1
|
Valvi S, Manoharan N, Mateos MK, Hassall TE, Ziegler DS, McCowage GB, Dun MD, Eisenstat DD, Gottardo NG, Hansford JR. Management of patients with diffuse intrinsic pontine glioma in Australia and New Zealand: Australian and New Zealand Children's Haematology/Oncology Group position statement. Med J Aust 2024; 220:533-538. [PMID: 38699949 DOI: 10.5694/mja2.52295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
INTRODUCTION The main mission of the Australian and New Zealand Children's Haematology and Oncology Group (ANZCHOG) is to develop and facilitate local access to the world's leading evidence-based clinical trials for all paediatric cancers, including brain tumours, as soon as practically possible. Diffuse intrinsic pontine gliomas (DIPGs) - a subset of a larger group of tumours now termed diffuse midline glioma, H3K27-altered (DMG) - are paediatric brain cancers with less than 10% survival at two years. In the absence of any proven curative therapies, significant recent advancements have been made in pre-clinical and clinical research, leading many to seek integration of novel therapies early into standard practice. Despite these innovative therapeutic approaches, DIPG remains an incurable disease for which novel surgical, imaging, diagnostic, radiation and systemic therapy approaches are needed. MAIN RECOMMENDATIONS All patients with DIPG should be discussed in multidisciplinary neuro-oncology meetings (including pathologists, neuroradiologists, radiation oncologists, neurosurgeons, medical oncologists) at diagnosis and at relapse or progression. Radiation therapy to the involved field remains the local and international standard of care treatment. Proton therapy does not yield a superior survival outcome compared with photon therapy and patients should undergo radiation therapy with the available modality (photon or proton) at their treatment centre. Patients may receive concurrent chemotherapy or radiation-sensitising agents as part of a clinical trial. Biopsy should be offered to facilitate consideration of experimental therapies and eligibility for clinical trial participation. After radiation therapy, each patient should be managed individually with either observation or considered for enrolment on a clinical trial, if eligible, after full discussion with the family. Re-irradiation can be considered for progressive disease. CHANGES IN MANAGEMENT AS A RESULT OF THE GUIDELINE Every child diagnosed with DIPG should be offered enrolment on a clinical trial where available. Access to investigational drugs without biological rationale outside the clinical trial setting is not supported. In case of potentially actionable target identification with molecular profiling and absence of a suitable clinical trial, rational targeted therapies can be considered through compassionate access programs.
Collapse
Affiliation(s)
- Santosh Valvi
- Perth Children's Hospital, Perth, WA
- Telethon Kids Institute, Perth, WA
- University of Western Australia, Perth, WA
| | - Neevika Manoharan
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, Sydney, NSW
- University of New South Wales, Sydney, NSW
| | - Marion K Mateos
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, Sydney, NSW
- University of New South Wales, Sydney, NSW
| | - Timothy Eg Hassall
- Queensland Children's Hospital, Brisbane, QLD
- Frazer Institute, University of Queensland, Brisbane, QLD
| | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, Sydney, NSW
- University of New South Wales, Sydney, NSW
| | | | - Matthew D Dun
- University of Newcastle, Newcastle, NSW
- Hunter Medical Research Institute, Newcastle, NSW
| | - David D Eisenstat
- Children's Cancer Centre, Royal Children's Hospital Melbourne, Melbourne, VIC
- Murdoch Children's Research Institute, Melbourne, VIC
- University of Melbourne, Melbourne, VIC
| | | | - Jordan R Hansford
- Women's and Children's Hospital, Adelaide, SA
- South Australian Health and Medical Research Institute, Adelaide, SA
- University of Adelaide, Adelaide, SA
| |
Collapse
|
2
|
van den Bent M, Saratsis AM, Geurts M, Franceschi E. H3 K27M-altered glioma and diffuse intrinsic pontine glioma: Semi-systematic review of treatment landscape and future directions. Neuro Oncol 2024; 26:S110-S124. [PMID: 38102230 PMCID: PMC11066941 DOI: 10.1093/neuonc/noad220] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Indexed: 12/17/2023] Open
Abstract
H3 K27M-mutant diffuse glioma is a recently identified brain tumor associated with poor prognosis. As of 2016, it is classified by the World Health Organization as a distinct form of grade IV glioma. Despite recognition as an important prognostic and diagnostic feature in diffuse glioma, radiation remains the sole standard of care and no effective systemic therapies are available for H3K27M mutant tumors. This review will detail treatment interventions applied to diffuse midline glioma and diffuse intrinsic pontine glioma (DIPG) prior to the identification of the H3 K27M mutation, the current standard-of-care for H3 K27M-mutant diffuse glioma treatment, and ongoing clinical trials listed on www.clinicaltrials.gov evaluating novel therapeutics in this population. Current clinical trials were identified using clinicaltrials.gov, and studies qualifying for this analysis were active or ongoing interventional trials that evaluated a therapy in at least 1 treatment arm or cohort comprised exclusively of patients with DIPG and H3 K27M-mutant glioma. Forty-one studies met these criteria, including trials evaluating H3 K27M vaccination, chimeric antigen receptor T-cell therapy, and small molecule inhibitors. Ongoing evaluation of novel therapeutics is necessary to identify safe and effective interventions in this underserved patient population.
Collapse
Affiliation(s)
- Martin van den Bent
- Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Amanda M Saratsis
- Department of Neurosurgery, Advocate Children’s Hospital, Park Ridge, Illinois, USA
| | - Marjolein Geurts
- Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Enrico Franceschi
- Department of Nervous System Medical Oncology, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
3
|
Messiaen J, Jacobs SA, De Smet F. The tumor micro-environment in pediatric glioma: friend or foe? Front Immunol 2023; 14:1227126. [PMID: 37901250 PMCID: PMC10611473 DOI: 10.3389/fimmu.2023.1227126] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Brain tumors are the leading cause of morbidity and mortality related to cancer in children, where high-grade glioma harbor the worst prognosis. It has become obvious that pediatric glioma differs significantly from their adult counterparts, rendering extrapolations difficult. Curative options for several types of glioma are lacking, albeit ongoing research efforts and clinical trials. As already proven in the past, inter- and intratumoral heterogeneity plays an important role in the resistance to therapy and thus implicates morbidity and mortality for these patients. However, while less studied, the tumor micro-environment (TME) adds another level of heterogeneity. Knowledge gaps exist on how the TME interacts with the tumor cells and how the location of the various cell types in the TME influences tumor growth and the response to treatment. Some studies identified the presence of several (immune) cell types as prognostic factors, but often lack a deeper understanding of the underlying mechanisms, possibly leading to contradictory findings. Although the TME in pediatric glioma is regarded as "cold", several treatment options are emerging, with the TME being the primary target of treatment. Therefore, it is crucial to study the TME of pediatric glioma, so that the interactions between TME, tumoral cells and therapeutics can be better understood before, during and after treatment. In this review, we provide an overview of the available insights into the composition and role of the TME across different types of pediatric glioma. Moreover, where possible, we provide a framework on how a particular TME may influence responses to conventional- and/or immunotherapy.
Collapse
Affiliation(s)
- Julie Messiaen
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Sandra A. Jacobs
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Pediatric Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
I Kh Almadhoun MK, Hattab AAW. Pediatric Glioblastoma Multiforme: A Challenging Case of Rapid Growth and Clinical Deterioration in an 11-Year-Old Female Patient. Cureus 2023; 15:e47697. [PMID: 38021881 PMCID: PMC10674094 DOI: 10.7759/cureus.47697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive primary brain tumor that primarily affects adults, with cases in children being extremely rare. Gross total resection with subsequent irradiation and temozolomide, currently delivering the greatest overall survival, is the mainstay of therapy for juvenile GBM. Maximal surgical excision of the visible tumor mass has been shown to have a positive prognostic effect, but radiation concerns for growing brains and inconsistent results from different chemotherapy regimens in pediatric GBM make treatment choices for young patients challenging. Here, we report a case of GBM in an 11-year-old female child who presented with a dramatic presentation of neurologic deficits and clinical worsening due to rapid tumor growth.
Collapse
|
5
|
Tosi U, Souweidane M. Fifty years of DIPG: looking at the future with hope. Childs Nerv Syst 2023; 39:2675-2686. [PMID: 37382660 DOI: 10.1007/s00381-023-06037-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a primary brainstem tumor of childhood that carries a dismal prognosis, with median survival of less than 1 year. Because of the brain stem location and pattern of growth within the pons, Dr. Harvey Cushing, the father of modern neurosurgery, urged surgical abandonment. Such a dismal prognosis remained unchanged for decades, coupled with a lack of understanding of tumor biology and an unchanging therapeutic panorama. Beyond palliative external beam radiation therapy, no therapeutic approach has been widely accepted. In the last one to two decades, however, increased tissue availability, an improving understanding of biology, genetics, and epigenetics have led to the development of novel therapeutic targets. In parallel with this biological revolution, new methods intended to enhance drug delivery into the brain stem are contributing to a surge of exciting experimental therapeutic strategies.
Collapse
Affiliation(s)
- Umberto Tosi
- Department of Neurosurgery, Weill Cornell Medicine, 525 E 68th St Box 99, New York, NY, 10021, USA
| | - Mark Souweidane
- Department of Neurosurgery, Weill Cornell Medicine, 525 E 68th St Box 99, New York, NY, 10021, USA.
| |
Collapse
|
6
|
Matsui JK, Allen PK, Perlow HK, Johnson JM, Paulino AC, McAleer MF, Fouladi M, Grosshans DR, Ghia AJ, Li J, Zaky WT, Chintagumpala MM, Palmer JD, McGovern SL. Prognostic factors for pediatric, adolescent, and young adult patients with non-DIPG grade 4 gliomas: a contemporary pooled institutional experience. J Neurooncol 2023; 163:717-726. [PMID: 37440097 PMCID: PMC11938388 DOI: 10.1007/s11060-023-04386-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE WHO grade 4 gliomas are rare in the pediatric and adolescent and young adult (AYA) population. We evaluated prognostic factors and outcomes in the pediatric versus AYA population. METHODS This retrospective pooled study included patients less than 30 years old (yo) with grade 4 gliomas treated with modern surgery and radiotherapy. Overall survival (OS) and progression-free survival (PFS) were characterized using Kaplan-Meier and Cox regression analysis. RESULTS Ninety-seven patients met criteria with median age 23.9 yo at diagnosis. Seventy-seven patients were ≥ 15 yo (79%) and 20 patients were < 15 yo (21%). Most had biopsy-proven glioblastoma (91%); the remainder had H3 K27M-altered diffuse midline glioma (DMG; 9%). All patients received surgery and radiotherapy. Median PFS and OS were 20.9 months and 79.4 months, respectively. Gross total resection (GTR) was associated with better PFS in multivariate analysis [HR 2.00 (1.01-3.62), p = 0.023]. Age ≥ 15 yo was associated with improved OS [HR 0.36 (0.16-0.81), p = 0.014] while female gender [HR 2.12 (1.08-4.16), p = 0.03] and DMG histology [HR 2.79 (1.11-7.02), p = 0.029] were associated with worse OS. Only 7% of patients experienced grade 2 toxicity. 62% of patients experienced tumor progression (28% local, 34% distant). Analysis of salvage treatment found that second surgery and systemic therapy significantly improved survival. CONCLUSION Age is a significant prognostic factor in WHO grade 4 glioma, which may reflect age-related molecular alterations in the tumor. DMG was associated with worse OS than glioblastoma. Reoperation and systemic therapy significantly increased survival after disease progression. Prospective studies in this population are warranted.
Collapse
Affiliation(s)
- Jennifer K Matsui
- The Ohio State University College of Medicine, Columbus, OH, 43201, USA
- Department of Radiation Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 1152, Houston, TX, 77030, USA
| | - Pamela K Allen
- Department of Radiation Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 1152, Houston, TX, 77030, USA
| | - Haley K Perlow
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, 43201, USA
| | - Jason M Johnson
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Arnold C Paulino
- Department of Radiation Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 1152, Houston, TX, 77030, USA
| | - Mary Frances McAleer
- Department of Radiation Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 1152, Houston, TX, 77030, USA
| | - Maryam Fouladi
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - David R Grosshans
- Department of Radiation Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 1152, Houston, TX, 77030, USA
| | - Amol J Ghia
- Department of Radiation Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 1152, Houston, TX, 77030, USA
| | - Jing Li
- Department of Radiation Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 1152, Houston, TX, 77030, USA
| | - Wafik T Zaky
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Joshua D Palmer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, 43201, USA
| | - Susan L McGovern
- Department of Radiation Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 1152, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Murdaugh RL, Anastas JN. Applying single cell multi-omic analyses to understand treatment resistance in pediatric high grade glioma. Front Pharmacol 2023; 14:1002296. [PMID: 37205910 PMCID: PMC10191214 DOI: 10.3389/fphar.2023.1002296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
Despite improvements in cancer patient outcomes seen in the past decade, tumor resistance to therapy remains a major impediment to achieving durable clinical responses. Intratumoral heterogeneity related to genetic, epigenetic, transcriptomic, proteomic, and metabolic differences between individual cancer cells has emerged as a driver of therapeutic resistance. This cell to cell heterogeneity can be assessed using single cell profiling technologies that enable the identification of tumor cell clones that exhibit similar defining features like specific mutations or patterns of DNA methylation. Single cell profiling of tumors before and after treatment can generate new insights into the cancer cell characteristics that confer therapeutic resistance by identifying intrinsically resistant sub-populations that survive treatment and by describing new cellular features that emerge post-treatment due to tumor cell evolution. Integrative, single cell analytical approaches have already proven advantageous in studies characterizing treatment-resistant clones in cancers where pre- and post-treatment patient samples are readily available, such as leukemia. In contrast, little is known about other cancer subtypes like pediatric high grade glioma, a class of heterogeneous, malignant brain tumors in children that rapidly develop resistance to multiple therapeutic modalities, including chemotherapy, immunotherapy, and radiation. Leveraging single cell multi-omic technologies to analyze naïve and therapy-resistant glioma may lead to the discovery of novel strategies to overcome treatment resistance in brain tumors with dismal clinical outcomes. In this review, we explore the potential for single cell multi-omic analyses to reveal mechanisms of glioma resistance to therapy and discuss opportunities to apply these approaches to improve long-term therapeutic response in pediatric high grade glioma and other brain tumors with limited treatment options.
Collapse
Affiliation(s)
- Rebecca L. Murdaugh
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
- Program in Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Jamie N. Anastas
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
- Program in Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
8
|
Colopi A, Fuda S, Santi S, Onorato A, Cesarini V, Salvati M, Balistreri CR, Dolci S, Guida E. Impact of age and gender on glioblastoma onset, progression, and management. Mech Ageing Dev 2023; 211:111801. [PMID: 36996926 DOI: 10.1016/j.mad.2023.111801] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, while its frequency in pediatric patients is 10-15%. For this reason, age is considered one of the major risk factors for the development of GBM, as it correlates with cellular aging phenomena involving glial cells and favoring the process of tumor transformation. Gender differences have been also identified, as the incidence of GBM is higher in males than in females, coupled with a worse outcome. In this review, we analyze age- and gender- dependent differences in GBM onset, mutational landscape, clinical manifestations, and survival, according to the literature of the last 20 years, focusing on the major risk factors involved in tumor development and on the mutations and gene alterations most frequently found in adults vs young patients and in males vs females. We then highlight the impact of age and gender on clinical manifestations and tumor localization and their involvement in the time of diagnosis and in determining the tumor prognostic value.
Collapse
Affiliation(s)
- Ambra Colopi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Serena Fuda
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Samuele Santi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Angelo Onorato
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Valeriana Cesarini
- Department of Biomedicine, Institute of Translational Pharmacology-CNR, Rome, Italy
| | - Maurizio Salvati
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Corso Tukory 211, 90134 Palermo, Italy
| | - Susanna Dolci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| | - Eugenia Guida
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
9
|
Brassesco MS, Roberto GM, Delsin LE, Baldissera GC, Medeiros M, Umezawa K, Tone LG. A foretaste for pediatric glioblastoma therapy: targeting the NF-kB pathway with DHMEQ. Childs Nerv Syst 2023; 39:1519-1528. [PMID: 36807999 DOI: 10.1007/s00381-023-05878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/09/2023] [Indexed: 02/20/2023]
Abstract
PURPOSE While pediatric glioblastomas are molecularly distinct from adult counterparts, the activation of NF-kB is partially shared by both subsets, playing key roles in tumor propagation and treatment response. RESULTS We show that, in vitro, dehydroxymethylepoxyquinomicin (DHMEQ) impairs growth and invasiveness. Xenograft response to the drug alone varied according to the model, being more effective in KNS42-derived tumors. In combination, SF188-derived tumors were more sensitive to temozolomide while KNS42-derived tumors responded better to the combination with radiotherapy, with continued tumor regression. CONCLUSION Taken together, our results strengthen the potential usefulness of NF-kB inhibition in future therapeutic strategies to overcome this incurable disease.
Collapse
Affiliation(s)
- María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, CEP 14040-901, Ribeirão Preto, SP, Brazil.
| | - Gabriela Molinari Roberto
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Lara Elis Delsin
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Gabriel Carlos Baldissera
- Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mariana Medeiros
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical University School of Medicine, Aichi, Japan
| | - Luiz Gonzaga Tone
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Perwein T, Giese B, Nussbaumer G, von Bueren AO, van Buiren M, Benesch M, Kramm CM. How I treat recurrent pediatric high-grade glioma (pHGG): a Europe-wide survey study. J Neurooncol 2023; 161:525-538. [PMID: 36720762 PMCID: PMC9992031 DOI: 10.1007/s11060-023-04241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/05/2023] [Indexed: 02/02/2023]
Abstract
PURPOSE As there is no standard of care treatment for recurrent/progressing pediatric high-grade gliomas (pHGG), we aimed to gain an overview of different treatment strategies. METHODS In a web-based questionnaire, members of the SIOPE-BTG and the GPOH were surveyed on therapeutic options in four case scenarios (children/adolescents with recurrent/progressing HGG). RESULTS 139 clinicians with experience in pediatric neuro-oncology from 22 European countries participated in the survey. Most respondents preferred further oncological treatment in three out of four cases and chose palliative care in one case with marked symptoms. Depending on the case, 8-92% would initiate a re-resection (preferably hemispheric pHGG), combined with molecular diagnostics. Throughout all case scenarios, 55-77% recommended (re-)irradiation, preferably local radiotherapy > 20 Gy. Most respondents would participate in clinical trials and use targeted therapy (79-99%), depending on molecular genetic findings (BRAF alterations: BRAF/MEK inhibitor, 64-88%; EGFR overexpression: anti-EGFR treatment, 46%; CDKN2A deletion: CDK inhibitor, 18%; SMARCB1 deletion: EZH2 inhibitor, 12%). 31-72% would administer chemotherapy (CCNU, 17%; PCV, 8%; temozolomide, 19%; oral etoposide/trofosfamide, 8%), and 20-69% proposed immunotherapy (checkpoint inhibitors, 30%; tumor vaccines, 16%). Depending on the individual case, respondents would also include bevacizumab (6-18%), HDAC inhibitors (4-15%), tumor-treating fields (1-26%), and intraventricular chemotherapy (4-24%). CONCLUSION In each case, experts would combine conventional multimodal treatment concepts, including re-irradiation, with targeted therapy based on molecular genetic findings. International cooperative trials combining a (chemo-)therapy backbone with targeted therapy approaches for defined subgroups may help to gain valid clinical data and improve treatment in pediatric patients with recurrent/progressing HGG.
Collapse
Affiliation(s)
- Thomas Perwein
- Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria.
| | - Barbara Giese
- Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria
| | - Gunther Nussbaumer
- Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria
| | - André O von Bueren
- Department of Pediatrics, Obstetrics and Gynecology, Division of Pediatric Hematology and Oncology, University Hospital of Geneva, Geneva, Switzerland
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
| | - Miriam van Buiren
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Martin Benesch
- Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria
| | - Christof Maria Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Di Ruscio V, Del Baldo G, Fabozzi F, Vinci M, Cacchione A, de Billy E, Megaro G, Carai A, Mastronuzzi A. Pediatric Diffuse Midline Gliomas: An Unfinished Puzzle. Diagnostics (Basel) 2022; 12:2064. [PMID: 36140466 PMCID: PMC9497626 DOI: 10.3390/diagnostics12092064] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Diffuse midline glioma (DMG) is a heterogeneous group of aggressive pediatric brain tumors with a fatal prognosis. The biological hallmark in the major part of the cases is H3K27 alteration. Prognosis remains poor, with median survival ranging from 9 to 12 months from diagnosis. Clinical and radiological prognostic factors only partially change the progression-free survival but they do not improve the overall survival. Despite efforts, there is currently no curative therapy for DMG. Radiotherapy remains the standard treatment with only transitory benefits. No chemotherapeutic regimens were found to significantly improve the prognosis. In the new era of a deeper integration between histological and molecular findings, potential new approaches are currently under investigation. The entire international scientific community is trying to target DMG on different aspects. The therapeutic strategies involve targeting epigenetic alterations, such as methylation and acetylation status, as well as identifying new molecular pathways that regulate oncogenic proliferation; immunotherapy approaches too are an interesting point of research in the oncology field, and the possibility of driving the immune system against tumor cells has currently been evaluated in several clinical trials, with promising preliminary results. Moreover, thanks to nanotechnology amelioration, the development of innovative delivery approaches to overcross a hostile tumor microenvironment and an almost intact blood-brain barrier could potentially change tumor responses to different treatments. In this review, we provide a comprehensive overview of available and potential new treatments that are worldwide under investigation, with the intent that patient- and tumor-specific treatment could change the biological inauspicious history of this disease.
Collapse
Affiliation(s)
- Valentina Di Ruscio
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Giada Del Baldo
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Francesco Fabozzi
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Department of Pediatrics, University of Rome Tor Vergata, 00165 Rome, Italy
| | - Maria Vinci
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Antonella Cacchione
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Emmanuel de Billy
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Giacomina Megaro
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| |
Collapse
|
12
|
Holsten T, Bronsema A, Sturm D, Sahm F, Rutkowski S, Schüller U, Wößmann W, Kordes UR. ALK inhibition as a salvage therapy for a relapsed unclassifiable sarcomatous CNS tumor with EML4/ALK fusion in an infant. Pediatr Blood Cancer 2022; 69:e29594. [PMID: 35195346 DOI: 10.1002/pbc.29594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/11/2022] [Accepted: 01/23/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Till Holsten
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Bronsema
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Sturm
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany Pediatric Glioma Research, Germany.,Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Neuropathology, University Hospital Heidelberg and CCU Neuropathology, Heidelberg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wilhelm Wößmann
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uwe R Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Prospective Evaluation of Kidney Function in Long-Term Survivors of Pediatric CNS Tumors. Curr Oncol 2022; 29:5306-5315. [PMID: 36005159 PMCID: PMC9406573 DOI: 10.3390/curroncol29080421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose: Numerous acute effects of chemotherapeutics on kidney function are well described. However, data on the long-term effects of chemotherapy in the growing population of childhood central nervous system (CNS) tumor survivors is limited. We aimed to evaluate the kidney function of a cohort of long-term CNS tumor survivors treated with different standard chemotherapeutic regimens. Methods: Patients treated for a CNS tumor were prospectively evaluated up to 12 years after completion of their therapy. Examination of kidney function was performed during routine follow-up visits. Blood pressure and blood and urine parameters were analyzed for kidney function evaluation. Glomerular function was assessed by calculating the estimated glomerular filtration rate (eGFR), tubular functions were analyzed by measuring serum electrolytes, bicarbonate and phosphate reabsorption, and proteinuria was assessed by calculating the protein/creatinine ratio and phosphate reabsorption. Results: None of the 65 patients evaluated suffered from clinically relevant kidney impairment (eGFR < 90 mL/min/L, 73 m2). There was no association between chemotherapy dose and eGFR. Only two patients showed mild signs of tubulopathy and 11 patients were diagnosed with elevated blood pressure. Conclusion: With adequate supportive measures, such as sufficient hydration according to chemotherapy protocol guidelines, as well as avoidance or close monitoring of additional nephrotoxic medication, impaired kidney function is rare in CNS tumor survivors treated with standard chemotherapy. Nonetheless, long-term follow-up is essential for early detection of mild impairment of kidney function.
Collapse
|
14
|
Wyss J, Frank NA, Soleman J, Scheinemann K. Novel Pharmacological Treatment Options in Pediatric Glioblastoma-A Systematic Review. Cancers (Basel) 2022; 14:2814. [PMID: 35681794 PMCID: PMC9179254 DOI: 10.3390/cancers14112814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Pediatric glioblastoma (GBM) is an aggressive central nervous system tumor in children that has dismal prognosis. Standard of care is surgery with subsequent irradiation and temozolomide. We aimed to outline currently available data on novel pharmacological treatments for pediatric GBM. METHODS We conducted a systematic literature search in PubMed and Embase, including reports published in English from 2010 to 2021. We included randomized trials, cohort studies and case series. Phase I trials were not analyzed. We followed PRISMA guidelines, assessed the quality of the eligible reports using the Newcastle-Ottawa scale (NOS) and the RoB-2 tool and registered the protocol on PROSPERO. RESULTS We included 6 out of 1122 screened reports. All six selected reports were prospective, multicenter phase II trials (five single-arm and one randomized controlled trial). None of the investigated novel treatment modalities showed any benefit regarding overall or progression free survival. CONCLUSIONS To date, the role of pharmacological approaches regarding pediatric GBM remains unclear, since no novel treatment approach could provide a significant impact on overall or progression free survival. Further research should aim to combine different treatment strategies in large international multicenter trials with central comprehensive diagnostics regarding subgrouping. These novel treatment approaches should include targeted and immunotherapeutic treatments, potentially leading to a more successful outcome.
Collapse
Affiliation(s)
- Johanna Wyss
- Division of Oncology-Hematology, Department of Pediatrics, Kantonsspital Aarau, 5001 Aarau, Switzerland;
- Division of Pediatric Oncology-Hematology, University Children’s Hospital of Basel, 4056 Basel, Switzerland
| | - Nicole Alexandra Frank
- Department of Neurosurgery, University Hospital of Basel, 4031 Basel, Switzerland; (N.A.F.); (J.S.)
| | - Jehuda Soleman
- Department of Neurosurgery, University Hospital of Basel, 4031 Basel, Switzerland; (N.A.F.); (J.S.)
- Department of Pediatric Neurosurgery, University Children’s Hospital of Basel, 4056 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
| | - Katrin Scheinemann
- Division of Oncology-Hematology, Department of Pediatrics, Kantonsspital Aarau, 5001 Aarau, Switzerland;
- Department of Health Sciences and Medicine, University of Lucerne, 6002 Lucerne, Switzerland
- Department of Pediatrics, McMaster University Hamilton, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
15
|
Fitzgerald MC, O’Halloran PJ, Connolly NMC, Murphy BM. Targeting the apoptosis pathway to treat tumours of the paediatric nervous system. Cell Death Dis 2022; 13:460. [PMID: 35568716 PMCID: PMC9107479 DOI: 10.1038/s41419-022-04900-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
New, more effective therapeutics are required for the treatment of paediatric cancers. Current treatment protocols of cytotoxic treatments including chemotherapy trigger cancer-cell death by engaging the apoptosis pathway, and chemotherapy efficacy is frequently impeded by apoptosis dysregulation. Apoptosis dysregulation, through genetic or epigenetic mechanisms, is a feature of many cancer types, and contributes to reduced treatment response, disease progression and ultimately treatment resistance. Novel approaches are required to overcome dysregulated apoptosis signalling, increase the efficacy of cancer treatment and improve patient outcomes. Here, we provide an insight into current knowledge of how the apoptosis pathway is dysregulated in paediatric nervous system tumours, with a focus on TRAIL receptors, the BCL-2 proteins and the IAP family, and highlight preclinical evidence demonstrating that pharmacological manipulation of the apoptosis pathway can restore apoptosis signalling and sensitise cancer cells to treatment. Finally, we discuss the potential clinical implications of these findings.
Collapse
Affiliation(s)
- Marie-Claire Fitzgerald
- grid.4912.e0000 0004 0488 7120Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77 Ireland ,grid.417322.10000 0004 0516 3853National Children’s Research Centre at Children’s Health Ireland at Crumlin, Dublin, D12 N512 Ireland
| | - Philip J. O’Halloran
- grid.417322.10000 0004 0516 3853National Children’s Research Centre at Children’s Health Ireland at Crumlin, Dublin, D12 N512 Ireland ,grid.415490.d0000 0001 2177 007XDepartment of Neurosurgery, Queen Elizabeth Hospital, Birmingham, UK
| | - Niamh M. C. Connolly
- grid.4912.e0000 0004 0488 7120Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77 Ireland ,grid.4912.e0000 0004 0488 7120Centre for Systems Medicine, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77 Ireland
| | - Brona M. Murphy
- grid.4912.e0000 0004 0488 7120Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77 Ireland ,grid.417322.10000 0004 0516 3853National Children’s Research Centre at Children’s Health Ireland at Crumlin, Dublin, D12 N512 Ireland ,grid.4912.e0000 0004 0488 7120Centre for Systems Medicine, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77 Ireland
| |
Collapse
|
16
|
Di Ruscio V, Carai A, Del Baldo G, Vinci M, Cacchione A, Miele E, Rossi S, Antonelli M, Barresi S, Caulo M, Colafati GS, Mastronuzzi A. Molecular Landscape in Infant High-Grade Gliomas: A Single Center Experience. Diagnostics (Basel) 2022; 12:diagnostics12020372. [PMID: 35204463 PMCID: PMC8871476 DOI: 10.3390/diagnostics12020372] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
High-grade gliomas (HGG) represent about 15% of all pediatric brain tumors, with a dismal prognosis and survival rates ranging from 15 to 35%. Approximately 10–12% of pediatric HGGs (pHGG) occur in children younger than five years of age at diagnosis, specifically infants (iHGG), with an unexpected overall survival rate (OS) in 60–70% of cases. In the literature, iHGGs include a large variety of heterogeneous lesions with different molecular profiles that likely explain their different outcomes. We report our single-institution experience of iHGG including 11 children under five years of age with newly diagnosed HGG between 2011 and 2021. All patients received surgery and adjuvant chemotherapy; only two patients received radiotherapy because their age at diagnosis was more than four years-old. Molecular investigations, including next generation sequencing (NGS) and DNA methylation, detected three NTRK-fusions, one ROS1-fusions, one MN1-rearrangement, and two PATZ1-fusions. According to the molecular results, when chemotherapy failed to control the disease, two patients benefited from target therapy with a NTRK-Inhibitor larotrectinib, achieving a complete remission and a very good partial response, respectively, and no severe side-effects. In conclusion, molecular investigations play a fundamental role in the diagnostic work-up and also in the therapeutic decision. Their routine use in clinical practice could help to replace highly toxic chemotherapy regimens with a target therapy that has moderate adverse effects, even in long-term follow-up.
Collapse
Affiliation(s)
- Valentina Di Ruscio
- Department of Onco-Hematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), 00165 Rome, Italy; (V.D.R.); (G.D.B.); (M.V.); (A.C.); (E.M.); (A.M.)
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Correspondence:
| | - Giada Del Baldo
- Department of Onco-Hematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), 00165 Rome, Italy; (V.D.R.); (G.D.B.); (M.V.); (A.C.); (E.M.); (A.M.)
| | - Maria Vinci
- Department of Onco-Hematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), 00165 Rome, Italy; (V.D.R.); (G.D.B.); (M.V.); (A.C.); (E.M.); (A.M.)
| | - Antonella Cacchione
- Department of Onco-Hematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), 00165 Rome, Italy; (V.D.R.); (G.D.B.); (M.V.); (A.C.); (E.M.); (A.M.)
| | - Evelina Miele
- Department of Onco-Hematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), 00165 Rome, Italy; (V.D.R.); (G.D.B.); (M.V.); (A.C.); (E.M.); (A.M.)
| | - Sabrina Rossi
- Department of Pathology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (S.R.); (S.B.)
| | - Manila Antonelli
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, University Sapienza of Rome, 00185 Rome, Italy;
| | - Sabina Barresi
- Department of Pathology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (S.R.); (S.B.)
| | - Massimo Caulo
- Department of Neuroscience, Imaging and Clinical Sciences, G. D’Annunzio University of Chieti, 66100 Chieti, Italy;
| | - Giovanna Stefania Colafati
- Department of Diagnostic Imaging Oncological Neuroradiology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Angela Mastronuzzi
- Department of Onco-Hematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), 00165 Rome, Italy; (V.D.R.); (G.D.B.); (M.V.); (A.C.); (E.M.); (A.M.)
| |
Collapse
|
17
|
Parenrengi MA, Suryaningtyas W, Al Fauzi A, Hafid Bajamal A, Kusumastuti K, Utomo B, Muslim Hidayat Thamrin A, Sulistiono B. Nimotuzumab as Additional Therapy for GLIOMA in Pediatric and Adolescent: A Systematic Review. Cancer Control 2022; 29:10732748211053927. [PMID: 35191733 PMCID: PMC8874160 DOI: 10.1177/10732748211053927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Pediatric gliomas represent the most common brain tumor in children and its higher grades are associated with higher recurrence and low survival rate. All therapeutic modalities are reported to be insufficient to achieve satisfactory result, with follow-up treatment such as adjuvant radiotherapy and chemotherapy recommended to increase survival and hinder tumor progression. Nimotuzumab is a monoclonal antibody that acts as an inhibitor of epidermal growth factor receptor found on the surface of glioma cells and had been studied for its usage in pediatric gliomas in recent years. METHODS A systematic review is performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A through literature search was conducted on PubMed, Scopus, Cochrane, and clinicaltrials.gov database. Articles were selected systematically based on the PRISMA protocol and reviewed completely. The relevant data were summarized and discussed. We measured overall survival, progression-free survival, and adverse Events (AE) for nimotuzumab usage as an adjunct therapy in pediatric glioma population. RESULT From 5 studies included for qualitative analysis, 151 patients are included with overall survival (OS) that vary from 3.2-22.8 mo, progression-free survival (PFS) from 1.7-21.6 mo, and relatively low serious adverse events (0-21) are recorded. Follow-up ranged from 2.4-66 mo with four studies reporting diffuse intrinsic pontine glioma (DIPG) patients and only one study reporting nimotuzumab usage in pediatric high-grade glioma (HGG) patients with better outcome in HGG patients than DIPG. CONCLUSION There are no significant differences in the PFS and OS of nimotuzumab as adjunct therapy for pediatric compared to result of standard therapy in majority of previous studies. There were also no differences in the AE of nimotuzumab for pediatric glioma between studies, and low event of serious adverse events indicating its safety. But still there is an evidence of possible benefit of nimotuzumab as adjuvant therapy in pediatric glioma. We recommend further studies with larger number of patients that may lead to possibly different results. There should also be more studies with better level of evidence to further validate the effect of nimozutumab on pediatric glioma.
Collapse
Affiliation(s)
- Muhammad A Parenrengi
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Wihasto Suryaningtyas
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Asra Al Fauzi
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Abdul Hafid Bajamal
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Kurnia Kusumastuti
- Department of Neurology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Budi Utomo
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ahmad Muslim Hidayat Thamrin
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Bagus Sulistiono
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| |
Collapse
|
18
|
Childhood Malignant Brain Tumors: Balancing the Bench and Bedside. Cancers (Basel) 2021; 13:cancers13236099. [PMID: 34885207 PMCID: PMC8656510 DOI: 10.3390/cancers13236099] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 01/28/2023] Open
Abstract
Simple Summary Brain tumors remain the most common childhood solid tumors, accounting for approximately 25% of all pediatric cancers. They also represent the most common cause of cancer-related illness and death in this age group. Recent years have witnessed an evolution in our understanding of the biological underpinnings of many childhood brain tumors, potentially improving survival through both improved risk group allocation for patients to provide appropriate treatment intensity, and novel therapeutic breakthroughs. This review aims to summarize the molecular landscape, current trial-based standards of care, novel treatments being explored and future challenges for the three most common childhood malignant brain tumors—medulloblastomas, high-grade gliomas and ependymomas. Abstract Brain tumors are the leading cause of childhood cancer deaths in developed countries. They also represent the most common solid tumor in this age group, accounting for approximately one-quarter of all pediatric cancers. Developments in neuro-imaging, neurosurgical techniques, adjuvant therapy and supportive care have improved survival rates for certain tumors, allowing a future focus on optimizing cure, whilst minimizing long-term adverse effects. Recent times have witnessed a rapid evolution in the molecular characterization of several of the common pediatric brain tumors, allowing unique clinical and biological patient subgroups to be identified. However, a resulting paradigm shift in both translational therapy and subsequent survival for many of these tumors remains elusive, while recurrence remains a great clinical challenge. This review will provide an insight into the key molecular developments and global co-operative trial results for the most common malignant pediatric brain tumors (medulloblastoma, high-grade gliomas and ependymoma), highlighting potential future directions for management, including novel therapeutic options, and critical challenges that remain unsolved.
Collapse
|
19
|
Pearce J, Khabra K, Nanji H, Stone J, Powell K, Martin D, Zebian B, Hettige S, Reisz Z, Bodi I, Al-Sarraj S, Bridges LR, Clarke M, Jones C, Mandeville HC, Vaidya S, Marshall LV, Carceller F. High grade gliomas in young children: The South Thames Neuro-Oncology unit experience and recent advances in molecular biology and targeted therapies. Pediatr Hematol Oncol 2021; 38:707-721. [PMID: 33900873 DOI: 10.1080/08880018.2021.1907493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/04/2023]
Abstract
High grade gliomas (HGG) have a dismal prognosis with survival rates of 15-35%. Approximately 10-12% of pediatric HGG occur in young children and their molecular biology and clinical outcomes differ from those arising at older ages. We report on four children aged <5 years newly diagnosed with non-brainstem HGG between 2011 and 2018 who were treated with surgery and BBSFOP chemotherapy. Two died of tumor progression. The other two are still alive without radiotherapy at 3.8 and 3.9 years from diagnosis: one of whom remains disease-free off treatment; and the other one, whose tumor harbored a KCTD16:NTRK2 fusion, went on to receive larotrectinib. Additionally we review the general management, outcomes and latest updates in molecular biology and targeted therapies for young children with HGG. Infant gliomas can be stratified in molecular subgroups with clinically actionable oncogenic drivers. Chemotherapy-based strategies can avoid or delay the need for radiotherapy in young children with HGG. Harnessing the potential of NTRK, ALK, ROS1 and MET inhibitors offers the opportunity to optimize the therapeutic armamentarium to improve current outcomes for these children.
Collapse
Affiliation(s)
- Janice Pearce
- Children & Young People's Unit, Pediatric & Adolescent Neuro-Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Komel Khabra
- Statistics Department, The Royal Marsden NHS Foundation Trust, London, UK
| | - Henry Nanji
- Statistics Department, The Royal Marsden NHS Foundation Trust, London, UK
| | - Joanna Stone
- Children & Young People's Unit, Pediatric & Adolescent Neuro-Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Karen Powell
- Children & Young People's Unit, Pediatric & Adolescent Neuro-Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Danielle Martin
- Children & Young People's Unit, Pediatric & Adolescent Neuro-Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Bassel Zebian
- Neurosurgery Department, King's College Hospital NHS Foundation Trust, London, UK
| | - Samantha Hettige
- Neurosurgery Department, St George's Hospital NHS Foundation Trust, London, UK
| | - Zita Reisz
- Department of Clinical Neuropathology, King's College Hospital NHS Foundation Trust, London, UK
| | - Istvan Bodi
- Department of Clinical Neuropathology, King's College Hospital NHS Foundation Trust, London, UK
| | - Safa Al-Sarraj
- Department of Clinical Neuropathology, King's College Hospital NHS Foundation Trust, London, UK
| | - Leslie R Bridges
- Department of Cellular Pathology, St George's Hospital NHS Foundation Trust, London, UK
| | - Matthew Clarke
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Chris Jones
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Henry C Mandeville
- Department of Radiation Oncology, The Royal Marsden NHS Foundation Trust, London, UK
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Sucheta Vaidya
- Children & Young People's Unit, Pediatric & Adolescent Neuro-Oncology, The Royal Marsden NHS Foundation Trust, London, UK
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Lynley V Marshall
- Children & Young People's Unit, Pediatric & Adolescent Neuro-Oncology, The Royal Marsden NHS Foundation Trust, London, UK
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Fernando Carceller
- Children & Young People's Unit, Pediatric & Adolescent Neuro-Oncology, The Royal Marsden NHS Foundation Trust, London, UK
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| |
Collapse
|
20
|
Ozerov SS, Ryzhova MV, Kumirova EV. [Diffuse brainstem tumors in children. Tumor biology and hope for a better outcome. Current state of the problem]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2021; 85:77-86. [PMID: 34463454 DOI: 10.17116/neiro20218504177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diffuse brainstem tumor is a fatal disease and the main cause of child mortality from neoplasms of central nervous system. So far, no effective therapy has been found for this disease. The authors discuss the modern aspects of clinical data, biology, diagnosis and treatment of patients with diffuse brainstem tumors.
Collapse
Affiliation(s)
- S S Ozerov
- Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - M V Ryzhova
- Burdenko Neurosurgical Center, Moscow, Russia
| | - E V Kumirova
- Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
21
|
Dorfer C, Czech T, Gojo J, Hosmann A, Peyrl A, Azizi AA, Kasprian G, Dieckmann K, Filbin MG, Haberler C, Roessler K, Slavc I. Infiltrative gliomas of the thalamus in children: the role of surgery in the era of H3 K27M mutant midline gliomas. Acta Neurochir (Wien) 2021; 163:2025-2035. [PMID: 33090244 PMCID: PMC8195935 DOI: 10.1007/s00701-020-04589-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/16/2020] [Indexed: 12/28/2022]
Abstract
Background The role of surgery in the management of pediatric non-pilocytic infiltrative thalamic gliomas needs to be revisited specifically with regard to molecularly defined subtypes. Methods A retrospective review of a consecutive series of children operated on a thalamic tumor between 1992 and May 2018 was performed. Neuroimaging data were reviewed for localization and extent of resection; pathology was re-reviewed according to the current WHO classification, including assessment of histone H3 K27 mutational status. Results Forty-nine patients with a thalamic tumor aged < 18 years at diagnosis were identified. Twenty-five patients (51%) had a non-pilocytic infiltrative glioma, of which the H3 K27M status was available in 22. Fourteen patients were diagnosed as diffuse midline glioma (DMG) H3 K27M mutant. There was no statistically significant difference in survival between patients harboring the H3 K27M mutation and wildtype. Resection (“any resection > 50%” vs “biopsy”) and histological tumor grade (“°II” vs “°III+°IV”) were statistically significant predictors of survival (univariate: p = 0.044 and p = 0.013, respectively). These results remained significant on multivariate analysis (HR 0.371/p = 0.048, HR 9.433/p = 0.035). Conclusion We advocate to still consider an attempt at maximal safe resection in the multidisciplinary treatment of unilateral thalamic non-pilocytic gliomas irrespective of their H3 K27-mutational status.
Collapse
Affiliation(s)
- Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Cancer Center-CCC CNS Unit, Medical University of Vienna, Vienna, Austria
| | - Thomas Czech
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center-CCC CNS Unit, Medical University of Vienna, Vienna, Austria.
| | - Johannes Gojo
- Comprehensive Cancer Center-CCC CNS Unit, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Arthur Hosmann
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Cancer Center-CCC CNS Unit, Medical University of Vienna, Vienna, Austria
| | - Andreas Peyrl
- Comprehensive Cancer Center-CCC CNS Unit, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Amedeo A Azizi
- Comprehensive Cancer Center-CCC CNS Unit, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Gregor Kasprian
- Comprehensive Cancer Center-CCC CNS Unit, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Karin Dieckmann
- Comprehensive Cancer Center-CCC CNS Unit, Medical University of Vienna, Vienna, Austria
- Department of Radiotherapy, Medical University of Vienna, Vienna, Austria
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Christine Haberler
- Comprehensive Cancer Center-CCC CNS Unit, Medical University of Vienna, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Karl Roessler
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Cancer Center-CCC CNS Unit, Medical University of Vienna, Vienna, Austria
| | - Irene Slavc
- Comprehensive Cancer Center-CCC CNS Unit, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
High-Grade Gliomas in Children-A Multi-Institutional Polish Study. Cancers (Basel) 2021; 13:cancers13092062. [PMID: 33923337 PMCID: PMC8123180 DOI: 10.3390/cancers13092062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/07/2021] [Accepted: 04/22/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary High-grade gliomas constitute less than 5% of pediatric brain tumors. Due to the rarity of such a diagnosis, the lack of consensus about the best therapeutic approach, and the difficulty in conducting prospective trials; a retrospective multi-institutional analysis, such as the one presented in this article, is needed. We carried out the survival analysis of children diagnosed and treated with high-grade gliomas in seven major polish institutions. The assessment of the outcome of 82 consecutive patients with grade III and grade IV tumors was performed and showed a 5-year overall survival of only 30%. The extent of resection, immediate temozolomide-based chemotherapy, and radical radiotherapy were found as factors positively influencing survival. Abstract Due to the rarity of high-grade gliomas (HGG) in children, data on this topic are scarce. The study aimed to investigate the long-term results of treatment of children with HGG and to identify factors related to better survival. We performed a retrospective analysis of patients treated for HGG who had the main tumor located outside the brainstem. The evaluation of factors that correlated with better survival was performed with the Cox proportional-hazard model. Survival was estimated with the Kaplan–Meier method. The study group consisted of 82 consecutive patients. All of them underwent surgery as primary treatment. Chemotherapy was applied in 93% of children with one third treated with temozolomide. After or during the systemic treatment, 79% of them received radiotherapy with a median dose of 54 Gy. Median follow-up was 122 months, and during that time, 59 patients died. One-, 2-, 5-, and 10-year overall survival was 78%, 48%, 30% and 17%, respectively. Patients with radical (R0) resection and temozolomide-based chemotherapy had better overall survival. Progression-free survival was better in patients after R0 resection and radical radiotherapy. The best outcome in HGG patients was observed in patients after R0 resection with immediate postoperative temozolomide-based chemotherapy and radical radiotherapy.
Collapse
|
23
|
Qi L, Kogiso M, Du Y, Zhang H, Braun FK, Huang Y, Teo WY, Lindsay H, Zhao S, Baxter P, Zhao X, Yu L, Liu Z, Zhang X, Su JM, Adesina A, Yang J, Chintagumpala M, Perlaky L, Tsz-Kwong Man C, Lau CC, Li XN. Impact of SCID mouse gender on tumorigenicity, xenograft growth and drug-response in a large panel of orthotopic PDX models of pediatric brain tumors. Cancer Lett 2020; 493:197-206. [PMID: 32891713 DOI: 10.1016/j.canlet.2020.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/12/2020] [Accepted: 08/26/2020] [Indexed: 11/26/2022]
Abstract
Brain tumor is the leading cause of cancer related death in children. Clinically relevant animals are critical for new therapy development. To address the potential impact of animal gender on tumorigenicity rate, xenograft growth and in vivo drug responses, we retrospectively analyzed 99 of our established patient derived orthotopic xenograft mouse models (orthotopic PDX or PDOX). From 27 patient tumors, including 5 glioblastomas (GBMs), 11 medulloblastomas (MBs), 4 ependymomas (EPNs), 4 atypical teratoid/rhabdoid tumors (ATRTs) and 3 diffuse intrinsic pontine gliomas (DIPGs), that were directly implanted into matching locations in the brains of approximately equal numbers of male and female animals (n = 310) in age-matched (within 2-week age-difference) SCID mice, the tumor formation rate was 50.6 ± 21.5% in male and 52.7 ± 23.5% in female mice with animal survival times of 192.6 ± 31.7 days in male and 173.9 ± 34.5 days in female mice (P = 0.46) regardless of pathological diagnosis. Once established, PDOX tumors were serially subtransplanted for up to VII passage. Analysis of 1,595 mice from 59 PDOX models (18 GBMs, 18 MBs, 5 ATRTs, 6 EPNs, 7 DIPGs and 5 PENTs) during passage II and VII revealed similar tumor take rates of the 6 different tumor types between male (85.4 ± 15.5%) and female mice (84.7 ± 15.2%) (P = 0.74), and animal survival times were 96.7 ± 23.3 days in male mice and 99.7 ± 20 days in female (P = 0.25). A total of 284 mice from 7 GBM, 2 MB, 1 ATRT, 1 EPN, 2 DIPG and 1 PNET were treated with a series of standard and investigational drugs/compounds. The overall survival times were 106.9 ± 25.7 days in male mice, and 110.9 ± 31.8 days in female mice (P = 0.41), similar results were observed when different types/models were analyzed separately. In conclusion, our data demonstrated that the gender of SCID mice did not have a major impact on animal model development nor drug responses in vivo, and SCID mice of both genders are appropriate for use.
Collapse
Affiliation(s)
- Lin Qi
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Mari Kogiso
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Yuchen Du
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Frank K Braun
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Yulun Huang
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA; Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital, Soochow University Medical School, Suzhou, 215007, China
| | - Wan-Yee Teo
- Humphrey Oei Institute of Cancer Research, National Cancer Center Singapore, 169610, Singapore; KK Women's and Children's Hospital, 169610, Singapore; Institute of Molecular and Cell Biology, A*STAR, 169610, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 169610, Singapore
| | - Holly Lindsay
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Sibo Zhao
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | | | - Xiumei Zhao
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Litian Yu
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Zhigang Liu
- Department of Head and Neck Oncology, The Oancer Oenter of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519001, China; Phase I Clinical Trial Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519001, China
| | - Xingding Zhang
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Jack Mf Su
- Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Adekunle Adesina
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jianhua Yang
- Texas Children's Cancer Center, Houston, TX, 77030, USA
| | | | | | | | - Ching C Lau
- Division of Hematology-Oncology, Connecticut Children's Medical Center, USA; The Jackson Laboratory for Genomic Medicine and University of Connecticut School of Medicine, USA
| | - Xiao-Nan Li
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Wang Q, Cheng J, Si Z, Liu W, Hui X, Li Q, Ju Y. Primary cerebellar glioblastomas in children: clinical presentation and management. Neurosurg Rev 2020; 44:1747-1754. [PMID: 32845414 DOI: 10.1007/s10143-020-01373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 02/05/2023]
Abstract
Pediatric cerebellar glioblastomas (pcGBMs) are rare and their characteristics remain ill-defined. We conducted a retrospective analysis of pediatric cerebellar glioblastomas who underwent surgery from 2008 to 2019 in our department. Besides, we performed a literature review of the literature data on pcGBMs. Ten children with mean age of 9.4 years were included. During the follow-up, six patients died with mean survival time of 11.7 months, four patients survived with mean follow-up of 28 months. Seven patients underwent molecular analysis, no patients detected IDH1 mutations, four patients (57.1%) had H3K27M mutations, and two patients (28.6%) had MGMT promoter methylation. The literature review identified 38 pcGBMs cases (including ours), with mean age of 8.84 ± 4.20 years (range, 1-16 years). Increased ICP was the commonest sign. Eighteen (47.4%) patients underwent GTR and fifteen (45.5%) patients received STR. Postoperative radiation (RT) was conducted in 28 patients (75.7%) and 23 patients (65.7%) received chemotherapy. During the follow-up, 25 patients died with mean survival time of 12.21 months and 11 patients survived with average follow-up of 29.3 months. Kaplan-Meier survival depicted chemotherapy (P < 0.001) or radiation (P < 0.001) had positive impact on overall survival. Multivariate analysis revealed chemotherapy was a significant predictor of survival with a hazard ratio of 3.264 (P = 0.038). Our study found mean overall survival time for pcGBMs patients was 12.21 months. PcGBMs may have distinct molecular features, with higher incidence of H3K27M mutation and were always IDH1 wild-type. We recommend the routine postoperative radiotherapy and chemotherapy in pcGBMs.
Collapse
Affiliation(s)
- Qiguang Wang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jian Cheng
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhang Si
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wenke Liu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xuhui Hui
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiang Li
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yan Ju
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
25
|
Patterson JD, Henson JC, Breese RO, Bielamowicz KJ, Rodriguez A. CAR T Cell Therapy for Pediatric Brain Tumors. Front Oncol 2020; 10:1582. [PMID: 32903405 PMCID: PMC7435009 DOI: 10.3389/fonc.2020.01582] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022] Open
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy has recently begun to be used for solid tumors such as glioblastoma multiforme. Many children with pediatric malignant brain tumors develop extensive long-term morbidity of intensive multimodal curative treatment. Others with certain diagnoses and relapsed disease continue to have limited therapies and a dismal prognosis. Novel treatments such as CAR T cells could potentially improve outcomes and ameliorate the toxicity of current treatment. In this review, we discuss the potential of using CAR therapy for pediatric brain tumors. The emerging insights on the molecular subtypes and tumor microenvironment of these tumors provide avenues to devise strategies for CAR T cell therapy. Unique characteristics of these brain tumors, such as location and associated morbid treatment induced neuro-inflammation, are novel challenges not commonly encountered in adult brain tumors. Despite these considerations, CAR T cell therapy has the potential to be integrated into treatment schema for aggressive pediatric malignant brain tumors in the future.
Collapse
Affiliation(s)
- John D Patterson
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jeffrey C Henson
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Rebecca O Breese
- Department of General Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Kevin J Bielamowicz
- Division of Hematology/Oncology, Department of Pediatrics, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
26
|
Convection Enhanced Delivery for Diffuse Intrinsic Pontine Glioma: Review of a Single Institution Experience. Pharmaceutics 2020; 12:pharmaceutics12070660. [PMID: 32674336 PMCID: PMC7407112 DOI: 10.3390/pharmaceutics12070660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 01/24/2023] Open
Abstract
Diffuse intrinsic pontine gliomas (DIPGs) are a pontine subtype of diffuse midline gliomas (DMGs), primary central nervous system (CNS) tumors of childhood that carry a terrible prognosis. Because of the highly infiltrative growth pattern and the anatomical position, cytoreductive surgery is not an option. An initial response to radiation therapy is invariably followed by recurrence; mortality occurs approximately 11 months after diagnosis. The development of novel therapeutics with great preclinical promise has been hindered by the tightly regulated blood-brain barrier (BBB), which segregates the tumor comportment from the systemic circulation. One possible solution to this obstacle is the use of convection enhanced delivery (CED), a local delivery strategy that bypasses the BBB by direct infusion into the tumor through a small caliber cannula. We have recently shown CED to be safe in children with DIPG (NCT01502917). In this review, we discuss our experience with CED, its advantages, and technical advancements that are occurring in the field. We also highlight hurdles that will likely need to be overcome in demonstrating clinical benefit with this therapeutic strategy.
Collapse
|
27
|
Van Gool SW, Makalowski J, Bonner ER, Feyen O, Domogalla MP, Prix L, Schirrmacher V, Nazarian J, Stuecker W. Addition of Multimodal Immunotherapy to Combination Treatment Strategies for Children with DIPG: A Single Institution Experience. MEDICINES 2020; 7:medicines7050029. [PMID: 32438648 PMCID: PMC7281768 DOI: 10.3390/medicines7050029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 01/29/2023]
Abstract
Background: The prognosis of children with diffuse intrinsic pontine glioma (DIPG) remains dismal despite radio- and chemotherapy or molecular-targeted therapy. Immunotherapy is a powerful and promising approach for improving the overall survival (OS) of children with DIPG. Methods: A retrospective analysis for feasibility, immune responsiveness, and OS was performed on 41 children treated in compassionate use with multimodal therapy consisting of Newcastle disease virus, hyperthermia, and autologous dendritic cell vaccines as part of an individualized combinatorial treatment approach for DIPG patients. Results: Patients were treated at diagnosis (n = 28) or at the time of progression (n = 13). In the case of 16 patients, histone H3K27M mutation was confirmed by analysis of biopsy (n = 9) or liquid biopsy (n = 9) specimens. PDL1 mRNA expression was detected in circulating tumor cells of ten patients at diagnosis. Multimodal immunotherapy was feasible as scheduled, until progression, in all patients without major toxicity. When immunotherapy was part of primary treatment, median PFS and OS were 8.4 m and 14.4 m from the time of diagnosis, respectively, with a 2-year OS of 10.7%. When immunotherapy was given at the time of progression, median PFS and OS were 6.5 m and 9.1 m, respectively. A longer OS was associated with a Th1 shift and rise in PanTum Detect test scores. Conclusions: Multimodal immunotherapy is feasible without major toxicity, and warrants further investigation as part of a combinatorial treatment approach for children diagnosed with DIPG.
Collapse
Affiliation(s)
- Stefaan W. Van Gool
- Immun-Onkologisches Zentrum Köln, Hohenstaufenring 30-32, 50674 Köln, Germany; (J.M.); (M.P.D.); (V.S.); (W.S.)
- Correspondence: ; Tel.: +49-221-420-39925
| | - Jennifer Makalowski
- Immun-Onkologisches Zentrum Köln, Hohenstaufenring 30-32, 50674 Köln, Germany; (J.M.); (M.P.D.); (V.S.); (W.S.)
| | - Erin R. Bonner
- Center for Genetic Medicine, Children’s National Health System, Washington, DC 20010, USA;
- Institute for Biomedical Sciences, The George Washington University School of Medicine and health Sciences, Washington, DC 20052, USA
| | - Oliver Feyen
- Zyagnum, Reißstrasse 1, 64319 Pfungstadt, Germany;
| | - Matthias P. Domogalla
- Immun-Onkologisches Zentrum Köln, Hohenstaufenring 30-32, 50674 Köln, Germany; (J.M.); (M.P.D.); (V.S.); (W.S.)
| | - Lothar Prix
- Biofocus, Berghäuser Strasse 295, 45659 Recklinghausen, Germany;
| | - Volker Schirrmacher
- Immun-Onkologisches Zentrum Köln, Hohenstaufenring 30-32, 50674 Köln, Germany; (J.M.); (M.P.D.); (V.S.); (W.S.)
| | - Javad Nazarian
- DIPG Research Institute, Universitäts-Kinderspital Zürich; Steinwiesstrasse 75, Ch-8032 Zürich, Switzerland;
| | - Wilfried Stuecker
- Immun-Onkologisches Zentrum Köln, Hohenstaufenring 30-32, 50674 Köln, Germany; (J.M.); (M.P.D.); (V.S.); (W.S.)
| |
Collapse
|
28
|
Szychot E, Youssef A, Ganeshan B, Endozo R, Hyare H, Gains J, Mankad K, Shankar A. Predicting outcome in childhood diffuse midline gliomas using magnetic resonance imaging based texture analysis. J Neuroradiol 2020; 48:243-247. [PMID: 32184119 DOI: 10.1016/j.neurad.2020.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Diffuse midline gliomas (DMG) are aggressive brain tumours, previously known as diffuse intrinsic pontine gliomas (DIPG), with 10% overall survival (OS) at 18 months. Predicting OS will help refine treatment strategy in this patient group. MRI based texture analysis (MRTA) is novel image analysis technique that provides objective information about spatial arrangement of MRI signal intensity (heterogeneity) and has potential to be imaging biomarker. OBJECTIVES To investigate MRTA in predicting OS in childhood DMG. METHODS Retrospective study of patients diagnosed with DMG, based on radiological features, treated at our institution 2007-2017. MRIs were acquired at diagnosis and 6 weeks after radiotherapy (54Gy in 30 fractions). MRTA was performed using commercial available TexRAD research software on T2W sequence and Apparent Diffusion Coefficient (ADC) maps encapsulating tumour in the largest single axial plane. MRTA comprised filtration-histogram technique using statistical and histogram metrics for quantification of texture. Kaplan-Meier survival analysis determined association of MRI texture parameters with OS. RESULTS In all, 32 children 2-14 years (median 7 years) were included. MRTA was undertaken on T2W (n=32) and ADC (n=22). T2W-MRTA parameters were better at prognosticating than ADC-MRTA. Children with homogenous tumour texture, at medium scale on diagnostic T2W MRI, had worse prognosis (Mean of Positive Pixels (MPP): P=0.005, mean: P=0.009, SD: P=0.011, kurtosis: P=0.037, entropy: P=0.042). Best predictor MPP was able to stratify patients into poor and good prognostic groups with median survival of 7.5 months versus 17.5 months, respectively. CONCLUSIONS DMG with more homogeneous texture on diagnostic MRI is associated with worse prognosis. Texture parameter MPP is the most predictive marker of OS in childhood DMG.
Collapse
Affiliation(s)
- Elwira Szychot
- The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK.
| | - Adam Youssef
- Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, UK.
| | - Balaji Ganeshan
- University College London Hospital, 235 Euston Road, Bloomsbury, London NW1 2BU, UK
| | - Raymond Endozo
- University College London Hospital, 235 Euston Road, Bloomsbury, London NW1 2BU, UK.
| | - Harpreet Hyare
- University College London Hospital, 235 Euston Road, Bloomsbury, London NW1 2BU, UK.
| | - Jenny Gains
- University College London Hospital, 235 Euston Road, Bloomsbury, London NW1 2BU, UK.
| | - Kshitij Mankad
- Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, UK.
| | - Ananth Shankar
- University College London Hospital, 235 Euston Road, Bloomsbury, London NW1 2BU, UK.
| |
Collapse
|
29
|
Zhang T, Wang F, Liao Y, Yuan L, Zhang B. LncRNA AWPPH promotes the invasion and migration of glioma cells through the upregulation of HIF1α. Oncol Lett 2019; 18:6781-6786. [PMID: 31807187 DOI: 10.3892/ol.2019.11018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNA (lncRNA) AWPPH has been revealed to serve pivotal roles in bladder cancer and liver cancer. The aim of the present study was to determine the involvement of lncRNA AWPPH in glioma. It was observed in the present study that the expression levels of AWPPH in plasma were significantly higher in patients with metastatic glioma compared with those in patients with non-metastatic glioma and healthy controls. In effect, overexpression of AWPPH allowed the differentiation of patients with metastatic glioma from patients with non-metastatic glioma and in healthy controls. Increased migration and invasion rates of glioma cells and upregulated hypoxia-inducible factor 1-α (HIF1α) expression were observed following AWPPH overexpression. HIF1α overexpression exhibited no significant effects on AWPPH expression but also promoted the migration and invasion of cancer cells. HIF1α small interfering RNA silencing attenuated the enhancing effects of AWPPH overexpression on the migration and invasion of glioma cells. From the results of the present study it was concluded that AWPPH may promote glioma metastasis by serving as an upstream activator of HIF1α.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Neurosurgery, The Chinese People's Liberation Army Rocket Force General Hospital, Beijing 100088, P.R. China
| | - Fei Wang
- Department of Neurosurgery, The Chinese People's Liberation Army Rocket Force General Hospital, Beijing 100088, P.R. China
| | - Yuzhi Liao
- Department of Neurosurgery, The Chinese People's Liberation Army Rocket Force General Hospital, Beijing 100088, P.R. China
| | - Lei Yuan
- Department of Neurosurgery, The Chinese People's Liberation Army Rocket Force General Hospital, Beijing 100088, P.R. China
| | - Baozhong Zhang
- Department of Neurosurgery, The Chinese People's Liberation Army Rocket Force General Hospital, Beijing 100088, P.R. China
| |
Collapse
|
30
|
Miklja Z, Pasternak A, Stallard S, Nicolaides T, Kline-Nunnally C, Cole B, Beroukhim R, Bandopadhayay P, Chi S, Ramkissoon SH, Mullan B, Bruzek AK, Gauthier A, Garcia T, Atchison C, Marini B, Fouladi M, Parsons DW, Leary S, Mueller S, Ligon KL, Koschmann C. Molecular profiling and targeted therapy in pediatric gliomas: review and consensus recommendations. Neuro Oncol 2019; 21:968-980. [PMID: 30805642 PMCID: PMC6682212 DOI: 10.1093/neuonc/noz022] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As the field of neuro-oncology makes headway in uncovering the key oncogenic drivers in pediatric glioma, the role of precision diagnostics and therapies continues to rapidly evolve with important implications for the standard of care for clinical management of these patients. Four studies at major academic centers were published in the last year outlining the clinically integrated molecular profiling and targeting of pediatric brain tumors; all 4 demonstrated the feasibility and utility of incorporating sequencing into the care of children with brain tumors, in particular for children and young adults with glioma. Based on synthesis of the data from these studies and others, we provide consensus recommendations for the integration of precision diagnostics and therapeutics into the practice of pediatric neuro-oncology. Our primary consensus recommendation is that next-generation sequencing should be routinely included in the workup of most pediatric gliomas.
Collapse
Affiliation(s)
- Zachary Miklja
- University of Michigan Medical School, Ann Arbor, Michigan
| | - Amy Pasternak
- University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | | | | | - Cassie Kline-Nunnally
- University of California San Francisco (UCSF) Benioff Children’s Hospital, San Francisco, California
| | - Bonnie Cole
- Seattle Children’s Hospital/University of Washington (UW), Seattle, Washington
| | | | | | - Susan Chi
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shakti H Ramkissoon
- Foundation Medicine, Morrisville, North Carolina
- Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Brendan Mullan
- University of Michigan Medical School, Ann Arbor, Michigan
| | - Amy K Bruzek
- University of Michigan Medical School, Ann Arbor, Michigan
| | | | - Taylor Garcia
- University of Michigan Medical School, Ann Arbor, Michigan
| | | | - Bernard Marini
- University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | | | | | - Sarah Leary
- Seattle Children’s Hospital/University of Washington (UW), Seattle, Washington
| | - Sabine Mueller
- University of California San Francisco (UCSF) Benioff Children’s Hospital, San Francisco, California
| | - Keith L Ligon
- Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
| | - Carl Koschmann
- University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
31
|
Role of Radiation Therapy in the Management of Diffuse Intrinsic Pontine Glioma: A Systematic Review. Adv Radiat Oncol 2019; 4:520-531. [PMID: 31360809 PMCID: PMC6639749 DOI: 10.1016/j.adro.2019.03.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/20/2019] [Indexed: 01/05/2023] Open
Abstract
Purpose Diffuse intrinsic pontine glioma (DIPG) is the most aggressive primary pediatric brain tumor, with <10% of children surviving 2 years. Radiation therapy (RT) remains the mainstay of treatment, but there is a great clinical need for improvements and advancements in treatment strategies. The aim of this systematic review was to identify all available studies in which RT was used to treat patients with DIPG. Methods and Materials A literature search for studies published up to March 10, 2018 was conducted using the PubMed database. We identified 384 articles using search items “diffuse intrinsic pontine glioma” and 221 articles using search items “diffuse brainstem glioma radiotherapy.” Included studies were prospective and retrospective series that reported outcomes of DIPG treatment with RT. Results We identified 49 studies (1286 patients) using upfront conventionally fractionated RT, 5 studies (92 patients) using hypofractionated RT, and 8 studies (348 patients) using hyperfractionated RT. The mean median overall survival (OS) was 12.0 months, 10.2 months, and 7.9 months in patients who received conventional, hyperfractionated, and hypofractionated RT regimens, respectively. Patients undergoing radiosensitizing therapy had a mean median OS of 11.5 months, and patients who did not receive concomitant systemic therapy had an OS of 9.4 months. In patients who received salvage RT, the mean median OS from initial diagnosis was 16.3 months. Conclusions As one of the largest systematic reviews examining RT for DIPG, this report may serve as a useful tool to help clinicians choose the most appropriate treatment approach, while also providing a platform for future investigations into the utility of RT and systemic therapy.
Collapse
|
32
|
Boudaouara O, Charfi S, Bahri M, Daoud J, Boudawara MZ, Gouiaa N, Sellami Boudawara T. Pediatric high grade gliomas: Clinico-pathological profile, therapeutic approaches and factors affecting overall survival. Neurochirurgie 2019; 65:63-68. [PMID: 30922839 DOI: 10.1016/j.neuchi.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 01/19/2019] [Accepted: 03/09/2019] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Pediatric high grade gliomas are rare tumors of the central nervous system. Treatment is multidisciplinary, comprising surgical excision followed by radiotherapy and/or chemotherapy. OBJECTIVES describe these tumors' characteristics as seen in our institution, and identify factors associated with better overall survival. PATIENTS AND METHODS We conducted a retrospective study of 30 cases of pediatric high grade glioma treated consecutively in our institution over a 20-year period. Brainstem tumors and patients aged more than 22years were excluded. Univariate analysis was conducted to determine factors associated with better overall survival. RESULTS The series comprised 30 pediatric high grade gliomas: 27 glioblastomas and 3 anaplastic astrocytomas. The sex ratio was 1.7. Mean age was 13years. Tumors were mainly located in the cerebral hemispheres (63.3%). Median tumor size was 5cm. Glioblastomas were subdivided into 26 cases of classical subtype (96.3%) and 1 case of epithelioid subtype (3.7%). Surgical strategy consisted in tumor resection in 24 cases (80%). Twenty-one patients (70%) received postoperative radiotherapy. Therapeutic response at end of treatment was complete in 7 cases (23.3%). Postoperative radiation therapy and complete treatment response were significantly associated with improved overall survival in all high grade gliomas and also specifically in glioblastomas (P<0.001 and P=0.005, respectively). CONCLUSION Our results suggest that postoperative radiotherapy and complete treatment response are predictive factors for better overall survival in pediatric high grade glioma.
Collapse
Affiliation(s)
- O Boudaouara
- Laboratoire d'anatomie et de cytologie pathologique, CHU Habib Bourguiba, route Aïn km 0.5, 3029 Sfax, Tunisia.
| | - S Charfi
- Laboratoire d'anatomie et de cytologie pathologique, CHU Habib Bourguiba, route Aïn km 0.5, 3029 Sfax, Tunisia
| | - M Bahri
- Service de radiothérapie, CHU Habib Bourguiba, 3029 Sfax, Tunisia
| | - J Daoud
- Service de radiothérapie, CHU Habib Bourguiba, 3029 Sfax, Tunisia
| | - M Z Boudawara
- Service de neurochirurgie, CHU Habib Bourguiba, 3029 Sfax, Tunisia
| | - N Gouiaa
- Laboratoire d'anatomie et de cytologie pathologique, CHU Habib Bourguiba, route Aïn km 0.5, 3029 Sfax, Tunisia
| | - T Sellami Boudawara
- Laboratoire d'anatomie et de cytologie pathologique, CHU Habib Bourguiba, route Aïn km 0.5, 3029 Sfax, Tunisia
| |
Collapse
|
33
|
Karremann M, Gielen GH, Hoffmann M, Wiese M, Colditz N, Warmuth-Metz M, Bison B, Claviez A, van Vuurden DG, von Bueren AO, Gessi M, Kühnle I, Hans VH, Benesch M, Sturm D, Kortmann RD, Waha A, Pietsch T, Kramm CM. Diffuse high-grade gliomas with H3 K27M mutations carry a dismal prognosis independent of tumor location. Neuro Oncol 2019; 20:123-131. [PMID: 29016894 DOI: 10.1093/neuonc/nox149] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background The novel entity of "diffuse midline glioma, H3 K27M-mutant" has been defined in the 2016 revision of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS). Tumors of this entity arise in CNS midline structures of predominantly pediatric patients and are associated with an overall dismal prognosis. They are defined by K27M mutations in H3F3A or HIST1H3B/C, encoding for histone 3 variants H3.3 and H3.1, respectively, which are considered hallmark events driving gliomagenesis. Methods Here, we characterized 85 centrally reviewed diffuse gliomas on midline locations enrolled in the nationwide pediatric German HIT-HGG registry regarding tumor site, histone 3 mutational status, WHO grade, age, sex, and extent of tumor resection. Results We found 56 H3.3 K27M-mutant tumors (66%), 6 H3.1 K27M-mutant tumors (7%), and 23 H3-wildtype tumors (27%). H3 K27M-mutant gliomas shared an aggressive clinical course independent of their anatomic location. Multivariate regression analysis confirmed the significant impact of the H3 K27M mutation as the only independent parameter predictive of overall survival (P = 0.009). In H3 K27M-mutant tumors, neither anatomic midline location nor histopathological grading nor extent of tumor resection had an influence on survival. Conclusion These results substantiate the clinical significance of considering diffuse midline glioma, H3 K27M-mutant, as a distinct entity corresponding to WHO grade IV, carrying a universally fatal prognosis.
Collapse
Affiliation(s)
- Michael Karremann
- Department of Pediatric and Adolescent Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gerrit H Gielen
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Marion Hoffmann
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany.,Department of Child and Adolescent Health, University Medical Center Goettingen, Goettingen, Germany
| | - Maria Wiese
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany.,Department of Child and Adolescent Health, University Medical Center Goettingen, Goettingen, Germany
| | - Niclas Colditz
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany.,Department of Child and Adolescent Health, University Medical Center Goettingen, Goettingen, Germany
| | - Monika Warmuth-Metz
- Department of Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Brigitte Bison
- Department of Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Alexander Claviez
- Department of Pediatrics, Schleswig-Holstein Medical University in Kiel, Kiel, Germany
| | - Dannis G van Vuurden
- Department of Pediatrics, VU University Medical Center, Amsterdam, Netherlands.,Division of Oncology/Hematology, VU University Medical Center, Amsterdam, Netherlands
| | - André O von Bueren
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany.,Department of Child and Adolescent Health, University Medical Center Goettingen, Goettingen, Germany.,Department of Pediatrics and Adolescent Medicine, University Hospital of Geneva, Geneva, Switzerland.,Division of Pediatric Hematology and Oncology, University Hospital of Geneva, Geneva, Switzerland
| | - Marco Gessi
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Ingrid Kühnle
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany.,Department of Child and Adolescent Health, University Medical Center Goettingen, Goettingen, Germany
| | - Volkmar H Hans
- Department of Pathology, Universitätsmedizin Greifswald, Greifswald, Germany.,Institute of Neuropathology, Evangelisches Krankenhaus Bielefeld, Bielefeld, Germany
| | - Martin Benesch
- Division of Pediatric Hematology and Oncology, Medical University Graz, Graz, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Dominik Sturm
- Division of Pediatric Neurooncology, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Rolf-Dieter Kortmann
- Department of Radiotherapy and Radiation Oncology, University of Leipzig Medical Center, Leipzig, Germany
| | - Andreas Waha
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Christof M Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany.,Department of Child and Adolescent Health, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
34
|
Azizi AA, Paur S, Kaider A, Dieckmann K, Peyrl A, Chocholous M, Czech T, Slavc I. Does the interval from tumour surgery to radiotherapy influence survival in paediatric high grade glioma? Strahlenther Onkol 2018; 194:552-559. [PMID: 29349602 PMCID: PMC5959993 DOI: 10.1007/s00066-018-1260-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/05/2018] [Indexed: 12/01/2022]
Abstract
PURPOSE Paediatric high grade glioma (pHGG) are rare. Following maximum safe resection, children >3 years with HGG receive radiotherapy as standard of care. Whether the interval from tumour surgery to radiotherapy (ISRT) influences survival is disputed in adults with glioblastoma, data for children are lacking. This retrospective single-centre analysis investigates a possible impact of ISRT on survival in paediatric patients with HGG. METHODS Survival was analysed in patients aged 3-19 years with non-pontine HGG. RESULTS Thirty-eight patients were included (female:male 19:19) with a median age of 11.0 years (3.4-17.7). Seventeen patients had grade 3 and 21 grade 4 glioma. Gross total resection was achieved in 26.3%, partial resection in 36.8% and 36.8% underwent biopsy only. All patients received concomitant and adjuvant chemotherapy. Fifty percent (n = 19) started irradiation ≤17 days (median interval 12 days [range 5-17]), 50% thereafter (median 28 days [range 19-78]). More patients with grade 4 tumours were irradiated shortly after surgery. ISRT (as a continuous variable and dichotomised into two groups by the median ISRT of 18 days) did not significantly influence overall survival (OS) or progression-free survival (PFS). Higher extent of resection (EOR), lower tumour grade as well as chemotherapy with temozolomide had a significant positive impact on OS and PFS in univariate analysis and (except for the effect of temozolomide on PFS) also in multivariable analysis. CONCLUSIONS ISRT did not influence survival in pHGG. In view of upcoming targeted treatment options in pHGG the present data suggest that it is safe to perform molecular analyses within a 4-week timeframe before radiotherapy.
Collapse
Affiliation(s)
- Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| | - Simon Paur
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Alexandra Kaider
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Karin Dieckmann
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Monika Chocholous
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Thomas Czech
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| |
Collapse
|
35
|
Bavle A, Chintagumpala M. Pediatric high-grade glioma: a review of biology, prognosis, and treatment. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s13566-018-0344-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Survival outcomes in pediatric recurrent high-grade glioma: results of a 20-year systematic review and meta-analysis. J Neurooncol 2017; 137:103-110. [PMID: 29204840 DOI: 10.1007/s11060-017-2701-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/24/2017] [Indexed: 10/18/2022]
Abstract
Recurrent pediatric high-grade glioma is a leading cause of cancer-related death in children. We report results of a systematic review and meta-analysis investigating survival outcome in pediatric patients with recurrent high-grade glioma over the last 20 years. MEDLINE/PubMed, EMBASE, Web of Science and Cochrane Review databases were searched for relevant studies reporting on survival outcomes for pediatric patients with recurrent high-grade glioma treated between 1996 and 2016. Progression-free survival (PFS) and overall survival (OS) were calculated cumulatively over all studies, by therapy subgroup, and by decade of treatment. Random effects models were used to control for heterogeneity as measured by the I2 statistic. A total of 17 studies across 4 treatment strategies were included. Eleven investigated traditional chemotherapy, 1 investigated targeted therapy, 3 investigated immunotherapy, and 2 investigated radiotherapy. A total of 129 patients were included with a median age of 10.0 years. Cumulative PFS was 3.5 months (95% CI 2.1-5.0). Cumulative OS was 5.6 months (95% CI 3.9-7.3). OS was 4.0 months (95% CI 1.9-6.1) using traditional chemotherapy, 9.3 months using targeted therapies (95% CI 5.4-13), 6.9 months using immunotherapy (95% CI 2.1-12), and 14 months using reirradiation (95% CI 2.8-25). OS between 1996 and 2006 was 4.2 months (95% CI 2.1-6.2) compared to 8.5 months (95% CI 5.6-11) after 2006. Pediatric patients with recurrent high-grade glioma suffer from poor PFS and OS, regardless of therapy. There may be a trend towards improved OS in the last decade.
Collapse
|
37
|
Lam S, Lin Y, Zinn P, Su J, Pan IW. Patient and treatment factors associated with survival among pediatric glioblastoma patients: A Surveillance, Epidemiology, and End Results study. J Clin Neurosci 2017; 47:285-293. [PMID: 29102237 DOI: 10.1016/j.jocn.2017.10.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
Abstract
Glioblastoma (GBM) is a rare malignancy in children. The United States Surveillance, Epidemiology, and End Results (SEER) database allows large-scale analyses of clinical characteristics and prognostic features. We used it to study patients aged <20 years with histologically confirmed GBM (2000-2010) and examined the relationship between patient demographics, tumor characteristics, patterns of treatment, and outcomes. The primary outcome was disease-specific survival. 302 subjects were identified, with median age 11 years. Median follow-up was 32 months (95% CI 27-39). 34.4% had gross total resection (GTR). 61% underwent radiation after surgery (17% of subjects <3 years, 67% of those aged 4-19 years). Median survival and 2-year survival rates were 20 months and 46.9%, respectively. In multivariate analyses, age, tumor location, extent of resection, and year of diagnosis were significantly associated with the primary outcome. Compared to those aged 0-4 years, subjects aged 5-9 years and 10-14 years had higher risk of mortality. Infratentorial tumor location (HR 2.0, 95% CI 1.2-3.3, p = 0.007) and subtotal resection (HR 2.04, 95% CI 1.4-3.0, p < 0.001) were associated with increased mortality. Later year of diagnosis was significantly associated with decreased risk of death (HR 0.93, 95% CI 0.9-0.99, p = 0.031). There was no association between sex, race, region, or tumor size and the primary outcome. Repeat analyses examining all-cause mortality identified the same risk factors as for CNS cancer-specific mortality. Younger age, supratentorial location, GTR, and later year of diagnosis were associated with improved survival.
Collapse
Affiliation(s)
- Sandi Lam
- Baylor College of Medicine, Department of Neurosurgery, Houston, TX, USA; Texas Children's Hospital, Division of Pediatric Neurosurgery, Houston, TX, USA.
| | - Yimo Lin
- Baylor College of Medicine, Department of Neurosurgery, Houston, TX, USA; Texas Children's Hospital, Division of Pediatric Neurosurgery, Houston, TX, USA
| | - Pascal Zinn
- Baylor College of Medicine, Department of Neurosurgery, Houston, TX, USA; Texas Children's Hospital, Division of Pediatric Neurosurgery, Houston, TX, USA
| | - Jack Su
- Baylor College of Medicine, Department of Pediatrics, Houston, TX, USA; Texas Children's Hospital, Division of Pediatric Hematology/Oncology, Houston, TX, USA
| | - I-Wen Pan
- Baylor College of Medicine, Department of Neurosurgery, Houston, TX, USA; Texas Children's Hospital, Division of Pediatric Neurosurgery, Houston, TX, USA
| |
Collapse
|
38
|
Concurrent radiotherapy with temozolomide vs. concurrent radiotherapy with a cisplatinum-based polychemotherapy regimen : Acute toxicity in pediatric high-grade glioma patients. Strahlenther Onkol 2017; 194:215-224. [PMID: 29022050 DOI: 10.1007/s00066-017-1218-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE As the efficacy of all pediatric high-grade glioma (HGG) treatments is similar and still disappointing, it is essential to also investigate the toxicity of available treatments. METHODS Prospectively recorded hematologic and nonhematologic toxicities of children treated with radiochemotherapy in the HIT GBM-C/D and HIT-HGG-2007 trials were compared. Children aged 3-18 years with histologically proven HGG (WHO grade III and IV tumors) or unequivocal radiologic diagnosis of diffuse intrinsic pontine glioma (DIPG) were included in these trials. The HIT-HGG-2007 protocol comprised concomitant radiochemotherapy with temozolomide, while cisplatinum/etoposide (PE) and PE plus ifosfamide (PEI) in combination with weekly vincristine injections were applied during radiochemotherapy in the HIT GBM-C/D protocol. RESULTS Regular blood counts and information about cellular nadirs were available from 304 patients (leukocytes) and 306 patients (thrombocytes), respectively. Grade 3-4 leukopenia was much more frequent in the HIT GBM-C/D cohort (n = 88, 52%) vs. HIT-HGG-2007 (n = 13, 10%; P <0.001). Grade 3-4 thrombopenia was also more likely in the HIT GBM-C/D cohort (n = 21, 12% vs. n = 3,2%; P <0.001). Grade 3-4 leukopenia appeared more often in children aged 3-7 years (n = 38/85, 45%) than in children aged 8-12 years (n = 39/120, 33%) and 13-18 years (24/100, 24%; P =0.034). In addition, sickness was more frequent in the HIT GBM-C/D cohort (grade 1-2: 44%, grade 3-4: 6% vs. grade 1-2: 28%, grade 3-4: 1%; P <0.001). CONCLUSION Radiochemotherapy involving cisplatinum-based polychemotherapy is more toxic than radiotherapy in combination with temozolomide. Without evidence of differences in therapeutic efficacy, the treatment with lower toxicity, i. e., radiotherapy with temozolomide should be used.
Collapse
|
39
|
Jones C, Karajannis MA, Jones DTW, Kieran MW, Monje M, Baker SJ, Becher OJ, Cho YJ, Gupta N, Hawkins C, Hargrave D, Haas-Kogan DA, Jabado N, Li XN, Mueller S, Nicolaides T, Packer RJ, Persson AI, Phillips JJ, Simonds EF, Stafford JM, Tang Y, Pfister SM, Weiss WA. Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro Oncol 2017; 19:153-161. [PMID: 27282398 PMCID: PMC5464243 DOI: 10.1093/neuonc/now101] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/14/2016] [Indexed: 12/14/2022] Open
Abstract
High-grade gliomas in children are different from those that arise in adults. Recent collaborative molecular analyses of these rare cancers have revealed previously unappreciated connections among chromatin regulation, developmental signaling, and tumorigenesis. As we begin to unravel the unique developmental origins and distinct biological drivers of this heterogeneous group of tumors, clinical trials need to keep pace. It is important to avoid therapeutic strategies developed purely using data obtained from studies on adult glioblastoma. This approach has resulted in repetitive trials and ineffective treatments being applied to these children, with limited improvement in clinical outcome. The authors of this perspective, comprising biology and clinical expertise in the disease, recently convened to discuss the most effective ways to translate the emerging molecular insights into patient benefit. This article reviews our current understanding of pediatric high-grade glioma and suggests approaches for innovative clinical management.
Collapse
Affiliation(s)
- Chris Jones
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Matthias A Karajannis
- Division of Pediatric Hematology/Oncology, NYU Langone Medical Center, New York, NY, USA
| | - David T W Jones
- Division of Pediatric Neurooncology, German Cancer Research Centre, Heidelberg, Germany
| | - Mark W Kieran
- Pediatric Medical Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michelle Monje
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, California, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Oren J Becher
- Departments of Pediatrics and Pathology, Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Yoon-Jae Cho
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, California, USA
| | - Nalin Gupta
- Departments of Pediatrics, Neurology, and Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Cynthia Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Darren Hargrave
- Neuro-oncology and Experimental Therapeutics, Great Ormond Street Hospital for Children, London, UK
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nada Jabado
- Department of Pediatrics, McGill University, Montreal, Canada
| | - Xiao-Nan Li
- Brain Tumor Program, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Sabine Mueller
- Departments of Pediatrics, Neurology, and Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Theo Nicolaides
- Departments of Pediatrics, Neurology, and Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Roger J Packer
- Center for Neuroscience and Behavioral Medicine, Children's National Health System, Washington, District of Columbia, USA
| | - Anders I Persson
- Departments of Pediatrics, Neurology, and Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Joanna J Phillips
- Departments of Pediatrics, Neurology, and Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Erin F Simonds
- Departments of Pediatrics, Neurology, and Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - James M Stafford
- Department of Biochemistry, NYU Langone Medical Center, New York, New York, USA
| | - Yujie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Centre, Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - William A Weiss
- Departments of Pediatrics, Neurology, and Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
40
|
Li Z, Sun Q, Shi Y. Recent perspectives of molecular aberrations in pediatric high-grade glioma. Minerva Pediatr 2017. [PMID: 28643992 DOI: 10.23736/s0026-4946.17.04823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pediatric high-grade glioma (HGG), including diffuse intrinsic pontine glioma (DIPG) are highly aggressive tumors with no effective cures. Lack of understanding of the molecular biology of these tumors, in part due to lack of well-characterized pre-clinical models, is a great challenge in the development of novel therapies. Recent studies have shown that pediatric HGG short-term cell cultures retain many of the tumor characteristics in vivo and at present one of the best choices for in-vivo experimental studies. The present review article would put light on novel genetic and epigenetic changes in pediatric HGG that might, act as a gold standard potential biomarkers and/or therapeutic targets in near future.
Collapse
Affiliation(s)
- Zhengwei Li
- Department of Pediatric Surgery, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, China
| | - Qingzeng Sun
- Department of Pediatric Surgery, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, China
| | - Yingchun Shi
- Department of Pediatric Surgery, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, China -
| |
Collapse
|
41
|
High-grade glioma in very young children: a rare and particular patient population. Oncotarget 2017; 8:64564-64578. [PMID: 28969094 PMCID: PMC5610026 DOI: 10.18632/oncotarget.18478] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 01/05/2023] Open
Abstract
In the past years, pediatric high-grade gliomas (HGG) have been the focus of several research articles and reviews, given the recent discoveries on the genetic and molecular levels pointing out a clinico-biological uniqueness of the pediatric population compared to their adult counterparts with HGG. On the other hand, there are only scarce data about HGG in very young children (below 3 years of age at diagnosis) due to their relatively low incidence. However, the few available data suggest further distinction of this very rare subgroup from older children and adults at several levels including their molecular and biological characteristics, their treatment management, as well as their outcome. This review summarizes and discusses the current available knowledge on the epidemiological, neuropathological, genetic and molecular data of this subpopulation. We discuss these findings and differences compared to older patients suffering from the same histologic disease. In addition, we highlight the particular clinical and neuro-radiological findings in this specific subgroup of patients as well as their current management approaches and treatment outcomes.
Collapse
|
42
|
Karremann M, Krämer N, Hoffmann M, Wiese M, Beilken A, Corbacioglu S, Dilloo D, Driever PH, Scheurlen W, Kulozik A, Gielen GH, von Bueren AO, Dürken M, Kramm CM. Haematological malignancies following temozolomide treatment for paediatric high-grade glioma. Eur J Cancer 2017; 81:1-8. [PMID: 28586748 DOI: 10.1016/j.ejca.2017.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/25/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Temozolomide (TMZ) is widely used in high-grade glioma (HGG). There is a major concern of treatment-induced secondary haematological malignancies (SHMs). Due to the poor overall survival of HGG patients, the true incidence is yet elusive. Thus, the aim of this study was to determine the risk of SHMs following TMZ in paediatric HGG. METHODS We analysed 487 patients from the HIT-HGG database of the German-speaking Society of Pediatric Oncology and Hematology with follow up beyond 1 year. RESULTS The incidence of SHM was 7.7 ± 3.2% at 10 years. No SHM occurred in 194 patients after first-line TMZ therapy, but four out of 131 patients treated with TMZ for relapse following first-line multiagent chemotherapy experienced SHM (20% at 10 years; p = 0.041). SHMs occurred in two out of 162 patients who underwent multiagent chemotherapy without TMZ (4.1% at 10 years). Gender, patient age and acute haematological toxicity during treatment did not affect the incidence of SHMs. CONCLUSION Data of our cohort do not indicate an increased risk of SHM following TMZ treatment when compared to previous chemotherapy regimen. However, if TMZ is administered as a second-line treatment following conventional chemotherapy regimen, the risk might be disproportionately increasing.
Collapse
Affiliation(s)
- Michael Karremann
- Department of Pediatric and Adolescent Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Nadja Krämer
- Department of Pediatric and Adolescent Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marion Hoffmann
- Division of Pediatric Hematology and Oncology, Department of Child and Adolescent Health, University Medical Center Göttingen, Göttingen, Germany
| | - Maria Wiese
- Division of Pediatric Hematology and Oncology, Department of Child and Adolescent Health, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Beilken
- Department of Pediatric Hematology and Oncology, Medical School Hannover, Hannover, Germany
| | - Selim Corbacioglu
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Regensburg, Children's Hospital Regensburg, Regensburg, Germany
| | - Dagmar Dilloo
- Department of Pediatric Hematology and Oncology, Center for Child and Adolescent Medicine, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Pablo Hernáiz Driever
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfram Scheurlen
- Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, Nürnberg, Germany
| | - Andreas Kulozik
- Department of Pediatric Hematology, Oncology and Immunology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Gerrit H Gielen
- Department of Neuropathology, University Hospital Bonn, 53105 Bonn, Germany
| | - André O von Bueren
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Hospital of Geneva, Geneva, Switzerland
| | - Matthias Dürken
- Department of Pediatric and Adolescent Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christof M Kramm
- Division of Pediatric Hematology and Oncology, Department of Child and Adolescent Health, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
43
|
Sirachainan N, Boongird A, Swangsilpa T, Klaisuban W, Lusawat A, Hongeng S. Reported outcomes of children with newly diagnosed high-grade gliomas treated with nimotuzumab and irinotecan. Childs Nerv Syst 2017; 33:893-897. [PMID: 28439659 DOI: 10.1007/s00381-017-3409-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/07/2017] [Indexed: 12/27/2022]
Abstract
PURPOSE The outcome of children with high-grade gliomas (HGGs) treated with radiation and adjuvant chemotherapy remains poor. The expression of epidermal growth factor receptor (EGFR) has been established in children with HGGs. This report demonstrated the outcomes of adjuvant nimotuzumab, an EGFR inhibitor, with irinotecan in pediatric HGGs. METHODS Children with newly diagnosed HGGs were enrolled. Two weeks after surgery, nimotuzumab with a dose of 150 mg/m2 was given every week during radiation. After completion of radiation, a 4-week cycle of nimotuzumab (150 mg/m2) at week 1 and 3 and irinotecan (125 mg/m2) at week 1, 2, and 3 was given. RESULTS Sixteen patients (5 females, 11 males), with a mean ± SD age of 8.2 ± 3.5 years were included. Tumors were located at the supratentorial region (50.0%), infratentorial region (43.8%), and both locations (6.2%). The 5-year PFS and OS were 19.9 ± 11.6 and 31.5 ± 13.0%, respectively. Median times of PFS and OS were 1.8 and 1.9 years, respectively. Prognostic factors related to good outcome were the location of tumor at the supratentorial region or outside brainstem and the extension of surgery. Side effects were minimal, with grade 1 anemia in three patients and diarrhea in one patient. Although, the adjuvant regimen of nimotuzumab and irinotecan slightly increases the overall outcome when compared to the historical study, the advantages of this protocol were minimal side effect, short period of hospitalization, and improved OS in patients who received extensive surgery.
Collapse
Affiliation(s)
- Nongnuch Sirachainan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Atthaporn Boongird
- Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Thiti Swangsilpa
- Department of Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Wipawi Klaisuban
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Apasri Lusawat
- Department of Pediatric Neurology, Prasat Neurological Institute, Department of Medical Services, Ministry of Public Health, Bangkok, 10400, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
44
|
Pediatric high-grade glioma: current molecular landscape and therapeutic approaches. J Neurooncol 2017; 134:541-549. [PMID: 28357536 DOI: 10.1007/s11060-017-2393-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/24/2017] [Indexed: 01/06/2023]
Abstract
High-grade pediatric central nervous system glial tumors are comprised primarily of anaplastic astrocytomas (AA, WHO grade III) and glioblastomas (GBM, WHO grade IV). High-grade gliomas are most commonly diagnosed in the primary setting in children, but as in adults, they can also arise as a result of transformation of a low-grade malignancy, though with limited frequency in the pediatric population. The molecular genetics of high-grade gliomas in the pediatric population are distinct from their adult counterparts. In contrast to the adult population, high-grade gliomas in children are relatively infrequent, representing less than 20% of cases.
Collapse
|
45
|
Glioblastoma spheroids produce infiltrative gliomas in the rat brainstem. Childs Nerv Syst 2017; 33:437-446. [PMID: 28236065 DOI: 10.1007/s00381-017-3344-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
Abstract
PURPOSE Diffuse intrinsic pontine glioma (DIPG) is universally fatal without proven therapy other than radiation therapy for palliation. Representative animal models will play an essential role in the preclinical stage of future therapy development. To address the shortage of representative models, we created a novel infiltrative brainstem glioma model in rats based on glioblastoma spheroids. METHODS Cells dissociated from glioblastoma spheroids grown from surgical specimens were implanted into the brainstem of NIH nude rats. Animals were serially assessed clinically and radiographically with magnetic resonance imaging (MRI). Tumors were further characterized using histology, immunohistochemistry, and cytogenetics. RESULTS Tumor generation was successful in all animals receiving glioblastoma spheroid cells. The rats survived 17-25 weeks before severe symptoms developed. The tumors showed as diffuse hyperintense lesions on T2-weighted images. Histologically, they demonstrated cellular heterogeneity, and infiltrative and invasive features, with cells engorging vascular structures. The tumors were shown to comprise immature human origin glial tumor cells, with human epidermal growth factor receptor (EGFR) gene amplification and gain. CONCLUSIONS This study showed that cells from glioblastoma spheroids produced infiltrative gliomas in rat brainstem. The rat brainstem gliomas are radiographically and histologically accurate compared to DIPG. These tumors develop over several months that would allow sequential clinical and radiographic assessments of therapeutic interventions. This study demonstrated in principle the feasibility of developing patient-specific animal models based on putative cancer stem cells from biopsy or resection samples.
Collapse
|
46
|
Veringa SJE, Jansen MHA, van Vuurden DG, van Dalen EC, Kaspers GJL. Temozolomide for children and adolescents with diffuse intrinsic pontine glioma. Hippokratia 2016. [DOI: 10.1002/14651858.cd010129.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Susanna JE Veringa
- VU University Medical Center; Department of Pediatrics, Division of Oncology/Hematology; PO Box 7057 Amsterdam Netherlands 1007 MB
| | - Marc HA Jansen
- VU University Medical Center; Department of Pediatrics, Division of Oncology/Hematology; PO Box 7057 Amsterdam Netherlands 1007 MB
| | - Dannis G van Vuurden
- VU University Medical Center; Department of Pediatrics, Division of Oncology/Hematology; PO Box 7057 Amsterdam Netherlands 1007 MB
| | - Elvira C van Dalen
- Emma Children's Hospital/Academic Medical Center; Department of Paediatric Oncology; PO Box 22660 (room H4-139) Amsterdam Netherlands 1100 DD
| | - Gertjan JL Kaspers
- VU University Medical Center; Department of Pediatrics, Division of Oncology/Hematology; PO Box 7057 Amsterdam Netherlands 1007 MB
| |
Collapse
|
47
|
Karremann M, Hoffmann M, Benesch M, Kwiecien R, von Bueren AO, Kramm CM. Secondary Solid Malignancies After High-Grade Glioma Treatment in Pediatric Patients. Pediatr Hematol Oncol 2016; 32:467-73. [PMID: 26237586 DOI: 10.3109/08880018.2015.1050615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Due to the poor survival in high-grade glioma (HGG), secondary solid malignancies (SSM) following pediatric HGG are scarce. The authors present the experience from the HIT-HGG database in Germany, Austria, and Switzerland. Five out of 1228 pediatric HGG patients developed a SSM following a latency of 29-122 months from primary HGG diagnosis. In 4 patients, the SSM may be attributed to previous radiotherapy or a tumor predisposition syndrome, reflected by a markedly increased cumulative incidence rate of SSM in patients with tumor predisposition. Survival was devastating, since none of the patients survived beyond 18 months from SSM diagnosis.
Collapse
Affiliation(s)
- Michael Karremann
- a Department of Pediatric and Adolescent Medicine, University Medical Center Mannheim, Medical Faculty Mannheim , Heidelberg University , Mannheim, Germany
| | - Marion Hoffmann
- b Division of Pediatric Hematology and Oncology, Department of Child and Adolescent Health , University Medical Center Göttingen , Göttingen, Germany
| | - Martin Benesch
- c Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine , Medical University Graz , Graz, Austria
| | - Robert Kwiecien
- d Institute of Biostatistics and Clinical Research , University of Münster , Münster, Germany
| | - André O von Bueren
- b Division of Pediatric Hematology and Oncology, Department of Child and Adolescent Health , University Medical Center Göttingen , Göttingen, Germany
| | - Christof M Kramm
- b Division of Pediatric Hematology and Oncology, Department of Child and Adolescent Health , University Medical Center Göttingen , Göttingen, Germany
| |
Collapse
|
48
|
Tallen G, Resch A, Calaminus G, Wiener A, Leiss U, Pletschko T, Friedrich C, Langer T, Grabow D, Driever PH, Kortmann RD, Timmermann B, Pietsch T, Warmuth-Metz M, Bison B, Thomale UW, Krauss J, Mynarek M, von Hoff K, Ottensmeier H, Frühwald M, Kramm CM, Temming P, Müller HL, Witt O, Kordes U, Fleischhack G, Gnekow A, Rutkowski S. Strategies to improve the quality of survival for childhood brain tumour survivors. Eur J Paediatr Neurol 2015; 19:619-39. [PMID: 26278499 DOI: 10.1016/j.ejpn.2015.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/05/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Tumours of the central nervous system (CNS) are the most frequent solid tumours and the second most frequent type of cancer in children and adolescents. Overall survival has continuously improved in Germany, since an increasing number of patients have been treated according to standardised, multicentre, multimodal treatment recommendations, trials of the German Paediatric Brain Tumour Consortium (HIT-Network) or the International Society of Paediatric Oncology-Europe (SIOP-E) during the last decades. Today, two out of three patients survive. At least 8000 long-term childhood brain tumour survivors (CBTS) are currently living in Germany. They face lifelong disease- and treatment-related late effects (LE) and associated socioeconomic problems more than many other childhood cancer survivors (CCS). METHOD We review the LE and resulting special needs of this particular group of CCS. RESULTS Despite their increasing relevance for future treatment optimisation, neither the diversity of chronic and cumulative LE nor their pertinent risk factors and subsequent impact on quality of survival have yet been comprehensively addressed for CBTS treated according to HIT- or SIOP-E-protocols. Evidence-based information to empower survivors and stakeholders, as well as medical expertise to manage their individual health care, psychosocial and educational/vocational needs must still be generated and established. CONCLUSION The establishment of a long-term research- and care network in Germany shall contribute to a European platform, that aims at optimising CBTSs' transition into adulthood as resilient individuals with high quality of survival including optimal levels of activity, participation and acceptance by society.
Collapse
Affiliation(s)
- Gesche Tallen
- Department of Paediatric Oncology/Haematology, Charité-Universitätsmedizin Berlin, Campus Virchow, Augustenburger Platz 1, 13353 Berlin, Germany; Department of Paediatrics, Faculty of Medicine, University of Calgary, 2888 Shaganappi Trail N.W., Calgary, Alberta T3B 6A8, Canada.
| | - Anika Resch
- Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf (UKE), Martinistr. 52, 20246 Hamburg, Germany.
| | - Gabriele Calaminus
- Department of Paediatric Haematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany.
| | - Andreas Wiener
- Department of Paediatric Haematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany.
| | - Ulrike Leiss
- Medical University Vienna, Department of Paediatric and Adolescent Medicine, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Thomas Pletschko
- Medical University Vienna, Department of Paediatric and Adolescent Medicine, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Carsten Friedrich
- Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf (UKE), Martinistr. 52, 20246 Hamburg, Germany; Division of Paediatric Oncology, Haematology and Haemostaseology, Department of Woman's and Children's Health, University Hospital Leipzig, Liebigstr. 20a, 04103 Leipzig, Germany.
| | - Thorsten Langer
- Department of Paediatric Oncology/Haematology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - Desiree Grabow
- German Childhood Cancer Registry (GCCR), Institute of Medical Biostatistics, Epidemiology, and Informatics (IMBEI), University Medical Center, University of Mainz, Gebäude 902, Obere Zahlbacher Straße 69, 55131 Mainz, Germany.
| | - Pablo Hernáiz Driever
- Department of Paediatric Oncology/Haematology, Charité-Universitätsmedizin Berlin, Campus Virchow, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Rolf-Dieter Kortmann
- Department of Radiation Oncology, University of Leipzig, Stephanstr. 9a, 04103 Leipzig, Germany.
| | - Beate Timmermann
- Particle Therapy Clinic at West German Proton Therapy Centre Essen, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Torsten Pietsch
- Institute of Neuropathology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany.
| | - Monika Warmuth-Metz
- Dept. of Neuroradiology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany.
| | - Brigitte Bison
- Dept. of Neuroradiology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany.
| | - Ulrich-Wilhelm Thomale
- Department of Paediatric Neurosurgery, Charité-Universitätsmedizin Berlin, Campus Virchow, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Jürgen Krauss
- Department of Neurosurgery, Head Clinic, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany.
| | - Martin Mynarek
- Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf (UKE), Martinistr. 52, 20246 Hamburg, Germany.
| | - Katja von Hoff
- Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf (UKE), Martinistr. 52, 20246 Hamburg, Germany.
| | - Holger Ottensmeier
- University Children's Hospital Würzburg, Dept. of Paed. Haematology, Oncology, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.
| | - Michael Frühwald
- Department of Paediatric Oncology/Haematology, Klinikum Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany.
| | - Christof M Kramm
- Division of Paediatric Haematology and Oncology, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
| | - Petra Temming
- Paediatric Haematology/Oncology, Paediatrics III, University of Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Hermann L Müller
- Paediatric Oncology/Haematology, Klinikum Oldenburg, Medical Campus University Oldenburg, Rahel-Straus-Str. 10, 26133 Oldenburg, Germany.
| | - Olaf Witt
- German Cancer Research Centre (DKFZ) and Department of Paediatric Oncology/Haematology, University of Heidelberg, Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Uwe Kordes
- Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf (UKE), Martinistr. 52, 20246 Hamburg, Germany.
| | - Gudrun Fleischhack
- Paediatric Haematology/Oncology, Paediatrics III, University of Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Astrid Gnekow
- Department of Paediatric Oncology/Haematology, Klinikum Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany.
| | - Stefan Rutkowski
- Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf (UKE), Martinistr. 52, 20246 Hamburg, Germany.
| | | |
Collapse
|
49
|
Vanan MI, Eisenstat DD. DIPG in Children - What Can We Learn from the Past? Front Oncol 2015; 5:237. [PMID: 26557503 PMCID: PMC4617108 DOI: 10.3389/fonc.2015.00237] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 10/08/2015] [Indexed: 02/02/2023] Open
Abstract
Brainstem tumors represent 10–15% of pediatric central nervous system tumors and diffuse intrinsic pontine glioma (DIPG) is the most common brainstem tumor of childhood. DIPG is almost uniformly fatal and is the leading cause of brain tumor-related death in children. To date, radiation therapy (RT) is the only form of treatment that offers a transient benefit in DIPG. Chemotherapeutic strategies including multi-agent neoadjuvant chemotherapy, concurrent chemotherapy with RT, and adjuvant chemotherapy have not provided any survival advantage. To overcome the restrictive ability of the intact blood–brain barrier (BBB) in DIPG, several alternative drug delivery strategies have been proposed but have met with minimal success. Targeted therapies either alone or in combination with RT have also not improved survival. Five decades of unsuccessful therapies coupled with recent advances in the genetics and biology of DIPG have taught us several important lessons (1). DIPG is a heterogeneous group of tumors that are biologically distinct from other pediatric and adult high grade gliomas (HGG). Adapting chemotherapy and targeted therapies that are used in pediatric or adult HGG for the treatment of DIPG should be abandoned (2). Biopsy of DIPG is relatively safe and informative and should be considered in the context of multicenter clinical trials (3). DIPG probably represents a whole brain disease so regular neuraxis imaging is important at diagnosis and during therapy (4). BBB permeability is of major concern in DIPG and overcoming this barrier may ensure that drugs reach the tumor (5). Recent development of DIPG tumor models should help us accurately identify and validate therapeutic targets and small molecule inhibitors in the treatment of this deadly tumor.
Collapse
Affiliation(s)
- Magimairajan Issai Vanan
- Department of Pediatrics and Child Health, University of Manitoba , Winnipeg, MB , Canada ; Department of Biochemistry and Medical Genetics, University of Manitoba , Winnipeg, MB , Canada
| | - David D Eisenstat
- Department of Pediatrics, University of Alberta , Edmonton, AB , Canada ; Department of Medical Genetics, University of Alberta , Edmonton, AB , Canada ; Department of Oncology, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
50
|
Nair SK, Driscoll T, Boczkowski D, Schmittling R, Reynolds R, Johnson LA, Grant G, Fuchs H, Bigner DD, Sampson JH, Gururangan S, Mitchell DA. Ex vivo generation of dendritic cells from cryopreserved, post-induction chemotherapy, mobilized leukapheresis from pediatric patients with medulloblastoma. J Neurooncol 2015; 125:65-74. [PMID: 26311248 DOI: 10.1007/s11060-015-1890-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/08/2015] [Indexed: 12/30/2022]
Abstract
Generation of patient-derived, autologous dendritic cells (DCs) is a critical component of cancer immunotherapy with ex vivo-generated, tumor antigen-loaded DCs. An important factor in the ability to generate DCs is the potential impact of prior therapies on DC phenotype and function. We investigated the ability to generate DCs using cells harvested from pediatric patients with medulloblastoma for potential evaluation of DC-RNA based vaccination approach in this patient population. Cells harvested from medulloblastoma patient leukapheresis following induction chemotherapy and granulocyte colony stimulating factor mobilization were cryopreserved prior to use in DC generation. DCs were generated from the adherent CD14+ monocytes using standard procedures and analyzed for cell recovery, phenotype and function. To summarize, 4 out of 5 patients (80%) had sufficient monocyte recovery to permit DC generation, and we were able to generate DCs from 3 out of these 4 patient samples (75%). Overall, we successfully generated DCs that met phenotypic requisites for DC-based cancer therapy from 3 out of 5 (60%) patient samples and met both phenotypic and functional requisites from 2 out of 5 (40%) patient samples. This study highlights the potential to generate functional DCs for further clinical treatments from refractory patients that have been heavily pretreated with myelosuppressive chemotherapy. Here we demonstrate the utility of evaluating the effect of the currently employed standard-of-care therapies on the ex vivo generation of DCs for DC-based clinical studies in cancer patients.
Collapse
Affiliation(s)
- Smita K Nair
- Department of Surgery, Duke University School of Medicine, Box 103035, Durham, NC, 27710, USA.
- Preston Robert Tisch Brain Tumor Center, Durham, NC, USA.
| | - Timothy Driscoll
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - David Boczkowski
- Department of Surgery, Duke University School of Medicine, Box 103035, Durham, NC, 27710, USA
| | - Robert Schmittling
- Department of Surgery, Duke University School of Medicine, Box 103035, Durham, NC, 27710, USA
| | - Renee Reynolds
- Department of Surgery, Duke University School of Medicine, Box 103035, Durham, NC, 27710, USA.
- Department of Neurosurgery, University of Buffalo, Buffalo, NY, 14222, USA.
| | - Laura A Johnson
- Department of Surgery, Duke University School of Medicine, Box 103035, Durham, NC, 27710, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Gerald Grant
- Department of Surgery, Duke University School of Medicine, Box 103035, Durham, NC, 27710, USA.
- Pediatric Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, 94303, USA.
| | - Herbert Fuchs
- Department of Surgery, Duke University School of Medicine, Box 103035, Durham, NC, 27710, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, 27710, USA
- Preston Robert Tisch Brain Tumor Center, Durham, NC, USA
| | - Darell D Bigner
- Department of Surgery, Duke University School of Medicine, Box 103035, Durham, NC, 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Preston Robert Tisch Brain Tumor Center, Durham, NC, USA
| | - John H Sampson
- Department of Surgery, Duke University School of Medicine, Box 103035, Durham, NC, 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Preston Robert Tisch Brain Tumor Center, Durham, NC, USA
| | - Sridharan Gururangan
- Department of Surgery, Duke University School of Medicine, Box 103035, Durham, NC, 27710, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, 27710, USA
- Preston Robert Tisch Brain Tumor Center, Durham, NC, USA
| | - Duane A Mitchell
- Department of Surgery, Duke University School of Medicine, Box 103035, Durham, NC, 27710, USA.
- Preston Robert Tisch Brain Tumor Center, Durham, NC, USA.
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, 32605, USA.
| |
Collapse
|