1
|
Ostapowicz J, Ostrowska K, Rawłuszko-Wieczorek AA, Wojtera B, Koczot S, Golusiński W, Suchorska WM. Understanding Hypoxia-Driven Tumorigenesis: The Interplay of HIF1A, DNA Methylation, and Prolyl Hydroxylases in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2024; 25:6495. [PMID: 38928200 PMCID: PMC11203966 DOI: 10.3390/ijms25126495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Hypoxia-inducible factor 1-alpha (HIF1A) is a key transcription factor aiding tumor cells' adaptation to hypoxia, regulated by the prolyl hydroxylase family (EGLN1-3) by directing toward degradation pathways. DNA methylation potentially influences EGLN and HIF1A levels, impacting cellular responses to hypoxia. We examined 96 HNSCC patients and three cell lines, analyzing gene expression of EGLN1-3, HIF1A, CA9, VEGF, and GLUT1 at the mRNA level and EGLN1 protein levels. Methylation levels of EGLNs and HIF1A were assessed through high-resolution melting analysis. Bioinformatics tools were employed to characterize associations between EGLN1-3 and HIF1A expression and methylation. We found significantly higher mRNA levels of EGLN3, HIF1A, GLUT1, VEGF, and CA9 (p = 0.021; p < 0.0001; p < 0.0001; p = 0.004, and p < 0.0001, respectively) genes in tumor tissues compared to normal ones and downregulation of the EGLN1 mRNA level in tumor tissues (p = 0.0013). In HNSCC patients with hypermethylation of HIF1A in normal tissue, we noted a reduction in HIF1A mRNA levels compared to tumor tissue (p = 0.04). In conclusion, the differential expression of EGLN and HIF1A genes in HNSCC tumors compared to normal tissues influences patients' overall survival, highlighting their role in tumor development. Moreover, DNA methylation could be responsible for HIF1A suppression in the normal tissues of HNSCC patients.
Collapse
Affiliation(s)
- Julia Ostapowicz
- Department of Electroradiology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Radiobiology Laboratory, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Kamila Ostrowska
- Radiobiology Laboratory, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | | | - Bartosz Wojtera
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Sabina Koczot
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Wojciech Golusiński
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Wiktoria M. Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Radiobiology Laboratory, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
2
|
The multifaceted role of EGLN family prolyl hydroxylases in cancer: going beyond HIF regulation. Oncogene 2022; 41:3665-3679. [PMID: 35705735 DOI: 10.1038/s41388-022-02378-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/22/2022]
Abstract
EGLN1, EGLN2 and EGLN3 are proline hydroxylase whose main function is the regulation of the HIF factors. They work as oxygen sensors and are the main responsible of HIFα subunits degradation in normoxia. Being their activity strictly oxygen-dependent, when oxygen tension lowers, their control on HIFα is released, leading to activation of systemic and cellular response to hypoxia. However, EGLN family members activity is not limited to HIF modulation, but it includes the regulation of essential mechanisms for cell survival, cell cycle metabolism, proliferation and transcription. This is due to their reported hydroxylase activity on a number of non-HIF targets and sometimes to hydroxylase-independent functions. For these reasons, EGLN enzymes appear fundamental for development and progression of different cancer types, playing either a tumor-suppressive or a tumor-promoting role, according to EGLN isoform and to tumor context. Notably, EGLN1, the most studied isoform, has been shown to have also a central role in tumor micro-environment modulation, mediating CAF activation and impairing HIF1α -related angiogenesis, thus covering an important function in cancer metastasis promotion. Considering the recent knowledge acquired on EGLNs, the possibility to target these enzymes for cancer treatment is emerging. However, due to their multifaceted and controversial roles in different cancer types, the use of EGLN inhibitors as anti-cancer drugs should be carefully evaluated in each context.
Collapse
|
3
|
Yu M, Lun J, Zhang H, Zhu L, Zhang G, Fang J. The non-canonical functions of HIF prolyl hydroxylases and their dual roles in cancer. Int J Biochem Cell Biol 2021; 135:105982. [PMID: 33894356 DOI: 10.1016/j.biocel.2021.105982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
The hypoxia-inducible factor (HIF) prolyl hydroxylases (PHDs) are dioxygenases using oxygen and 2-oxoglutarate as co-substrates. Under normoxia, PHDs hydroxylate the conserved prolyl residues of HIFα, leading to HIFα degradation. In hypoxia PHDs are inactivated, which results in HIFα accumulation. The accumulated HIFα enters nucleus and initiates gene transcription. Many studies have shown that PHDs have substrates other than HIFα, implying that they have HIF-independent non-canonical functions. Besides modulating protein stability, the PHDs-mediated prolyl hydroxylation affects protein-protein interaction and protein activity for alternative substrates. Increasing evidence indicates that PHDs also have hydroxylase-independent functions. They influence protein stability, enzyme activity, and protein-protein interaction in a hydroxylase-independent manner. These findings highlight the functional diversity and complexity of PHDs. Due to having inhibitory activity on HIFα, PHDs are proposed to act as tumor suppressors. However, research shows that PHDs exert either tumor-promoting or tumor-suppressing features. Here, we try to summarize the current understanding of PHDs hydroxylase-dependent and -independent functions and their roles in cancer.
Collapse
Affiliation(s)
- Mengchao Yu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China
| | - Jie Lun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital, Jinan, 250014, China
| | - Lei Zhu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China
| | - Gang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China.
| | - Jing Fang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China.
| |
Collapse
|
4
|
Tao J, Yang G, Zhou W, Qiu J, Chen G, Luo W, Zhao F, You L, Zheng L, Zhang T, Zhao Y. Targeting hypoxic tumor microenvironment in pancreatic cancer. J Hematol Oncol 2021; 14:14. [PMID: 33436044 PMCID: PMC7805044 DOI: 10.1186/s13045-020-01030-w] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022] Open
Abstract
Attributable to its late diagnosis, early metastasis, and poor prognosis, pancreatic cancer remains one of the most lethal diseases worldwide. Unlike other solid tumors, pancreatic cancer harbors ample stromal cells and abundant extracellular matrix but lacks vascularization, resulting in persistent and severe hypoxia within the tumor. Hypoxic microenvironment has extensive effects on biological behaviors or malignant phenotypes of pancreatic cancer, including metabolic reprogramming, cancer stemness, invasion and metastasis, and pathological angiogenesis, which synergistically contribute to development and therapeutic resistance of pancreatic cancer. Through various mechanisms including but not confined to maintenance of redox homeostasis, activation of autophagy, epigenetic regulation, and those induced by hypoxia-inducible factors, intratumoral hypoxia drives the above biological processes in pancreatic cancer. Recognizing the pivotal roles of hypoxia in pancreatic cancer progression and therapies, hypoxia-based antitumoral strategies have been continuously developed over the recent years, some of which have been applied in clinical trials to evaluate their efficacy and safety in combinatory therapies for patients with pancreatic cancer. In this review, we discuss the molecular mechanisms underlying hypoxia-induced aggressive and therapeutically resistant phenotypes in both pancreatic cancerous and stromal cells. Additionally, we focus more on innovative therapies targeting the tumor hypoxic microenvironment itself, which hold great potential to overcome the resistance to chemotherapy and radiotherapy and to enhance antitumor efficacy and reduce toxicity to normal tissues.
Collapse
Affiliation(s)
- Jinxin Tao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Guangyu Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China. .,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.
| |
Collapse
|
5
|
Zhu C, Ding H, Yang J, Zhou Y, Luo Y, Shi S, Zhang Y, Wei Y, Ni G. Downregulation of Proline Hydroxylase 2 and Upregulation of Hypoxia-Inducible Factor 1α are Associated with Endometrial Cancer Aggressiveness. Cancer Manag Res 2019; 11:9907-9912. [PMID: 31819628 PMCID: PMC6878929 DOI: 10.2147/cmar.s223421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/30/2019] [Indexed: 01/02/2023] Open
Abstract
Introduction Proline hydroxylase 2 (PHD2) is involved in tumorigenesis. This study aimed to examine PHD2 and hypoxia-inducible factor 1α (HIF-1α) expression in different endometrial tissues and explore the correlations between PHD2 and HIF-1α expression with clinicopathological characteristics of endometrial cancer. Methods We collected 50 tissue sections of endometrial adenocarcinoma, 30 of atypical endometrial hyperplasia, and 30 of control normal endometrium. The expression of PHD2 was detected by PCR, Western blot, and immunohistochemical analysis. Results PHD2 mRNA and protein levels reduced in endometrial cancer tissues compared to normal endometrium (p<0.05). In contrast, HIF-1α expression levels increased in endometrial cancer tissues compared to normal endometrium (p<0.05). In addition, PHD2 and HIF-1α levels were correlated with lymphovascular stromal invasion (LVSI), postoperative FIGO stage, and lymph node metastasis of endometrial cancer (p<0.05). Conclusion Our findings suggest that reduced expression of PHD2 and increased expression of HIF-1α are associated with endometrial cancer aggressiveness. PHD2 might be a novel biomarker and a potential target for endometrial cancer management.
Collapse
Affiliation(s)
- Chengcheng Zhu
- Departments of Gynecology and Obstetrics, Yi Jishan General Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Huafeng Ding
- Departments of Gynecology and Obstetrics, Yi Jishan General Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Junwen Yang
- Departments of Gynecology and Obstetrics, Yi Jishan General Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Yihui Zhou
- Departments of Gynecology and Obstetrics, Yi Jishan General Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Yonghong Luo
- Departments of Gynecology and Obstetrics, Yi Jishan General Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Suhua Shi
- Departments of Gynecology and Obstetrics, Yi Jishan General Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Ying Zhang
- Departments of Gynecology and Obstetrics, Yi Jishan General Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Yalan Wei
- Departments of Gynecology and Obstetrics, General Hospital of Wuhu Second People's Hospital, Wuhu, Anhui, People's Republic of China
| | - Guantai Ni
- Departments of Gynecology and Obstetrics, Yi Jishan General Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| |
Collapse
|
6
|
Devi U, Singh M, Roy S, Tripathi AC, Gupta PS, Saraf SK, Ansari MN, Saeedan AS, Kaithwas G. PHD-2 activation: a novel strategy to control HIF-1α and mitochondrial stress to modulate mammary gland pathophysiology in ER+ subtype. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1239-1256. [PMID: 31154466 DOI: 10.1007/s00210-019-01658-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/26/2019] [Indexed: 12/19/2022]
Abstract
Estrogen receptor-positive mammary gland carcinoma and its involvement in regulation of overexpressed hypoxia-inducible factor-1α and fatty acid synthase level in hypoxia influenced cancer cells are the present molecular crosstalk of this entire study. To test the hypothesis, we have proceed our study through chemical activation of prolyl hydroxylase 2 which leads to inhibition of hypoxia-inducible factor-1α and fatty acid synthase in ER+MCF-7 cancer cell line and n-methyl-n-nitrosourea induced mammary gland carcinoma rat model. ER+MCF-7 cells were evident with array of nuclear changes when stained through acridine orange/ethidium bromide. Afterward, JC-1 staining of the cells was evident in mitochondrial depolarization. The cells were arrested in G2/M phase when analyzed with flow cytometry. The morphological analysis of rat mammary gland tissue revealed decrease in alveolar buds, restoration of histopathological features along with intra-arterial cushion. The western blotting and fold change expressions of the genes validating the anticancer efficacy of BBAPH-1 is mediated through mitochondria-mediated apoptosis pathway. BBAPH-1 also modulates the expression of prolyl hydroxylase-2 with significant curtailment of hypoxia-inducible factor-1α, fatty acid synthase expression, and their respective downstream markers. These finding suggest that the BBAP-1-mediated activation of prolyl hydroxylase-2 significantly decreased the level of hypoxia-inducible factor-1α and fatty acid synthase. BBAPH-1 also activates the mitochondria-mediated death apoptosis pathway.
Collapse
Affiliation(s)
- Uma Devi
- Department of Pharmaceutical Sciences, Faculty of Health and Medical Sciences, Sam Higginbottom Institute of Agricultural Sciences and Technology, Naini, Allahabad, UP, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, UP, 226025, India
| | - Subhadeep Roy
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, UP, 226025, India
| | - Avinash C Tripathi
- Faculty of Pharmacy, Babu Banarsi Das Northern India Institute of Technology, Babu Banarsi Das University, Faizabad Road, Lucknow, UP, India
| | - Pushpraj S Gupta
- Department of Pharmaceutical Sciences, Faculty of Health and Medical Sciences, Sam Higginbottom Institute of Agricultural Sciences and Technology, Naini, Allahabad, UP, India
| | - Shailendra K Saraf
- Faculty of Pharmacy, Babu Banarsi Das Northern India Institute of Technology, Babu Banarsi Das University, Faizabad Road, Lucknow, UP, India
| | - Md Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, UP, 226025, India.
| |
Collapse
|
7
|
Li A, Zhang Y, Wang Z, Dong H, Fu N, Han X. The roles and signaling pathways of prolyl-4-hydroxylase 2 in the tumor microenvironment. Chem Biol Interact 2019; 303:40-49. [PMID: 30817904 DOI: 10.1016/j.cbi.2019.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
Abstract
Tumor hypoxia is a well-known microenvironmental factor that causes cancer progression and resistance to cancer treatment. Proline hydroxylases (PHDs), a small protein family, belong to an evolutionarily conserved superfamily of dioxygenases, considered the central regulator of the molecular hypoxia response. Prolyl-4-hydroxylase 2 (PHD2), one member of PHDs family, regulates the stability of the hypoxia-inducible factor-1 alpha (HIF-1α) in response to oxygen availability. During hypoxia, the inhibition of PHD2 permits the accumulation of HIF-1α, allowing the cellular adaptation to oxygen limitation, causing activation of numerous genes, which enhances the angiogenesis, metastasis and invasiveness. Accurate regulation of oxygen homeostasis is essential, and which implies PHD2 may have a regulatory role in the pathogenesis of cancer. Although ample evidence exists for a positive correlation between HIFs and tumor formation, metastasis and poor prognosis, the function of the PHD2 in carcinogenesis is less well understood. Despite their original role as the oxygen sensors of the cell and many of the its functions are clearly conveyed through the HIF system, PHD2 is currently known to display HIF-independent and hydroxylase-independent functions in cancer cells and stroma in the control of different cellular pathways. In this review, we summarize the recent advances in the structure, regulation and functions of PHD2 in cancer microenvironment.
Collapse
Affiliation(s)
- Anqi Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Yu Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Zuojun Wang
- Department of Pharmacy, Linqu Country People's Hospital, 438 Shanwang Road, Linqu, 262600, China
| | - Hailing Dong
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Nange Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China.
| |
Collapse
|
8
|
Loss of Phd2 cooperates with BRAF V600E to drive melanomagenesis. Nat Commun 2018; 9:5426. [PMID: 30575721 PMCID: PMC6303344 DOI: 10.1038/s41467-018-07126-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 10/15/2018] [Indexed: 12/30/2022] Open
Abstract
Prolyl hydroxylase domain protein 2 (PHD2) is a well-known master oxygen sensor. However, the role of PHD2 in tumor initiation remains controversial. We find that during the transition of human nevi to melanoma, the expression of PHD2 protein is significantly decreased and lower expression PHD2 in melanoma is associated with worse clinical outcome. Knockdown of PHD2 leads to elevated Akt phosphorylation in human melanocytes. Mice with conditional melanocyte-specific expression of Phd2lox/lox (Tyr::CreER;Phd2lox/lox) fail to develop pigmented lesions. However, deletion of Phd2 in combination with expression of BRafV600E in melanocytes (Tyr::CreER;Phd2lox/lox;BRafCA) leads to the development of melanoma with 100% penetrance and frequent lymph node metastasis. Analysis of tumor tissues using reverse phase protein arrays demonstrates that Phd2 deletion activates the AKT-mTOR-S6 signaling axis in the recovered tumors. These data indicate that PHD2 is capable of suppressing tumor initiation largely mediated through inhibiting of the Akt-mTOR signaling pathway in the melanocyte lineage. Prolyl hydroxylase domain protein 2 (PHD2) regulates cellular response to hypoxia. Here the authors show that PHD2 is downregulated in melanoma and that PHD2 depletion, in a mouse model, promotes the progression of benign melanocytic lesions into melanoma, via activation of the Akt/mTOR signaling cascade.
Collapse
|
9
|
Xie Y, Yuan T, Qin Y, Weng Z, Fang J. Prolyl hydroxylase 2 is dispensable for homeostasis of intestinal epithelium in mice. Acta Biochim Biophys Sin (Shanghai) 2018; 50:540-546. [PMID: 29688249 DOI: 10.1093/abbs/gmy037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
Prolyl hydroxylases (PHD1-3) hydroxylate hypoxia inducible factor α (HIFα), leading to HIFα ubiquitination and degradation. Recent studies indicated that administration of generic inhibitors of PHDs improved mice colitis, suggesting that suppression of PHD activity by these inhibitors may be a potential strategy for the treatment of inflammatory bowel diseases. However, the exact role of each member of PHD family in homeostasis of intestinal epithelium remains elusive. The aim of this work is to study the possible role of PHD2 by using mice with genetic ablation of Phd2 in intestinal epithelial cells (IECs). We found that deletion of PHD2 in IECs did not lead to spontaneous enteritis or colitis in mice. Deletion of PHD2 in IECs did not confer upon mice higher susceptibility to dextran sodium sulfate-induced colitis. Furthermore, in a colitis-associated colon cancer model, the PHD2-conditional knockout mice had similar susceptibility to azoxymethane (AOM)-induced colonic tumorigenesis as control mice did. Our results suggest that PHD2 is dispensable for maintenance of intestinal epithelium homeostasis in mice.
Collapse
Affiliation(s)
- Yinghui Xie
- Laboratory for Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Tanglong Yuan
- Laboratory for Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanqing Qin
- Laboratory for Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhonghui Weng
- Laboratory for Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Fang
- Laboratory for Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
10
|
Abstract
Hypoxia is a common feature in solid tumors and is associated with cancer progression. The main regulators of the hypoxic response are hypoxia-inducible transcription factors (HIFs) that guide the cellular adaptation to hypoxia by gene activation. The actual oxygen sensing is performed by HIF prolyl hydroxylases (PHDs) that under normoxic conditions mark the HIF-α subunit for degradation. Cancer progression is not regulated only by the cancer cells themselves but also by the whole tumor microenvironment, which consists of cellular and extracellular components. Hypoxic conditions also affect the stromal compartment, where stromal cells are in close contact with the cancer cells. The important function of HIF in cancer cells has been shown by many animal models and described in hundreds of reviews, but less in known about PHDs and even less PHDs in stromal cells. Here, we review hypoxic signaling in tumors, mainly in the tumor stroma, with a focus on HIFs and PHDs.
Collapse
Affiliation(s)
- Anu Laitala
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| | - Janine T Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| |
Collapse
|
11
|
Seo K, Seo S, Ki SH, Shin SM. Sestrin2 inhibits hypoxia-inducible factor-1α accumulation via AMPK-mediated prolyl hydroxylase regulation. Free Radic Biol Med 2016; 101:511-523. [PMID: 27840318 DOI: 10.1016/j.freeradbiomed.2016.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 11/24/2022]
Abstract
Sestrin2 (SESN2) is an antioxidant protein that modulates cellular redox homeostasis through regeneration of peroxiredoxins. It has beneficial effects in oxidative or metabolic stress conditions as an upstream regulator of AMP-activated protein kinase (AMPK). Since hypoxia causes oxidative and metabolic stress, this study investigated the effect of SESN2 on signaling pathways altered by hypoxia in colon cancer cells. SESN2 overexpression in HEK293 cells inhibited hypoxia-inducible factor-1α (HIF-1α), which plays a crucial role in tumor growth and development in hypoxia. Moreover, infection with adenovirus-SESN2 (Ad-SESN2) decreased hypoxia or CoCl2-induced HIF-1α accumulation in colorectal cancer cells. Ad-SESN2 also reduced CoCl2-induced hypoxia response element (HRE)-luciferase activity and mRNA level of HIF-1α-driven genes. Furthermore, Ad-SESN2 infected cells showed anti-metastatic effects in serum-induced cell migration and invasion in vitro. Ad-SESN2 facilitated the ubiquitination of HIF-1α protein and increased hydroxyl-HIF-1α (OH-HIF-1α) level. In contrast, treatment with dimethyloxalylglycine (DMOG), an inhibitor of prolyl hydroxylase (PHD), reversed Ad-SESN2-induced OH-HIF-1α and subsequently suppressed HIF-1α level. The inhibitory effects of SESN2 on the serum-induced in vitro cell migration and invasion were also abrogated by DMOG treatment. Furthermore, knockdown of AMPKα reversed Ad-SESN2-mediated increase of OH-HIF-1α and inhibition of HIF-1α. Dominant-negative form of AMPK also restored the Ad-SESN2 mediated decrease in HIF-1α accumulation. Lastly, Ad-SESN2 suppressed tumor growth in a mouse xenograft model. Taken together, these results suggest that SESN2 increases degradation of HIF-1α via AMPK-PHD regulation that contributes to inhibition of in vitro and in vivo tumorigenesis.
Collapse
Affiliation(s)
- Kyuhwa Seo
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 501-759, South Korea
| | - Suho Seo
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 501-759, South Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 501-759, South Korea
| | - Sang Mi Shin
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 501-759, South Korea.
| |
Collapse
|
12
|
Affiliation(s)
- Anna Kuchnio
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Leuven, Belgium
| |
Collapse
|
13
|
Tao Y, Lin F, Li R, Shen J, Wang Z. Prolyl hydroxylase-2 inhibits liver tumor cell proliferation and cyclin D1 expression in a hydroxylase-dependent manner. Int J Biochem Cell Biol 2016; 77:129-140. [PMID: 27307407 DOI: 10.1016/j.biocel.2016.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 02/04/2016] [Accepted: 05/29/2016] [Indexed: 01/23/2023]
Abstract
Prolyl hydroxylase 2 is a key regulator of hypoxia-inducible factor 1 alpha protein, and has previously been implicated as a tumor suppressor in various cancers. However, the function of prolyl hydroxylase 2 in liver cancer has yet to be elucidated. Characterization of prolyl hydroxylase 2 function and related mechanisms in liver cancer may enable the development of targeted therapy. Here we found that prolyl hydroxylase 2 overexpression in human hepatocellular carcinoma cancer cell lines inhibited cell proliferation, while prolyl hydroxylase 2 knockdown enhanced cell proliferation. Further analyses revealed that the prolyl hydroxylase 2-mediated inhibition of cell proliferation was due to a cell cycle arrest at the G1/S transition. Moreover, the block in cell cycle was facilitated by negative regulation of cyclin D1, a process dependent on the hydroxylase activity of prolyl hydroxylase 2. Using an in vivo xenograft mouse model, we found that the overexpression of prolyl hydroxylase 2 led to a reduction in tumor size. Evaluation of paired human liver cancer patient samples revealed that prolyl hydroxylase 2 protein levels were significantly reduced in 6 of the 10 cancer tissues as compared to their respective normal tissue controls. Furthermore, elevated expression of prolyl hydroxylase 2 was associated with significantly prolonged survival in patients with liver cancer. These results suggest that prolyl hydroxylase 2 plays an important tumor suppressive role in liver cancer and may prove to be of prognostic and therapeutic value.
Collapse
Affiliation(s)
- Yifeng Tao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Feng Lin
- Department of General Surgery, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, China
| | - Ruidong Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jie Shen
- Department of General Surgery, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, China.
| | - Zhengxin Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
14
|
Radhakrishnan P, Ruh N, Harnoss JM, Kiss J, Mollenhauer M, Scherr AL, Platzer LK, Schmidt T, Podar K, Opferman JT, Weitz J, Schulze-Bergkamen H, Koehler BC, Ulrich A, Schneider M. Prolyl Hydroxylase 3 Attenuates MCL-1-Mediated ATP Production to Suppress the Metastatic Potential of Colorectal Cancer Cells. Cancer Res 2016; 76:2219-30. [PMID: 26921340 DOI: 10.1158/0008-5472.can-15-1474] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 01/06/2016] [Indexed: 11/16/2022]
Abstract
Hypoxia is a common feature of solid tumors. Prolyl hydroxylase enzymes (PHD1-3) are molecular oxygen sensors that regulate hypoxia-inducible factor activity, but their functions in metastatic disease remain unclear. Here, we assessed the significance of PHD enzymes during the metastatic spread of colorectal cancer. PHD expression analysis in 124 colorectal cancer patients revealed that reduced tumoral expression of PHD3 correlated with increased frequency of distant metastases and poor outcome. Tumorigenicity and metastatic potential of colorectal tumor cells over and underexpressing PHD3 were investigated in orthotopic and heterotopic tumor models. PHD3 overexpression in a syngeneic tumor model resulted in fewer liver metastases, whereas PHD3 knockdown induced tumor spread. The migration of PHD3-overexpressing tumor cells was also attenuated in vitro Conversely, migratory potential and colony formation were enhanced in PHD3-deficient cells, and this phenotype was associated with enhanced mitochondrial ATP production. Furthermore, the effects of PHD3 deficiency were accompanied by increased mitochondrial expression of the BCL-2 family member, member myeloid cell leukemia sequence 1 (MCL-1), and could be reversed by simultaneous inhibition of MCL-1. MCL-1 protein expression was likewise enhanced in human colorectal tumors expressing low levels of PHD3. Therefore, we demonstrate that downregulation of PHD3 augments metastatic spread in human colorectal cancer and identify MCL-1 as a novel downstream effector of oxygen sensing. Importantly, these findings offer new insight into the possible, context-specific deleterious effects of pharmacologic PHD inhibition. Cancer Res; 76(8); 2219-30. ©2016 AACR.
Collapse
Affiliation(s)
- Praveenkumar Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Nadine Ruh
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Jonathan M Harnoss
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Judit Kiss
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Mollenhauer
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna-Lena Scherr
- Department of Medical Oncology, Internal Medicine VI, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Lisa K Platzer
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Podar
- Department of Medical Oncology, Internal Medicine VI, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Joseph T Opferman
- St. Jude Children's Research Hospital, Cell & Molecular Biology, Memphis, Tennessee
| | - Juergen Weitz
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany. Department of Visceral, Thoracic and Vascular Surgery, Dresden University Hospital, Dresden, Germany
| | - Henning Schulze-Bergkamen
- Department of Medical Oncology, Internal Medicine VI, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Bruno C Koehler
- Department of Medical Oncology, Internal Medicine VI, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
15
|
Abstract
Hydroxylation is an emerging modification generally catalyzed by a family of ∼70 enzymes that are dependent on oxygen, Fe(II), ascorbate, and the Kreb's cycle intermediate 2-oxoglutarate (2OG). These "2OG oxygenases" sit at the intersection of nutrient availability and metabolism where they have the potential to regulate gene expression and growth in response to changes in co-factor abundance. Characterized 2OG oxygenases regulate fundamental cellular processes by catalyzing the hydroxylation or demethylation (via hydroxylation) of DNA, RNA, or protein. As such they have been implicated in various syndromes and diseases, but particularly cancer. In this review we discuss the emerging role of 2OG oxygenases in gene expression control, examine the regulation of these unique enzymes by nutrient availability and metabolic intermediates, and describe these properties in relation to the expanding role of these enzymes in cancer.
Collapse
|
16
|
Kuchnio A, Moens S, Bruning U, Kuchnio K, Cruys B, Thienpont B, Broux M, Ungureanu AA, Leite de Oliveira R, Bruyère F, Cuervo H, Manderveld A, Carton A, Hernandez-Fernaud JR, Zanivan S, Bartic C, Foidart JM, Noel A, Vinckier S, Lambrechts D, Dewerchin M, Mazzone M, Carmeliet P. The Cancer Cell Oxygen Sensor PHD2 Promotes Metastasis via Activation of Cancer-Associated Fibroblasts. Cell Rep 2015; 12:992-1005. [PMID: 26235614 DOI: 10.1016/j.celrep.2015.07.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/23/2015] [Accepted: 07/07/2015] [Indexed: 12/13/2022] Open
Abstract
Several questions about the role of the oxygen sensor prolyl-hydroxylase 2 (PHD2) in cancer have not been addressed. First, the role of PHD2 in metastasis has not been studied in a spontaneous tumor model. Here, we show that global PHD2 haplodeficiency reduced metastasis without affecting tumor growth. Second, it is unknown whether PHD2 regulates cancer by affecting cancer-associated fibroblasts (CAFs). We show that PHD2 haplodeficiency reduced metastasis via two mechanisms: (1) by decreasing CAF activation, matrix production, and contraction by CAFs, an effect that surprisingly relied on PHD2 deletion in cancer cells, but not in CAFs; and (2) by improving tumor vessel normalization. Third, the effect of concomitant PHD2 inhibition in malignant and stromal cells (mimicking PHD2 inhibitor treatment) is unknown. We show that global PHD2 haplodeficiency, induced not only before but also after tumor onset, impaired metastasis. These findings warrant investigation of PHD2's therapeutic potential.
Collapse
Affiliation(s)
- Anna Kuchnio
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Stijn Moens
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Ulrike Bruning
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Karol Kuchnio
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Bert Cruys
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Bernard Thienpont
- Laboratory for Translational Genetics, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory for Translational Genetics, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Michaël Broux
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Andreea Alexandra Ungureanu
- Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium
| | - Rodrigo Leite de Oliveira
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Françoise Bruyère
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Henar Cuervo
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Ann Manderveld
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - An Carton
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Juan Ramon Hernandez-Fernaud
- Laboratory of Vascular Proteomics, Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Sara Zanivan
- Laboratory of Vascular Proteomics, Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Carmen Bartic
- Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium; IMEC, Kapeldreef 75, 3001 Heverlee, Belgium
| | - Jean-Michel Foidart
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Avenue de l'Hôpital 3, 4000 Liège, Belgium
| | - Agnes Noel
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Avenue de l'Hôpital 3, 4000 Liège, Belgium
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory for Translational Genetics, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Massimiliano Mazzone
- Laboratory of Molecular Oncology and Angiogenesis, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
17
|
Harnoss JM, Strowitzki MJ, Radhakrishnan P, Platzer LK, Harnoss JC, Hank T, Cai J, Ulrich A, Schneider M. Therapeutic inhibition of prolyl hydroxylase domain-containing enzymes in surgery: putative applications and challenges. HYPOXIA 2015; 3:1-14. [PMID: 27774478 PMCID: PMC5045068 DOI: 10.2147/hp.s60872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oxygen is essential for metazoans to generate energy. Upon oxygen deprivation adaptive and protective pathways are induced, mediated by hypoxia-inducible factors (HIFs) and prolyl hydroxylase domain-containing enzymes (PHDs). Both play a pivotal role in various conditions associated with prolonged ischemia and inflammation, and are promising targets for therapeutic intervention. This review focuses on aspects of therapeutic PHD modulation in surgically relevant disease conditions such as hepatic and intestinal disorders, wound healing, innate immune responses, and tumorigenesis, and discusses the therapeutic potential and challenges of PHD inhibition in surgical patients.
Collapse
Affiliation(s)
- Jonathan Michael Harnoss
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Moritz Johannes Strowitzki
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Lisa Katharina Platzer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Julian Camill Harnoss
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thomas Hank
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jun Cai
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
18
|
Zhen L, Shijie N, Shuijun Z. Tumor PHD2 expression is correlated with clinical features and prognosis of patients with HCC receiving liver resection. Medicine (Baltimore) 2014; 93:e179. [PMID: 25546659 PMCID: PMC4602600 DOI: 10.1097/md.0000000000000179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The role of prolyl hydroxylase domain protein 2 (PHD2) in carcinogenesis has been studied in a variety of cancer types. However, the association between PHD2 and human hepatocellular carcinoma (HCC) has not been documented. A total of 220 patients with primary HCC who underwent a curative liver resection were enrolled in this study. The tumor samples were obtained during the surgical procedure from each patient for PHD2 immunohistological staining. All the patients were followed up and the disease-free survival (DFS) and overall survival (OS) were evaluated. We found that that high PHD2 expression was significantly associated with higher stage (stages III + IV) (odds ratio [OR] = 5.576, P < 0.001), larger tumor size (> 5 cm) (OR = 6.176, P < 0.001), poorer tumor differentiation (OR = 1.424, P = 0.003), and higher serum alpha fetoprotein (AFP) level (OR = 6.861, P < 0.001). Compared to those with high PHD2 expressions, patients with low PHD2 expression had significantly longer DFS and OS periods (both P < 0.001). Cox regression analyses revealed that higher levels of PHD2, tumor size, tumor stage, as well as serum AFP level were predictors for a worse prognosis in patients with HCC. PHD2 expression in the tumors is associated with the clinical features and prognosis of patients with HCC; it may be used as a histological marker for HCC.
Collapse
Affiliation(s)
- Li Zhen
- From the Department of Colorectal and Anal Surgery (LZ); Department of Vascular Surgery (NS); and Department of Hepatobiliary Surgery (ZS), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | |
Collapse
|
19
|
Myllyharju J. Prolyl 4-hydroxylases, master regulators of the hypoxia response. Acta Physiol (Oxf) 2013; 208:148-65. [PMID: 23489300 DOI: 10.1111/apha.12096] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/07/2012] [Accepted: 03/08/2013] [Indexed: 12/13/2022]
Abstract
A decrease in oxygenation is a life-threatening situation for most organisms. An evolutionarily conserved efficient and rapid hypoxia response mechanism activated by a hypoxia-inducible transcription factor (HIF) is present in animals ranging from the simplest multicellular phylum Placozoa to humans. In humans, HIF induces the expression of more than 100 genes that are required to increase oxygen delivery and to reduce oxygen consumption. As its name indicates HIF is found at protein level only in hypoxic cells, whereas in normoxia, it is degraded by the proteasome pathway. Prolyl 4-hydroxylases, enzymes that require oxygen in their reaction, are the cellular oxygen sensors regulating the stability of HIF. In normoxia, 4-hydroxyproline residues formed in the α-subunit of HIF by these enzymes lead to its ubiquitination by the von Hippel-Lindau E3 ubiquitin ligase and immediate destruction in proteasomes thus preventing the formation of a functional HIF αβ dimer. Prolyl 4-hydroxylation is inhibited in hypoxia, facilitating the formation of the HIF dimer and activation of its target genes, such as those for erythropoietin and vascular endothelial growth factor. This review starts with a summary of the molecular and catalytic properties and individual functions of the four HIF prolyl 4-hydroxylase isoenzymes. Induction of the hypoxia response via inhibition of the HIF prolyl 4-hydroxylases may provide a novel therapeutic target in the treatment of hypoxia-associated diseases. The current status of studies aiming at such therapeutic approaches is introduced in the final part of this review.
Collapse
Affiliation(s)
- J. Myllyharju
- Oulu Center for Cell-Matrix Research; Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology; University of Oulu; Oulu; Finland
| |
Collapse
|
20
|
Han WQ, Zhu Q, Hu J, Li PL, Zhang F, Li N. Hypoxia-inducible factor prolyl-hydroxylase-2 mediates transforming growth factor beta 1-induced epithelial-mesenchymal transition in renal tubular cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1454-62. [PMID: 23466866 DOI: 10.1016/j.bbamcr.2013.02.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 12/14/2022]
Abstract
Transforming growth factor beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) in kidney epithelial cells plays a key role in renal tubulointerstitial fibrosis in chronic kidney diseases. As hypoxia-inducible factor (HIF)-1α is found to mediate TGF-β1-induced signaling pathway, we tested the hypothesis that HIF-1α and its upstream regulator prolyl hydroxylase domain-containing proteins (PHDs) are involved in TGF-β1-induced EMT using cultured renal tubular cells. Our results showed that TGF-β1 stimulated EMT in renal tubular cells as indicated by the significant decrease in epithelial marker P-cadherin, and the increase in mesenchymal markers α-smooth muscle actin (α-SMA) and fibroblast-specific protein 1 (FSP-1). Meanwhile, we found that TGF-β1 time-dependently increased HIF-1α and that HIF-1α siRNA significantly inhibited TGF-β1-induced EMT, suggesting that HIF-1α mediated TGF-β1 induced-EMT. Real-time PCR showed that PHD1 and PHD2, rather than PHD3, could be detected, with PHD2 as the predominant form of PHDs (PHD1:PHD2=0.21:1.0). Importantly, PHD2 mRNA and protein, but not PHD1, were decreased by TGF-β1. Furthermore, over-expression of PHD2 transgene almost fully prevented TGF-β1-induced HIF-1α accumulation and EMT marker changes, indicating that PHD2 is involved in TGF-β1-induced EMT. Finally, Smad2/3 inhibitor SB431542 prevented TGF-β1-induced PHD2 decrease, suggesting that Smad2/3 may mediate TGF-β1-induced EMT through PHD2/HIF-1α pathway. It is concluded that TGF-β1 decreased PHD2 expression via an Smad-dependent signaling pathway, thereby leading to HIF-1α accumulation and then EMT in renal tubular cells. The present study suggests that PHD2/HIF-1α is a novel signaling pathway mediating the fibrogenic effect of TGF-β1, and may be a new therapeutic target in chronic kidney diseases.
Collapse
Affiliation(s)
- Wei-Qing Han
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | |
Collapse
|
21
|
Wottawa M, Leisering P, Ahlen MV, Schnelle M, Vogel S, Malz C, Bordoli MR, Camenisch G, Hesse A, Napp J, Alves F, Kristiansen G, Farhat K, Katschinski DM. Knockdown of prolyl-4-hydroxylase domain 2 inhibits tumor growth of human breast cancer MDA-MB-231 cells by affecting TGF-β1 processing. Int J Cancer 2012; 132:2787-98. [PMID: 23225569 DOI: 10.1002/ijc.27982] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 11/21/2012] [Indexed: 12/26/2022]
Abstract
The prolyl-4-hydroxylase domain 1-3 (PHD1-3) enzymes are regulating the protein stability of the α-subunit of the hypoxia-inducible factor-1 (HIF-1), which mediates oxygen-dependent gene expression. PHD2 is the main isoform regulating HIF-1α hydroxylation and thus stability in normoxia. In human cancers, HIF-1α is overexpressed as a result of intratumoral hypoxia which in turn promotes tumor progression. The role of PHD2 for tumor progression is in contrast far from being thoroughly understood. Therefore, we established PHD2 knockdown clones of MDA-MB-231 breast cancer cells and analyzed their tumor-forming potential in a SCID mouse model. Tumor progression was significantly impaired in the PHD2 knockdown MDA-MB-231 cells, which could be partially rescued by re-establishing PHD2 expression. In a RNA profile screen, we identified the secreted phosphoprotein 1 (SPP1) as one target, which is differentially regulated as a consequence of the PHD2 knockdown. Knockdown of PHD2 drastically reduced the SPP1 expression in MDA-MB-231 cells. A correlation of SPP1 and PHD2 expression was additionally verified in 294 invasive breast cancer biopsies. In subsequent analyses, we identified that PHD2 alters the processing of transforming growth factor (TGF)-β1, which is highly involved in SPP1 expression. The altered processing capacity was associated with a dislocation of the pro-protein convertase furin. Thus, our data demonstrate that in MDA-MB-231 cells PHD2 might affect tumor-relevant TGF-β1 target gene expression by altering the TGF-β1 processing capacity.
Collapse
Affiliation(s)
- Marieke Wottawa
- Department of Cardiovascular Physiology, University Medical Center, Georg-August University of Göttingen, D-37073 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mamlouk S, Wielockx B. Hypoxia-inducible factors as key regulators of tumor inflammation. Int J Cancer 2012; 132:2721-9. [PMID: 23055435 DOI: 10.1002/ijc.27901] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/25/2012] [Indexed: 12/23/2022]
Abstract
Low levels of oxygen or hypoxia is often an obstacle in health, particularly in pathological disorders like cancer. The main family of transcription factors responsible for cell survival and adaptation under strenuous conditions of hypoxia are the "hypoxia-inducible factors" (HIFs). Together with prolyl hydroxylase domain enzymes (PHDs), HIFs regulates tumor angiogenesis, proliferation, invasion, metastasis, in addition to resistance to radiation and chemotherapy. Additionally, the entire HIF transcription cascade is involved in the "seventh" hallmark of cancer; inflammation. Studies have shown that hypoxia can influence tumor associated immune cells toward assisting in tumor proliferation, differentiation, vessel growth, distant metastasis and suppression of the immune response via cytokine expression alterations. These changes are not necessarily analogous to HIF's role in non-cancer immune responses, where hypoxia often encourages a strong inflammatory response.
Collapse
Affiliation(s)
- Soulafa Mamlouk
- Emmy Noether Research Group and Institute of Pathology, University of Technology, Dresden, Germany
| | | |
Collapse
|
23
|
Leite de Oliveira R, Deschoemaeker S, Henze AT, Debackere K, Finisguerra V, Takeda Y, Roncal C, Dettori D, Tack E, Jönsson Y, Veschini L, Peeters A, Anisimov A, Hofmann M, Alitalo K, Baes M, D'hooge J, Carmeliet P, Mazzone M. Gene-targeting of Phd2 improves tumor response to chemotherapy and prevents side-toxicity. Cancer Cell 2012; 22:263-77. [PMID: 22897855 DOI: 10.1016/j.ccr.2012.06.028] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 05/08/2012] [Accepted: 06/26/2012] [Indexed: 12/18/2022]
Abstract
The success of chemotherapy in cancer treatment is limited by scarce drug delivery to the tumor and severe side-toxicity. Prolyl hydroxylase domain protein 2 (PHD2) is an oxygen/redox-sensitive enzyme that induces cellular adaptations to stress conditions. Reduced activity of PHD2 in endothelial cells normalizes tumor vessels and enhances perfusion. Here, we show that tumor vessel normalization by genetic inactivation of Phd2 increases the delivery of chemotherapeutics to the tumor and, hence, their antitumor and antimetastatic effect, regardless of combined inhibition of Phd2 in cancer cells. In response to chemotherapy-induced oxidative stress, pharmacological inhibition or genetic inactivation of Phd2 enhances a hypoxia-inducible transcription factor (HIF)-mediated detoxification program in healthy organs, which prevents oxidative damage, organ failure, and tissue demise. Altogether, our study discloses alternative strategies for chemotherapy optimization.
Collapse
|
24
|
Kiss J, Kirchberg J, Schneider M. Molecular oxygen sensing: implications for visceral surgery. Langenbecks Arch Surg 2012; 397:603-10. [PMID: 22395314 DOI: 10.1007/s00423-012-0930-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND Since mammalian cells rely on the availability of oxygen, they have devised mechanisms to sense environmental oxygen tension, and to efficiently counteract oxygen deprivation (hypoxia). These adaptive responses to hypoxia are essentially mediated by hypoxia inducible transcription factors (HIFs). Three HIF prolyl hydroxylase enzymes (PHD1, PHD2 and PHD3) function as oxygen sensing enzymes, which regulate the activity of HIFs in normoxic and hypoxic conditions. Many of the compensatory functions exerted by the PHD-HIF system are of immediate surgical relevance since they regulate the biological response of ischemic tissues following ligation of blood vessels, of oxygen-deprived inflamed tissues, and of tumors outgrowing their vascular supply. PURPOSE Here, we outline specific functions of PHD enzymes in surgically relevant pathological conditions, and discuss how these functions might be exploited in order to support the treatment of surgically relevant diseases.
Collapse
Affiliation(s)
- Judit Kiss
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
25
|
Chang SS, Huang HJ, Chen CYC. High performance screening, structural and molecular dynamics analysis to identify H1 inhibitors from TCM Database@Taiwan. MOLECULAR BIOSYSTEMS 2011; 7:3366-74. [PMID: 22012120 DOI: 10.1039/c1mb05320e] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
New-type oseltamivir-resistant H1N1 influenza viruses have been a major threat to human health since the 2009 flu pandemic. To resolve the drug resistance issue, we aimed to identify a new type of inhibitors against H1 from traditional Chinese medicine (TCM) by employing the world's largest TCM database () for virtual screening and molecular dynamics (MD). From the virtual screening results, sodium (+)-isolaricireinol-2 alpha-sulfate, sodium 3,4-dihydroxy-5-methoxybenzoic acid methyl ester-4-sulfate, sodium (E)-7-hydroxy-1,7-bis(4-hydroxyphenyl)hept-5-ene-3S-sulfonate, and 3-methoxytyramine-betaxanthin were identified as potential drug-like compounds. MD simulation of the binding poses with the key residues Asp103 and Glu83, as well as other binding site residues, identified higher numbers of hydrogen bonds than N-Acetyl-D-Glucosamine (NAG), the natural ligand of the esterase domain in H1. Ionic bonds, salt bridges, and electrostatic energy also contribute to binding stability. Key binding residues include Lys71, Glu83, Asp103, and Arg238. Structural moieties promoting H-bond or salt bridge formations at these locations greatly contribute to a stable ligand-protein complex. An available sodium atom for ionic interactions with Asp103 can further stabilize the ligands. Based on virtual screening, MD simulation, and interaction energy evaluation, TCM candidates demonstrate good potential as novel H1 inhibitors. In addition, the identified stabilizing features can provide insights for designing highly stable H1 inhibitors.
Collapse
Affiliation(s)
- Su-Sen Chang
- Laboratory of Computational and Systems Biology, School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | | | | |
Collapse
|