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Deanna Glassman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinsong Liu
- Department of Pathology/Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Loss of EphA7 Expression in Basal Cell Carcinoma by Hypermethylation of CpG Islands in the Promoter Region. Anal Cell Pathol 2022; 2022:4220786. [PMID: 35103233 PMCID: PMC8800629 DOI: 10.1155/2022/4220786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 11/17/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common malignancy worldwide, with increasing incidence. BCCs present low mortality but high morbidity, and its pathogenesis remains unclear. Eph receptors have been implicated in tumorigenesis. EphA7 plays a role as a tumor suppressor in certain cancers. We checked EphA7 expression levels and methylation status in a set of BCCs, benign skin diseases, and compound nevus tissue samples using immunohistochemistry. EphA7 protein was positively expressed in normal basal cells, benign skin diseases, and compound nevus cells, but lost in areas of BCC tissues. We detected hypermethylation in BCC tissue samples with reduced expression of EphA7. There is a significant relationship between the expression level of EphA7 receptor protein and the methylation status of CpG islands in the EphA7 promoter region (P < 0.001). To our knowledge, this is the first study to report the EphA7 expression profile and hypermethylation of EphA7 in BCC. The role of the EphA7 gene and the status of hypermethylation in tumorigenesis and treatment of BCC warrant further investigation.
Collapse
|
16
|
Radiomics-based MRI for predicting Erythropoietin-producing hepatocellular receptor A2 expression and tumor grade in brain diffuse gliomas. Neuroradiology 2021; 64:323-331. [PMID: 34368897 DOI: 10.1007/s00234-021-02780-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE EphA2 is a key factor underlying invasive propensity of gliomas, and is associated with poor prognosis of tumors. We aimed to develop a radiomics-based imaging index for predicting EphA2 expression in diffuse gliomas, and further estimating its value for grading of tumors. METHODS A total of 182 patients with diffuse gliomas were included. All subjects underwent pre-operative MRI and post-operative pathological diagnosis. EphA2 expression of tumors was scored on pathological sections with immunohistochemical staining using monoclonal EphA2 antibody. MRI radiomics features were extracted from three-dimensional contrast-enhanced T1-weighted imaging and diffusion kurtosis imaging. Predictive models were constructed using machine learning-based radiomics features selection and three classifiers for predicting EphA2 expression and tumor grade. Features of best EphA2 expression model were subsequently used to construct another model of tumor grading. For each model, 146 cases (80%) were randomly picked as training and the rest 36 (20%) were testing cohorts. EphA2 expression was further correlated to the radiomics features in both grade models using Spearman's correlation. RESULTS Logistic regression model presented highest performance for predicting EphA2 expression (AUC: 0.836/0.724 in training/validation set). Tumor gradings model guided by features from EphA2 expression model demonstrated comparable performance (AUC: 0.930/0.983) to that constructed directly using imaging radiomics features (AUC: 0.960/0.977). Two radiomics features which included in both LR-grade models showed strong correlation (P < 0.05) with EphA2 expression. CONCLUSION The expression of EphA2 in gliomas could be predicted by radiomics features extracted from diffusion kurtosis MRI, which could also be used to assist tumor grading.
Collapse
|
17
|
Vos MC, van der Wurff AAM, van Kuppevelt TH, Massuger LFAG. The role of MMP-14 in ovarian cancer: a systematic review. J Ovarian Res 2021; 14:101. [PMID: 34344453 PMCID: PMC8336022 DOI: 10.1186/s13048-021-00852-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/23/2021] [Indexed: 12/18/2022] Open
Abstract
AIM In order to evaluate the role of MMP-14 in ovarian cancer, a systematic review was conducted. METHODS In March 2020, a search in Pubmed was performed with MMP-14 and ovarian cancer as search terms. After exclusion of the references not on MMP-14 or ovarian cancer or not in English, the studies found were classified into two categories: basic research and clinicopathological research. RESULTS In total, 94 references were found of which 33 were excluded. Two additional articles were found in the reference lists of the included studies. Based on the full texts, another 4 were excluded. Eventually, 59 studies were included in the review, 32 on basic research and 19 on clinicopathological research. 8 studies fell in both categories. The basic research studies show that MMP-14 plays an important role in ovarian cancer in the processes of proliferation, invasion, angiogenesis and metastasis. In clinocopathological research, MMP-14 expression is found in most tumours with characteristics of poor prognosis but this immunohistochemical MMP-14 determination does not seem to be an independent predictor of prognosis. CONCLUSIONS From this systematic review of the literature concerning MMP-14 in ovarian cancer it becomes clear that MMP-14 plays various important roles in the pathophysiology of ovarian cancer. The exact translation of these roles in the pathophysiology to the importance of MMP-14 in clinicopathological research in ovarian cancer and possible therapeutic role of anti-MMP-14 agents needs further elucidation.
Collapse
Affiliation(s)
- M. Caroline Vos
- Department of Obstetrics and Gynaecology, Elisabeth-Tweesteden Hospital, PO Box 90151, 5000 LC Tilburg, the Netherlands
| | | | - Toin H. van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Leon F. A. G. Massuger
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| |
Collapse
|
18
|
Udompholkul P, Baggio C, Gambini L, Sun Y, Zhao M, Hoffman RM, Pellecchia M. Effective Tumor Targeting by EphA2-Agonist-Biotin-Streptavidin Conjugates. Molecules 2021; 26:3687. [PMID: 34204178 PMCID: PMC8235110 DOI: 10.3390/molecules26123687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022] Open
Abstract
We recently reported on a potent synthetic agent, 135H11, that selectively targets the receptor tyrosine kinase, EphA2. While 135H11 possesses a relatively high binding affinity for the ligand-binding domain of EphA2 (Kd~130 nM), receptor activation in the cell required the synthesis of dimeric versions of such agent (namely 135H12). This was expected given that the natural ephrin ligands also need to be dimerized or clustered to elicit agonistic activity in cell. In the present report we investigated whether the agonistic activity of 135H11 could be enhanced by biotin conjugation followed by complex formation with streptavidin. Therefore, we measured the agonistic EphA2 activity of 135H11-biotin (147B5) at various agent/streptavidin ratios, side by side with 135H12, and a scrambled version of 147B5 in pancreatic- and breast-cancer cell lines. The (147B5)n-streptavidin complexes (when n = 2, 3, 4, but not when n = 1) induced a strong receptor degradation effect in both cell lines compared to 135H12 or the (scrambled-147B5)4-streptavidin complex as a control, indicating that multimerization of the targeting agent resulted in an increased ability to cause receptor clustering and internalization. Subsequently, we prepared an Alexa-Fluor-streptavidin conjugate to demonstrate that (147B5)4-AF-streptavidin, but not the scrambled equivalent complex, concentrates in pancreatic and breast cancers in orthotopic nude-mouse models. Hence, we conclude that these novel targeting agents, with proper derivatization with imaging reagents or chemotherapy, can be used as diagnostics, and/or to deliver chemotherapy selectively to EphA2-expressing tumors.
Collapse
Affiliation(s)
- Parima Udompholkul
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA; (P.U.); (C.B.); (L.G.)
| | - Carlo Baggio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA; (P.U.); (C.B.); (L.G.)
| | - Luca Gambini
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA; (P.U.); (C.B.); (L.G.)
| | - Yu Sun
- AntiCancer Inc., 7917 Ostrow St., San Diego, CA 92111, USA; (Y.S.); (M.Z.); (R.M.H.)
- Department of Surgery, University of California, 9300 Campus Point Dr #7220, La Jolla, San Diego, CA 92037, USA
| | - Ming Zhao
- AntiCancer Inc., 7917 Ostrow St., San Diego, CA 92111, USA; (Y.S.); (M.Z.); (R.M.H.)
| | - Robert M. Hoffman
- AntiCancer Inc., 7917 Ostrow St., San Diego, CA 92111, USA; (Y.S.); (M.Z.); (R.M.H.)
- Department of Surgery, University of California, 9300 Campus Point Dr #7220, La Jolla, San Diego, CA 92037, USA
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA; (P.U.); (C.B.); (L.G.)
| |
Collapse
|
19
|
EPHA2 Promotes the Invasion and Migration of Human Tongue Squamous Cell Carcinoma Cal-27 Cells by Enhancing AKT/mTOR Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4219690. [PMID: 33834064 PMCID: PMC8016562 DOI: 10.1155/2021/4219690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 11/25/2022]
Abstract
EPHA2 is a member of the ephrin receptor tyrosine kinase family and is closely related to the malignant tumor progression. The effect of EPHA2 on OSCC is not clear. This study explored the role of EPHA2 and AKT/mTOR signaling pathways in Cal-27 cell invasion and migration. The expression of EPHA2 and EPHA4 in human OSCC and normal oral tissue was detected by immunohistochemistry. EPHA2-overexpressing and EPHA2-knockdown Cal-27 cells were established, and the cells were treated with an AKT inhibitor (MK2206) and mTOR inhibitor (RAD001). The expression of EPHA2 was detected by qRT-PCR, cell proliferation was evaluated by MTT assay, cell migration and invasion were examined by scratch and Transwell assay, and cell morphology and apoptosis were assessed by Hoechst 33258 staining. Western blot was performed to detect the expression of proteins related to AKT/mTOR signaling, cell cycle, and pseudopod invasion. EPHA2 and EPHA4 were highly expressed in clinical human OSCC. Overexpression of EPHA2 promoted the proliferation, migration, and invasion of Cal-27 cells, inhibited cell cycle blockage and apoptosis, and enhanced the activity of the AKT/mTOR signaling pathway. MK2206 (AKT inhibitor) and RAD001 (mTOR inhibitor) reversed the effect of EPHA2 overexpression on the biological behavior of Cal-27 cells. EPHA2 promotes the invasion and migration of Cal-27 human OSCC cells by enhancing the AKT/mTOR signaling pathway.
Collapse
|
20
|
Stefanski KM, Russell CM, Westerfield JM, Lamichhane R, Barrera FN. PIP 2 promotes conformation-specific dimerization of the EphA2 membrane region. J Biol Chem 2021; 296:100149. [PMID: 33277361 PMCID: PMC7900517 DOI: 10.1074/jbc.ra120.016423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 12/04/2020] [Indexed: 12/27/2022] Open
Abstract
The impact of the EphA2 receptor on cancer malignancy hinges on the two different ways it can be activated. EphA2 induces antioncogenic signaling after ligand binding, but ligand-independent activation of EphA2 is pro-oncogenic. It is believed that the transmembrane (TM) domain of EphA2 adopts two alternate conformations in the ligand-dependent and the ligand-independent states. However, it is poorly understood how the difference in TM helical crossing angles found in the two conformations impacts the activity and regulation of EphA2. We devised a method that uses hydrophobic matching to stabilize two conformations of a peptide comprising the EphA2 TM domain and a portion of the intracellular juxtamembrane (JM) segment. The two conformations exhibit different TM crossing angles, resembling the ligand-dependent and ligand-independent states. We developed a single-molecule technique using styrene maleic acid lipid particles to measure dimerization in membranes. We observed that the signaling lipid PIP2 promotes TM dimerization, but only in the small crossing angle state, which we propose corresponds to the ligand-independent conformation. In this state the two TMs are almost parallel, and the positively charged JM segments are expected to be close to each other, causing electrostatic repulsion. The mechanism PIP2 uses to promote dimerization might involve alleviating this repulsion due to its high density of negative charges. Our data reveal a conformational coupling between the TM and JM regions and suggest that PIP2 might directly exert a regulatory effect on EphA2 activation in cells that is specific to the ligand-independent conformation of the receptor.
Collapse
Affiliation(s)
- Katherine M Stefanski
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, USA
| | - Charles M Russell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Justin M Westerfield
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Rajan Lamichhane
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA.
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA.
| |
Collapse
|
21
|
London M, Gallo E. The EphA2 and cancer connection: potential for immune-based interventions. Mol Biol Rep 2020; 47:8037-8048. [PMID: 32990903 DOI: 10.1007/s11033-020-05767-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022]
Abstract
The Eph (erythropoietin-producing human hepatocellular) receptors form the largest known subfamily of receptor tyrosine kinases. These receptors interact with membrane-bound ephrin ligands via direct cell-cell interactions resulting in bi-directional activation of signal pathways. Importantly, the Eph receptors play critical roles in embryonic tissue organization and homeostasis, and in the maintenance of adult processes such as long-term potentiation, angiogenesis, and stem cell differentiation. The Eph receptors also display properties of both tumor promoters and suppressors depending on the cellular context. Characterization of EphA2 receptor in regard to EphA2 dysregulation has revealed associations with various pathological processes, especially cancer. The analysis of various tumor types generally identify EphA2 receptor as overexpressed and/or mutated, and for certain types of cancers EphA2 is linked with poor prognosis and decreased patient survival. Thus, here we highlight the role of EphA2 in malignant tissues that are specific to cancer; these include glioblastoma multiforme, prostate cancer, ovarian and uterine cancers, gastric carcinoma, melanoma, and breast cancer. Due to its large extracellular domain, therapeutic targeting of EphA2 with monoclonal antibodies (mAbs), which may function as inhibitors of ligand activation or as molecular agonists, has been an oft-attempted strategy. Therefore, we review the most current mAb-based therapies against EphA2 expressing cancers currently in pre-clinical and/or clinical stages. Finally, we discuss the latest peptides and cyclical-peptides that function as selective agonists for EphA2 receptor.
Collapse
Affiliation(s)
- Max London
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Eugenio Gallo
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
22
|
Xiao T, Xiao Y, Wang W, Tang YY, Xiao Z, Su M. Targeting EphA2 in cancer. J Hematol Oncol 2020; 13:114. [PMID: 32811512 PMCID: PMC7433191 DOI: 10.1186/s13045-020-00944-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Eph receptors and the corresponding Eph receptor-interacting (ephrin) ligands jointly constitute a critical cell signaling network that has multiple functions. The tyrosine kinase EphA2, which belongs to the family of Eph receptors, is highly produced in tumor tissues, while found at relatively low levels in most normal adult tissues, indicating its potential application in cancer treatment. After 30 years of investigation, a large amount of data regarding EphA2 functions have been compiled. Meanwhile, several compounds targeting EphA2 have been evaluated and tested in clinical studies, albeit with limited clinical success. The present review briefly describes the contribution of EphA2-ephrin A1 signaling axis to carcinogenesis. In addition, the roles of EphA2 in resistance to molecular-targeted agents were examined. In particular, we focused on EphA2's potential as a target for cancer treatment to provide insights into the application of EphA2 targeting in anticancer strategies. Overall, EphA2 represents a potential target for treating malignant tumors.
Collapse
Affiliation(s)
- Ta Xiao
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Yuhang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wenxiang Wang
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yan Yan Tang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Zhiqiang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Min Su
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China. .,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
23
|
Salem AF, Gambini L, Udompholkul P, Baggio C, Pellecchia M. Therapeutic Targeting of Pancreatic Cancer via EphA2 Dimeric Agonistic Agents. Pharmaceuticals (Basel) 2020; 13:ph13050090. [PMID: 32397624 PMCID: PMC7281375 DOI: 10.3390/ph13050090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/05/2023] Open
Abstract
Recently, we reported on potent EphA2 targeting compounds and demonstrated that dimeric versions of such agents can exhibit remarkably increased agonistic activity in cellular assays compared to the monomers. Here we further characterize the activity of dimeric compounds at the structural, biochemical, and cellular level. In particular, we propose a structural model for the mechanism of receptor activation by dimeric agents and characterize the effect of most potent compounds in inducing EphA2 activation and degradation in a pancreatic cancer cell line. These cellular studies indicate that the pro-migratory effects induced by the receptor can be reversed in EphA2 knockout cells, by treatment with either a dimeric natural ligand (ephrinA1-Fc), or by our synthetic agonistic dimers. Based on these data we conclude that the proposed agents hold great potential as possible therapeutics in combination with standard of care, where these could help suppressing a major driver for cell migration and tumor metastases. Finally, we also found that, similar to ephrinA1-Fc, dimeric agents cause a sustained internalization of the EphA2 receptor, hence, with proper derivatizations, these could also be used to deliver chemotherapy selectively to pancreatic tumors.
Collapse
|
24
|
Leite M, Marques MS, Melo J, Pinto MT, Cavadas B, Aroso M, Gomez-Lazaro M, Seruca R, Figueiredo C. Helicobacter Pylori Targets the EPHA2 Receptor Tyrosine Kinase in Gastric Cells Modulating Key Cellular Functions. Cells 2020; 9:cells9020513. [PMID: 32102381 PMCID: PMC7072728 DOI: 10.3390/cells9020513] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori, a stomach-colonizing Gram-negative bacterium, is the main etiological factor of various gastroduodenal diseases, including gastric adenocarcinoma. By establishing a life-long infection of the gastric mucosa, H. pylori continuously activates host-signaling pathways, in particular those associated with receptor tyrosine kinases. Using two different gastric epithelial cell lines, we show that H. pylori targets the receptor tyrosine kinase EPHA2. For long periods of time post-infection, H. pylori induces EPHA2 protein downregulation without affecting its mRNA levels, an effect preceded by receptor activation via phosphorylation. EPHA2 receptor downregulation occurs via the lysosomal degradation pathway and is independent of the H.pylori virulence factors CagA, VacA, and T4SS. Using small interfering RNA, we show that EPHA2 knockdown affects cell–cell and cell–matrix adhesion, invasion, and angiogenesis, which are critical cellular processes in early gastric lesions and carcinogenesis mediated by the bacteria. This work contributes to the unraveling of the underlying mechanisms of H. pylori–host interactions and associated diseases. Additionally, it raises awareness for potential interference between H. pylori infection and the efficacy of gastric cancer therapies targeting receptors tyrosine kinases, given that infection affects the steady-state levels and dynamics of some receptor tyrosine kinases (RTKs) and their signaling pathways.
Collapse
Affiliation(s)
- Marina Leite
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- Department of Pathology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Correspondence: (M.L.); (C.F.); Tel.: +351-220-408-800 (M.L. & C.F.)
| | - Miguel S. Marques
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
| | - Joana Melo
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marta T. Pinto
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
| | - Bruno Cavadas
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Miguel Aroso
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Gomez-Lazaro
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Raquel Seruca
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- Department of Pathology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Ceu Figueiredo
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- Department of Pathology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Correspondence: (M.L.); (C.F.); Tel.: +351-220-408-800 (M.L. & C.F.)
| |
Collapse
|
25
|
Ma TT, Wang L, Wang JL, Liu YJ, Chen YC, He HJ, Song Y. Hypoxia-Induced Cleavage Of Soluble ephrinA1 From Cancer Cells Is Mediated By MMP-2 And Associates With Angiogenesis In Oral Squamous Cell Carcinoma. Onco Targets Ther 2019; 12:8491-8499. [PMID: 31686863 PMCID: PMC6799903 DOI: 10.2147/ott.s213252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/18/2019] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION ephrinA1 plays important roles in tumor angiogenesis. Matrix metalloproteases (MMPs) can cleave ephrinA1 from the cell membrane into extracellular environment. However, how soluble ephrinA1 is modulated by hypoxia and whether MMPs participate in this hypoxic process remains to be investigated in detail. METHODS Thirty-seven patients with oral squamous cell carcinoma (OSCC) were included in the present study for HIF-1α, MMP-2, MMP-9 and ephrinA1 detection by immunohistochemistry. Serum samples from 35 patients were collected both preoperatively and postoperatively to confirm the existence of soluble ephrinA1 by ELISA. Block assay and Western blot analysis were further carried out to elucidate the proteolysis mechanism of ephrinA1 under hypoxic condition in vitro. RESULTS Our data demonstrated that HIF-1α, MMP-2, MMP-9 and ephrinA1 expressed positively, and correlated with microvessel density in OSCCs, except for MMP-9. The serum expression level of ephrinA1 in OSCC patients decreased significantly after surgical removal of the solid tumors. In vitro experiments indicated that GM6001, a MMP-specific inhibitor, could reduce hypoxia-induced soluble ephrinA1 secretion from SCC cells. Further Western blot analysis confirmed that both HIF-1α and MMP-2 were up-regulated by hypoxia in a similar time-dependent manner, with the MMP-9 expression unchanged during this course. CONCLUSION These results suggested a possible novel mechanism that ephrinA1 secretion is mediated by HIF-1α/MMP-2 signaling cascade which may play pivotal roles in OSCC neovascularization in a paracrine manner.
Collapse
Affiliation(s)
- Ting-Ting Ma
- Department of Stomatology, Liuzhou People’s Hospital, Guangxi, People’s Republic of China
| | - Lin Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Jun-Lin Wang
- Department of Stomatology, Liuzhou People’s Hospital, Guangxi, People’s Republic of China
| | - Yan-Jie Liu
- Department of Stomatology, Liuzhou People’s Hospital, Guangxi, People’s Republic of China
| | - Yu-Cong Chen
- Department of Stomatology, Liuzhou People’s Hospital, Guangxi, People’s Republic of China
| | - Hu-Jie He
- Department of Stomatology, Liuzhou People’s Hospital, Guangxi, People’s Republic of China
| | - Yong Song
- Department of Stomatology, Liuzhou People’s Hospital, Guangxi, People’s Republic of China
| |
Collapse
|
26
|
Formulation optimization of an ephrin A2 targeted immunoliposome encapsulating reversibly modified taxane prodrugs. J Control Release 2019; 310:47-57. [PMID: 31400383 DOI: 10.1016/j.jconrel.2019.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022]
Abstract
Ephrin A2 targeted immunoliposomes incorporating pH-sensitive taxane prodrugs were developed for sustained delivery of active drug to solid tumors. Here we describe the systematic formulation development and characterization of these immunoliposomes. We synthesized both paclitaxel and docetaxel prodrugs to formulate as ephrin A2-targeted liposomes stabilized in the aqueous core with sucroseoctasulfate (SOS). The optimized lipid formulation was comprised of egg-sphingomyelin, cholesterol, and polyethylene glycol distearoyl glycerol (PEG-DSG). The formulations examined had a high efficiency of prodrug encapsulation (as high as 114 mol% taxane per mole phospholipid) and subsequent stability (>3 years at 2-8 °C). The taxane prodrug was stabilized with extraliposomal citric acid and subsequently loaded into liposomes containing a gradient of SOS, resulting in highly stable SOS-drug complexes being formed inside the liposome. The internal prodrug and SOS concentrations were optimized for their impact on in vivo drug release and drug degradation. Cryo-electron microscope images revealed dense prodrug-SOS complex in the aqueous core of the immunoliposomes. Ephrin A2-targeted taxane liposomes exhibited sub-nanomolar (0.69 nM) apparent equilibrium dissociation constant toward the extracellular domain of the ephrin A2 receptor, long circulation half-life (8-12 h) in mouse plasma, a release rate dependent on intraliposomal drug concentration and stable long-term storage. At an equitoxic dose of 50 mg taxane/kg, ephrin A2-targeted liposomal prodrug showed greater antitumor activity than 10 mg/kg of docetaxel in A549 non-small cell lung, as well as MDA-MB-436 and SUM149 triple negative breast cancer xenograft models. The lead molecule entered a Phase I clinical trial in patients with solid tumors (NCT03076372).
Collapse
|
27
|
Baharuddin WNA, Yusoff AAM, Abdullah JM, Osman ZF, Ahmad F. Roles of EphA2 Receptor in Angiogenesis Signaling Pathway of Glioblastoma Multiforme. Malays J Med Sci 2018; 25:22-27. [PMID: 30914876 PMCID: PMC6422564 DOI: 10.21315/mjms2018.25.6.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 05/31/2018] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common primary brain tumours in adults, accounting for almost 65% of all cases. Among solid tumours, GBM is characterised by strong angiogenesis, including the highest degree of vascular proliferation and endothelial cell hyperplasia. Despite numerous improvements in existing treatment approaches, the prognosis of GBM patients remains poor, with a mean survival of only 14.6 months. Growing evidence has shown significant overexpression of the ephrin type-A receptor 2 (EphA2) receptor in various malignancies, including GBM, as well as a correlation to poor prognoses. It is believed that EphA2 receptors play important roles in mediating GBM tumourigenesis, including invasion, metastasis, and angiogenesis. Despite the clinical and pathological importance of tumour-associated vasculature, the underlying mechanism involving EphA2 is poorly known. Here, we have summarised the current knowledge in the field regarding EphA2 receptors’ roles in the angiogenesis of GBM.
Collapse
Affiliation(s)
- Wan Noor Ainun Baharuddin
- Universiti Teknologi MARA, Shah Alam, 40450 Shah Alam, Selangor, Malaysia.,Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Universiti Teknologi MARA, Shah Alam, 40450 Shah Alam, Selangor, Malaysia.,Human Genome Centre, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Jafri Malin Abdullah
- Universiti Teknologi MARA, Shah Alam, 40450 Shah Alam, Selangor, Malaysia.,Centre for Neuroscience Service and Research, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Zul Faizuddin Osman
- School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Farizan Ahmad
- Universiti Teknologi MARA, Shah Alam, 40450 Shah Alam, Selangor, Malaysia.,Human Genome Centre, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
28
|
Finney AC, Orr AW. Guidance Molecules in Vascular Smooth Muscle. Front Physiol 2018; 9:1311. [PMID: 30283356 PMCID: PMC6157320 DOI: 10.3389/fphys.2018.01311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/30/2018] [Indexed: 12/21/2022] Open
Abstract
Several highly conserved families of guidance molecules, including ephrins, Semaphorins, Netrins, and Slits, play conserved and distinct roles in tissue remodeling during tissue patterning and disease pathogenesis. Primarily, these guidance molecules function as either secreted or surface-bound ligands that interact with their receptors to activate a variety of downstream effects, including cell contractility, migration, adhesion, proliferation, and inflammation. Vascular smooth muscle cells, contractile cells comprising the medial layer of the vessel wall and deriving from the mural population, regulate vascular tone and blood pressure. While capillaries lack a medial layer of vascular smooth muscle, mural-derived pericytes contribute similarly to capillary tone to regulate blood flow in various tissues. Furthermore, pericyte coverage is critical in vascular development, as perturbations disrupt vascular permeability and viability. During cardiovascular disease, smooth muscle cells play a more dynamic role in which suppression of contractile markers, enhanced proliferation, and migration lead to the progression of aberrant vascular remodeling. Since many types of guidance molecules are expressed in vascular smooth muscle and pericytes, these may contribute to blood vessel formation and aberrant remodeling during vascular disease. While vascular development is a large focus of the existing literature, studies emerged to address post-developmental roles for guidance molecules in pathology and are of interest as novel therapeutic targets. In this review, we will discuss the roles of guidance molecules in vascular smooth muscle and pericyte function in development and disease.
Collapse
Affiliation(s)
- Alexandra Christine Finney
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| | - Anthony Wayne Orr
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
- Department of Pathology and Translational Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| |
Collapse
|
29
|
van den Brand D, Mertens V, Massuger LF, Brock R. siRNA in ovarian cancer – Delivery strategies and targets for therapy. J Control Release 2018; 283:45-58. [DOI: 10.1016/j.jconrel.2018.05.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
|
30
|
Tang J, Wang J, Fan L, Li X, Liu N, Luo W, Wang J, Wang Y, Wang Y. cRGD inhibits vasculogenic mimicry formation by down-regulating uPA expression and reducing EMT in ovarian cancer. Oncotarget 2018; 7:24050-62. [PMID: 26992227 PMCID: PMC5029683 DOI: 10.18632/oncotarget.8079] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/29/2016] [Indexed: 11/25/2022] Open
Abstract
Vasculogenic minicry (VM), an alternative blood supply modality except to endothelial cells-mediated vascular network, is a potential therapeutic target for ovarian cancer due to VM correlated with poor prognosis in ovarian cancer patients. Accelerated extracellular matrix (ECM) degradation is prerequisite for VM formation induced by epithelial-mesenchymal transition (EMT). Previous reports demonstrate uPA has ability to degrade ECM thereby promoting tumor angiogenesis. Also, exogenous cRGD sequence enables to modulate uPA expression, attenuate EMT and suppress endothelial-lined channels. Till now, the correlation of uPA and VM formation and the effect of exogenous cRGD on VM formation remain unknown. Herein, we validate uPA expression is positively correlated with VM formation in ovarian cancer tissues (90 cases) and ovarian cancer cells (SKOV-3, OVCAR-3 and A2780 cells). In particular, silencing uPA experiments show that down-regulated uPA causes notable decrease for the complete channels formed by SKOV-3 and OVCAR-3 cells. Mechanism study discloses uPA promotes VM formation by regulating AKT/mTOR/MMP-2/Laminin5γ2 signal pathway. The result demonstrates uPA may serve as therapeutic target of VM for ovarian cancer. Also, it is found exogenous cRGD enables to inhibit VM formation in ovarian cancer via not only down-regulating uPA expression but also reducing EMT. Exogenous cRGD may be a promising angiogenic inhibitor for ovarian cancer therapy due to its inhibiting effect on VM formation as well as endothelial cells-mediated vascular network.
Collapse
Affiliation(s)
- Jiao Tang
- Department of Obstetrics & Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.,Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianguo Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin Fan
- Department of Reproductive Medicine Center, The Women and Children Hospital of Guangdong, Guangzhou Medical University, Guangzhou 511442, China
| | - Xiaoxuan Li
- Department of Obstetrics & Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Na Liu
- Department of Obstetrics & Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wanxian Luo
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jihui Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yifeng Wang
- Department of Obstetrics & Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ying Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
31
|
Wagner MJ, Mitra R, McArthur MJ, Baze W, Barnhart K, Wu SY, Rodriguez-Aguayo C, Zhang X, Coleman RL, Lopez-Berestein G, Sood AK. Preclinical Mammalian Safety Studies of EPHARNA (DOPC Nanoliposomal EphA2-Targeted siRNA). Mol Cancer Ther 2017; 16:1114-1123. [PMID: 28265009 PMCID: PMC5457703 DOI: 10.1158/1535-7163.mct-16-0541] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/13/2016] [Accepted: 02/17/2017] [Indexed: 12/23/2022]
Abstract
To address the need for efficient and biocompatible delivery systems for systemic siRNA delivery, we developed 1,2-Dioleoyl-sn-Glycero-3-Phosphatidylcholine (DOPC) nanoliposomal EphA2-targeted therapeutic (EPHARNA). Here, we performed safety studies of EPHARNA in murine and primate models. Single dosing of EPHARNA was tested at 5 concentrations in mice (N = 15 per group) and groups were sacrificed on days 1, 14, and 28 for evaluation of clinical pathology and organ toxicity. Multiple dosing of EPHARNA was tested in mice and Rhesus macaques twice weekly at two dose levels in each model. Possible effects on hematologic parameters, serum chemistry, coagulation, and organ toxicity were assessed. Following single-dose EPHARNA administration to mice, no gross pathologic or dose-related microscopic findings were observed in either the acute (24 hours) or recovery (14 and 28 days) phases. The no-observed-adverse-effect level (NOAEL) for EPHARNA is considered >225 μg/kg when administered as a single injection intravenously in CD-1 mice. With twice weekly injection, EPHARNA appeared to stimulate a mild to moderate inflammatory response in a dose-related fashion. There appeared to be a mild hemolytic reaction in the female mice. In Rhesus macaques, minimal to moderate infiltration of mononuclear cells was found in some organs including the gastrointestinal tract, heart, and kidney. No differences attributed to EPHARNA were observed. These results demonstrate that EPHARNA is well tolerated at all doses tested. These data, combined with previously published in vivo validation studies, have led to an ongoing first-in-human phase I clinical trial (NCT01591356). Mol Cancer Ther; 16(6); 1114-23. ©2017 AACR.
Collapse
Affiliation(s)
- Michael J Wagner
- Division of Cancer Medicine, MD Anderson Cancer Center, Houston, Texas
- Department of Gynecologic Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Rahul Mitra
- Department of Gynecologic Oncology, MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, MD Anderson Cancer Center, Houston, Texas
| | - Mark J McArthur
- Department of Veterinary Medicine and Surgery, MD Anderson Cancer Center, Houston, Texas
| | - Wallace Baze
- Department of Veterinary Medicine and Surgery, MD Anderson Cancer Center, Houston, Texas
| | - Kirstin Barnhart
- Department of Veterinary Medicine and Surgery, MD Anderson Cancer Center, Houston, Texas
| | - Sherry Y Wu
- Department of Gynecologic Oncology, MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, MD Anderson Cancer Center, Houston, Texas
| | | | - Xinna Zhang
- Center for RNA Interference and Non-Coding RNA, MD Anderson Cancer Center, Houston, Texas
| | - Robert L Coleman
- Department of Gynecologic Oncology, MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, MD Anderson Cancer Center, Houston, Texas
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNA, MD Anderson Cancer Center, Houston, Texas.
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston Texas
| | - Anil K Sood
- Department of Gynecologic Oncology, MD Anderson Cancer Center, Houston, Texas.
- Center for RNA Interference and Non-Coding RNA, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
32
|
Li P, Liu X, Dong ZM, Ling ZQ. Epigenetic silencing of HIC1 promotes epithelial-mesenchymal transition and drives progression in esophageal squamous cell carcinoma. Oncotarget 2016; 6:38151-65. [PMID: 26510908 PMCID: PMC4741990 DOI: 10.18632/oncotarget.5832] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 09/28/2015] [Indexed: 12/12/2022] Open
Abstract
Downregulation of the novel tumor suppressor gene HIC1 (hypermethylated in cancer 1) occurs frequently in various tumors where it causes tumor progression and metastasis. In this study, we investigated a role of HIC1 in esophageal squamous cell carcinoma (ESCC) and the underlying mechanisms. Downregulation of HIC1 occurred in approximately 70% of primary ESCCs at both mRNA and protein level where it was associated significantly with vascular invasion, advanced clinical stage, lymph node metastasis, and poor disease free survival (DFS). The promoter methylation analyses suggested that loss of HIC1 expression was mediated by epigenetic mechanisms. Functional studies established that ectopic re-expression of HIC1 in ESCC cells inhibited cell proliferation, clonogenicity, cell motility, tumor formation and epithelial-mesenchymal transition (EMT). Our results decipher the mechanism through which HIC1 deficiency induce ESCC cells to undergo EMT and promote tumor progression and metastasis through activation of EphA2 signaling pathway. Together, loss of the regulation of EphA2 pathway through HIC1 epigenetic silencing could be an important mechanism in the ESCC progression. We identify a novel pathway that linking HIC1 downregulation to EphA2-inducing EMT in ESCC cells and may shed light on the development of novel anti-tumor therapeutics.
Collapse
Affiliation(s)
- Pei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiang Liu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China
| | - Zi-Ming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China
| |
Collapse
|
33
|
Previs RA, Armaiz-Pena GN, Lin YG, Davis AN, Pradeep S, Dalton HJ, Hansen JM, Merritt WM, Nick AM, Langley RR, Coleman RL, Sood AK. Dual Metronomic Chemotherapy with Nab-Paclitaxel and Topotecan Has Potent Antiangiogenic Activity in Ovarian Cancer. Mol Cancer Ther 2015; 14:2677-86. [PMID: 26516159 DOI: 10.1158/1535-7163.mct-14-0630] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/15/2015] [Indexed: 01/14/2023]
Abstract
There is growing recognition of the important role of metronomic chemotherapy in cancer treatment. On the basis of their unique antiangiogenic effects, we tested the efficacy of nab-paclitaxel, which stimulates thrombospondin-1, and topotecan, which inhibits hypoxia-inducible factor 1-α, at metronomic dosing for the treatment of ovarian carcinoma. In vitro and in vivo SKOV3ip1, HeyA8, and HeyA8-MDR (taxane-resistant) orthotopic models were used to examine the effects of metronomic nab-paclitaxel and metronomic topotecan. We examined cell proliferation (Ki-67), apoptosis (cleaved caspase-3), and angiogenesis (microvessel density, MVD) in tumors obtained at necropsy. In vivo therapy experiments demonstrated treatment with metronomic nab-paclitaxel alone and in combination with metronomic topotecan resulted in significant reductions in tumor weight (62% in the SKOV3ip1 model, P < 0.01 and 96% in the HeyA8 model, P < 0.03) compared with vehicle (P < 0.01). In the HeyA8-MDR model, metronomic monotherapy with either cytotoxic agent had modest effects on tumor growth, but combination therapy decreased tumor burden by 61% compared with vehicle (P < 0.03). The greatest reduction in MVD (P < 0.05) and proliferation was seen in combination metronomic therapy groups. Combination metronomic therapy resulted in prolonged overall survival in vivo compared with other groups (P < 0.001). Tube formation was significantly inhibited in RF-24 endothelial cells exposed to media conditioned with metronomic nab-paclitaxel alone and media conditioned with combination metronomic nab-paclitaxel and metronomic topotecan. The combination of metronomic nab-paclitaxel and metronomic topotecan offers a novel, highly effective therapeutic approach for ovarian carcinoma that merits further clinical development.
Collapse
Affiliation(s)
- Rebecca A Previs
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guillermo N Armaiz-Pena
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yvonne G Lin
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ashley N Davis
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sunila Pradeep
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heather J Dalton
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jean M Hansen
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - William M Merritt
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alpa M Nick
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert R Langley
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert L Coleman
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
34
|
Koshikawa N, Hoshino D, Taniguchi H, Minegishi T, Tomari T, Nam SO, Aoki M, Sueta T, Nakagawa T, Miyamoto S, Nabeshima K, Weaver AM, Seiki M. Proteolysis of EphA2 Converts It from a Tumor Suppressor to an Oncoprotein. Cancer Res 2015; 75:3327-39. [PMID: 26130649 DOI: 10.1158/0008-5472.can-14-2798] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 06/11/2015] [Indexed: 01/04/2023]
Abstract
Eph receptor tyrosine kinases are considered candidate therapeutic targets in cancer, but they can exert opposing effects on cell growth. In the presence of its ligands, Eph receptor EphA2 suppresses signaling by other growth factor receptors, including ErbB, whereas ligand-independent activation of EphA2 augments ErbB signaling. To deploy EphA2-targeting drugs effectively in tumors, the anti-oncogenic ligand-dependent activation state of EphA2 must be discriminated from its oncogenic ligand-independent state. Because the molecular basis for the latter is little understood, we investigated how the activation state of EphA2 can be switched in tumor tissue. We found that ligand-binding domain of EphA2 is cleaved frequently by the membrane metalloproteinase MT1-MMP, a powerful modulator of the pericellular environment in tumor cells. EphA2 immunostaining revealed a significant loss of the N-terminal portion of EphA2 in areas of tumor tissue that expressed MT1-MMP. Moreover, EphA2 phosphorylation patterns that signify ligand-independent activation were observed specifically in these areas of tumor tissue. Mechanistic experiments revealed that processing of EphA2 by MT1-MMP promoted ErbB signaling, anchorage-independent growth, and cell migration. Conversely, expression of a proteolysis-resistant mutant of EphA2 prevented tumorigenesis and metastasis of human tumor xenografts in mice. Overall, our results showed how the proteolytic state of EphA2 in tumors determines its effector function and influences its status as a candidate biomarker for targeted therapy.
Collapse
Affiliation(s)
- Naohiko Koshikawa
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Daisuke Hoshino
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan. Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Hiroaki Taniguchi
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tomoko Minegishi
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Taizo Tomari
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Sung-Ouk Nam
- Department of Obstetrics, Fukuoka University, Fukuoka, Japan
| | - Mikiko Aoki
- Department of Pathology, Fukuoka University, Fukuoka, Japan
| | - Takayuki Sueta
- Department of Otorhinolaryngology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Takashi Nakagawa
- Department of Otorhinolaryngology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shingo Miyamoto
- Department of Obstetrics, Fukuoka University, Fukuoka, Japan
| | | | - Alissa M Weaver
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Motoharu Seiki
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan. Integrated Center for Advanced Medical Technologies, Kochi Medical School, Kochi, Japan.
| |
Collapse
|
35
|
Ozcan G, Ozpolat B, Coleman RL, Sood AK, Lopez-Berestein G. Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev 2015; 87:108-19. [PMID: 25666164 DOI: 10.1016/j.addr.2015.01.007] [Citation(s) in RCA: 346] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/23/2015] [Accepted: 01/29/2015] [Indexed: 12/23/2022]
Abstract
The discovery of RNA interference, first in plants and Caenorhabditis elegans and later in mammalian cells, led to the emergence of a transformative view in biomedical research. Knowledge of the multiple actions of non-coding RNAs has truly allowed viewing DNA, RNA and proteins in novel ways. Small interfering RNAs (siRNAs) can be used as tools to study single gene function both in vitro and in vivo and are an attractive new class of therapeutics, especially against undruggable targets for the treatment of cancer and other diseases. Despite the potential of siRNAs in cancer therapy, many challenges remain, including rapid degradation, poor cellular uptake and off-target effects. Rational design strategies, selection algorithms, chemical modifications and nanocarriers offer significant opportunities to overcome these challenges. Here, we review the development of siRNAs as therapeutic agents from early design to clinical trial, with special emphasis on the development of EphA2-targeting siRNAs for ovarian cancer treatment.
Collapse
|
36
|
Ovarian cancer microenvironment: implications for cancer dissemination and chemoresistance acquisition. Cancer Metastasis Rev 2015; 33:17-39. [PMID: 24357056 DOI: 10.1007/s10555-013-9456-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ovarian adenocarcinoma is characterized by a late detection, dissemination of cancer cells into the whole peritoneum, and the frequent acquisition of chemoresistance. If these particularities can be explained in part by intrinsic properties of ovarian cancer cells, an increased number of studies show the importance of the tumor microenvironment in tumor progression. Ovarian cancer cells can regulate the composition of their stroma in promoting the formation of ascitic fluid, rich in cytokines and bioactive lipids, and in stimulating the differentiation of stromal cells into a pro-tumoral phenotype. In return, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, tumor-associated macrophages, or other peritoneal cells, such as adipocytes and mesothelial cells can regulate tumor growth, angiogenesis, dissemination, and chemoresistance. This review focuses on the current knowledge about the roles of stromal cells and the associated secreted factors on tumor progression. We also summarize the different studies showing that targeting the microenvironment represents a great potential for improving the prognosis of patients with ovarian adenocarcinoma.
Collapse
|
37
|
Guo Z, He B, Yuan L, Dai W, Zhang H, Wang X, Wang J, Zhang X, Zhang Q. Dual targeting for metastatic breast cancer and tumor neovasculature by EphA2-mediated nanocarriers. Int J Pharm 2015; 493:380-9. [PMID: 26004003 DOI: 10.1016/j.ijpharm.2015.05.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 01/10/2023]
Abstract
EphA2 is a transmembrane receptor tyrosine kinase that is highly expressed on both tumor neovasculature and some kinds of tumor cells. Here, a homing peptide with a sequence of YSAYPDSVPMMSK (YSA) that binds specifically with EphA2 was utilized to modify the stealth liposomes (YSA-LP). With a particle size of about 85 nm, this functionalized nanocarrier was loaded with fluorescent probe or doxorubicin (DOX) and investigated in vitro and in vivo. In the cellular endocytosis studies in vitro, coumarin-6 loaded YSA-LP exhibited significant specificity to both EphA2-overexpressing tumor cells (MDA-MB-231) and human umbilical vein endothelial cells (HUVEC) via a YSA mediated interaction. In a MDA-MB-231 xenograft tumor mouse model, DiR-loaded YSA-LP showed more lasting accumulation in tumor tissue by small animal imaging compared to unmodified liposomes (LP). Further, YSA-LP greatly facilitated the efficacy of DOX loaded against both tumor cells and tumor angiogenesis in the same mouse model, evidenced by inhibiting tumor growth, metastasis and CD31 expression as well as inducing cancer cell apoptosis. Additionally, YSA-LP (DOX) showed relatively low systemic and cardiac toxicity compared with control groups. In conclusion, YSA might be a promising targeting motif for EphA2-overexpressing tumor cells and tumor neovasculature, which could be used to mediate drug delivery for chemotherapy agents.
Collapse
Affiliation(s)
- Zhaoming Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; School of Life Science and Medicine, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Bing He
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lan Yuan
- Medical and Healthy Analytical Center, Peking University, Beijing 100191, China
| | - Wenbing Dai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiancheng Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xuan Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
38
|
Subbarayal P, Karunakaran K, Winkler AC, Rother M, Gonzalez E, Meyer TF, Rudel T. EphrinA2 receptor (EphA2) is an invasion and intracellular signaling receptor for Chlamydia trachomatis. PLoS Pathog 2015; 11:e1004846. [PMID: 25906164 PMCID: PMC4408118 DOI: 10.1371/journal.ppat.1004846] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 04/01/2015] [Indexed: 12/02/2022] Open
Abstract
The obligate intracellular bacterium Chlamydia trachomatis invades into host cells to replicate inside a membrane-bound vacuole called inclusion. Multiple different host proteins are recruited to the inclusion and are functionally modulated to support chlamydial development. Invaded and replicating Chlamydia induces a long-lasting activation of the PI3 kinase signaling pathway that is required for efficient replication. We identified the cell surface tyrosine kinase EphrinA2 receptor (EphA2) as a chlamydial adherence and invasion receptor that induces PI3 kinase (PI3K) activation, promoting chlamydial replication. Interfering with binding of C. trachomatis serovar L2 (Ctr) to EphA2, downregulation of EphA2 expression or inhibition of EphA2 activity significantly reduced Ctr infection. Ctr interacts with and activates EphA2 on the cell surface resulting in Ctr and receptor internalization. During chlamydial replication, EphA2 remains active accumulating around the inclusion and interacts with the p85 regulatory subunit of PI3K to support the activation of the PI3K/Akt signaling pathway that is required for normal chlamydial development. Overexpression of full length EphA2, but not the mutant form lacking the intracellular cytoplasmic domain, enhanced PI3K activation and Ctr infection. Despite the depletion of EphA2 from the cell surface, Ctr infection induces upregulation of EphA2 through the activation of the ERK pathway, which keeps the infected cell in an apoptosis-resistant state. The significance of EphA2 as an entry and intracellular signaling receptor was also observed with the urogenital C. trachomatis-serovar D. Our findings provide the first evidence for a host cell surface receptor that is exploited for invasion as well as for receptor-mediated intracellular signaling to facilitate chlamydial replication. In addition, the engagement of a cell surface receptor at the inclusion membrane is a new mechanism by which Chlamydia subverts the host cell and induces apoptosis resistance. Chlamydia trachomatis are major human pathogens causing ocular and sexually transmitted diseases with hundreds of millions of cases per year. Chlamydia replicate inside the host cell in a membrane bound vacuole called inclusion. The current concept on how Chlamydia communicates with the host cell during its replication is based on the identification of the host protein that interacts with Chlamydia. Here, we describe that C. trachomatis-serovar L2 and D use EphA2, a member of the largest class of human receptor tyrosine kinases, as an adherence and entry receptor that is endocytosed together with the bacteria. Cell surface EphA2 receptor is adopted by Chlamydia to function also at the inclusion to support growth and replication and to keep the infected cell in an apoptosis resistant state. Thus, we show that EphA2 is an undiscovered important surface and intracellular signaling receptor that is crucial for chlamydial infection and development.
Collapse
Affiliation(s)
- Prema Subbarayal
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Karthika Karunakaran
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Ann-Cathrin Winkler
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Marion Rother
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany; Steinbeis Innovation gGmbH, Center for Systems Biomedicine, Stuttgart, Germany
| | - Erik Gonzalez
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
39
|
Deng Z, Li Y, Fan J, Wang G, Li Y, Zhang Y, Cai G, Shen H, Ferrari M, Hu TY. Circulating peptidome to indicate the tumor-resident proteolysis. Sci Rep 2015; 5:9327. [PMID: 25788424 PMCID: PMC4365414 DOI: 10.1038/srep09327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/05/2015] [Indexed: 01/02/2023] Open
Abstract
Tumor-resident proteases (TRPs) are regarded as informative biomarkers for staging cancer progression and evaluating therapeutic efficacy. Currently in the clinic, measurement of TRP is dependent on invasive biopsies, limiting their usefulness as monitoring tools. Here we identified circulating peptides naturally produced by TRPs, and evaluated their potential to monitor the efficacy of anti-tumor treatments. We established a mouse model for ovarian cancer development and treatment by orthotopic implantation of the human drug-resistant ovarian cancer cell line HeyA8-MDR, followed by porous silicon particle- or multistage vector (MSV) - enabled EphA2 siRNA therapy. Immunohistochemistry staining of tumor tissue revealed decreased expression of matrix metallopeptidase 9 (MMP-9) in mice exhibiting positive responses to MSV-EphA2 siRNA treatment. We demonstrated, via an ex vivo proteolysis assay, that C3f peptides can act as substrates of MMP-9, which cleaves C3f at L1311-L1312 into two peptides (SSATTFRL and LWENGNLLR). Importantly, we showed that these two C3f-derived fragments detected in serum were primarily generated by tumor-resident, but not blood-circulating, MMP-9. Our results suggested that the presence of the circulating fragments specially derived from the localized cleavage in tumor microenvironment can be used to evaluate therapeutic efficacy of anti-cancer treatment, assessed through a relatively noninvasive and user-friendly proteomics approach.
Collapse
Affiliation(s)
- Zaian Deng
- 1] School of Life Science, Tsinghua University, Beijing 100084, China [2] Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue R8-213, Houston, TX 77030, United States [3] Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Yaojun Li
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue R8-213, Houston, TX 77030, United States
| | - Jia Fan
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue R8-213, Houston, TX 77030, United States
| | - Guohui Wang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue R8-213, Houston, TX 77030, United States
| | - Yan Li
- Institute of Biophysics, Chinese Academy Of Sciences, 15 Datum Road, Chaoyang District, Beijing 100101, China
| | - Yaou Zhang
- 1] School of Life Science, Tsinghua University, Beijing 100084, China [2] Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Guoping Cai
- 1] School of Life Science, Tsinghua University, Beijing 100084, China [2] Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Haifa Shen
- 1] Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue R8-213, Houston, TX 77030, United States [2] Department of Cell and Developmental Biology, Weill Cornell Medical College of Cornell University, 445 E. 69th Street, New York, New York 10021, United States
| | - Mauro Ferrari
- 1] Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue R8-213, Houston, TX 77030, United States [2] Department of Internal Medicine, Weill Cornell Medical College of Cornell University, 445 E. 69th Street, New York, New York 10021, United States
| | - Tony Y Hu
- 1] Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue R8-213, Houston, TX 77030, United States [2] Department of Cell and Developmental Biology, Weill Cornell Medical College of Cornell University, 445 E. 69th Street, New York, New York 10021, United States
| |
Collapse
|
40
|
Engelberth SA, Hempel N, Bergkvist M. Development of nanoscale approaches for ovarian cancer therapeutics and diagnostics. Crit Rev Oncog 2014; 19:281-315. [PMID: 25271436 DOI: 10.1615/critrevoncog.2014011455] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ovarian cancer is the deadliest of all gynecological cancers and the fifth leading cause of death due to cancer in women. This is largely due to late-stage diagnosis, poor prognosis related to advanced-stage disease, and the high recurrence rate associated with development of chemoresistance. Survival statistics have not improved significantly over the last three decades, highlighting the fact that improved therapeutic strategies and early detection require substantial improvements. Here, we review and highlight nanotechnology-based approaches that seek to address this need. The success of Doxil, a PEGylated liposomal nanoencapsulation of doxorubicin, which was approved by the FDA for use on recurrent ovarian cancer, has paved the way for the current wave of nanoparticle formulations in drug discovery and clinical trials. We discuss and summarize new nanoformulations that are currently moving into clinical trials and highlight novel nanotherapeutic strategies that have shown promising results in preclinical in vivo studies. Further, the potential for nanomaterials in diagnostic imaging techniques and the ability to leverage nanotechnology for early detection of ovarian cancer are also discussed.
Collapse
Affiliation(s)
| | - Nadine Hempel
- SUNY College of Nanoscale Science and Engineering, Albany NY 12203
| | - Magnus Bergkvist
- SUNY College of Nanoscale Science and Engineering, Albany NY 12203
| |
Collapse
|
41
|
Wang Y, Liu Y, Li G, Su Z, Ren S, Tan P, Zhang X, Qiu Y, Tian Y. Ephrin type‑A receptor 2 regulates sensitivity to paclitaxel in nasopharyngeal carcinoma via the phosphoinositide 3‑kinase/Akt signalling pathway. Mol Med Rep 2014; 11:924-30. [PMID: 25351620 PMCID: PMC4262504 DOI: 10.3892/mmr.2014.2799] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 08/22/2014] [Indexed: 01/20/2023] Open
Abstract
Ephrin type-A receptor 2 (EphA2) is a receptor tyrosine kinase that is associated with cancer cell metastasis. There has been little investigation into its impact on the regulation of sensitivity to paclitaxel in nasopharyngeal carcinoma (NPC). In the present study, upregulation of EphA2 expression enhanced the survival of NPC 5-8F cells, compared with control cells exposed to the same concentrations of paclitaxel. Flow cytometry and western blot analysis demonstrated that over-expression of EphA2 decreased NPC cancer cell sensitivity to paclitaxel by regulating paclitaxel-mediated cell cycle progression but not apoptosis in vitro. This was accompanied by alterations in the expression of cyclin-dependent kinase inhibitors, p21 and p27, and of inactive phosphorylated-retinoblastoma protein. Furthermore, paclitaxel stimulation and EphA2 over-expression resulted in activation of the phosphoinositide 3-kinase (PI3K)/Akt signalling pathway in NPC cells. Inhibition of the PI3K/Akt signalling pathway restored sensitivity to paclitaxel in 5-8F cells over-expressing EphA2, which indicated that the PI3K/Akt pathway is involved in EphA2-mediated paclitaxel sensitivity. The current study demonstrated that EphA2 mediates sensitivity to paclitaxel via the regulation of the PI3K/Akt signalling pathway in NPC.
Collapse
Affiliation(s)
- Yunyun Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhongwu Su
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shuling Ren
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Pingqing Tan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yongquan Tian
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
42
|
Rhoda K, Choonara YE, Kumar P, Bijukumar D, du Toit LC, Pillay V. Potential nanotechnologies and molecular targets in the quest for efficient chemotherapy in ovarian cancer. Expert Opin Drug Deliv 2014; 12:613-34. [PMID: 25300775 DOI: 10.1517/17425247.2015.970162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Ovarian cancer, considered one of the most fatal gynecological cancers, goes largely undiagnosed until metastasis presents itself, usually once the patient is in the final stages and thus, too late for worthwhile therapy. Targeting this elusive disease in its early stages would improve the outcome for most patients, while the information generated thereof would increase the possibility of preventative mechanisms of therapy. AREAS COVERED This review discusses various molecular targets as possible moieties to be incorporated in a holistic drug delivery system or the more aptly termed 'theranostic' system. These molecular targets can be used for targeting, visualizing, diagnosing, and ultimately, treating ovarian cancer in its entirety. Currently implemented nanoframeworks, such as nanomicelles and nanoliposomes, are described and the effectiveness of nanostructures in tumor targeting, treatment functions, and overcoming the drug resistance challenge is discussed. EXPERT OPINION Novel nanotechnology strategies such as the development of nanoframeworks decorated with targeted ligands of a molecular nature may provide an efficient chemotherapy, especially when instituted in combination with imaging, diagnostic, and ultimately, therapeutic moieties. An imperative aspect of utilizing nanotechnology in the treatment of ovarian cancer is the flexibility of the drug delivery system and its ability to overcome standard obstacles such as: i) successfully treating the desired cells through direct targeting; ii) reducing toxicity levels of treatment by achieving direct targeting; and iii) delivery of targeted therapy using an efficient vehicle that is exceptionally degradable in response to a particular stimulus. The targeting of ovarian cancer in its early stages using imaging and diagnostic nanotechnology is an area that can be improved upon by combining therapeutic moieties with molecular biomarkers. The nanotechnology and molecular markers mentioned in this review have generally been used for either imaging or diagnostics, and have not yet been successfully implemented into bi-functional tools, which it is hoped, should eventually include a therapeutic aspect.
Collapse
Affiliation(s)
- Khadija Rhoda
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, 7 York Road, Parktown, 2193 , South Africa
| | | | | | | | | | | |
Collapse
|
43
|
DuSablon A, Kent S, Coburn A, Virag J. EphA2-receptor deficiency exacerbates myocardial infarction and reduces survival in hyperglycemic mice. Cardiovasc Diabetol 2014; 13:114. [PMID: 25166508 PMCID: PMC4147179 DOI: 10.1186/s12933-014-0114-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/12/2014] [Indexed: 02/04/2023] Open
Abstract
Background We have previously shown that EphrinA1/EphA expression profile changes in response to myocardial infarction (MI), exogenous EphrinA1-Fc administration following MI positively influences wound healing, and that deletion of the EphA2 Receptor (EphA2-R) exacerbates injury and remodeling. To determine whether or not ephrinA1-Fc would be of therapeutic value in the hyperglycemic infarcted heart, it is critical to evaluate how ephrinA1/EphA signaling changes in the hyperglycemic myocardium in response to MI. Methods Streptozotocin (STZ)-induced hyperglycemia in wild type (WT) and EphA2-receptor mutant (EphA2-R-M) mice was initiated by an intraperitoneal injection of STZ (150 mg/kg) 10 days before surgery. MI was induced by permanent ligation of the left anterior descending coronary artery and analyses were performed at 4 days post-MI. ANOVAs with Student-Newman Keuls multiple comparison post-hoc analysis illustrated which groups were significantly different, with significance of at least p < 0.05. Results Both WT and EphA2-R-M mice responded adversely to STZ, but only hyperglycemic EphA2-R-M mice had lower ejection fraction (EF) and fractional shortening (FS). At 4 days post-MI, we observed greater post-MI mortality in EphA2-R-M mice compared with WT and this was greater still in the EphA2-R-M hyperglycemic mice. Although infarct size was greater in hyperglycemic WT mice vs normoglycemic mice, there was no difference between hyperglycemic EphA2-R-M mice and normoglycemic EphA2-R-M mice. The hypertrophic response that normally occurs in viable myocardium remote to the infarct was noticeably absent in epicardial cardiomyocytes and cardiac dysfunction worsened in hyperglycemic EphA2-R-M hearts post-MI. The characteristic interstitial fibrotic response in the compensating myocardium remote to the infarct also did not occur in hyperglycemic EphA2-R-M mouse hearts to the same extent as that observed in the hyperglycemic WT mouse hearts. Differences in neutrophil and pan-leukocyte infiltration and serum cytokines implicate EphA2-R in modulation of injury and the differences in ephrinA1 and EphA6-R expression in governing this are discussed. Conclusions We conclude that EphA2-mutant mice are more prone to hyperglycemia-induced increased injury, decreased survival, and worsened LV remodeling due to impaired wound healing.
Collapse
|
44
|
Davidson B, Trope CG, Reich R. The role of the tumor stroma in ovarian cancer. Front Oncol 2014; 4:104. [PMID: 24860785 PMCID: PMC4026708 DOI: 10.3389/fonc.2014.00104] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/27/2014] [Indexed: 01/09/2023] Open
Abstract
The tumor microenvironment, consisting of stromal myofibroblasts, endothelial cells, and leukocytes, is growingly perceived to be a major contributor to the pathogenesis and disease progression in practically all cancer types. Stromal myofibroblasts produce angiogenic factors, proteases, growth factors, immune response-modulating proteins, anti-apoptotic proteins, and signaling molecules, and express surface receptors and respond to stimuli initiated in the tumor cells to establish a bi-directional communication network in the microenvironment to promote tumor cell invasion and metastasis. Many of these molecules are candidates for targeted therapy and the cancer stroma has been recently regarded as target for biological intervention. This review provides an overview of the biology and clinical role of the stroma in ovarian cancer.
Collapse
Affiliation(s)
- Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital , Oslo , Norway ; University of Oslo, Faculty of Medicine, Institute of Clinical Medicine , Oslo , Norway
| | - Claes G Trope
- University of Oslo, Faculty of Medicine, Institute of Clinical Medicine , Oslo , Norway ; Department of Gynecologic Oncology, Oslo University Hospital, Norwegian Radium Hospital , Oslo , Norway
| | - Reuven Reich
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem , Jerusalem , Israel
| |
Collapse
|
45
|
Chen P, Huang Y, Zhang B, Wang Q, Bai P. EphA2 enhances the proliferation and invasion ability of LNCaP prostate cancer cells. Oncol Lett 2014; 8:41-46. [PMID: 24959216 PMCID: PMC4063646 DOI: 10.3892/ol.2014.2093] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 04/01/2014] [Indexed: 12/30/2022] Open
Abstract
EphA2 is persistently overexpressed and functionally changed in numerous human cancers. However, to the best of our knowledge, the role that EphA2 plays in prostate cancer is not entirely clear. To investigate the roles of EphA2 in the development and progression of prostate cancer, the present study initially evaluated the roles of the EphA2 protein in LNCaP prostate cancer cells using recombinant plasmid, western blot analysis, flow cytometry, Matrigel invasion chamber and the cell counting kit-8 assay. An immunohistochemistry assay was also conducted to observe the effects of EphA2 in prostate cancer tissues. The results demonstrated that the LNCaP human prostate cancer cells that were transfected with pcDNA3.1(+) plasmid-mediated pcDNA3.1(+)-EphA2, markedly enhanced the cell growth and invasion in vitro. Additionally, EphA2 was overexpressed in prostate cancer specimens and the expression of EphA2 was significantly associated with Gleason grade, total prostate-specific antigen, advanced clinical stage and lymph node metastasis. Collectively, these results demonstrate that EphA2 is involved in malignant cell behavior and is a potential therapeutic target in human prostate cancer.
Collapse
Affiliation(s)
- Peijie Chen
- Department of Urology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Yan Huang
- Department of Urology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Bo Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Qiuquan Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Peiming Bai
- Department of Urology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
46
|
Stone RL, Baggerly KA, Armaiz-Pena GN, Kang Y, Sanguino AM, Thanapprapasr D, Dalton HJ, Bottsford-Miller J, Zand B, Akbani R, Diao L, Nick AM, DeGeest K, Lopez-Berestein G, Coleman RL, Lutgendorf S, Sood AK. Focal adhesion kinase: an alternative focus for anti-angiogenesis therapy in ovarian cancer. Cancer Biol Ther 2014; 15:919-29. [PMID: 24755674 DOI: 10.4161/cbt.28882] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This investigation describes the clinical significance of phosphorylated focal adhesion kinase (FAK) at the major activating tyrosine site (Y397) in epithelial ovarian cancer (EOC) cells and tumor-associated endothelial cells. FAK gene amplification as a mechanism for FAK overexpression and the effects of FAK tyrosine kinase inhibitor VS-6062 on tumor growth, metastasis, and angiogenesis were examined. FAK and phospho-FAK(Y397) were quantified in tumor (FAK-T; pFAK-T) and tumor-associated endothelial (FAK-endo; pFAK-endo) cell compartments of EOCs using immunostaining and qRT-PCR. Associations between expression levels and clinical variables were evaluated. Data from The Cancer Genome Atlas were used to correlate FAK gene copy number and expression levels in EOC specimens. The in vitro and in vivo effects of VS-6062 were assayed in preclinical models. FAK-T and pFAK-T overexpression was significantly associated with advanced stage disease and increased microvessel density (MVD). High MVD was observed in tumors with elevated endothelial cell FAK (59%) and pFAK (44%). Survival was adversely affected by FAK-T overexpression (3.03 vs 2.06 y, P = 0.004), pFAK-T (2.83 vs 1.78 y, P<0.001), and pFAK-endo (2.33 vs 2.17 y, P = 0.005). FAK gene copy number was increased in 34% of tumors and correlated with expression levels (P<0.001). VS-6062 significantly blocked EOC and endothelial cell migration as well as endothelial cell tube formation in vitro. VS-6062 reduced mean tumor weight by 56% (P = 0.005), tumor MVD by 40% (P = 0.0001), and extraovarian metastasis (P<0.01) in orthotopic EOC mouse models. FAK may be a unique therapeutic target in EOC given the dual anti-angiogenic and anti-metastatic potential of FAK inhibitors.
Collapse
Affiliation(s)
- Rebecca L Stone
- Department of Gynecologic Oncology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Keith A Baggerly
- Department of Bioinformatics and Computational Biology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Guillermo N Armaiz-Pena
- Department of Gynecologic Oncology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Yu Kang
- Department of Obstetrics and Gynecology; Hospital of Fudan University; Shanghai, PR China
| | - Angela M Sanguino
- Department of Gynecologic Oncology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Duangmani Thanapprapasr
- Department of Gynecologic Oncology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Heather J Dalton
- Department of Gynecologic Oncology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Justin Bottsford-Miller
- Department of Gynecologic Oncology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Behrouz Zand
- Department of Gynecologic Oncology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Alpa M Nick
- Department of Gynecologic Oncology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Koen DeGeest
- Department of Obstetrics and Gynecology; The University of Iowa; Iowa City, IA USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Robert L Coleman
- Department of Gynecologic Oncology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Susan Lutgendorf
- Department of Psychology; The University of Iowa; Iowa City, IA USA
| | - Anil K Sood
- Department of Gynecologic Oncology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA; Department of Cancer Biology; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| |
Collapse
|
47
|
Nasreen N, Khodayari N, Sriram PS, Patel J, Mohammed KA. Tobacco smoke induces epithelial barrier dysfunction via receptor EphA2 signaling. Am J Physiol Cell Physiol 2014; 306:C1154-66. [PMID: 24717580 DOI: 10.1152/ajpcell.00415.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Erythropoietin-producing human hepatocellular carcinoma (Eph) receptors are the largest family of receptor tyrosine kinases (RTKs) that mediate various cellular and developmental processes. The degrees of expression of these key molecules control the cell-cell interactions. Although the role of Eph receptors and their ligand Ephrins is well studied in developmental processes, their function in tobacco smoke (TS)-induced epithelial barrier dysfunction is unknown. We hypothesized that TS may induce permeability in bronchial airway epithelial cell (BAEpC) monolayer by modulating receptor EphA2 expression, actin cytoskeleton, adherens junction, and focal adhesion proteins. Here we report that in BAEpCs, acute TS exposure significantly upregulated EphA2 and EphrinA1 expression, disrupted the actin filaments, decreased E-cadherin expression, and increased protein permeability, whereas the focal adhesion protein paxillin was unaffected. Silencing the receptor EphA2 expression with silencing interference RNA (siRNA) significantly attenuated TS-induced hyperpermeability in BAEpCs. In addition, when BAEpC monolayer was transfected with EphA2-expressing plasmid and treated with recombinant EphrinA1, the transepithelial electrical resistance decreased significantly. Furthermore, TS downregulated E-cadherin expression and induced hyperpermeability across BAEpC monolayer in a Erk1/Erk2, p38, and JNK MAPK-dependent manner. TS induced hyperpermeability in BAEpC monolayer by targeting cell-cell adhesions, and interestingly cell-matrix adhesions were unaffected. The present data suggest that TS causes significant damage to the BAEpCs via induction of EphA2 and downregulation of E-cadherin. Induction of EphA2 in the BAEpCs exposed to TS may be an important signaling event in the pathogenesis of TS-induced epithelial injury.
Collapse
Affiliation(s)
- Najmunnisa Nasreen
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, Florida; and North Florida/South Georgia Veterans Health Care System, Malcom Randall Veterans Affairs Medical Center, University of Florida, Gainesville, Florida
| | - Nazli Khodayari
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, Florida; and North Florida/South Georgia Veterans Health Care System, Malcom Randall Veterans Affairs Medical Center, University of Florida, Gainesville, Florida
| | - Peruvemba S Sriram
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, Florida; and North Florida/South Georgia Veterans Health Care System, Malcom Randall Veterans Affairs Medical Center, University of Florida, Gainesville, Florida
| | - Jawaharlal Patel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, Florida; and North Florida/South Georgia Veterans Health Care System, Malcom Randall Veterans Affairs Medical Center, University of Florida, Gainesville, Florida
| | - Kamal A Mohammed
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, Florida; and North Florida/South Georgia Veterans Health Care System, Malcom Randall Veterans Affairs Medical Center, University of Florida, Gainesville, Florida
| |
Collapse
|
48
|
Sun Q, Zou X, Zhang T, Shen J, Yin Y, Xiang J. The role of miR-200a in vasculogenic mimicry and its clinical significance in ovarian cancer. Gynecol Oncol 2014; 132:730-8. [DOI: 10.1016/j.ygyno.2014.01.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 01/15/2023]
|
49
|
Huang J, Hu W, Bottsford-Miller J, Liu T, Han HD, Zand B, Pradeep S, Roh JW, Thanapprapasr D, Dalton HJ, Pecot CV, Rupaimoole R, Lu C, Fellman B, Urbauer D, Kang Y, Jennings NB, Huang L, Deavers MT, Broaddus R, Coleman RL, Sood AK. Cross-talk between EphA2 and BRaf/CRaf is a key determinant of response to Dasatinib. Clin Cancer Res 2014; 20:1846-55. [PMID: 24486585 DOI: 10.1158/1078-0432.ccr-13-2141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE EphA2 is an attractive therapeutic target because of its diverse roles in cancer growth and progression. Dasatinib is a multikinase inhibitor that targets EphA2 and other kinases. However, reliable predictive markers and a better understanding of the mechanisms of response to this agent are needed. EXPERIMENTAL DESIGN The effects of dasatinib on human uterine cancer cell lines were examined using a series of in vitro experiments, including MTT, Western blot analysis, and plasmid transfection. In vivo, an orthotopic mouse model of uterine cancer was utilized to identify the biologic effects of dasatinib. Molecular markers for response prediction and the mechanisms relevant to response to dasatinib were identified by using reverse phase protein array (RPPA), immunoprecipitation, and double immunofluorescence staining. RESULTS We show that high levels of CAV-1, EphA2 phosphorylation at S897, and the status of PTEN are key determinants of dasatinib response in uterine carcinoma. A set of markers essential for dasatinib response was also identified and includes CRaf, pCRaf(S338), pMAPK(T202/Y204) (mitogen-activated protein kinase [MAPK] pathway), pS6(S240/244), p70S6k(T389) (mTOR pathway), and pAKT(S473). A novel mechanism for response was discovered whereby high expression level of CAV-1 at the plasma membrane disrupts the BRaf/CRaf heterodimer and thus inhibits the activation of MAPK pathway during dasatinib treatment. CONCLUSIONS Our in vitro and in vivo results provide a new understanding of EphA2 targeting by dasatinib and identify key predictors of therapeutic response. These findings have implications for ongoing dasatinib-based clinical trials.
Collapse
Affiliation(s)
- Jie Huang
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine, Hematology and Oncology, Biostatistics, Cancer Biology, and Pathology, and The Center for RNA Interference and Non-Coding RNAs; The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tomao F, Papa A, Rossi L, Caruso D, Zoratto F, Benedetti Panici P, Tomao S. Beyond bevacizumab: investigating new angiogenesis inhibitors in ovarian cancer. Expert Opin Investig Drugs 2013; 23:37-53. [PMID: 24111925 DOI: 10.1517/13543784.2013.839657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Ovarian cancer is the most lethal gynecological cancer, mainly because of the advanced stage of the disease at diagnosis, with recent research investigating novel targets and agents into the clinical practice, with the aim to improve prognosis and quality of life. Angiogenesis is a significant target for ovarian cancer therapy. AREAS COVERED Areas covered in this review include the most common molecular pathways of angiogenesis, which have provided novel targets for tailored therapy in ovarian cancer patients. These therapeutic strategies comprise monoclonal antibodies and tyrosine kinase inhibitors. These drugs have as molecular targets such as vascular endothelial growth factor (VEGF), VEGF receptor, platelet-derived growth factor, fibroblast growth factor, angiopoietin and Ephrin type-A receptor 2. EXPERT OPINION The expansion in understanding the molecular biology that characterizes cancer cells has led to the rapid development of new agents to target important pathways, but the heterogeneity of ovarian cancer biology indicates that there is no predominant defect. This review attempts to discuss progress till date in tackling a more general target applicable to ovarian cancer angiogenesis.
Collapse
Affiliation(s)
- Federica Tomao
- 'Sapienza' University of Rome, Department of Gynaecology and Obstetrics, Policlinico 'Umberto I' , Rome , Italy
| | | | | | | | | | | | | |
Collapse
|