1
|
Wang Z, Xia B, Qi S, Zhang X, Zhang X, Li Y, Wang H, Zhang M, Zhao Z, Kerr D, Yang L, Cai S, Yang J. Bestrophin-4 relays HES4 and interacts with TWIST1 to suppress epithelial-to-mesenchymal transition in colorectal cancer cells. eLife 2024; 12:RP88879. [PMID: 39699952 DOI: 10.7554/elife.88879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Bestrophin isoform 4 (BEST4) is a newly identified subtype of the calcium-activated chloride channel family. Analysis of colonic epithelial cell diversity by single-cell RNA-sequencing has revealed the existence of a cluster of BEST4+ mature colonocytes in humans. However, if the role of BEST4 is involved in regulating tumour progression remains largely unknown. In this study, we demonstrate that BEST4 overexpression attenuates cell proliferation, colony formation, and mobility in colorectal cancer (CRC) in vitro, and impedes the tumour growth and the liver metastasis in vivo. BEST4 is co-expressed with hairy/enhancer of split 4 (HES4) in the nucleus of cells, and HES4 signals BEST4 by interacting with the upstream region of the BEST4 promoter. BEST4 is epistatic to HES4 and downregulates TWIST1, thereby inhibiting epithelial-to-mesenchymal transition (EMT) in CRC. Conversely, knockout of BEST4 using CRISPR/Cas9 in CRC cells revitalises tumour growth and induces EMT. Furthermore, the low level of the BEST4 mRNA is correlated with advanced and the worse prognosis, suggesting its potential role involving CRC progression.
Collapse
Affiliation(s)
- Zijing Wang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Bihan Xia
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Shaochong Qi
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Zhang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshuang Zhang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Li
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Huimin Wang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Zhang
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ziyi Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - David Kerr
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Shijie Cai
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jilin Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Ai LJ, Li GD, Chen G, Sun ZQ, Zhang JN, Liu M. Molecular subtyping and the construction of a predictive model of colorectal cancer based on ion channel genes. Eur J Med Res 2024; 29:219. [PMID: 38576045 PMCID: PMC10993535 DOI: 10.1186/s40001-024-01819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
PURPOSE Colorectal cancer (CRC) is a highly heterogeneous malignancy with an unfavorable prognosis. The purpose of this study was to address the heterogeneity of CRC by categorizing it into ion channel subtypes, and to develop a predictive modeling based on ion channel genes to predict the survival and immunological states of patients with CRC. The model will provide guidance for personalized immunotherapy and drug treatment. METHODS A consistent clustering method was used to classify 619 CRC samples based on the expression of 279 ion channel genes. Such a method was allowed to investigate the relationship between molecular subtypes, prognosis, and immune infiltration. Furthermore, a predictive modeling was constructed for ion channels to evaluate the ion channel properties of individual tumors using the least absolute shrinkage and selection operator. The expression patterns of the characteristic genes were validated through molecular biology experiments. The effect of potassium channel tetramerization domain containing 9 (KCTD9) on CRC was verified by cellular functional experiments. RESULTS Four distinct ion channel subtypes were identified in CRC, each characterized by unique prognosis and immune infiltration patterns. Notably, Ion Cluster3 exhibited high levels of immune infiltration and a favorable prognosis, while Ion Cluster4 showed relatively lower levels of immune infiltration and a poorer prognosis. The ion channel score could predict overall survival, with lower scores correlated with longer survival. This score served as an independent prognostic factor and presented an excellent predictive efficacy in the nomogram. In addition, the score was closely related to immune infiltration, immunotherapy response, and chemotherapy sensitivity. Experimental evidence further confirmed that low expression of KCTD9 in tumor tissues was associated with an unfavorable prognosis in patients with CRC. The cellular functional experiments demonstrated that KCTD9 inhibited the proliferation, migration and invasion capabilities of LOVO cells. CONCLUSIONS Ion channel subtyping and scoring can effectively predict the prognosis and evaluate the immune microenvironment, immunotherapy response, and drug sensitivity in patients with CRC.
Collapse
Affiliation(s)
- Lian-Jie Ai
- Colorectal Tumor Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Guo-Dong Li
- General Surgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Gang Chen
- General Surgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zi-Quan Sun
- Colorectal Tumor Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Jin-Ning Zhang
- Colorectal Tumor Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Ming Liu
- General Surgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
3
|
Xu Z, Wang J, Wang G. Weighted gene co-expression network analysis for hub genes in colorectal cancer. Pharmacol Rep 2024; 76:140-153. [PMID: 38150140 DOI: 10.1007/s43440-023-00561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND This study is designed to explore hub genes participating in colorectal cancer (CRC) development through weighted gene co-expression network analysis (WGCNA). METHODS Expression profiles of CRC and normal samples were retrieved from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA), and were subjected to WGCNA to filter differentially expressed genes with significant association with CRC. Functional enrichment analysis and protein-protein interaction (PPI) analysis were carried out to filter the candidate genes, further and survival analysis was performed for the candidate genes to obtain potential regulatory hub genes in CRC. Expression analysis was conducted for the candidate genes and a multifactor model was established. RESULTS After differential analysis and WGCNA, 289 candidate genes were filtered from the GEO and TCGA. Further functional enrichment analysis demonstrated possible regulatory pathways and functions. PPI analysis filtered 15 hub genes and survival analysis indicated a significant correlation of CLCA1, CLCA4, and CPT1A with prognosis of patients with CRC. The multifactor Cox risk model established based on the three genes revealed that if the three genes were a gene set, they had well predictive capacity for the prognosis of patients with CRC. CONCLUSIONS CLCA1, CLCA4, and CPT1A express at low levels in CRC and function as core anti-tumor genes. As a gene set, they can predict prognosis well.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Oncology Surgery, Beidahuang Industry Group General Hospital, Harbin, 150088, Heilongjiang, People's Republic of China
| | - Jianing Wang
- Department of Gastrointestinal Surgery, Beidahuang Industry Group General Hospital, Harbin, 150088, Heilongjiang, People's Republic of China
| | - Guosheng Wang
- Department of Pancreaticobiliary Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150007, Heilongjiang, People's Republic of China.
| |
Collapse
|
4
|
Yang H, Liu J, Jiang P, Li P, Zhou Y, Zhang Z, Zeng Q, Wang M, Xiao LX, Zhang X, Sun Y, Zhu S. An Analysis of the Gene Expression Associated with Lymph Node Metastasis in Colorectal Cancer. Int J Genomics 2023; 2023:9942663. [PMID: 37719786 PMCID: PMC10501847 DOI: 10.1155/2023/9942663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/18/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Objective This study aimed to explore the genes regulating lymph node metastasis in colorectal cancer (CRC) and to clarify their relationship with tumor immune cell infiltration and patient prognoses. Methods The data sets of CRC patients were collected through the Cancer Gene Atlas database; the differentially expressed genes (DEGs) associated with CRC lymph node metastasis were screened; a protein-protein interaction (PPI) network was constructed; the top 20 hub genes were selected; the Gene Ontology functions and the Kyoto Encyclopedia of Genes and Genomes pathways were enriched and analyzed. The Least Absolute Shrinkage and Selection Operator (LASSO) regression method was employed to further screen the characteristic genes associated with CRC lymph node metastasis in 20 hub genes, exploring the correlation between the characteristic genes and immune cell infiltration, conducting a univariate COX analysis on the characteristic genes, obtaining survival-related genes, constructing a risk score formula, conducting a Kaplan-Meier analysis based on the risk score formula, and performing a multivariate COX regression analysis on the clinical factors and risk scores. Results A total of 62 DEGs associated with CRC lymph node metastasis were obtained. Among the 20 hub genes identified via PPI, only calcium-activated chloride channel regulator 1 (CLCA1) expression was down-regulated in lymph node metastasis, and the rest were up-regulated. A total of nine characteristic genes associated with CRC lymph node metastasis (KIF1A, TMEM59L, CLCA1, COL9A3, GDF5, TUBB2B, STMN2, FOXN1, and SCN5A) were screened using the LASSO regression method. The nine characteristic genes were significantly related to different kinds of immune cell infiltration, from which three survival-related genes (TMEM59L, CLCA1, and TUBB2B) were screened. A multi-factor COX regression showed that the risk scores obtained from TMEM59L, CLCA1, and TUBB2B were independent prognostic factors. Immunohistochemical validation was performed in tissue samples from patients with rectal and colon cancer. Conclusion TMEM59L, CLCA1, and TUBB2B were independent prognostic factors associated with lymphatic metastasis of CRC.
Collapse
Affiliation(s)
- Hongjie Yang
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Jiafei Liu
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Peishi Jiang
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Peng Li
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Yuanda Zhou
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Zhichun Zhang
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Qingsheng Zeng
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Min Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Luciena Xiao Xiao
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Xipeng Zhang
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Yi Sun
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Siwei Zhu
- Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- Department of Oncology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
5
|
Praus F, Künstner A, Sauer T, Kohl M, Kern K, Deichmann S, Végvári Á, Keck T, Busch H, Habermann JK, Gemoll T. Panomics reveals patient individuality as the major driver of colorectal cancer progression. J Transl Med 2023; 21:41. [PMID: 36691026 PMCID: PMC9869555 DOI: 10.1186/s12967-022-03855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/26/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most prevalent cancers, with over one million new cases per year. Overall, prognosis of CRC largely depends on the disease stage and metastatic status. As precision oncology for patients with CRC continues to improve, this study aimed to integrate genomic, transcriptomic, and proteomic analyses to identify significant differences in expression during CRC progression using a unique set of paired patient samples while considering tumour heterogeneity. METHODS We analysed fresh-frozen tissue samples prepared under strict cryogenic conditions of matched healthy colon mucosa, colorectal carcinoma, and liver metastasis from the same patients. Somatic mutations of known cancer-related genes were analysed using Illumina's TruSeq Amplicon Cancer Panel; the transcriptome was assessed comprehensively using Clariom D microarrays. The global proteome was evaluated by liquid chromatography-coupled mass spectrometry (LC‒MS/MS) and validated by two-dimensional difference in-gel electrophoresis. Subsequent unsupervised principal component clustering, statistical comparisons, and gene set enrichment analyses were calculated based on differential expression results. RESULTS Although panomics revealed low RNA and protein expression of CA1, CLCA1, MATN2, AHCYL2, and FCGBP in malignant tissues compared to healthy colon mucosa, no differentially expressed RNA or protein targets were detected between tumour and metastatic tissues. Subsequent intra-patient comparisons revealed highly specific expression differences (e.g., SRSF3, OLFM4, and CEACAM5) associated with patient-specific transcriptomes and proteomes. CONCLUSION Our research results highlight the importance of inter- and intra-tumour heterogeneity as well as individual, patient-paired evaluations for clinical studies. In addition to changes among groups reflecting CRC progression, we identified significant expression differences between normal colon mucosa, primary tumour, and liver metastasis samples from individuals, which might accelerate implementation of precision oncology in the future.
Collapse
Affiliation(s)
- Friederike Praus
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute Für Experimental Dermatology, University of Lübeck, Campus Lübeck, 23538, Lübeck, Germany
| | - Thorben Sauer
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Michael Kohl
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Medical Systems Biology Group, Lübeck Institute Für Experimental Dermatology, University of Lübeck, Campus Lübeck, 23538, Lübeck, Germany
| | - Katharina Kern
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Steffen Deichmann
- Department of Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Ákos Végvári
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
- Proteomics Biomedicum, Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Tobias Keck
- Department of Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute Für Experimental Dermatology, University of Lübeck, Campus Lübeck, 23538, Lübeck, Germany
| | - Jens K Habermann
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Department of Oncology Pathology, Karolinska Institutet, 171 64, Solna, Sweden
| | - Timo Gemoll
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| |
Collapse
|
6
|
Wang Y, Xie Y, Dong B, Xue W, Chen S, Mitsuo S, Zou H, Feng Y, Ma K, Dong Q, Cao J, Zhu C. The TTYH3/MK5 Positive Feedback Loop regulates Tumor Progression via GSK3-β/β-catenin signaling in HCC. Int J Biol Sci 2022; 18:4053-4070. [PMID: 35844789 PMCID: PMC9274494 DOI: 10.7150/ijbs.73009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/05/2022] [Indexed: 12/28/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide, and identification of novel targets is necessary for its diagnosis and treatment. This study aimed to investigate the biological function and clinical significance of tweety homolog 3 (TTYH3) in HCC. TTYH3 overexpression promoted cell proliferation, migration, and invasion and inhibited HCCM3 and Hep3B cell apoptosis. TTYH3 promoted tumor formation and metastasis in vivo. TTYH3 upregulated calcium influx and intracellular chloride concentration, thereby promoting cellular migration and regulating epithelial-mesenchymal transition-related protein expression. The interaction between TTYH3 and MK5 was identified through co-immunoprecipitation assays and protein docking. TTYH3 promoted the expression of MK5, which then activated the GSK3β/β-catenin signaling pathway. MK5 knockdown attenuated the activation of GSK3β/β-catenin signaling by TTYH3. TTYH3 expression was regulated in a positive feedback manner. In clinical HCC samples, TTYH3 was upregulated in the HCC tissues compared to nontumor tissues. Furthermore, high TTYH3 expression was significantly correlated with poor patient survival. The CpG islands were hypomethylated in the promoter region of TTYH3 in HCC tissues. In conclusion, we identified TTYH3 regulates tumor development and progression via MK5/GSK3-β/β-catenin signaling in HCC and promotes itself expression in a positive feedback loop.
Collapse
Affiliation(s)
- Yixiu Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Yuwei Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Bingzi Dong
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266003, China.,Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Weijie Xue
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Shuhai Chen
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima 770‑8503, Japan
| | - Shimada Mitsuo
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima 770‑8503, Japan
| | - Hao Zou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Yujie Feng
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Kai Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Qian Dong
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266003, China.,Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266003, China
| | - Jingyu Cao
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China.,Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266003, China
| |
Collapse
|
7
|
Peng J, Chen Z, Liang H, Yang J. Proteomics analyses of Xiaopi granules in MNNG-induced gastric epithelial dysplasia rat model by LC-MS. Biomed Chromatogr 2022; 36:e5414. [PMID: 35599573 DOI: 10.1002/bmc.5414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Xiaopi granules have been shown to ameliorate gastric epithelial dysplasia in patients. However, the therapeutic mechanism is unclear. Herein, the proteomics method was applied to identify the differentially expressed proteins and related pathways. METHODS Sixty male Sprague-Dawley (SD) rats were randomly divided into four groups: control (C group, n=10), model (M group), Xiaopi granules (X group), and vitacoenzyme (V group). The rat gastric epithelial dysplasia model was established by intragastrically administering N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and ranitidine, and drinking 0.05% ammonia solution. After 12 weeks, the stomach tissue was analyzed by H&E staining and proteomics analyses. Western blot analysis was applied to further validate the proteomics results. RESULTS Compared to the M group, levels of 326 and 350 proteins were altered significantly in the X and V groups (1.5-fold, P<0.05), which were significantly enriched in digestion, metabolism, coagulation, and cell apoptosis. CELA2A, GHRL, NDUFB9, and PGC were significantly upregulated (P<0.0001), while CLCA1, PLG, and DAC2 were downregulated (P<0.001 or P<0.0001) in the M group vs. the C group. The change in the above proteins could be reversed after the treatment of Xiaopi granules or vitacoenzyme tablets. CONCLUSION Xiaopi granules improve ameliorated gastric epithelial dysplasia by intervening in digestion, metabolism, blood coagulation, cell apoptosis, and other related pathways.
Collapse
Affiliation(s)
- Jisheng Peng
- Department of traditional Chinese medicine, Peking University Shougang Hospital, Beijing, China
| | - Zehui Chen
- Beijing University of Chinese Medicine, Beijing, China
| | - Huazheng Liang
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jinxiang Yang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
8
|
Li H, Huang B. <em>miR-19a</em> targeting <em>CLCA4</em> to regulate the proliferation, migration, and invasion of colorectal cancer cells. Eur J Histochem 2022; 66. [PMID: 35266369 PMCID: PMC8958453 DOI: 10.4081/ejh.2022.3381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/19/2022] [Indexed: 12/24/2022] Open
Abstract
The role of miR-19a in colorectal cancer (CRC), a devastating disease with high mortality and morbidity, remains controversial. In the present study, we show that the level of miR-19a is significantly higher in clinical CRC tissue samples than in paracancerous tissue samples, and significantly higher in CRC cells lines HT29, SW480, and CaCO2 than in the normal human colon mucosal epithelial cell line NCM460. miR-19a mimics and inhibitors were synthesized and validated. Overexpression of miR-19a mimics significantly promoted, while miR-19a inhibitors inhibited, the proliferation, survival, migration, and invasion of SW480 and CaCO2 CRC cells. Furthermore, mRNA and protein levels of chloride channel accessory 4 (CLCA4) were lower in CRC cells and tissues. Bioinformatics and a luciferase reporter assay confirmed that CLCA4 was a miR-19a target. Further, miR-19a inhibition increased CLCA4 expression. The inhibitory effect of miR-19a on cell growth, survival, migration, and invasion was reversed by knockdown of CLCA4 expression. The data demonstrated that the miR-19a/CLCA4 axis modulates phospho-activation of the PI3K/AKT pathway in CRC cells. In conclusion, our results revealed that miR-19a overexpression decreases CLCA4 levels to promote CRC oncogenesis, suggesting that miR-19a inhibitors have potential applications for future therapeutic of CRC.
Collapse
Affiliation(s)
- Huiwen Li
- Department of Pediatrics, the First Affiliated Hospital of Jinan University, Guangzhou; Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou.
| | - Bo Huang
- Department of Gastrointestinal Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou.
| |
Collapse
|
9
|
Bourdakou MM, Spyrou GM, Kolios G. Colon Cancer Progression Is Reflected to Monotonic Differentiation in Gene Expression and Pathway Deregulation Facilitating Stage-specific Drug Repurposing. Cancer Genomics Proteomics 2021; 18:757-769. [PMID: 34697067 DOI: 10.21873/cgp.20295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Colon cancer is one of the most common cancer types and the second leading cause of death due to cancer. Many efforts have been performed towards the investigation of molecular alterations during colon cancer progression. However, the identification of stage-specific molecular markers remains a challenge. The aim of this study was to develop a novel computational methodology for the analysis of alterations in differential gene expression and pathway deregulation across colon cancer stages in order to reveal stage-specific biomarkers and reinforce drug repurposing investigation. MATERIALS AND METHODS Transcriptomic datasets of colon cancer were used to identify (a) differentially expressed genes with monotonicity in their fold changes (MEGs) and (b) perturbed pathways with ascending monotonic enrichment (MEPs) related to the number of the participating differentially expressed genes (DEGs), across the four colon cancer stages. Through an in silico drug repurposing pipeline we identified drugs that regulate the expression of MEGs and also target the resulting MEPs. RESULTS Our methodology highlighted 15 MEGs and 32 candidate repurposed drugs that affect their expression. We also found 51 MEPs divided into two groups according to their rate of DEG content alteration across colon cancer stages. Focusing on the target MEPs of the highlighted repurposed drugs, we found that one of them, the neuroactive ligand-receptor interaction, was targeted by the majority of the candidate drugs. Moreover, we observed that two of the drugs (PIK-75 and troglitazone) target the majority of the resulting MEPs. CONCLUSION These findings highlight significant genes and pathways that can be used as stage-specific biomarkers and facilitate the discovery of new potential repurposed drugs for colon cancer. We expect that the computational methodology presented can be applied in a similar way to the analysis of any progressive disease.
Collapse
Affiliation(s)
- Marilena M Bourdakou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - George M Spyrou
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - George Kolios
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece;
| |
Collapse
|
10
|
Wang Q, Wang Z, Zhang Z, Zhang W, Zhang M, Shen Z, Ye Y, Jiang K, Wang S. Landscape of cell heterogeneity and evolutionary trajectory in ulcerative colitis-associated colon cancer revealed by single-cell RNA sequencing. Chin J Cancer Res 2021; 33:271-288. [PMID: 34158745 PMCID: PMC8181874 DOI: 10.21147/j.issn.1000-9604.2021.02.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective The goal of this study was to get preliminary insight on the intra-tumor heterogeneity in colitis-associated cancer (CAC) and to reveal a potential evolutionary trajectory from ulcerative colitis (UC) to CAC at the single-cell level. Methods Fresh samples of tumor tissues and adjacent UC tissues from a CAC patient with pT3N1M0 stage cancer were examined by single-cell RNA sequencing (scRNA-seq). Data from The Cancer Genome Atlas (TCGA) and The Human Protein Atlas were used to confirm the different expression levels in normal and tumor tissues and to determine their relationships with patient prognosis. Results Ultimately, 4,777 single-cell transcriptomes (1,220 genes per cell) were examined, of which 2,250 (47%) and 2,527 (53%) originated from tumor and adjacent UC tissues, respectively. We defined the composition of cancer-associated stromal cells and identified six cell clusters, including myeloid, T and B cells, fibroblasts, endothelial and epithelial cells. Notable pathways and transcription factors involved in these cell clusters were analyzed and described. Moreover, the precise cellular composition and developmental trajectory from UC to UC-associated colon cancer were graphed, and it was predicted that CD74, CLCA1, and DPEP1 played a potential role in disease progression.
Conclusions scRNA-seq technology revealed intra-tumor cell heterogeneity in UC-associated colon cancer, and might provide a promising direction to identify novel potential therapeutic targets in the evolution from UC to CAC.
Collapse
Affiliation(s)
- Quan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Zhu Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Zhen Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Wei Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Mengmeng Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Kewei Jiang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Shan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
11
|
Chen X, Liu Y, Zhang Q, Liu B, Cheng Y, Zhang Y, Sun Y, Liu J. Exosomal miR-590-3p derived from cancer-associated fibroblasts confers radioresistance in colorectal cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 24:113-126. [PMID: 33738143 PMCID: PMC7943971 DOI: 10.1016/j.omtn.2020.11.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
Radiotherapeutic resistance is a major obstacle for the effective treatment of colorectal cancer (CRC). MicroRNAs (miRNAs) play a critical role in chemoresistance and radioresistance. Here, we aimed to investigate whether miR-590-3p participates in the radioresistance of CRC. High expression of miR-590-3p and low expression of CLCA4 were found in both CRC tissues and cell lines. CLCA4 was indicated to be a target gene of miR-590-3p. CAF-derived exosomes were extracted and co-cultured with CRC cells, which were then exposed to radiation. CRC cells were transfected with plasmids and injected into nude mice to detect the in vivo effect of CAF-derived exosomes. Treatment with CAF-derived exosomes decreased the sensitivity of CRC cells to radiation. CAF-derived exosomes overexpressing miR-590-3p increased cell survival and the ratio of p-PI3K/PI3K and p-AKT/AKT while lowering the expressions of cleaved-PARP, cleaved-caspase 3, and γH2AX in cells. Furthermore, in vivo experimental results confirmed that CAF-derived exosomal miR-590-3p stimulated tumor growth in mice following radiotherapy. Our results demonstrate that miR-590-3p delivery via exosomes derived from CAFs enhances radioresistance in CRC through the positive regulation of the CLCA4-dependent PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xijuan Chen
- Department of Radiation Oncology, the Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou 450000, P.R. China
| | - Yingqiang Liu
- Department of General Surgery, the Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou 450000, P.R. China
| | - Qinglan Zhang
- Department of Hematology, the Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou 450000, P.R. China
| | - Baoxing Liu
- Department of Chest Surgery, the Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou 450000, P.R. China
| | - Yan Cheng
- Department of Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Yonglei Zhang
- Department of General Surgery, the Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou 450000, P.R. China
| | - Yanan Sun
- Department of Radiation Oncology, the Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou 450000, P.R. China
| | - Junqi Liu
- Department of Radiation Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| |
Collapse
|
12
|
How Dysregulated Ion Channels and Transporters Take a Hand in Esophageal, Liver, and Colorectal Cancer. Rev Physiol Biochem Pharmacol 2020; 181:129-222. [PMID: 32875386 DOI: 10.1007/112_2020_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last two decades, the understanding of how dysregulated ion channels and transporters are involved in carcinogenesis and tumor growth and progression, including invasiveness and metastasis, has been increasing exponentially. The present review specifies virtually all ion channels and transporters whose faulty expression or regulation contributes to esophageal, hepatocellular, and colorectal cancer. The variety reaches from Ca2+, K+, Na+, and Cl- channels over divalent metal transporters, Na+ or Cl- coupled Ca2+, HCO3- and H+ exchangers to monocarboxylate carriers and organic anion and cation transporters. In several cases, the underlying mechanisms by which these ion channels/transporters are interwoven with malignancies have been fully or at least partially unveiled. Ca2+, Akt/NF-κB, and Ca2+- or pH-dependent Wnt/β-catenin signaling emerge as cross points through which ion channels/transporters interfere with gene expression, modulate cell proliferation, trigger epithelial-to-mesenchymal transition, and promote cell motility and metastasis. Also miRs, lncRNAs, and DNA methylation represent potential links between the misexpression of genes encoding for ion channels/transporters, their malfunctioning, and cancer. The knowledge of all these molecular interactions has provided the basis for therapeutic strategies and approaches, some of which will be broached in this review.
Collapse
|
13
|
|
14
|
Liu Z, Chen M, Xie LK, Liu T, Zou ZW, Li Y, Chen P, Peng X, Ma C, Zhang WJ, Li PD. CLCA4 inhibits cell proliferation and invasion of hepatocellular carcinoma by suppressing epithelial-mesenchymal transition via PI3K/AKT signaling. Aging (Albany NY) 2019; 10:2570-2584. [PMID: 30312171 PMCID: PMC6224236 DOI: 10.18632/aging.101571] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/24/2018] [Indexed: 12/15/2022]
Abstract
Calcium activated Chloride Channel A4 (CLCA4), as a tumor suppressor, was reported to contribute to the progression of several malignant tumors, yet little is known about the significance of CLCA4 in invasion and prognosis of hepatocellular carcinoma (HCC). CLCA4 expression was negatively correlated with tumor size, vascular invasion and TNM stage. Kaplan-Meier analysis showed that CLCA4 was an independent predictor for overall survival (OS) and time to recurrence (TTR). In addition, CLCA4 status could act as prognostic predictor in different risk of subgroups. Moreover, combination of CLCA4 and serum AFP could be a potential predictor for survival in HCC patients. Furthermore, CLCA4 may inhibit cell migration and invasion by suppressing epithelial-mesenchymal transition (EMT) via PI3K/ATK signaling. Knockdown of CLCA4 significantly increased the migration and invasion of HCC cells and changed the expression pattern of EMT markers and PI3K/AKT phosphorylation. An opposite expression pattern of EMT markers and PI3K/AKT phosphorylation was observed in CLCA4-transfected cells. Additionally, immunohistochemistry and RT-PCR results further confirmed this correlation. Taken together, CLCA4 contributes to migration and invasion by suppressing EMT via PI3K/ATK signaling and predicts favourable prognosis of HCC. CLCA4/AFP expression may help to distinguish different risks of HCC patients after hepatectomy.
Collapse
Affiliation(s)
- Zhao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mi Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin-Ka Xie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ting Liu
- Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhen-Wei Zou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yong Li
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Peng Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Charlie Ma
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Wen-Jie Zhang
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Pin-Dong Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
15
|
Calcium-activated chloride channel regulator 1 (CLCA1): More than a regulator of chloride transport and mucus production. World Allergy Organ J 2019; 12:100077. [PMID: 31871532 PMCID: PMC6909348 DOI: 10.1016/j.waojou.2019.100077] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 09/07/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
CLCA1 is a member of the CLCA (calcium-activated chloride channel regulator) family and plays an essential role in goblet cell mucus production from the respiratory tract epithelium. CLCA1 also regulates Ca2+-dependent Cl- transport that involves the channel protein transmembrane protein 16A (TMEM16A) and its accessary molecules. CLCA1 modulates epithelial cell chloride current and participates in the pathogenesis of mucus hypersecretory-associated respiratory and gastrointestinal diseases, including asthma, chronic obstructive pulmonary disease, cystic fibrosis, pneumonia, colon colitis, cystic fibrosis intestinal mucous disease, ulcerative colitis, and gastrointestinal parasitic infection. Most studies have been focused on the expression regulation of CLCA1 in human specimens. Limited studies used the CLCA1-deficient mice and CLCA1 blocking agents and yielded inconsistent conclusions regarding its role in these diseases. CLCA1 not only regulates mucin expression, but also participates in innate immune responses by binding to yet unidentified molecules on inflammatory cells for cytokine and chemokine production. CLCA1 also targets lymphatic endothelial cells and cancer cells by regulating lymphatic cell proliferation and lymphatic sinus growth in the lymphatic organs and controlling cancer cell differentiation, proliferation, and apoptosis, all which depend on the location of the lymphatic vessels, the type of cancers, the presence of Th2 cytokines, and possibly the availability and type of CLCA1-binding proteins. Here we summarize available studies related to these different activities of CLCA1 to assist our understanding of how this secreted modifier of calcium-activated chloride channels (CaCCs) affects mucus production and innate immunity during the pathogenesis of respiratory, gastrointestinal, and malignant diseases.
Collapse
Key Words
- AMCase, acidic mammalian chitinase
- BALF, bronchoalveolar lavage fluid
- Bpifa1, bactericidal/permeability-increasing protein (BPI) fold-containing family A member 1
- CF, cystic fibrosis
- CFTR, cystic fibrosis transmembrane conductance regulator
- CLCA1
- CLCA1, calcium-activated chloride channel regulator 1
- COPD, chronic obstructive pulmonary disease
- CXCL-1, C-X-C motif chemokine ligand 1
- CaCCs, calcium-activated chloride channels
- Cancer
- CeO2NPs, cerium dioxide nanoparticles
- DOG1, discovered on gastrointestinal stromal tumours-1
- DSS, dextran sodium sulfate
- EGFR, epidermal growth factor receptor
- EMT, epithelial-mesenchymal transition
- ERK, extracellular signal-regulated kinase
- EpOCs, epithelial organoid cultures
- FAK, focal adhesion kinase
- Gastrointestinal disease
- Gob-5, goblet cell protein-5
- HDMA, house dust mite allergen
- IAD, inflammatory airway diseases
- Innate immunity
- KCNMB1, potassium calcium-activated channel subfamily M regulatory beta subunit 1
- LFA-1, lymphocyte function-associated antigen 1.
- LFC, log2 fold change
- MUC5AC, mucin 5AC
- Mucin
- NFA, niflumic acid
- OVA, ovalbumin
- Respiratory diseases
- SPDEF, sterile alpha motif [SAM] domain-containing prostate-derived Ets transcription factor
- STAT6, signal transducer and activator of transcription 6
- TMEM16A, transmembrane protein 16A
- TNF-α, tumor necrosis factor-α
- VWA, von Willebrand factor type A
- WT, wild-type
- cAMP, cyclic adenosine monophosphate
- rIFABP, rat intestinal fatty acid binding protein promoter
- β4BMs, β4-binding motifs
Collapse
|
16
|
Bian Q, Chen J, Qiu W, Peng C, Song M, Sun X, Liu Y, Ding F, Chen J, Zhang L. Four targeted genes for predicting the prognosis of colorectal cancer: A bioinformatics analysis case. Oncol Lett 2019; 18:5043-5054. [PMID: 31612015 PMCID: PMC6781647 DOI: 10.3892/ol.2019.10866] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
The molecular mechanisms underlying the development and progression of colorectal cancer (CRC) have not been clarified. The purpose of the present study was to identify key genes that may serve as novel therapeutic targets or prognostic predictors in patients with CRC using bioinformatics analysis. Four gene expression datasets were downloaded from the Gene Expression Omnibus database, which revealed 19 upregulated and 34 downregulated differentially expressed genes (DEGs). The downregulated DEGs were significantly enriched in eight pathways according to Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. A protein-protein interaction network was constructed with 52 DEGs and 458 edges. Ten key genes were identified according to the degree value, betweenness centrality and closeness centrality. Survival analysis revealed that low expression of four of the ten genes, carcinoembryonic antigen related cell adhesion molecule 7 (CEACAM7), solute carrier family 4 member 4 (SLC4A4), glucagon (GCG) and chloride channel accessory 1 (CLCA1) genes, were associated with unfavorable prognosis in CRC. Furthermore, gene set enrichment analysis revealed that two pathways were significantly enriched in the CEACAM7 low-expression group. Thus, CEACAM7, SLC4A4, GCG and CLCA1 may be prognostic markers or therapeutic targets of CRC. Low CEACAM7 expression may be associated with the activation of glycosaminoglycan biosynthesis-chondroitin sulfate and extracellular matrix receptor interaction pathways and may affect the prognosis of CRC.
Collapse
Affiliation(s)
- Qinglai Bian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Jiaxu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China.,Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Wenqi Qiu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Chenxi Peng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Meifang Song
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xuebin Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Yueyun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Fengmin Ding
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Jianbei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
17
|
Chakroborty D, Emani MR, Klén R, Böckelman C, Hagström J, Haglund C, Ristimäki A, Lahesmaa R, Elo LL. L1TD1 - a prognostic marker for colon cancer. BMC Cancer 2019; 19:727. [PMID: 31337362 PMCID: PMC6651905 DOI: 10.1186/s12885-019-5952-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Prognostic markers specific to a particular cancer type can assist in the evaluation of survival probability of patients and help clinicians to assess the available treatment modalities. METHODS Gene expression data was analyzed from three independent colon cancer microarray gene expression data sets (N = 1052). Survival analysis was performed for the three data sets, stratified by the expression level of the LINE-1 type transposase domain containing 1 (L1TD1). Correlation analysis was performed to investigate the role of the interactome of L1TD1 in colon cancer patients. RESULTS We found L1TD1 as a novel positive prognostic marker for colon cancer. Increased expression of L1TD1 associated with longer disease-free survival in all the three data sets. Our results were in contrast to a previous study on medulloblastoma, where high expression of L1TD1 was linked with poor prognosis. Notably, in medulloblastoma L1TD1 was co-expressed with its interaction partners, whereas our analysis revealed lack of co-expression of L1TD1 with its interaction partners in colon cancer. CONCLUSIONS Our results identify increased expression of L1TD1 as a prognostic marker predicting longer disease-free survival in colon cancer patients.
Collapse
Affiliation(s)
- Deepankar Chakroborty
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Maheswara Reddy Emani
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Riku Klén
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Camilla Böckelman
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jaana Hagström
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
- Department of Pathology and Oral Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ari Ristimäki
- Department of Pathology, HUSLAB, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Genome-Scale Biology Research program, University of Helsinki, 00290 Helsinki, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L. Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
18
|
Pan X, Wang Q, Xu C, Yan L, Pang S, Gan J. Prognostic value of chloride channel accessory mRNA expression in colon cancer. Oncol Lett 2019; 18:2967-2976. [PMID: 31404307 PMCID: PMC6676742 DOI: 10.3892/ol.2019.10615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/14/2019] [Indexed: 01/04/2023] Open
Abstract
Chloride channel accessory (CLCA) is a gene family that encode Ca2+ activated chloride channels, which make a substantial contribution to various diseases. The aim of the present study was to investigate the prognostic value of CLCA expression in colon cancer. In an attempt to elucidate the value of CLCA mRNA expression in the prognosis of patients with colon cancer, the gene expression data of 438 patients with colon cancer were analyzed. The source of the data was The Cancer Genome Atlas, and it was identified that high expression levels of CLCA1 and CLCA2 were associated with a favorable overall survival (OS) time in patients with colon cancer. As revealed by joint effects analysis, the co-occurrence of high expression levels of CLCA1 and CLCA2 was associated with a favorable OS time in patients with colon cancer. CLCA genes were investigated using gene set enrichment analysis. The results of the bioinformatics analysis demonstrated that high expression levels of CLCA1 and CLCA2 were associated with the prognosis of colon cancer. These findings suggest that CLCA1 and CLCA2 are potential prognostic biomarkers for patients with colon cancer. Furthermore, combining CLCA1 and CLCA2 can enhance the sensitivity of the prediction of the OS time of patients with colon cancer.
Collapse
Affiliation(s)
- Xiaohang Pan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qiaoqi Wang
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Chenfei Xu
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ling Yan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Sen Pang
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jialiang Gan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
19
|
Chen H, Liu Y, Jiang CJ, Chen YM, Li H, Liu QA. Calcium-Activated Chloride Channel A4 (CLCA4) Plays Inhibitory Roles in Invasion and Migration Through Suppressing Epithelial-Mesenchymal Transition via PI3K/AKT Signaling in Colorectal Cancer. Med Sci Monit 2019; 25:4176-4185. [PMID: 31164625 PMCID: PMC6563650 DOI: 10.12659/msm.914195] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Calcium-activated chloride channel A4 (CLCA4) is known as a tumor suppressor which contributes to the progression of a number of types of malignant tumors. However, little is known about the functional roles of CLCA4 in colorectal cancer (CRC). Material/Methods In this study, the expression patterns and dysregulation of mRNAs in CRC tissues were profiled by analyzing GSE21510 datasets from Gene Expression Omnibus database which contains 104 primary hepatocellular carcinoma tissues and 24 normal liver tissues, and by performing Kaplan-Meier analysis of TCGA data. Additionally, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR) were performed using clinical tissues collected at our institute. In order to explore the functional role of CLCA4, gain-of-function cell models were constructed in SW620 and LoVo cells. Wound healing assay and Transwell assay were carried out to access the cell migration and invasion ability. Results It was found that CLCA4 was an independent predictor for overall survival and lymph node metastasis. Additionally, immunohistochemistry and qRT-PCR results of the clinical tissues collected as part of our study further confirmed this correlation. In vitro experiments demonstrated that over-expression of CLCA4 could inhibit cell migration and invasion by suppressing epithelial-mesenchymal transition (EMT) via PI3K/ATK signaling and change the expression patterns of EMT markers in CLCA4-gain-of-function cell models. Conclusions CLCA4 inhibits migration and invasion by suppressing EMT via PI3K/ATK signaling and predicts favorable prognosis of CRC which may help to distinguish potential risk of lymph node metastasis in CRC.
Collapse
Affiliation(s)
- Hua Chen
- Department of General Surgery, The First People's Hospital of Changde, Changde, Hunan, China (mainland)
| | - Yang Liu
- Department of General Surgery, The First People's Hospital of Changde, Changde, Hunan, China (mainland)
| | - Cai-Jian Jiang
- Department of General Surgery, The First People's Hospital of Changde, Changde, Hunan, China (mainland)
| | - Yan-Min Chen
- Department of General Surgery, The First People's Hospital of Changde, Changde, Hunan, China (mainland)
| | - Hong Li
- Department of General Surgery, The First People's Hospital of Changde, Changde, Hunan, China (mainland)
| | - Qin-An Liu
- Department of General Surgery, The First People's Hospital of Changde, Changde, Hunan, China (mainland)
| |
Collapse
|
20
|
Haworth AS, Brackenbury WJ. Emerging roles for multifunctional ion channel auxiliary subunits in cancer. Cell Calcium 2019; 80:125-140. [PMID: 31071485 PMCID: PMC6553682 DOI: 10.1016/j.ceca.2019.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further expanding the repertoire of cellular processes governed by ion channel complexes to processes such as transcellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+, K+, Na+ and Cl- channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregulated (e.g. Cavβ, Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1, Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets. However further mechanistic understanding is required into how these subunits contribute to tumour progression before their therapeutic potential can be fully realised.
Collapse
Affiliation(s)
- Alexander S Haworth
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
21
|
Hu D, Ansari D, Zhou Q, Sasor A, Hilmersson KS, Bauden M, Jiang Y, Andersson R. Calcium-activated chloride channel regulator 1 as a prognostic biomarker in pancreatic ductal adenocarcinoma. BMC Cancer 2018; 18:1096. [PMID: 30419838 PMCID: PMC6233502 DOI: 10.1186/s12885-018-5013-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022] Open
Abstract
Background In a previous study utilizing mass spectrometry-based proteomics, we identified calcium-activated chloride channel regulator 1 (CLCA1) as a potential tumor suppressor in pancreatic cancer and the expression was inversely correlated with patient survival. The aim of the study was to further validate the prognostic significance of CLCA1 in pancreatic cancer. Methods CLCA1 expression was evaluated with tissue microarrays and immunohistochemistry in 140 patients with pancreatic ductal adenocarcinoma that underwent surgical resection at Skåne University Hospital, Sweden. Kaplan-Meier and Cox proportional hazards modeling were used to explore the association between CLCA1 and clinicopathological factors and survival. Results CLCA1 expression was denoted as positive in 90 tumors (64.3%), with positive staining being limited to the tumor cells. There were no significant association between CLCA1 expression and established clinicopathological parameters. Low CLCA1 expression correlated significantly with shorter disease-free survival (11.9 vs 17.5 months, P = 0.042). Multivariable Cox regression analysis confirmed the results (HR 0.61, 95% CI-0.40-0.92, P = 0.019). Conclusions Low CLCA1 expression is an independent factor of poor disease-free survival in pancreatic cancer.
Collapse
Affiliation(s)
- Dingyuan Hu
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 85, Lund, Sweden.,Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325017, China
| | - Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 85, Lund, Sweden
| | - Qimin Zhou
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 85, Lund, Sweden
| | - Agata Sasor
- Department of Pathology, Skåne University Hospital, 221 85, Lund, Sweden
| | - Katarzyna Said Hilmersson
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 85, Lund, Sweden
| | - Monika Bauden
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 85, Lund, Sweden
| | - Yi Jiang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325017, China
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 85, Lund, Sweden.
| |
Collapse
|
22
|
Sun G, Li Y, Peng Y, Lu D, Zhang F, Cui X, Zhang Q, Li Z. Identification of a five‐gene signature with prognostic value in colorectal cancer. J Cell Physiol 2018; 234:3829-3836. [PMID: 30132881 DOI: 10.1002/jcp.27154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Guangwei Sun
- Department of Anorectal Surgery The First Hospital of China Medical University Shenyang China
| | - Yalun Li
- Department of Anorectal Surgery The First Hospital of China Medical University Shenyang China
| | - Yangjie Peng
- Department of Anorectal Surgery The First Hospital of China Medical University Shenyang China
| | - Dapeng Lu
- Department of Anorectal Surgery The First Hospital of China Medical University Shenyang China
| | - Fuqiang Zhang
- Department of Anorectal Surgery The First Hospital of China Medical University Shenyang China
| | - Xueyang Cui
- Department of Anorectal Surgery The First Hospital of China Medical University Shenyang China
| | - Qingyue Zhang
- Department of Anorectal Surgery The First Hospital of China Medical University Shenyang China
| | - Zhuang Li
- Department of Anorectal Surgery The First Hospital of China Medical University Shenyang China
| |
Collapse
|
23
|
Cheng Q, Chen A, Du Q, Liao Q, Shuai Z, Chen C, Yang X, Hu Y, Zhao J, Liu S, Wen GR, An J, Jing H, Tuo B, Xie R, Xu J. Novel insights into ion channels in cancer stem cells (Review). Int J Oncol 2018; 53:1435-1441. [PMID: 30066845 DOI: 10.3892/ijo.2018.4500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/28/2018] [Indexed: 11/06/2022] Open
Abstract
Cancer stem cells (CSCs) are immortal cells in tumor tissues that have been proposed as the driving force of tumorigenesis and tumor invasion. Previously, ion channels were revealed to contribute to cancer cell proliferation, migration and apoptosis. Recent studies have demonstrated that ion channels are present in various CSCs; however, the functions of ion channels and their mechanisms in CSCs remain unknown. The present review aimed to focus on the roles of ion channels in the regulation of CSC behavior and the CSC-like properties of cancer cells. Evaluation of the relationship between ion channels and CSCs is critically important for understanding malignancy.
Collapse
Affiliation(s)
- Qijiao Cheng
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Anhai Chen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Qiushi Liao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Zhangli Shuai
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Changmei Chen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Xinrong Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Yaxia Hu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Ju Zhao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Songpo Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Guo Rong Wen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Jiaxin An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Hai Jing
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
24
|
Yu J, Li X, Zhong C, Li D, Zhai X, Hu W, Guo C, Yuan Y, Zheng S. High-throughput proteomics integrated with gene microarray for discovery of colorectal cancer potential biomarkers. Oncotarget 2018; 7:75279-75292. [PMID: 27661117 PMCID: PMC5342740 DOI: 10.18632/oncotarget.12143] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/10/2016] [Indexed: 01/15/2023] Open
Abstract
Proteins, as executives of genes' instructions, are responsible for cellular phenotypes. Integrating proteomics with gene microarray, we conducted this study to identify potential protein biomarkers of colorectal cancer (CRC). Isobaric tags with related and absolute quantitation (iTRAQ) labeling mass spectrometry (MS) was applied to screen and identify differentially expressed proteins between paired CRC and adjacent normal mucosa. Meanwhile, Affymetrix U133plus2.0 microarrays were used to perform gene microarray analysis. Verification experiments included immunohistochemistry (IHC), western blot and enzyme-linked immunosorbent assay (ELISA) of selected proteins. Overall, 5469 differentially expressed proteins were detected with iTRAQ-MS from 24 matched CRC and adjacent normal tissues. And gene microarray identified 39859 differential genes from 52 patients. Of these, 3083 differential proteins had corresponding differentially expressed genes, with 245 proteins and their genes showed >1.5-fold change in expression level. Gene ontology enrichment analysis revealed that up-regulated proteins were more involved in cell adhesion and motion than down-regulated proteins. In addition, up-regulated proteins were more likely to be located in nucleus and vesicles. Further verification experiments with IHC confirmed differential expression levels of 5 proteins (S100 calcium-binding protein A9, annexin A3, nicotinamide phosphoribosyltransferase, carboxylesterase 2 and calcium activated chloride channel A1) between CRC and normal tissues. Besides, western blot showed a stepwise increase of annexin A3 abundance in normal colorectal mucosa, adenoma and CRC tissues. ELISA results revealed significantly higher serum levels of S100 calcium-binding protein A9 and annexin A3 in CRC patients than healthy controls, validating diagnostic value of these proteins. Cell experiments showed that inhibition of annexin A3 could suppress CRC cell proliferation and aggressiveness. S100 calcium-binding protein A9, annexin A3, nicotinamide phosphoribosyltransferase, carboxylesterase 2 and calcium activated chloride channel A1 were probably potential biomarkers of colorectal cancer. Annexin A3 was a potentially valuable therapeutic target of CRC.
Collapse
Affiliation(s)
- Jiekai Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Xiaofen Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Chenhan Zhong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Dan Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Xiaohui Zhai
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Wangxiong Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, China
| |
Collapse
|
25
|
Mundhenk L, Erickson NA, Klymiuk N, Gruber AD. Interspecies diversity of chloride channel regulators, calcium-activated 3 genes. PLoS One 2018; 13:e0191512. [PMID: 29346439 PMCID: PMC5773202 DOI: 10.1371/journal.pone.0191512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/06/2018] [Indexed: 12/15/2022] Open
Abstract
Members of the chloride channel regulators, calcium-activated (CLCA) family, have been implicated in diverse biomedical conditions, including chronic inflammatory airway diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, the activation of macrophages, and the growth and metastatic spread of tumor cells. Several observations, however, could not be repeated across species boundaries and increasing evidence suggests that select CLCA genes are particularly prone to dynamic species-specific evolvements. Here, we systematically characterized structural and expressional differences of the CLCA3 gene across mammalian species, revealing a spectrum of gene duplications, e.g., in mice and cows, and of gene silencing via diverse chromosomal modifications in pigs and many primates, including humans. In contrast, expression of a canonical CLCA3 protein from a single functional gene seems to be evolutionarily retained in carnivores, rabbits, guinea pigs, and horses. As an accepted asthma model, we chose the cat to establish the tissue and cellular expression pattern of the CLCA3 protein which was primarily found in mucin-producing cells of the respiratory tract and in stratified epithelia of the esophagus. Our results suggest that, among developmental differences in other CLCA genes, the CLCA3 gene possesses a particularly high dynamic evolutionary diversity with pivotal consequences for humans and other primates that seem to lack a CLCA3 protein. Our data also help to explain previous contradictory results on CLCA3 obtained from different species and warrant caution in extrapolating data from animal models in conditions where CLCA3 may be involved.
Collapse
Affiliation(s)
- Lars Mundhenk
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| | - Nancy A. Erickson
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität, Oberschleissheim, Germany
| | - Achim D. Gruber
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
26
|
Hu D, Ansari D, Pawłowski K, Zhou Q, Sasor A, Welinder C, Kristl T, Bauden M, Rezeli M, Jiang Y, Marko-Varga G, Andersson R. Proteomic analyses identify prognostic biomarkers for pancreatic ductal adenocarcinoma. Oncotarget 2018. [PMID: 29515771 PMCID: PMC5839402 DOI: 10.18632/oncotarget.23929] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy. Here we show that shotgun and targeted protein sequencing can be used to identify potential prognostic biomarkers in formalin-fixed paraffin-embedded specimens from 9 patients with PDAC with “short” survival (<12 months) and 10 patients with “long” survival (>45 months) undergoing surgical resection. A total of 24 and 147 proteins were significantly upregulated [fold change ≥2 or ≤0.5 and P<0.05; or different detection frequencies (≥5 samples)] in patients with “short” survival (including GLUT1) and “long” survival (including C9orf64, FAM96A, CDH1 and CDH17), respectively. STRING analysis of these proteins indicated a tight protein-protein interaction network centered on TP53. Ingenuity pathway analysis linked proteins representing “activated stroma factors” and “basal tumor factors” to poor prognosis of PDAC. It also highlighted TCF1 and CTNNB1 as possible upstream regulators. Further parallel reaction monitoring verified that seven proteins were upregulated in patients with “short” survival (MMP9, CLIC3, MMP8, PRTN3, P4HA2, THBS1 and FN1), while 18 proteins were upregulated in patients with “long” survival, including EPCAM, LGALS4, VIL1, CLCA1 and TPPP3. Thus, we verified 25 protein biomarker candidates for PDAC prognosis at the tissue level. Furthermore, an activated stroma status and protein-protein interactions with TP53 might be linked to poor prognosis of PDAC.
Collapse
Affiliation(s)
- Dingyuan Hu
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund (Surgery), Lund, Sweden.,Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Daniel Ansari
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund (Surgery), Lund, Sweden
| | - Krzysztof Pawłowski
- Department of Experimental Design and Bioinformatics, Warsaw University of Life Sciences, Warsaw, Poland.,Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Qimin Zhou
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund (Surgery), Lund, Sweden
| | - Agata Sasor
- Department of Pathology, Skåne University Hospital, Lund, Sweden
| | - Charlotte Welinder
- Lund University, Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund, Sweden
| | - Theresa Kristl
- Lund University, Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund, Sweden
| | - Monika Bauden
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund (Surgery), Lund, Sweden
| | - Melinda Rezeli
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Yi Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - György Marko-Varga
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Roland Andersson
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund (Surgery), Lund, Sweden
| |
Collapse
|
27
|
Chen TJ, He HL, Shiue YL, Yang CC, Lin LC, Tian YF, Chen SH. High chloride channel accessory 1 expression predicts poor prognoses in patients with rectal cancer receiving chemoradiotherapy. Int J Med Sci 2018; 15:1171-1178. [PMID: 30123054 PMCID: PMC6097263 DOI: 10.7150/ijms.26685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 06/30/2018] [Indexed: 01/01/2023] Open
Abstract
Background: Concurrent chemoradiotherapy (CCRT) has now become the standard of treatments for advanced rectal cancer before surgery. To search the biological molecules with prognostic and therapeutic potential of CCRT could be beneficial for these patients. Recently, aberrant expression of chloride channels has been linked to radio-resistance in glioblastoma; however, its clinical implication has not been well-studied in rectal cancers. Therefore, we examined the clinical significance of targetable drivers associated with chloride channel activity in patients with rectal cancer receiving CCRT. Methods: After datamining from a published transcriptome of rectal cancers, upregulation of CLCA1 gene was recognized to be significantly correlated with non-responders of CCRT. In validation cohort of rectal cancers, the expression levels of CLCA1 were accessed by using immunohistochemistry assays in 172 tumor specimens that were obtained before any treatment. Expression levels of CLCA1 were statistically analyzed with principal clinicopathological features and survival outcomes in this substantial cohort. Results: In validation cohort, high expression of CLCA1 was significantly associated with higher pre-treatment tumor nodal stages (P=0.032), vascular invasion (P=0.028), and inferior tumor regression grade (P=0.042). In survival evaluations, high expression of CLCA1 was significantly correlated with worse local recurrence-free survival (LRFS; P=0.0012), metastasis-free survival (MeFS; P =0.0114), and disease-specific survival (DSS; P=0.0041). Furthermore, high expression of CLCA1 remained an independent prognosticator of shorter LRFS (P=0.029, hazard ratio=2.555), MeFS (P=0.044, hazard ratio=2.125) and DSS (P=0.044, hazard ratio=2.172). Conclusions: High expression of CLCA1 is significantly associated with poor therapeutic response and survival outcomes in rectal cancer patients with CCRT treatment before surgery. With the development of specific inhibitors, our findings indicate not only prognostic but also therapeutic potential of CLCA1 in rectal cancers.
Collapse
Affiliation(s)
- Tzu-Ju Chen
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan.,Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan.,Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hong-Lin He
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying, Tainan, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Yu-Feng Tian
- Division of General Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan.,Department of Health & Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Shang-Hung Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
28
|
Lennicke C, Rahn J, Wickenhauser C, Lichtenfels R, Müller AS, Wessjohann LA, Kipp AP, Seliger B. Loss of epithelium-specific GPx2 results in aberrant cell fate decisions during intestinal differentiation. Oncotarget 2017; 9:539-552. [PMID: 29416634 PMCID: PMC5787487 DOI: 10.18632/oncotarget.22640] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/27/2017] [Indexed: 01/07/2023] Open
Abstract
The selenoprotein glutathione peroxidase 2 (GPx2) is expressed in the epithelium of the gastrointestinal tract, where it is thought to be involved in maintaining mucosal homeostasis. To gain novel insights into the role of GPx2, proteomic profiles of colonic tissues either derived from wild type (WT) or GPx2 knockout (KO) mice, maintained under selenium (Se) deficiency or adequate Se supplementation conditions were established and analyzed. Amongst the panel of differentially expressed proteins, the calcium-activated chloride channel regulator 1 (CLCA1) was significantly down-regulated in GPx2 KO versus WT mice regardless of the given Se status. Moreover, transcript levels of the isoforms CLCA2 and CLCA3 showed a similar expression pattern. In the intestine, CLCA1 is usually restricted to mucin-producing goblet cells. However, although -SeKO mice had the highest numbers of goblet cells as confirmed by significantly enhanced mRNA expression levels of the goblet cell marker mucin-2, the observed expression pattern suggests that GPx2 KO goblet cells might be limited in synthesizing CLCA1. Furthermore, transcript levels of differentiation markers such as chromogranin-1 (Chga) for enteroendocrine cells and leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) for stem cells were also downregulated in GPx2 KO mice. Moreover, this was accompanied by a downregulation of the mRNA expression levels of the intestinal hormones glucagon-like peptide 1 (Glp1), ghrelin (Ghrl) and somatostatin (Sst). Thus, it seems that GPx2 might be important for the modulation of cell fate decisions in the murine intestinal epithelium.
Collapse
Affiliation(s)
- Claudia Lennicke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | - Jette Rahn
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | - Rudolf Lichtenfels
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | | | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Anna P Kipp
- Institute of Nutrition, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| |
Collapse
|
29
|
CLCA4 inhibits bladder cancer cell proliferation, migration, and invasion by suppressing the PI3K/AKT pathway. Oncotarget 2017; 8:93001-93013. [PMID: 29190973 PMCID: PMC5696239 DOI: 10.18632/oncotarget.21724] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
Calcium activated chloride channel A4 (CLCA4), a tumor suppressor, was shown to contribute to the progression of several human cancers, while its role in bladder carcinoma remains unclear. In this study, we showed CLCA4 expression was down-regulated in bladder carcinoma tissues and cells compared to adjacent non-tumor tissues and normal urothelial cells. Low CLCA4 expression was correlated with larger tumor size, advanced tumor stage, and poor prognosis in bladder carcinoma patients. Overexpression of CLCA4 profoundly attenuated the proliferation, growth, migratory and invasive capabilities of bladder cancer cells, whereas CLCA4 knockdown had the opposite effect. Mechanistically, CLCA4 is involved in PI3K/AKT signaling and its downstream molecules can promote bladder cancer cell proliferation. Additionally, CLCA4 could mediate the migration and invasion of bladder cancer cells by regulating epithelial-mesenchymal transition and PI3K/Akt activation. This study suggests that CLCA4 may represent a promising prognostic biomarker for bladder cancer and provides a possible mechanism for bladder cancer growth and invasion.
Collapse
|
30
|
Li X, Hu W, Zhou J, Huang Y, Peng J, Yuan Y, Yu J, Zheng S. CLCA1 suppresses colorectal cancer aggressiveness via inhibition of the Wnt/beta-catenin signaling pathway. Cell Commun Signal 2017; 15:38. [PMID: 28974231 PMCID: PMC5627483 DOI: 10.1186/s12964-017-0192-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/19/2017] [Indexed: 02/05/2023] Open
Abstract
Background Chloride channel accessory 1 (CLCA1) belongs to the calcium-sensitive chloride conductance protein family, which is mainly expressed in the colon, small intestine and appendix. This study was conducted to investigate the functions and mechanisms of CLCA1 in colorectal cancer (CRC). Methods The CLCA1 protein expression level in CRC patients was evaluated by enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC), and western blotting analysis. Using CRISPR/Cas9 technology, CLCA1-upregulated (CLCA1-ACT) and CLCA1-knockout cells (CLCA1-KO), as well as their respective negative controls (CLCA1-ACT-NC and CLCA1-KO-NC), were constructed from the SW620 cell line. Cell growth and metastatic ability were assessed both in vitro and in vivo. The association of CLCA1 with epithelial-mesenchymal transition (EMT) and other signaling pathways was determined by western blotting assays. Results The expression level of CLCA1 in CRC tissues was significantly decreased compared with that in adjacent normal tissue (P< 0.05). Meanwhile, the serum concentration of CLCA1 in CRC patients was also significantly lower when compared with that of healthy controls (1.48 ± 1.06 ng/mL vs 1.06 ± 0.73 ng/mL, P = 0.0018). In addition, CLCA1 serum concentration and mRNA expression level in CRC tissues were inversely correlated with CRC metastasis and tumor stage. Upregulated CLCA1 suppressed CRC growth and metastasis in vitro and in vivo, whereas inhibition of CLCA1 led to the opposite results. Increased expression levels of CLCA1 could repress Wnt signaling and the EMT process in CRC cells. Conclusions Our findings suggest that increased expression levels of CLCA1 can suppress CRC aggressiveness. CLCA1 functions as a tumor suppressor possibly via inhibition of the Wnt/beta-catenin signaling pathway and the EMT process. Electronic supplementary material The online version of this article (dio: 10.1186/s12964-017-0192-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaofen Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wangxiong Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaojiao Zhou
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanqin Huang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaping Peng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Medical Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiekai Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
31
|
Rahn J, Lennicke C, Kipp AP, Müller AS, Wessjohann LA, Lichtenfels R, Seliger B. Altered protein expression pattern in colon tissue of mice upon supplementation with distinct selenium compounds. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/16/2017] [Accepted: 04/11/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Jette Rahn
- Institute of Medical Immunology; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Claudia Lennicke
- Institute of Medical Immunology; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Anna P. Kipp
- German Institute of Human Nutrition; Potsdam-Rehbrücke; Nuthetal Germany
| | - Andreas S. Müller
- Institute of Agricultural and Nutritional Sciences; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
- Delacon Biotechnik GmbH; Steyregg Austria
| | | | - Rudolf Lichtenfels
- Institute of Medical Immunology; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Barbara Seliger
- Institute of Medical Immunology; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| |
Collapse
|
32
|
A plant alkaloid, veratridine, potentiates cancer chemosensitivity by UBXN2A-dependent inhibition of an oncoprotein, mortalin-2. Oncotarget 2016; 6:23561-81. [PMID: 26188124 PMCID: PMC4695137 DOI: 10.18632/oncotarget.4452] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022] Open
Abstract
Veratridine (VTD), an alkaloid derived from the Liliaceae plant shows anti-tumor effects; however, its molecular targets have not been thoroughly studied. Using a high-throughput drug screen, we found that VTD enhances transactivation of UBXN2A, resulting in upregulation of UBXN2A in the cytoplasm, where UBXN2A binds and inhibits the oncoprotein mortalin-2 (mot-2). VTD-treated cancer cells undergo cell death in UBXN2A- and mot-2-dependent manners. The cytotoxic function of VTD is grade-dependent, and the combined treatment with a sub-optimal dose of the standard chemotherapy, 5-Fluorouracil (5-FU) and etoposide, demonstrated a synergistic effect, resulting in higher therapeutic efficacy. VTD influences the CD44+ stem cells, possibly through UBXN2A-dependent inhibition of mot-2. The VTD-dependent expression of UBXN2A is a potential candidate for designing novel strategies for colon cancer treatment because: 1) In 50% of colon cancer patients, UBXN2A protein levels in tumor tissues are significantly lower than those in the adjacent normal tissues. 2) Cytoplasmic expression of the mot-2 protein is very low in non-cancerous cells; thus, VTD can produce tumor-specific toxicity while normal cells remain intact. 3) Finally, VTD or its modified analogs offer a valuable adjuvant chemotherapy strategy to improve the efficacy of 5-FU-based chemotherapy for colon cancer patients harboring WT-p53.
Collapse
|
33
|
Ostasiewicz B, Ostasiewicz P, Duś-Szachniewicz K, Ostasiewicz K, Ziółkowski P. Quantitative analysis of gene expression in fixed colorectal carcinoma samples as a method for biomarker validation. Mol Med Rep 2016; 13:5084-92. [PMID: 27121919 PMCID: PMC4878534 DOI: 10.3892/mmr.2016.5200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Biomarkers have been described as the future of oncology. Modern proteomics provide an invaluable tool for the near-whole proteome screening for proteins expressed differently in neoplastic vs. healthy tissues. However, in order to select the most promising biomarkers, an independent method of validation is required. The aim of the current study was to propose a methodology for the validation of biomarkers. Due to material availability the majority of large scale biomarker studies are performed using formalin-fixed paraffin-embedded (FFPE) tissues, therefore these were selected for use in the current study. A total of 10 genes were selected from what have been previously described as the most promising candidate biomarkers, and the expression levels were analyzed with reverse transcription-quantitative polymerase chain reaction (RT-qPCR) using calibrator normalized relative quantification with the efficiency correction. For 6/10 analyzed genes, the results were consistent with the proteomic data; for the remaining four genes, the results were inconclusive. The upregulation of karyopherin α 2 (KPNA2) and chromosome segregation 1-like (CSE1L) in colorectal carcinoma, in addition to downregulation of chloride channel accessory 1 (CLCA1), fatty acid binding protein 1 (FABP1), sodium channel, voltage gated, type VII α subunit (SCN7A) and solute carrier family 26 (anion exchanger), member 3 (SLC26A3) was confirmed. With the combined use of proteomic and genetic tools, it was reported, for the first time to the best of our knowledge, that SCN7A was downregulated in colorectal carcinoma at mRNA and protein levels. It had been previously suggested that the remaining five genes served an important role in colorectal carcinogenesis, however the current study provided strong evidence to support their use as biomarkers. Thus, it was concluded that combination of RT-qPCR with proteomics offers a powerful methodology for biomarker identification, which can be used to analyze FFPE samples.
Collapse
Affiliation(s)
- Beata Ostasiewicz
- Department of Pathology, Wrocław Medical University, Wrocław 50‑368, Poland
| | - Paweł Ostasiewicz
- Department of Pathology, Wrocław Medical University, Wrocław 50‑368, Poland
| | | | | | - Piotr Ziółkowski
- Department of Pathology, Wrocław Medical University, Wrocław 50‑368, Poland
| |
Collapse
|
34
|
Erickson NA, Mundhenk L, Giovannini S, Glauben R, Heimesaat MM, Gruber AD. Role of goblet cell protein CLCA1 in murine DSS colitis. JOURNAL OF INFLAMMATION-LONDON 2016; 13:5. [PMID: 26855614 PMCID: PMC4743195 DOI: 10.1186/s12950-016-0113-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/27/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The secreted goblet cell protein CLCA1 (chloride channel regulator, calcium-activated-1) is, in addition to its established role in epithelial chloride conductance regulation, thought to act as a multifunctional signaling protein, including cellular differentiation pathways and induction of mucus production. Specifically, CLCA1 has recently been shown to modulate early immune responses by regulation of cytokines. Here, we analyze the role of CLCA1, which is highly expressed and secreted by colon goblet cells, in the course of murine dextran sodium sulfate-induced colitis. FINDINGS We compared Clca1-deficient and wild type mice under unchallenged and DSS-challenged conditions at various time points, including weight loss, colon weight-length-ratio and histological characterization of inflammation and regeneration. Expression levels of relevant cytokines, trefoil factor 3 and E-cadherin were assessed via quantitative PCR and cytometric bead arrays. Lack of CLCA1 was associated with a more than two-fold increased expression of Cxcl-1- and Il-17-mRNA during DSS colitis. However, no differences were found between Clca1-deficient and wild type mice under unchallenged or DSS-challenged conditions in terms of clinical findings, disease progression, colitis outcome, epithelial defects or regeneration. CONCLUSIONS CLCA1 is involved in the modulation of cytokine responses in the colon, albeit differently than what had been observed in the lungs. Obviously, the pathways involved depend on the type of challenge, time point or tissue environment.
Collapse
Affiliation(s)
- Nancy A Erickson
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163 Berlin, Germany
| | - Lars Mundhenk
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163 Berlin, Germany
| | - Samoa Giovannini
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163 Berlin, Germany
| | - Rainer Glauben
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Garystrasse 5, 14195 Berlin, Germany
| | - Achim D Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163 Berlin, Germany
| |
Collapse
|
35
|
ShahidSales S, Mobarhan MG, Ghasemi F, Gholamin S, Avan A. Low expression of chloride channel accessory 1 predicts a poor prognosis in colorectal cancer: The question is still open. Cancer 2015. [DOI: 10.1002/cncr.29598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Soodabeh ShahidSales
- School of Medicine; Cancer Research Center, Mashhad University of Medical Sciences; Mashhad Iran
| | - Majid Ghayour Mobarhan
- Department of Modern Sciences and Technologies; Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences; Mashhad Iran
| | - Faezeh Ghasemi
- Department of Modern Sciences and Technologies; Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences; Mashhad Iran
| | - Sharareh Gholamin
- Institute of Stem Cell Biology, and Regenerative Medicine, Stanford University School of Medicine; Stanford California
| | - Amir Avan
- Department of Modern Sciences and Technologies; Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences; Mashhad Iran
- Department of Medical Oncology; VU University Medical Center Amsterdam; Amsterdam the Netherlands
| |
Collapse
|
36
|
Pu J, Cao L, McCaig CD. Reply to low expression of chloride channel accessory 1 predicts a poor prognosis in colorectal cancer: The question is still open. Cancer 2015. [DOI: 10.1002/cncr.29599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jin Pu
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen; Aberdeen United Kingdom
| | - Lin Cao
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen; Aberdeen United Kingdom
| | - Colin D. McCaig
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen; Aberdeen United Kingdom
| |
Collapse
|
37
|
Erickson NA, Nyström EEL, Mundhenk L, Arike L, Glauben R, Heimesaat MM, Fischer A, Bereswill S, Birchenough GMH, Gruber AD, Johansson MEV. The Goblet Cell Protein Clca1 (Alias mClca3 or Gob-5) Is Not Required for Intestinal Mucus Synthesis, Structure and Barrier Function in Naive or DSS-Challenged Mice. PLoS One 2015; 10:e0131991. [PMID: 26162072 PMCID: PMC4498832 DOI: 10.1371/journal.pone.0131991] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/09/2015] [Indexed: 12/15/2022] Open
Abstract
The secreted, goblet cell-derived protein Clca1 (chloride channel regulator, calcium-activated-1) has been linked to diseases with mucus overproduction, including asthma and cystic fibrosis. In the intestine Clca1 is found in the mucus with an abundance and expression pattern similar to Muc2, the major structural mucus component. We hypothesized that Clca1 is required for the synthesis, structure or barrier function of intestinal mucus and therefore compared wild type and Clca1-deficient mice under naive and at various time points of DSS (dextran sodium sulfate)-challenged conditions. The mucus phenotype in Clca1-deficient compared to wild type mice was systematically characterized by assessment of the mucus protein composition using proteomics, immunofluorescence and expression analysis of selected mucin genes on mRNA level. Mucus barrier integrity was assessed in-vivo by analysis of bacterial penetration into the mucus and translocation into sentinel organs combined analysis of the fecal microbiota and ex-vivo by assessment of mucus penetrability using beads. All of these assays revealed no relevant differences between wild type and Clca1-deficient mice under steady state or DSS-challenged conditions in mouse colon. Clca1 is not required for mucus synthesis, structure and barrier function in the murine colon.
Collapse
Affiliation(s)
- Nancy A. Erickson
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | | | - Lars Mundhenk
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Liisa Arike
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Rainer Glauben
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology—Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Markus M. Heimesaat
- Department of Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Achim D. Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Malin E. V. Johansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|