1
|
He Q, Hu J, Huang H, Wu T, Li W, Ramakrishnan S, Pan Y, Chan KM, Zhang L, Yang M, Wang X, Chin YR. FOSL1 is a key regulator of a super-enhancer driving TCOF1 expression in triple-negative breast cancer. Epigenetics Chromatin 2024; 17:34. [PMID: 39523372 PMCID: PMC11552368 DOI: 10.1186/s13072-024-00559-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with an unmet clinical need, but its epigenetic regulation remains largely undefined. By performing multiomic profiling, we recently revealed distinct super-enhancer (SE) patterns in different subtypes of breast cancer and identified a number of TNBC-specific SEs that drive oncogene expression. One of these SEs, TCOF1 SE, was discovered to play an important oncogenic role in TNBC. However, the molecular mechanisms by which TCOF1 SE promotes the expression of the TCOF1 gene remain to be elucidated. Here, by using combinatorial approaches of DNA pull-down assay, bioinformatics analysis and functional studies, we identified FOSL1 as a key transcription factor that binds to TCOF1 SE and drives its overexpression. shRNA-mediated depletion of FOSL1 results in significant downregulation of TCOF1 mRNA and protein levels. Using a dual-luciferase reporter assay and ChIP-qPCR, we showed that binding of FOSL1 to TCOF1 SE promotes the transcription of TCOF1 in TNBC cells. Importantly, our data demonstrated that overexpression of FOSL1 drives the activation of TCOF1 SE. Lastly, depletion of FOSL1 inhibits tumor spheroid growth and stemness properties of TNBC cells. Taken together, these findings uncover the key epigenetic role of FOSL1 and highlight the potential of targeting the FOSL1-TCOF1 axis for TNBC treatment.
Collapse
Affiliation(s)
- Qingling He
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jianyang Hu
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Hao Huang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Tan Wu
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wenxiu Li
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Saravanan Ramakrishnan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yilin Pan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Kui Ming Chan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Liang Zhang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Mengsu Yang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Y Rebecca Chin
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
2
|
Lu X, Mei Y, Fan C, Chen P, Li X, Zeng Z, Li G, Xiong W, Xiang B, Yi M. Silencing AHNAK promotes nasopharyngeal carcinoma progression by upregulating the ANXA2 protein. Cell Oncol (Dordr) 2024; 47:833-850. [PMID: 37962808 DOI: 10.1007/s13402-023-00898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
PURPOSE Nasopharyngeal carcinoma (NPC) is an aggressive head and neck disease with a high incidence of distant metastases. Enlargeosomes are cytoplasmic organelles marked by, desmoyokin/AHNAK. This study aimed to evaluate the expression of AHNAK in NPC and its effect on enlargeosomes and to investigate the correlation between AHNAK expression levels and clinical NPC patient characteristics. METHODS Primary nasopharyngeal carcinoma (NPC) and NPC specimens were evaluated by analyzing public data, and immunohistochemistry. Systematic in vitro and in vivo experiments were performed using different NPC-derived cell lines and mouse models. RESULTS In this study, we detected AHNAK and Annexin A2(ANXA2), a protein coating the surface of enlargeosomes, in NPC samples. We found that AHNAK was down-regulated. Down-regulation of AHNAK was associated with poor overall survival in NPC patients. Moreover, transcription factor FOSL1-mediated transcriptional repression was responsible for the low expression of AHNAK by recruiting EZH2. Whereas Annexin A2 was upregulated in human NPC tissues. Upregulation of Annexin A2 was associated with lymph node metastasis and distant metastasis in NPC patients. Functional studies confirmed that silencing of AHNAK enhanced the growth, invasion, and metastatic properties of NPC cells both in vitro and in vivo. In terms of mechanism, loss of AHNAK led to an increase of annexin A2 protein level in NPC cells. Silencing ANXA2 restored NPC cells' migrative and invasive ability upon loss of AHNAK. CONCLUSION Here, we report AHNAK as a tumor suppressor in NPC, which may act through annexin A2 oncogenic signaling in enlargeosome, with potential implications for novel approaches to NPC treatment.
Collapse
Affiliation(s)
- Xingxing Lu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yan Mei
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Mei Yi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
3
|
Casalino L, Talotta F, Cimmino A, Verde P. The Fra-1/AP-1 Oncoprotein: From the "Undruggable" Transcription Factor to Therapeutic Targeting. Cancers (Basel) 2022; 14:cancers14061480. [PMID: 35326630 PMCID: PMC8946526 DOI: 10.3390/cancers14061480] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
The genetic and epigenetic changes affecting transcription factors, coactivators, and chromatin modifiers are key determinants of the hallmarks of cancer. The acquired dependence on oncogenic transcriptional regulators, representing a major determinant of cancer cell vulnerability, points to transcription factors as ideal therapeutic targets. However, given the unavailability of catalytic activities or binding pockets for small-molecule inhibitors, transcription factors are generally regarded as undruggable proteins. Among components of the AP-1 complex, the FOS-family transcription factor Fra-1, encoded by FOSL1, has emerged as a prominent therapeutic target. Fra-1 is overexpressed in most solid tumors, in response to the BRAF-MAPK, Wnt-beta-catenin, Hippo-YAP, IL-6-Stat3, and other major oncogenic pathways. In vitro functional analyses, validated in onco-mouse models and corroborated by prognostic correlations, show that Fra-1-containing dimers control tumor growth and disease progression. Fra-1 participates in key mechanisms of cancer cell invasion, Epithelial-to-Mesenchymal Transition, and metastatic spreading, by driving the expression of EMT-inducing transcription factors, cytokines, and microRNAs. Here we survey various strategies aimed at inhibiting tumor growth, metastatic dissemination, and drug resistance by interfering with Fra-1 expression, stability, and transcriptional activity. We summarize several tools aimed at the design and tumor-specific delivery of Fra-1/AP-1-specific drugs. Along with RNA-based therapeutics targeting the FOSL1 gene, its mRNA, or cognate regulatory circRNAs, we will examine the exploitation of blocking peptides, small molecule inhibitors, and innovative Fra-1 protein degraders. We also consider the possible caveats concerning Fra-1 inhibition in specific therapeutic contexts. Finally, we discuss a recent suicide gene therapy-based approach, aimed at selectively killing the Fra-1-overexpressing neoplastic cells.
Collapse
Affiliation(s)
- Laura Casalino
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
- Correspondence: (L.C.); (P.V.)
| | | | - Amelia Cimmino
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
| | - Pasquale Verde
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
- Correspondence: (L.C.); (P.V.)
| |
Collapse
|
4
|
Nuriding H, Wang X, Shen Y, Liu Y, Yan M. Fos-Related Antigen 1 May Cause Wnt-Fzd Signaling Pathway-Related Nephroblastoma in Children. J Biomed Nanotechnol 2022; 18:527-534. [PMID: 35484756 DOI: 10.1166/jbn.2022.3220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aimed to investigate the role of the primary Fos-related antigen 1 (Fosl-1) oncogene in nephroblastoma by studying 60 childhood nephroblastoma and 58 paraneoplastic carcinoma cases. The Fosl-1 expression was detected using immunohistochemistry. In vitro culture of nephroblastoma cells was performed by viral transfection to establish Fosl-1 overexpression and gene knockout models. Flow cytometry and nano-PCR were used to detect apoptosis and mRNA expression in related pathway genes. Immunohistochemical results showed that the positive expression of Fosl-1 in the nuclei of nephroblastoma tissue was 78%, among which metastasis rate was 61.7%; correspondingly, it was 8%, and 100% in adjacent tissues. The qPCR results indicated that MMP9, Wnt1, and Fzd1 were significantly upregulated after Fosl-1 overexpression compared with the normal embryonic tissue cells, control, and gene knockout groups (P <0.05). Fosl-1 could cause the occurrence, development, and metastasis of childhood nephroblastoma through wingless/int1/Frizzled-related signaling pathways.
Collapse
Affiliation(s)
- Hailiqiguli Nuriding
- Department of the First Internal Medicine, Pediatric Center of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, PR China
| | - Xuemei Wang
- Department of the First Internal Medicine, Pediatric Center of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, PR China
| | - Yiping Shen
- Department of Laboratory Medicine, Children's Hospital Boston, Boston, 02115, Massachusetts, United States
| | - Yu Liu
- Department of the First Internal Medicine, Pediatric Center of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, PR China
| | - Mei Yan
- Department of the First Internal Medicine, Pediatric Center of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, PR China
| |
Collapse
|
5
|
Sobolev VV, Khashukoeva AZ, Evina OE, Geppe NA, Chebysheva SN, Korsunskaya IM, Tchepourina E, Mezentsev A. Role of the Transcription Factor FOSL1 in Organ Development and Tumorigenesis. Int J Mol Sci 2022; 23:1521. [PMID: 35163444 PMCID: PMC8835756 DOI: 10.3390/ijms23031521] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/25/2022] Open
Abstract
The transcription factor FOSL1 plays an important role in cell differentiation and tumorigenesis. Primarily, FOSL1 is crucial for the differentiation of several cell lineages, namely adipocytes, chondrocytes, and osteoblasts. In solid tumors, FOSL1 controls the progression of tumor cells through the epithelial-mesenchymal transformation. In this review, we summarize the available data on FOSL1 expression, stabilization, and degradation in the cell. We discuss how FOSL1 is integrated into the intracellular signaling mechanisms and provide a comprehensive analysis of FOSL1 influence on gene expression. We also analyze the pathological changes caused by altered Fosl1 expression in genetically modified mice. In addition, we dedicated a separate section of the review to the role of FOSL1 in human cancer. Primarily, we focus on the FOSL1 expression pattern in solid tumors, FOSL1 importance as a prognostic factor, and FOSL1 perspectives as a molecular target for anticancer therapy.
Collapse
Affiliation(s)
- Vladimir V. Sobolev
- Center for Theoretical Problems in Physico-Chemical Pharmacology, Russian Academy of Sciences, 109029 Moscow, Russia; (I.M.K.); (E.T.)
| | - Asiat Z. Khashukoeva
- Federal State Autonomous Educational Institution of Higher Education, N.I. Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, 117997 Moscow, Russia;
| | - Olga E. Evina
- “JSC DK Medsi”, Medical and Diagnostics Center, 125284 Moscow, Russia;
| | - Natalia A. Geppe
- NF Filatov Clinical Institute of Children’s Health, I.M. Sechenov First MSMU, 119435 Moscow, Russia; (N.A.G.); (S.N.C.)
| | - Svetlana N. Chebysheva
- NF Filatov Clinical Institute of Children’s Health, I.M. Sechenov First MSMU, 119435 Moscow, Russia; (N.A.G.); (S.N.C.)
| | - Irina M. Korsunskaya
- Center for Theoretical Problems in Physico-Chemical Pharmacology, Russian Academy of Sciences, 109029 Moscow, Russia; (I.M.K.); (E.T.)
| | - Ekaterina Tchepourina
- Center for Theoretical Problems in Physico-Chemical Pharmacology, Russian Academy of Sciences, 109029 Moscow, Russia; (I.M.K.); (E.T.)
| | - Alexandre Mezentsev
- Center for Theoretical Problems in Physico-Chemical Pharmacology, Russian Academy of Sciences, 109029 Moscow, Russia; (I.M.K.); (E.T.)
| |
Collapse
|
6
|
Marques C, Unterkircher T, Kroon P, Oldrini B, Izzo A, Dramaretska Y, Ferrarese R, Kling E, Schnell O, Nelander S, Wagner EF, Bakiri L, Gargiulo G, Carro MS, Squatrito M. NF1 regulates mesenchymal glioblastoma plasticity and aggressiveness through the AP-1 transcription factor FOSL1. eLife 2021; 10:e64846. [PMID: 34399888 PMCID: PMC8370767 DOI: 10.7554/elife.64846] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/18/2021] [Indexed: 12/22/2022] Open
Abstract
The molecular basis underlying glioblastoma (GBM) heterogeneity and plasticity is not fully understood. Using transcriptomic data of human patient-derived brain tumor stem cell lines (BTSCs), classified based on GBM-intrinsic signatures, we identify the AP-1 transcription factor FOSL1 as a key regulator of the mesenchymal (MES) subtype. We provide a mechanistic basis to the role of the neurofibromatosis type 1 gene (NF1), a negative regulator of the RAS/MAPK pathway, in GBM mesenchymal transformation through the modulation of FOSL1 expression. Depletion of FOSL1 in NF1-mutant human BTSCs and Kras-mutant mouse neural stem cells results in loss of the mesenchymal gene signature and reduction in stem cell properties and in vivo tumorigenic potential. Our data demonstrate that FOSL1 controls GBM plasticity and aggressiveness in response to NF1 alterations.
Collapse
Affiliation(s)
- Carolina Marques
- Seve Ballesteros Foundation Brain Tumor Group, Spanish National Cancer Research CentreMadridSpain
| | | | - Paula Kroon
- Seve Ballesteros Foundation Brain Tumor Group, Spanish National Cancer Research CentreMadridSpain
| | - Barbara Oldrini
- Seve Ballesteros Foundation Brain Tumor Group, Spanish National Cancer Research CentreMadridSpain
| | - Annalisa Izzo
- Department of Neurosurgery, Faculty of Medicine FreiburgFreiburgGermany
| | - Yuliia Dramaretska
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Roberto Ferrarese
- Department of Neurosurgery, Faculty of Medicine FreiburgFreiburgGermany
| | - Eva Kling
- Department of Neurosurgery, Faculty of Medicine FreiburgFreiburgGermany
| | - Oliver Schnell
- Department of Neurosurgery, Faculty of Medicine FreiburgFreiburgGermany
| | - Sven Nelander
- Dept of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, RudbecklaboratorietUppsalaSweden
- Science for Life Laboratory, Uppsala University, RudbecklaboratorietUppsalaSweden
| | - Erwin F Wagner
- Genes, Development, and Disease Group, Spanish National Cancer Research CentreMadridSpain
- Laboratory Medicine Department, Medical University of ViennaViennaAustria
- Dermatology Department, Medical University of ViennaViennaAustria
| | - Latifa Bakiri
- Genes, Development, and Disease Group, Spanish National Cancer Research CentreMadridSpain
- Laboratory Medicine Department, Medical University of ViennaViennaAustria
| | - Gaetano Gargiulo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | | | - Massimo Squatrito
- Seve Ballesteros Foundation Brain Tumor Group, Spanish National Cancer Research CentreMadridSpain
| |
Collapse
|
7
|
IR-Surviving NSCLC Cells Exhibit Different Patterns of Molecular and Cellular Reactions Relating to the Multifraction Irradiation Regimen and p53-Family Proteins Expression. Cancers (Basel) 2021; 13:cancers13112669. [PMID: 34071477 PMCID: PMC8198560 DOI: 10.3390/cancers13112669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/06/2021] [Accepted: 05/25/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary For the first time, we demonstrated that the significant decrease in p63/p73 expression together with the absence of functional p53 could underlie an increase in the fraction of polyploid cells, transformation rates, and the glycolytic NAD(P)H production in multifraction X-ray radiation exposure (MFR)-surviving cancer cells, providing conditions for radioresistance associated with epithelial–mesenchymal transition (EMT)-like process activation. During radiation therapy (RT), the treatment dose, fractionation, and dose limits for organs at risk (OARs) do not change between patients and are still prescribed mainly based on the Tumor, Node, Metastasis (TNM) stage, performance status, and comorbidities, taking no account of the tumor biology. Our data once again emphasize that non-small cell lung cancer (NSCLC) therapy approaches should become more personalized according to RT regimen, tumor histology, and molecular status of critical proteins. Abstract Radiotherapy is a primary treatment modality for patients with unresectable non-small cell lung cancer (NSCLC). Tumor heterogeneity still poses the central question of cancer radioresistance, whether the presence of a particular cell population inside a tumor undergoing a selective outgrowth during radio- and chemotherapy give rise to metastasis and tumor recurrence. In this study, we examined the impact of two different multifraction X-ray radiation exposure (MFR) regimens, fraction dose escalation (FDE) in the split course and the conventional hypofractionation (HF), on the phenotypic and molecular signatures of four MFR-surviving NSCLC cell sublines derived from parental A549 (p53 wild-type) and H1299 (p53-null) cells, namely A549FR/A549HR, H1299FR/H1299HR cells. We demonstrate that sublines surviving different MFR regimens in a total dose of 60 Gy significantly diverge in their molecular traits related to irradiation regimen and p53 status. The observed changes regarding radiosensitivity, transformation, proliferation, metabolic activity, partial epithelial-to-mesenchymal transition (EMT) program activation and 1D confined migratory behavior (wound healing). For the first time, we demonstrated that MFR exposure led to the significant decrease in the expression of p63 and p73, the p53-family members, in p53null cells, which correlated with the increase in cell polyploidy. We could not find significant differences in FRA1 expression between parental cells and their sublines that survived after any MFR regimen regardless of p53 status. In our study, the FDE regimen probably causes partial EMT program activation in MFR-survived NSCLC cells through either Vimentin upregulation in p53null or an aberrant N-cadherin upregulation in p53wt cells. The HF regimen likely less influences the EMT activation irrespectively of the p53 status of MFR-survived NSCLC cells. Our data highlight that both MFR regimens caused overall higher cell transformation of p53null H1299FR and H1299HR cells than their parental H1299 cells. Moreover, our results indicate that the FDE regimen raised the radioresistance and transformation of MFR-surviving NSCLC cells irrespectively of their p53 status, though the HF regimen demonstrated a similar effect on p53null NSCLC cells only. Our data once again emphasize that NSCLC therapy approaches should become more personalized according to radiation therapy (RT) regimen, tumor histology, and molecular status of critical proteins.
Collapse
|
8
|
Zhang L, Guo W, Yu J, Li C, Li M, Chai D, Wang W, Deng W. Receptor-interacting protein in malignant digestive neoplasms. J Cancer 2021; 12:4362-4371. [PMID: 34093836 PMCID: PMC8176420 DOI: 10.7150/jca.57076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
A deep and comprehensive understanding of factors that contribute to cancer initiation, progression, and evolution is of essential importance. Among them, the serine/threonine and tyrosine kinase-like kinases, also known as receptor interacting proteins (RIPs) or receptor interacting protein kinases (RIPKs), is emerging as important tumor-related proteins due to its complex regulation of cell survival, apoptosis, and necrosis. In this review, we mainly review the relevance of RIP to various malignant digestive neoplasms, including esophageal cancer, gastric cancer, colorectal cancer, hepatocellular carcinoma, gallbladder cancer, cholangiocarcinoma, and pancreatic cancer. Consecutive research on RIPs and its relationship with malignant digestive neoplasms is required, as it ultimately conduces to the etiology and treatment of cancer.
Collapse
Affiliation(s)
- Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Wenyi Guo
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Jia Yu
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Chunlei Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Man Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Dongqi Chai
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| |
Collapse
|
9
|
Riege K, Kretzmer H, Sahm A, McDade SS, Hoffmann S, Fischer M. Dissecting the DNA binding landscape and gene regulatory network of p63 and p53. eLife 2020; 9:e63266. [PMID: 33263276 PMCID: PMC7735755 DOI: 10.7554/elife.63266] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
The transcription factor p53 is the best-known tumor suppressor, but its sibling p63 is a master regulator of epidermis development and a key oncogenic driver in squamous cell carcinomas (SCC). Despite multiple gene expression studies becoming available, the limited overlap of reported p63-dependent genes has made it difficult to decipher the p63 gene regulatory network. Particularly, analyses of p63 response elements differed substantially among the studies. To address this intricate data situation, we provide an integrated resource that enables assessing the p63-dependent regulation of any human gene of interest. We use a novel iterative de novo motif search approach in conjunction with extensive ChIP-seq data to achieve a precise global distinction between p53-and p63-binding sites, recognition motifs, and potential co-factors. We integrate these data with enhancer:gene associations to predict p63 target genes and identify those that are commonly de-regulated in SCC representing candidates for prognosis and therapeutic interventions.
Collapse
Affiliation(s)
- Konstantin Riege
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular GeneticsBerlinGermany
| | - Arne Sahm
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Simon S McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University BelfastBelfastUnited Kingdom
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| |
Collapse
|
10
|
Shen S, Li K, Liu Y, Liu X, Liu B, Ba Y, Xing W. Silencing lncRNA AGAP2-AS1 Upregulates miR-195-5p to Repress Migration and Invasion of EC Cells via the Decrease of FOSL1 Expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:331-344. [PMID: 32199129 PMCID: PMC7082499 DOI: 10.1016/j.omtn.2019.12.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 12/25/2022]
Abstract
The interaction of long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs has been implicated in various types of cancers, including esophageal cancer (EC). The current study aimed to investigate the role of AGAP2-AS1/miR-195-5p/Fos-like antigen-1 (FOSL1) in EC progression. The expression of AGAP2-AS1, miR-195-5p, and FOSL1 in tumor tissues isolated from EC patients and EC cell lines was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), the results of which illustrated that AGAP2-AS1 and FOSL1 were increased while miR-195-5p was reduced in EC. Next, the ectopic expression, knockdown, and reporter assay experiments were all employed to elucidate the mechanism of AGAP2-AS1/miR-195-5p/FOSL1 in the processes of EC cell proliferation, cell cycle, apoptosis, invasion, and migration as well as tumor growth. Knockdown of AGAP2-AS1 or overexpression of miR-195-5p reduced EC cell proliferation, migration, and invasion, blocked cell cycle entry, and elevated apoptosis. FOSL1 was found to be specifically targeted by miR-195-5p. AGAP2-AS1 was observed to upregulate FOSL1 by binding to miR-195-5p. Silencing of AGAP2-AS1 was observed to restrain the development of EC both in vitro and in vivo through upregulating miR-195-5p and downregulating FOSL1. Taken together, AGAP2-AS1 knockdown exercises suppressive effects on the development of EC through miR-195-5p-dependent downregulation of FOSL1. Therefore, targeting AGAP2-AS1 could be a future direction to develop a novel molecule-targeted therapeutic strategy for EC.
Collapse
Affiliation(s)
- Sining Shen
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou 450008, P.R. China.
| | - Ke Li
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou 450008, P.R. China
| | - Ying Liu
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou 450008, P.R. China
| | - Xianben Liu
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou 450008, P.R. China
| | - Baoxing Liu
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou 450008, P.R. China
| | - Yufeng Ba
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou 450008, P.R. China
| | - Wenqun Xing
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou 450008, P.R. China
| |
Collapse
|
11
|
Yun SI, Hong HK, Yeo SY, Kim SH, Cho YB, Kim KK. Ubiquitin-Specific Protease 21 Promotes Colorectal Cancer Metastasis by Acting as a Fra-1 Deubiquitinase. Cancers (Basel) 2020; 12:cancers12010207. [PMID: 31947604 PMCID: PMC7017141 DOI: 10.3390/cancers12010207] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/22/2022] Open
Abstract
Fos-related-antigen-1 (Fra-1), a member of the activator protein-1 (AP-1) transcription factor superfamily, has an essential role in cancer progress and metastasis and Fra-1 is considered a therapeutic target in metastatic cancer including metastatic colorectal cancer (mCRC). However, its regulation at protein level has not yet been clearly elucidated. We found that ubiquitin-specific protease 21 (USP21) increases Fra-1 stability by deubiquitinating Fra-1 and enhances the expression of Fra-1 target genes in colon cancer cells. We also showed that USP21 controlled Fra-1-dependent migration and invasion activities. The oncogenic property of USP21 was confirmed by a significant reduction in liver metastasis when USP21-knockdown cancer cells were injected intrasplenically into mice. Consistently, clinicopathological analysis of colorectal cancer patients revealed a correlation of USP21 expression with high-grade carcinoma and life span. These results demonstrate that USP21 enhances Fra-1 stability and AP-1 target gene expression by deubiquitinating Fra-1. Therefore, USP21 is considered an attractive therapeutic target in mCRC with high Fra-1 expression.
Collapse
Affiliation(s)
- Sun-Il Yun
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
| | - Hye Kyung Hong
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Korea;
| | - So-Young Yeo
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Korea;
| | - Seok-Hyung Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Korea;
- Samsung Medical Center, Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul 06531, Korea
- Correspondence: (S.-H.K.); (Y.B.C.); (K.K.K.); Tel.: +82-02-3410-2898 (S.-H.K.); +82-02-3410-0217 (Y.B.C.); +82-031-299-6136 (K.K.K.)
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Korea;
- Samsung Medical Center, Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul 06531, Korea
- Correspondence: (S.-H.K.); (Y.B.C.); (K.K.K.); Tel.: +82-02-3410-2898 (S.-H.K.); +82-02-3410-0217 (Y.B.C.); +82-031-299-6136 (K.K.K.)
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
- Samsung Medical Center, Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul 06531, Korea
- Correspondence: (S.-H.K.); (Y.B.C.); (K.K.K.); Tel.: +82-02-3410-2898 (S.-H.K.); +82-02-3410-0217 (Y.B.C.); +82-031-299-6136 (K.K.K.)
| |
Collapse
|
12
|
Racca AC, Prucca CG, Caputto BL. Fra-1 and c-Fos N-Terminal Deletion Mutants Impair Breast Tumor Cell Proliferation by Blocking Lipid Synthesis Activation. Front Oncol 2019; 9:544. [PMID: 31275861 PMCID: PMC6593343 DOI: 10.3389/fonc.2019.00544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Tumor cells require high rates of lipid synthesis to support membrane biogenesis for their exacerbated growth. The only two proteins known that activate phospholipid synthesis are Fra-1 and c-Fos, two members of the AP-1 family of transcription factors. These proteins that are overexpressed in human breast malignant tumors increase the rate of phospholipid synthesis at the endoplasmic reticulum through a mechanism independent of their nuclear function. The aim of this study was to inhibit breast tumor cell proliferation by modulating c-Fos and Fra-1 and regulate membrane biogenesis by controlling lipid synthesis rates. The molecular mechanism by which Fra-1 and c-Fos activate phospholipid synthesis was examined. Both proteins physically associate with the rate limiting enzyme CDP-DAG synthase through their N-terminus domain and activate it through their basic domain; neither protein associates to or activates the enzyme phosphatidylinositol synthase as determined through in vitro enzymatic reactions and FRET experiments. The N-terminus domain of both proteins act as negative dominant peptides that physically associate with CDP-DAG synthase but do not activate it. Proliferation of MDA-MB231 and 4T1 cells was impaired in vitro after inducing them to proliferate in the presence of the negative dominant peptides derived from Fra-1 and c-Fos. When tumors generated in Balb/c mice with the breast tumor cell line 4T1 were treated with these negative dominant peptides, a significant reduction in tumor growth was observed. Consequently, these Fra-1 and c-Fos negative dominant peptides can be exploited as a new therapeutic strategy to impair breast tumor cell proliferation.
Collapse
Affiliation(s)
- Ana Cristina Racca
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - César Germán Prucca
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Beatriz Leonor Caputto
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
13
|
Yang D, Xiao C, Long F, Wu W, Huang M, Qu L, Liu X, Zhu Y. Fra‐1 plays a critical role in angiotensin II—induced vascular senescence. FASEB J 2019; 33:7603-7614. [DOI: 10.1096/fj.201801671rrrr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Di Yang
- Department of PharmacologyShanghai Key Laboratory of Bioactive Small MoleculesSchool of PharmacyFudan UniversityShanghaiChina
- State Key Laboratory of Quality Research in Chinese MedicineSchool of PharmacyMacau University of Science and TechnologyMacauChina
| | - Chenxi Xiao
- Department of PharmacologyShanghai Key Laboratory of Bioactive Small MoleculesSchool of PharmacyFudan UniversityShanghaiChina
| | - Fen Long
- Department of PharmacologyShanghai Key Laboratory of Bioactive Small MoleculesSchool of PharmacyFudan UniversityShanghaiChina
| | - Weijun Wu
- Department of PharmacologyShanghai Key Laboratory of Bioactive Small MoleculesSchool of PharmacyFudan UniversityShanghaiChina
| | - Mengwei Huang
- Department of PharmacologyShanghai Key Laboratory of Bioactive Small MoleculesSchool of PharmacyFudan UniversityShanghaiChina
| | - Lefeng Qu
- Department of Vascular SurgeryChangzheng HospitalSecond Military Medical UniversityShanghaiChina
| | - Xinhua Liu
- Department of PharmacologyShanghai Key Laboratory of Bioactive Small MoleculesSchool of PharmacyFudan UniversityShanghaiChina
| | - Yizhun Zhu
- Department of PharmacologyShanghai Key Laboratory of Bioactive Small MoleculesSchool of PharmacyFudan UniversityShanghaiChina
- State Key Laboratory of Quality Research in Chinese MedicineSchool of PharmacyMacau University of Science and TechnologyMacauChina
| |
Collapse
|
14
|
Cheng YF, Wang XM, Yan M, Xiao JG. [Expression of the Fra-1 gene in the peripheral blood of children with Wilms tumor]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:161-164. [PMID: 30782279 PMCID: PMC7389833 DOI: 10.7499/j.issn.1008-8830.2019.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To study the expression of the Fra-1 gene in the peripheral blood of children with Wilms tumor and its clinical significance. METHODS Fifty children pathologically diagnosed with Wilms tumor between December 2012 and January 2018 were enrolled as the case group, and 40 healthy children for physical examination were selected as the control group. Among the 45 children with Wilms tumor who were followed up, the children with continuous remission were included in the ideal efficacy group (n=33), and those with recurrence, metastasis or death were included in the poor efficacy group (n=12). Peripheral blood samples were collected from all subjects. Quantitative real-time PCR was used to measure the mRNA expression of Fra-1. RESULTS The case group had significantly higher mRNA expression of Fra-1 in peripheral blood than the control group (P<0.05). In the case group, Fra-1 mRNA expression was significantly different between the individuals with and without distant metastasis and those with different TNM stages (P<0.05), but was not significantly different between the individuals with different sexes, ages, tumor diabetes, tumor locations and alpha-fetoprotein levels (P>0.05). The mRNA expression of Fra-1 was significantly lower in the ideal efficacy group than in the poor efficacy group (P<0.05). CONCLUSIONS Fra-1 may be involved in the development of Wilms tumor and plays a certain role in its development, invasion and metastasis, but the mechanism remains to be further studied.
Collapse
Affiliation(s)
- Yong-Feng Cheng
- Department of Pediatrics, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China.
| | | | | | | |
Collapse
|
15
|
Saitoh Y, Bureta C, Sasaki H, Nagano S, Maeda S, Furukawa T, Taniguchi N, Setoguchi T. The histone deacetylase inhibitor LBH589 inhibits undifferentiated pleomorphic sarcoma growth via downregulation of FOS-like antigen 1. Mol Carcinog 2018; 58:234-246. [PMID: 30303565 DOI: 10.1002/mc.22922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/27/2018] [Accepted: 10/05/2018] [Indexed: 12/31/2022]
Abstract
Undifferentiated pleomorphic sarcoma (UPS) is the second most frequent soft tissue sarcoma. Because of its resistance to chemotherapy, UPS patients are treated with surgical resection and complementary radiotherapy. However, since standard chemotherapy has not been established, unresectable or metastatic cases result in a poor prognosis. Therefore, the identification of a more effective therapy for UPS patients is needed. The development and progression of malignant tumors involve epigenetic alterations, and histone deacetylases (HDAC) have become a promising chemotherapeutic target. In this study, we investigated the potential effects and mechanisms of an HDAC inhibitor, LBH589, in UPS cells. We confirmed that LBH589 exhibits potent antitumor activities in four human UPS cell lines (GBS-1, TNMY-1, Nara-F, and Nara-H) and IC50 values ranged from 7 to 13 nM. A mouse xenograft model showed that LBH589 treatment effectively suppressed tumor growth. FACS analysis showed that LBH589 induced apoptosis and G2/M cell cycle arrest. Among apoptosis-related proteins, the expressions of Bcl-2 and Bcl-xL were decreased and the expression of Bak and Bim increased. Among cell cycle-related proteins, reductions of CDK1, p-CDK1, cyclin B1, Aurora A, and Aurora B were observed after LBH589 treatment. RNA microarray identified the FOS-like antigen 1 (FOSL1) gene as a downregulated gene in response to LBH589 in UPS cells. While knockdown of FOSL1 decreased UPS cell proliferation, overexpression induced cell proliferation. Our results show that LBH589 could be a promising chemotherapeutic agent in the treatment of UPS and downregulation of the FOSL1 gene could be the new molecular target of UPS treatment.
Collapse
Affiliation(s)
- Yoshinobu Saitoh
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Costansia Bureta
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiromi Sasaki
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Satoshi Nagano
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shingo Maeda
- Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tatsuhiko Furukawa
- Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Noboru Taniguchi
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takao Setoguchi
- Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
16
|
Sun Y, Zhai L, Ma S, Zhang C, Zhao L, Li N, Xu Y, Zhang T, Guo Z, Zhang H, Xu P, Zhao X. Down-regulation of RIP3 potentiates cisplatin chemoresistance by triggering HSP90-ERK pathway mediated DNA repair in esophageal squamous cell carcinoma. Cancer Lett 2018; 418:97-108. [DOI: 10.1016/j.canlet.2018.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/30/2017] [Accepted: 01/08/2018] [Indexed: 11/29/2022]
|
17
|
Endo S, Fujita M, Yamada S, Imadome K, Nakayama F, Isozaki T, Yasuda T, Imai T, Matsubara H. Fra‑1 enhances the radioresistance of colon cancer cells to X‑ray or C‑ion radiation. Oncol Rep 2018; 39:1112-1118. [PMID: 29399696 PMCID: PMC5802033 DOI: 10.3892/or.2018.6223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
Fos-related antigen 1 (Fra-1) has roles in a variety of cell functions, including cell proliferation, differentiation, transformation, and invasiveness, and it is upregulated in various cancers. We investigated the role of Fra-1 in cellular radioresistance using cells of two human colorectal cancer cell lines, SW620 and SW480. We found that SW620 cells are more sensitive than SW480 cells at doses greater than 6 Gy for X-ray or 3 Gy for carbon-ion (C-ion) radiation. Fra-1 expression tended to be decreased by the radiation in a dose-dependent manner in both cell lines; of note, a greater reduction of Fra-1 expression was observed in SW620 cells, especially at 6 Gy of X-ray or 3 Gy of C-ion irradiation, than in SW480 cells, indicating a possible association between Fra-1 downregulation and cellular radiosensitivity. Knockdown of Fra-1 in SW480 cells significantly increased the radiosensitivity to X-ray or C-ion radiation. On the other hand, overexpression of Fra-1 in SW620 cells significantly enhanced the radioresistance to C-ion radiation, suggesting a role of Fra-1 in radioresistance. Furthermore, we found that downregulation of Fra-1 protein in irradiated SW620 cells was regulated via protein degradation through a proteasome-dependent pathway. Overall, our results indicate a role of Fra-1 in radioresistance to both X-ray and C-ion radiation for colorectal cancer cell lines.
Collapse
Affiliation(s)
- Satoshi Endo
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260‑8670, Japan
| | - Mayumi Fujita
- Department of Basic Medical Sciences for Radiation Damage, National Institutes for Quantum and Radiological Science and Technology, Japan
| | - Shigeru Yamada
- Hospital of The National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Japan
| | - Kaori Imadome
- Department of Basic Medical Sciences for Radiation Damage, National Institutes for Quantum and Radiological Science and Technology, Japan
| | - Fumiaki Nakayama
- Department of Basic Medical Sciences for Radiation Damage, National Institutes for Quantum and Radiological Science and Technology, Japan
| | - Tetsuro Isozaki
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260‑8670, Japan
| | - Takeshi Yasuda
- Department of Basic Medical Sciences for Radiation Damage, National Institutes for Quantum and Radiological Science and Technology, Japan
| | - Takashi Imai
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260‑8670, Japan
| |
Collapse
|
18
|
FRA1 promotes squamous cell carcinoma growth and metastasis through distinct AKT and c-Jun dependent mechanisms. Oncotarget 2018; 7:34371-83. [PMID: 27144339 PMCID: PMC5085162 DOI: 10.18632/oncotarget.9110] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/11/2016] [Indexed: 12/14/2022] Open
Abstract
FRA1 (Fos-like antigen 1) is highly expressed in many epithelial cancers including squamous cell carcinoma of the skin (cSCC) and head and neck (HNSCC). However, the functional importance and the mechanisms mediating FRA1 function in these cancers are not fully understood. Here, we demonstrate that FRA1 gene silencing in HNSCC and cSCC cells resulted in two consequences – impaired cell proliferation and migration. FRA1 regulation of cell growth was distinct from that of c-Jun, a prominent Jun group AP-1 factor. While c-Jun was required for the expression of the G1/S phase cell cycle promoter CDK4, FRA1 was essential for AKT activation and AKT-dependent expression of CyclinB1, a molecule required for G2-M progression. Exogenous expression of a constitutively active form of AKT rescued cancer cell growth defect caused by FRA1-loss. Additionally, FRA1 knockdown markedly slowed cell adhesion and migration, and conversely expression of an active FRA1 mutant (FRA1DD) expedited these processes in a JNK/c-Jun-dependent manner. Through protein and ChIP-PCR analyses, we identified KIND1, a cytoskeletal regulator of the cell adhesion molecule β1-integrin, as a novel FRA1 transcriptional target. Restoring KIND1 expression rescued migratory defects induced by FRA1 loss. In agreement with these in vitro data, HNSCC cells with FRA1 loss displayed markedly reduced rates of subcutaneous tumor growth and pulmonary metastasis. Together, these results indicate that FRA1 promotes cancer growth through AKT, and enhances cancer cell migration through JNK/c-Jun, pinpointing FRA1 as a key integrator of JNK and AKT signaling pathways and a potential therapeutic target for cSCC and HNSCC.
Collapse
|
19
|
Tan B, Wang J, Song Q, Wang N, Jia Y, Wang C, Yao B, Liu Z, Zhang X, Cheng Y. Prognostic value of PAX9 in patients with esophageal squamous cell carcinoma and its prediction value to radiation sensitivity. Mol Med Rep 2017; 16:806-816. [PMID: 28560390 PMCID: PMC5482201 DOI: 10.3892/mmr.2017.6626] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 03/27/2017] [Indexed: 12/25/2022] Open
Abstract
Abnormal paired box 9 (PAX9) expression is associated with tumorigenesis, cancer development, invasion and metastasis. The present study investigated the prognostic significance of PAX9 in esophageal squamous cell carcinoma (ESCC) and its role in predicting radiation sensitivity. A total of 52.8% (121/229) ESCC tissues were positive for PAX9. The 1-, 3- and 5-year disease-free survival (DFS) rates were 72.2, 35.2 and 5.6%, respectively, and the overall survival (OS) rates were and 86.1, 44.4, and 23.1%, respectively, in PAX9-positive tumors. In PAX9-negative tumors, the one-, three- and five-year DFS rates were 76.9, 47.9 and 24.0%, and the OS rates were 90.9, 57.9 and 38.8%, respectively. Univariate analysis revealed that PAX9, differentiation, T stage, lymph node metastasis, and tumor-node-metastasis stage were associated with OS. Multivariate analysis of DFS and OS revealed that the hazard ratios for PAX9 were 0.624 (95% CI: 0.472–0.869, P=0.004) and 0.673 (95% CI: 0.491–0.922, P=0.014), respectively. Patients that received adjuvant therapy exhibited significant differences in the 5-year DFS (P<0.001) and OS (P<0.001). PAX9-positive ESCC patients who received post-surgery radiotherapy had a significantly greater 5-year DFS (P=0.011) and OS (P=0.009) than patients who received surgery only. Thus, PAX9 may be an independent prognostic factor for the surgical treatment of ESCC and a possible predictor of radiation sensitivity.
Collapse
Affiliation(s)
- Bingxu Tan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qingxu Song
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Nana Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yibin Jia
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Cong Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bin Yao
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhulong Liu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaomei Zhang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
20
|
Liu W, Tian T, Liu L, Du J, Gu Y, Qin N, Yan C, Wang Z, Dai J, Fan Z. A functional SNP rs1892901 in FOSL1 is associated with gastric cancer in Chinese population. Sci Rep 2017; 7:41737. [PMID: 28169308 PMCID: PMC5294397 DOI: 10.1038/srep41737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022] Open
Abstract
FOSL1 (FOS like antigen 1) is one kind of proto-oncogene, and may play a vital role in carcinogenesis of multiple cancers. However, studies about the relationship between SNPs in FOSL1 and gastric cancer are still lacking. Thus, we investigated the association of seven SNPs in FOSL1 with gastric cancer using case-control design in a two-stage strategy (Screening stage: 1,140 gastric cancer cases and 1,547 controls; Replication stage: 1,006 cases and 2,273 controls). We found that rs1892901 was significantly associated with increased risk of gastric cancer in additive model (adjusted OR = 1.25, 95%CI: 1.06–1.47, P = 0.008) in first stage. Following replication results revealed that the relationship between rs1892901 and gastric cancer risk was consistent with our primary results. In silico analysis showed that rs1892901 might alter multiple regulatory motifs, disturb protein binding, and affect the expression of FOSL1 and other important gastric cancer-related genes such as EGR1, CHD, EP300, FOS, JUN and FOSL2. Our findings indicated that functional SNP rs1892901 in FOSL1 might affect the expression of FOSL1, and ultimately increase the risk of gastric cancer. Further functional studies and large-scale population studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Wenjie Liu
- Digestive Endoscopy Center, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, Nanjing 210029, China
| | - Tian Tian
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nantong University, Nantong 226019, China
| | - Li Liu
- Digestive Endoscopy Center, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, Nanjing 210029, China
| | - Jiangbo Du
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yayun Gu
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Na Qin
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Caiwang Yan
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhaoming Wang
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Zhining Fan
- Digestive Endoscopy Center, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, Nanjing 210029, China
| |
Collapse
|
21
|
Toyozumi T, Hoshino I, Takahashi M, Usui A, Akutsu Y, Hanari N, Murakami K, Kano M, Akanuma N, Suitoh H, Matsumoto Y, Sekino N, Komatsu A, Matsubara H. Fra-1 Regulates the Expression of HMGA1, Which is Associated with a Poor Prognosis in Human Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 2016; 24:3446-3455. [PMID: 27882471 DOI: 10.1245/s10434-016-5666-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND The expression of Fos-related antigen 1 (Fra-1) affects tumor progression, migration, and invasion. In this study, we identified the genes regulated by Fra-1 in esophageal squamous cell carcinoma (ESCC). METHODS We constructed Fra-1 knockdown models via the transfection of small interfering RNA (siRNA) into ESCC cell lines (TE10, TE11). The expression levels of the genes in the knockdown models were analyzed using a microarray and a Biobase Upstream Analysis, while the expression levels of the candidate genes in the primary tumors of surgical specimens obtained from ESCC patients were determined using real-time polymerase chain reaction (PCR) and immunohistochemical staining. The clinicopathological features were then analyzed. RESULTS The Biobase Upstream Analysis showed the high-mobility-group protein-1 (HMGA1) to be a significant gene regulated by Fra-1. Actual binding of Fra-1 to the promotor region of HMGA1 was revealed in subsequent chromatin immunoprecipitation PCR experiments. Patients with a positive HMGA1 expression had a poor prognosis, and a multivariate analysis demonstrated a positive HMGA1 expression to be a significant independent prognostic factor. CONCLUSION HMGA1 is regulated by Fra-1 in ESCC, and the HMGA1 expression is significantly associated with a poor prognosis in ESCC patients. Downregulation of the HMGA1 expression may become a practical treatment strategy against ESCC in the future.
Collapse
Affiliation(s)
- Takeshi Toyozumi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Isamu Hoshino
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Masahiko Takahashi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akihiro Usui
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasunori Akutsu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoyuki Hanari
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kentaro Murakami
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoki Akanuma
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Suitoh
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasunori Matsumoto
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nobuhumi Sekino
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Aki Komatsu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
22
|
Matsumoto Y, Kano M, Akutsu Y, Hanari N, Hoshino I, Murakami K, Usui A, Suito H, Takahashi M, Otsuka R, Xin H, Komatsu A, Iida K, Matsubara H. Quantification of plasma exosome is a potential prognostic marker for esophageal squamous cell carcinoma. Oncol Rep 2016; 36:2535-2543. [PMID: 27599779 PMCID: PMC5055211 DOI: 10.3892/or.2016.5066] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022] Open
Abstract
Exosomes play important roles in cancer progression. Although its contents (e.g., proteins and microRNAs) have been focused on in cancer research, particularly as potential diagnostic markers, the exosome behavior and methods for exosome quantification remain unclear. In the present study, we analyzed the tumor-derived exosome behavior and assessed the quantification of exosomes in patient plasma as a biomarker for esophageal squamous cell carcinoma (ESCC). A CD63-GFP expressing human ESCC cell line (TE2-CD63-GFP) was made by transfection, and mouse subcutaneous tumor models were established. Fluorescence imaging was performed on tumors and plasma exosomes harvested from mice. GFP-positive small vesicles were confirmed in the plasma obtained from TE2-CD63-GFP tumor-bearing mice. Patient plasma was collected in Chiba University Hospital (n=86). Exosomes were extracted from 100 µl of the plasma and quantified by acetylcholinesterase (AChE) activity. The relationship between exosome quantification and the patient clinical characteristics was assessed. The quantification of exosomes isolated from the patient plasma revealed that esophageal cancer patients (n=66) expressed higher exosome levels than non-malignant patients (n=20) (P=0.0002). Although there was no correlation between the tumor progression and the exosome levels, exosome number was the independent prognostic marker and low levels of exosome predicted a poor prognosis (P=0.03). In conclusion, exosome levels may be useful as an independent prognostic factor for ESCC patients.
Collapse
Affiliation(s)
- Yasunori Matsumoto
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Yasunori Akutsu
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Naoyuki Hanari
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Isamu Hoshino
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Kentaro Murakami
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Akihiro Usui
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Hiroshi Suito
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Masahiko Takahashi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Ryota Otsuka
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Hu Xin
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Aki Komatsu
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Keiko Iida
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| |
Collapse
|
23
|
Dong W, Yao C, Teng X, Chai J, Yang X, Li B. MiR-140-3p suppressed cell growth and invasion by downregulating the expression of ATP8A1 in non-small cell lung cancer. Tumour Biol 2015; 37:2973-85. [PMID: 26415732 DOI: 10.1007/s13277-015-3452-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/10/2015] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) as a class of small noncoding RNA molecules regulate the expression of targeted gene. The dysregulation of microRNAs is reported to be involved in carcinogenesis and tumor progression. Here, we identified miR-140-3p as a downregulated microRNA in most cancer tissues including lung cancer tissues, compared with their normal counterparts. MiR-140-3p was observed to perform its tumor suppressor function via its inhibition on cell growth, migration and invasion but its induction of cell apoptosis. Furthermore, the growth of non-small-cell lung cancer (NSCLC) cells in nude mouse models were suppressed by overexpression of miR-140-3p. ATP8A1 was demonstrated as a novel direct target of miR-140-3p using a luciferase assay. The increased level of intracellular ATP8A1 protein attenuated the inhibitor role of miR-140-3p in the growth and mobility of NSCLC cell. A regulation mechanism of miR-140-3p for the development and progression of NSCLC through downregulating the ATP8A1 expression was first discovered in the present study.
Collapse
Affiliation(s)
- Wei Dong
- Shandong University School of Medicine, 44# Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Chunping Yao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, 440# Jiyan Road, Jinan, 250117, Shandong, People's Republic of China
| | - Xuepeng Teng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, 440# Jiyan Road, Jinan, 250117, Shandong, People's Republic of China
| | - Jie Chai
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, 440# Jiyan Road, Jinan, 250117, Shandong, People's Republic of China
| | - Xinhua Yang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, 440# Jiyan Road, Jinan, 250117, Shandong, People's Republic of China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, 440# Jiyan Road, Jinan, 250117, Shandong, People's Republic of China.
| |
Collapse
|
24
|
Dhillon AS, Tulchinsky E. FRA-1 as a driver of tumour heterogeneity: a nexus between oncogenes and embryonic signalling pathways in cancer. Oncogene 2015; 34:4421-8. [PMID: 25381818 PMCID: PMC4351906 DOI: 10.1038/onc.2014.374] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/02/2014] [Accepted: 10/02/2014] [Indexed: 12/12/2022]
Abstract
Tumour heterogeneity is a major factor undermining the success of therapies targeting metastatic cancer. Two major theories are thought to explain the phenomenon of heterogeneity in cancer--clonal evolution and cell plasticity. In this review, we examine a growing body of work implicating the transcription factor FOS-related antigen 1 (FRA-1) as a central node in tumour cell plasticity networks, and discuss mechanisms regulating its activity in cancer cells. We also discuss evidence from the FRA-1 perspective supporting the notion that clonal selection and cell plasticity represent two sides of the same coin. We propose that FRA-1-overexpressing clones featuring high plasticity undergo positive selection during consecutive stages of multistep tumour progression. This model underscores a potential mechanism through which tumour cells retaining elevated levels of plasticity acquire a selective advantage over other clonal populations within a tumour.
Collapse
Affiliation(s)
- A S Dhillon
- Research Division, Peter MacCallum Cancer Center, St Andrews Place, East Melbourne, Melbourne, Victoria 3002, Australia
| | - E Tulchinsky
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK
| |
Collapse
|
25
|
Li B, Wan Z, Huang G, Huang Z, Zhang X, Liao D, Luo S, He Z. Mitogen- and stress-activated Kinase 1 mediates Epstein-Barr virus latent membrane protein 1-promoted cell transformation in nasopharyngeal carcinoma through its induction of Fra-1 and c-Jun genes. BMC Cancer 2015; 15:390. [PMID: 25958199 PMCID: PMC4434874 DOI: 10.1186/s12885-015-1398-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/29/2015] [Indexed: 01/07/2023] Open
Abstract
Background Mitogen- and Stress-Activated Kinase 1 (MSK1) is a nuclear kinase that serves as active link between extracellular signals and the primary response of gene expression. However, the involvement of MSK1 in malignant transformation and cancer development is not well understood. In this study, we aimed to explore the role of MSK1 in Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1)-promoted carcinogenesis of nasopharyngeal carcinoma (NPC). Methods The level of MSK1 phosphorylation at Thr581 was detected by the immunohistochemical analysis in NPC tissues and normal nasopharynx tissues, and its correlation with LMP1 was analyzed in NPC tissues and cell lines. Using MSK1 inhibitor H89 or small interfering RNA (siRNA)-MSK1, the effects of MSK1 on LMP1-promoted CNE1 cell proliferation and transformation were evaluated by CCK-8 assay, flow cytometry and focus-forming assay respectively. Furthermore, the regulatory role of MSK1-mediated histone H3 phosphorylation at Ser10 on the promoter activity and expression of Fra-1 or c-Jun was determined by reporter gene assay and western blotting analysis. Results Immunohistochemical analysis revealed that the level of MSK1 phosphorylation at Thr581 was significantly higher in the poorly differentiated NPC tissues than that in normal nasopharynx tissues (P < 0.001). Moreover, high level of phosphorylated MSK1 was positively correlated with the expression of LMP1 in NPC tissues (r = 0.393, P = 0.002) and cell lines. MSK1 inhibitor H89 or knockdown of MSK1 by siRNA dramatically suppressed LMP1-promoted CNE1 cell proliferation, which was associated with the induction of cell cycle arrest at G0/G1 phase. In addition, the anchorage-independent growth promoted by LMP1 was blocked in MSK1 knockdown cells. When the activity or expression of MSK1 was inhibited, LMP1-induced promoter activities of Fra-1 and c-Jun as well as their protein levels were greatly reduced. It was found that only H3 WT, but not mutant H3 S10A, dramatically increased LMP1 induction of Fra-1 and c-Jun genes compared with mock cells. Conclusion Increased MSK1 activity is critically important for LMP1-promoted cell proliferation and transformation in NPC, which may be correlated with its induction of Fra-1 and c-Jun through phosphorylation of histone H3 at Ser10.
Collapse
Affiliation(s)
- Binbin Li
- Department of Pathophysiology, Guangdong Medical College, Dongguan, Guangdong, 523808, China. .,Key Laboratory for Medical Diagnostics of Guangdong Province, Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, Guangdong, 523808, China.
| | - Zheng Wan
- Key Laboratory for Medical Diagnostics of Guangdong Province, Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, Guangdong, 523808, China.
| | - Guoliang Huang
- Key Laboratory for Medical Diagnostics of Guangdong Province, Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, Guangdong, 523808, China.
| | - Zunnan Huang
- Key Laboratory for Medical Diagnostics of Guangdong Province, Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, Guangdong, 523808, China.
| | - Xiangning Zhang
- Department of Pathophysiology, Guangdong Medical College, Dongguan, Guangdong, 523808, China.
| | - Dan Liao
- Department of Pathophysiology, Guangdong Medical College, Dongguan, Guangdong, 523808, China.
| | - Shengqun Luo
- Department of Pathophysiology, Guangdong Medical College, Dongguan, Guangdong, 523808, China.
| | - Zhiwei He
- Department of Pathophysiology, Guangdong Medical College, Dongguan, Guangdong, 523808, China. .,Key Laboratory for Medical Diagnostics of Guangdong Province, Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, Guangdong, 523808, China.
| |
Collapse
|
26
|
Oliveira-Ferrer L, Kürschner M, Labitzky V, Wicklein D, Müller V, Lüers G, Schumacher U, Milde-Langosch K, Schröder C. Prognostic impact of transcription factor Fra-1 in ER-positive breast cancer: contribution to a metastatic phenotype through modulation of tumor cell adhesive properties. J Cancer Res Clin Oncol 2015; 141:1715-26. [PMID: 25666264 DOI: 10.1007/s00432-015-1925-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE The transcription factor Fos-related antigen-1 (Fra-1) has been described to affect the morphology, motility and invasive potential of breast cancer cells. Since tumor cell adhesion plays an essential role in the metastatic process, especially for extravasation from blood vessels, we investigated the influence of Fra-1 on breast cancer cell interactions with the endothelium. METHODS Using Fra-1-overexpressing MCF7 [weakly invasive, estrogen receptor (ER)-positive] and MDA MB231 (strongly invasive, ER-negative) cells, we performed dynamic cell flow adhesion assays on surfaces coated with E-selectin or with human pulmonary microvascular endothelial cells. RESULTS We found a significant increased adhesion of Fra-1-overexpressing MCF7 cells to E-selectin but also to activate endothelial cells, whereas the MDA MB231 cell line showed moderate enhanced cell rolling and tethering on both coated surfaces. These different adhesion behaviors corresponded to an up-regulation of various adhesion-related proteins such as CD44 and integrin α5 in Fra-1-overexpressing MCF7 cells measured by microarray analysis and flow cytometry in comparison with no deregulation of key adhesion molecules observed in Fra-1-overexpressing MDA MB231 cells. In line with these results and based on cDNA microarray data of breast cancer patients (n = 197), high Fra-1 expression significantly correlates with shorter overall survival and higher rate of lung metastasis in ER-positive breast cancer patients (n = 130), but has no impact on the prognosis of patients with ER-negative tumors. CONCLUSION Thus, in addition to its pro-invasive and pro-migratory effect, Fra-1 might influence the metastatic potential of breast cancer cells by changing the expression of adhesion molecules, resulting in increased adherence to endothelial cells under flow conditions.
Collapse
Affiliation(s)
- L Oliveira-Ferrer
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Bldg. N27, 20246, Hamburg, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang AH, Liu Y, Wang B, He YX, Fang YX, Yan YP. Epidemiological studies of esophageal cancer in the era of genome-wide association studies. World J Gastrointest Pathophysiol 2014; 5:335-343. [PMID: 25133033 PMCID: PMC4133530 DOI: 10.4291/wjgp.v5.i3.335] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/17/2014] [Accepted: 06/03/2014] [Indexed: 02/06/2023] Open
Abstract
Esophageal cancer (EC) caused about 395000 deaths in 2010. China has the most cases of EC and EC is the fourth leading cause of cancer death in China. Esophageal squamous cell carcinoma (ESCC) is the predominant histologic type (90%-95%), while the incidence of esophageal adenocarcinoma (EAC) remains extremely low in China. Traditional epidemiological studies have revealed that environmental carcinogens are risk factors for EC. Molecular epidemiological studies revealed that susceptibility to EC is influenced by both environmental and genetic risk factors. Of all the risk factors for EC, some are associated with the risk of ESCC and others with the risk of EAC. However, the details and mechanisms of risk factors involved in the process for EC are unclear. The advanced methods and techniques used in human genome studies bring a great opportunity for researchers to explore and identify the details of those risk factors or susceptibility genes involved in the process of EC. Human genome epidemiology is a new branch of epidemiology, which leads the epidemiology study from the molecular epidemiology era to the era of genome wide association studies (GWAS). Here we review the epidemiological studies of EC (especially ESCC) in the era of GWAS, and provide an overview of the general risk factors and those genomic variants (genes, SNPs, miRNAs, proteins) involved in the process of ESCC.
Collapse
|
28
|
MicroRNA-133a regulates the mRNAs of two invadopodia-related proteins, FSCN1 and MMP14, in esophageal cancer. Br J Cancer 2013; 110:189-98. [PMID: 24196787 PMCID: PMC3887287 DOI: 10.1038/bjc.2013.676] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/13/2013] [Accepted: 10/04/2013] [Indexed: 01/01/2023] Open
Abstract
Background: FSCN1 and matrix metalloproteinase 14 (MMP14) are both invadopodia-related proteins. We herein elucidate the tumourigenicity of these proteins and identify novel therapeutic agents in esophageal squamous cell carcinoma (ESCC). Methods: FSCN1 and MMP14 were evaluated by immunohistochemistry and quantitative PCR, and microRNA (miR)-133a was also evaluated by PCR in surgical ESCC specimens. The roles of FSCN1, MMP14 and miR-133a were established in ESCC cells. Results: The expression of FSCN1 or MMP14 was an independent poor prognostic factor according to a multivariate analysis of immunohistochemistry, and their co-expression correlated with the poorest overall survival (OS) out of all the examined factors. Additionally, their mRNAs significantly correlated and both inversely correlated with miR-133a in surgical specimens. Transfection of a miR-133a mimic decreased the mRNA and protein levels of both FSCN1 and MMP14 in ESCC cells. The knockdown of FSCN1 or MMP14 and transfection of a miR-133a mimic inhibited the proliferation and invasion of ESCC cells. Patients with a lower miR-133a expression have a significantly poorer OS than those with a higher expression. Conclusion: The combined expression of FSCN1 and MMP14 is associated with a poor prognosis, and miR-133a, which regulates their mRNAs, can serve as a strong tumour suppressor of ESCC.
Collapse
|
29
|
MicroRNA-19a-3p inhibits breast cancer progression and metastasis by inducing macrophage polarization through downregulated expression of Fra-1 proto-oncogene. Oncogene 2013; 33:3014-23. [PMID: 23831570 DOI: 10.1038/onc.2013.258] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/22/2013] [Accepted: 04/29/2013] [Indexed: 12/11/2022]
Abstract
One of the hallmarks of malignancy is the polarization of tumor-associated macrophages (TAMs) from a pro-immune (M1-like) phenotype to an immune-suppressive (M2-like) phenotype. However, the molecular basis of the process is still unclear. MicroRNA (miRNA) comprises a group of small, non-coding RNAs that are broadly expressed by a variety of organisms and are involved in cell behaviors such as suppression or promotion of tumorigenesis. Here, we demonstrate that miR-19a-3p, broadly conserved among vertebrates, was downregulated in RAW264.7 macrophage cells of the M2 phenotype in conditoned medium of 4T1 mouse breast tumor cells. This downregulation correlated with an increased expression of the Fra-1 gene, which was reported to act as a pro-oncogene by supporting the invasion and progression of breast tumors. We found significant upregulation of miR-19a-3p in RAW264.7 macrophages after transfection with a miR-19a-3p mimic that resulted in a significant suppression of the expression of this gene. In addition, we could measure the activity of binding between miR-19a-3p and Fra-1 with a psiCHECK luciferase reporter system. Further, transfection of RAW264.7 macrophage cells with the miR-19a-3p mimic decreased the expression of the Fra-1 downstream genes VEGF, STAT3 and pSTAT3. Most importantly, the capacity of 4T1 breast tumor cells to migrate and invade was impaired in vivo by the intratumoral injection of miR-19a-3p. Taken together, these findings indicate that miR-19a-3p is capable of downregulating the M2 phenotype in M2 macrophages and that the low expression of this miRNA has an important role in the upregulation of Fra-1 expression and induction of M2 macrophage polarization.
Collapse
|
30
|
Identification of a pharmacologically tractable Fra-1/ADORA2B axis promoting breast cancer metastasis. Proc Natl Acad Sci U S A 2013; 110:5139-44. [PMID: 23483055 DOI: 10.1073/pnas.1222085110] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Metastasis confronts clinicians with two major challenges: estimating the patient's risk of metastasis and identifying therapeutic targets. Because they are key signal integrators connecting cellular processes to clinical outcome, we aimed to identify transcriptional nodes regulating cancer cell metastasis. Using rodent xenograft models that we previously developed, we identified the transcription factor Fos-related antigen-1 (Fra-1) as a key coordinator of metastasis. Because Fra-1 often is overexpressed in human metastatic breast cancers and has been shown to control their invasive potential in vitro, we aimed to assess the implication and prognostic significance of the Fra-1-dependent genetic program in breast cancer metastasis and to identify potential Fra-1-dependent therapeutic targets. In several in vivo assays in mice, we demonstrate that stable RNAi depletion of Fra-1 from human breast cancer cells strongly suppresses their ability to metastasize. These results support a clinically important role for Fra-1 and the genetic program it controls. We show that a Fra-1-dependent gene-expression signature accurately predicts recurrence of breast cancer. Furthermore, a synthetic lethal drug screen revealed that antagonists of the adenosine receptor A2B (ADORA2B) are preferentially toxic to breast tumor cells expressing Fra-1. Both RNAi silencing and pharmacologic blockade of ADORA2B inhibited filopodia formation and invasive activity of breast cancer cells and correspondingly reduced tumor outgrowth in the lungs. These data show that Fra-1 activity is causally involved in and is a prognostic indicator of breast cancer metastasis. They suggest that Fra-1 activity predicts responsiveness to inhibition of pharmacologically tractable targets, such as ADORA2B, which may be used for clinical interference of metastatic breast cancer.
Collapse
|
31
|
Motrich RD, Castro GM, Caputto BL. Old players with a newly defined function: Fra-1 and c-Fos support growth of human malignant breast tumors by activating membrane biogenesis at the cytoplasm. PLoS One 2013; 8:e53211. [PMID: 23301044 PMCID: PMC3534677 DOI: 10.1371/journal.pone.0053211] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/27/2012] [Indexed: 01/06/2023] Open
Abstract
A shared characteristic of tumor cells is their exacerbated growth. Consequently, tumor cells demand high rates of phospholipid synthesis required for membrane biogenesis to support their growth. c-Fos, in addition to its AP-1 transcription factor activity, is the only protein known up to date that is capable of activating lipid synthesis in normal and brain tumor tissue. For this latter activity, c-Fos associates to the endoplasmic reticulum (ER) through its N-terminal domain and activates phospholipid synthesis, an event that requires it Basic Domain (BD) (aa 139–159). Fra-1, another member of the FOS family of proteins, is over-expressed in human breast cancer cells and its BD is highly homologous to that of c-Fos with two conservative substitutions in its basic amino acids. Consequently, herein we examined if Fra-1 and/or c-Fos participate in growth of breast cancer cells by activating phospholipid synthesis as found previously for c-Fos in brain tumors. We found both Fra-1 and c-Fos over-expressed in >95% of human ductal breast carcinoma biopsies examined contrasting with the very low or undetectable levels in normal tissue. Furthermore, both proteins associate to the ER and activate phospholipid synthesis in cultured MCF7 and MDA-MB231 breast cancer cells and in human breast cancer samples. Stripping tumor membranes of Fra-1 and c-Fos prior to assaying their lipid synthesis capacity in vitro results in non-activated lipid synthesis levels that are restored to their initial activated state by addition of Fra-1 and/or c-Fos to the assays. In MDA-MB231 cells primed to proliferate, blocking Fra-1 and c-Fos with neutralizing antibodies blocks lipid-synthesis activation and cells do not proliferate. Taken together, these results disclose the cytoplasmic activity of Fra-1 and c-Fos as potential targets for controlling growth of breast carcinomas by decreasing the rate of membrane biogenesis required for growth.
Collapse
Affiliation(s)
- Ruben D. Motrich
- Centro de Investigaciones en Química Biológica de Córdoba, (Universidad Nacional de Córdoba-The National Scientific and Technical Research Council), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Gonzalo M. Castro
- Centro de Investigaciones en Química Biológica de Córdoba, (Universidad Nacional de Córdoba-The National Scientific and Technical Research Council), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Beatriz L. Caputto
- Centro de Investigaciones en Química Biológica de Córdoba, (Universidad Nacional de Córdoba-The National Scientific and Technical Research Council), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
32
|
Yang S, Li Y, Gao J, Zhang T, Li S, Luo A, Chen H, Ding F, Wang X, Liu Z. MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1. Oncogene 2012; 32:4294-303. [PMID: 23001043 DOI: 10.1038/onc.2012.432] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 07/10/2012] [Accepted: 08/04/2012] [Indexed: 02/07/2023]
Abstract
MicroRNAs have key roles in tumor metastasis. Here, we describe the regulation and function of miR-34a and miR-34c (miR-34a/c) in breast cancer metastasis. Expression analysis verified that miR-34a/c expression is significantly decreased in metastatic breast cancer cells and human primary breast tumors with lymph node metastases. Overexpression of miR-34a/c could inhibit breast cancer cell migration and invasion in vitro and distal pulmonary metastasis in vivo. Further studies revealed that Fos-related antigen 1 (Fra-1 or Fosl1) is a downstream target of miR-34a/c as miR-34a/c bound directly to the 3'untranslated region of Fra-1, subsequently reducing both the mRNA and protein levels of Fra-1. Silencing of Fra-1 recapitulated the effects of miR-34a/c overexpression, whereas enforced expression of Fra-1 reverses the suppressive effects of miR-34a/c. Moreover, significant downregulation of miR-34a in metastatic breast cancer tissues was found to be inversely correlated with Fra-1 expression. Our results demonstrate that miR-34a/c functions as a metastasis suppressor to regulate breast cancer migration and invasion through targeting Fra-1 oncogene and suggest a therapeutic application of miR-34 in breast cancer.
Collapse
Affiliation(s)
- S Yang
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lan YY, Hsiao JR, Chang KC, Chang JSM, Chen CW, Lai HC, Wu SY, Yeh TH, Chang FH, Lin WH, Su IJ, Chang Y. Epstein-Barr virus latent membrane protein 2A promotes invasion of nasopharyngeal carcinoma cells through ERK/Fra-1-mediated induction of matrix metalloproteinase 9. J Virol 2012; 86:6656-67. [PMID: 22514348 PMCID: PMC3393536 DOI: 10.1128/jvi.00174-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 04/04/2012] [Indexed: 01/31/2023] Open
Abstract
Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) is highly metastatic, and this malignant feature may be promoted by an EBV oncoprotein, latent membrane protein 2A (LMP2A). Acting as a signal regulator, LMP2A can enhance invasiveness and motility of epithelial cells. Downstream from the LMP2A-triggered signaling events, it is largely unknown what key effector proteins are induced and essentially promote cell invasion. In the present study, we found that in NPC cells, LMP2A upregulated matrix metalloproteinase 9 (MMP9), a metastasis-associated protease. LMP2A increased MMP9 expression at both the mRNA and protein levels. It also activated the MMP9 promoter, in which two AP-1 elements were required for the promoter activation. Among AP-1 transcription factors, Fra-1 was induced by LMP2A and is essential for LMP2A-triggered MMP9 expression. Induction of Fra-1 was dependent on the LMP2A-activated ERK1/2 pathway, and induction of the ERK1/2-Fra-1-MMP9 axis required PY motifs in the amino-terminal domain of LMP2A. Notably, LMP2A-promoted invasion of NPC cells was blocked when MMP9 expression, Fra-1 induction, or ERK1/2 activation was inhibited. In addition, we found an association of LMP2A with MMP9 expression in NPC tumor biopsy specimens, where Fra-1 was a major mediation factor. This study reveals an underlying mechanism of LMP2A-induced cell invasion, from signal transduction to upregulation of a critical protease. Considering that MMP9 can also be upregulated by another EBV oncoprotein, LMP1, this protease may be a pivotal effector at which the EBV-induced, invasion-promoting mechanisms converge, serving as an attractive therapeutic target for NPC treatment.
Collapse
Affiliation(s)
- Yu-Yan Lan
- National Institute of Infectious Diseases and Vaccinology
- Graduate Institute of Basic Medical Science
| | | | | | - Jeffrey Shu-Ming Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Chaio-Wei Chen
- National Institute of Infectious Diseases and Vaccinology
| | - Hsiao-Ching Lai
- National Institute of Infectious Diseases and Vaccinology
- Graduate Institute of Basic Medical Science
| | - Shih-Yi Wu
- National Institute of Infectious Diseases and Vaccinology
| | - Tzu-Hao Yeh
- National Institute of Infectious Diseases and Vaccinology
- Department of Microbiology and Immunology, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Fang-Hsin Chang
- National Institute of Infectious Diseases and Vaccinology
- Department of Microbiology and Immunology, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Hung Lin
- National Institute of Infectious Diseases and Vaccinology
- Department of Microbiology and Immunology, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Ih-Jen Su
- National Institute of Infectious Diseases and Vaccinology
| | - Yao Chang
- National Institute of Infectious Diseases and Vaccinology
- Graduate Institute of Basic Medical Science
- Department of Microbiology and Immunology, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|