1
|
Covarrubias BV, Kamminga JM, Muchlinski MN, Munds RA, Villero Núñez V, Bauman Surratt S, Martinez MI, Montague MJ, Higham JP, Melin AD, Veilleux CC. Investigating mechanoreceptor variability and morphometric proxies in Rhesus Macaques: Implications for primate precision touch studies. Anat Rec (Hoboken) 2024. [PMID: 39367664 DOI: 10.1002/ar.25587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024]
Abstract
The origin of primates has long been associated with an increased emphasis on manual grasping and touch. Precision touch, facilitated by specialized mechanoreceptors in glabrous skin, provides critical sensory feedback for grasping-related tasks and perception of ecologically-relevant stimuli. Despite its importance, studies of mechanoreceptors in primate hands are limited, in part due to challenges of sample availability and histological methods. Dermatoglyphs have been proposed as alternative proxies of mechanoreceptor density. We investigated the relationships between mechanoreceptors (Meissner and Pacinian corpuscles), dermatoglyphs, and demography in the apical finger pads of 15 juvenile to adult rhesus macaques (Macaca mulatta) from a free-ranging population at Cayo Santiago Primate Field Station (Puerto Rico). Our results indicate substantial interindividual variation in mechanoreceptor density (Meissner corpuscles: 11.9-43.3 corpuscles/mm2; Pacinian corpuscles: 0-4.5 corpuscles/mm2). While sex and digit were generally not associated with variation, there was strong evidence of a developmental effect. Specifically, apical pad length, Meissner corpuscle size, and Pacinian corpuscle depth increased while mechanoreceptor densities decreased throughout juvenescence, suggesting that primate mechanoreceptors change as fingers grow during adolescence and then stabilize at physical maturity. We also found Meissner corpuscle density was significantly associated with dermatoglyph ridge width and spacing, such that density predicted by a dermatoglyph model was strongly correlated with observed values. Dermatoglyphs thus offer a useful proxy of relative Meissner corpuscle density in primates, which opens exciting avenues of noninvasive research. Finally, our results underscore the importance of considering demographic factors and methodology in comparative studies of primate touch.
Collapse
Affiliation(s)
| | - Jordan M Kamminga
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona, USA
| | - M N Muchlinski
- Anatomical Science Education Center, Oregon Health and Science University, Portland, Oregon, USA
| | - R A Munds
- Department of Anthropology & Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - V Villero Núñez
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - S Bauman Surratt
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - M I Martinez
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - M J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J P Higham
- Department of Anthropology, New York University, New York, New York, USA
| | - A D Melin
- Department of Anthropology & Archaeology, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - C C Veilleux
- Department of Anatomy, Midwestern University, Glendale, Arizona, USA
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona, USA
| |
Collapse
|
2
|
Desbois M, Grill B. Molecular regulation of axon termination in mechanosensory neurons. Development 2024; 151:dev202945. [PMID: 39268828 DOI: 10.1242/dev.202945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Spatially and temporally accurate termination of axon outgrowth, a process called axon termination, is required for efficient, precise nervous system construction and wiring. The mechanosensory neurons that sense low-threshold mechanical stimulation or gentle touch have proven exceptionally valuable for studying axon termination over the past 40 years. In this Review, we discuss progress made in deciphering the molecular and genetic mechanisms that govern axon termination in touch receptor neurons. Findings across model organisms, including Caenorhabditis elegans, Drosophila, zebrafish and mice, have revealed that complex signaling is required for termination with conserved principles and players beginning to surface. A key emerging theme is that axon termination is mediated by complex signaling networks that include ubiquitin ligase signaling hubs, kinase cascades, transcription factors, guidance/adhesion receptors and growth factors. Here, we begin a discussion about how these signaling networks could represent termination codes that trigger cessation of axon outgrowth in different species and types of mechanosensory neurons.
Collapse
Affiliation(s)
- Muriel Desbois
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98101, USA
| |
Collapse
|
3
|
Su J, Zhang H, Li H, He K, Tu J, Zhang F, Liu Z, Lv Z, Cui Z, Li Y, Li J, Tang LZ, Chen X. Skin-Inspired Multi-Modal Mechanoreceptors for Dynamic Haptic Exploration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311549. [PMID: 38363810 DOI: 10.1002/adma.202311549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Active sensing is a fundamental aspect of human and animal interactions with the environment, providing essential information about the hardness, texture, and tackiness of objects. This ability stems from the presence of diverse mechanoreceptors in the skin, capable of detecting a wide range of stimuli and from the sensorimotor control of biological mechanisms. In contrast, existing tactile sensors for robotic applications typically excel in identifying only limited types of information, lacking the versatility of biological mechanoreceptors and the requisite sensing strategies to extract tactile information proactively. Here, inspired by human haptic perception, a skin-inspired artificial 3D mechanoreceptor (SENS) capable of detecting multiple mechanical stimuli is developed to bridge sensing and action in a closed-loop sensorimotor system for dynamic haptic exploration. A tensor-based non-linear theoretical model is established to characterize the 3D deformation (e.g., tensile, compressive, and shear deformation) of SENS, providing guidance for the design and optimization of multimode sensing properties with high fidelity. Based on SENS, a closed-loop robotic system capable of recognizing objects with improved accuracy (≈96%) is further demonstrated. This dynamic haptic exploration approach shows promise for a wide range of applications such as autonomous learning, healthcare, and space and deep-sea exploration.
Collapse
Affiliation(s)
- Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hang Zhang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), The Smart Grippers for Soft Robotics (SGSR) Programme, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Haicheng Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), The Smart Grippers for Soft Robotics (SGSR) Programme, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Jiaqi Tu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Feilong Zhang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhihua Liu
- Institute of Materials Research and Engineering, the Agency for Science, Technology and Research, Singapore, 138634, Singapore
| | - Zhisheng Lv
- Institute of Materials Research and Engineering, the Agency for Science, Technology and Research, Singapore, 138634, Singapore
| | - Zequn Cui
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yanzhen Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiaofu Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Leng Ze Tang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
4
|
Hagert E, Rein S. Wrist proprioception-An update on scientific insights and clinical implications in rehabilitation of the wrist. J Hand Ther 2024; 37:257-268. [PMID: 37866985 DOI: 10.1016/j.jht.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 09/24/2023] [Indexed: 10/24/2023]
Abstract
The field of wrist proprioception, as it relates to rehabilitation and surgery, has gone through a period of intense growth in the past decade. From being primarily focused on the function of the joint and ligaments in patients with wrist trauma or after wrist surgery, the understanding is now that of a greater complexity in treating not just the wrist but the hand and arm as a whole. Proprioception is derived from the Latin words "proprius" - belonging to (oneself) and "-ception" to sense. In other words, how to sense ourselves. To have a complete sense of self, multiple sensory afferents originating from joints, ligaments, muscles, tendons, nerves, skin, vision, and hearing work together to orchestrate a balanced integration of sensorimotor functions, with the true goal to perceive and adapt to the physical world around us. In this update on wrist proprioception, we review current developments in the understanding of proprioception, with an implication for our everyday work as hand therapists and hand surgeons. Each contributing sense-joint, ligaments, muscles, skin, and brain-will be reviewed, and the clinical relevance will be discussed. An updated wrist rehabilitation protocol is proposed where the therapist is guided to rehabilitate a patient after wrist trauma and/or surgery in 4 stages: (1) basic hand and wrist rehabilitation with a focus on reducing edema, pain, and scar formation; (2) proprioception awareness to improve the sense of joint motion and position; (3) conscious neuromuscular rehabilitation where isometric exercises of muscles that are beneficial for a particular injury are promoted, whereas others that are potentially harmful are avoided; and (4) unconscious neuromuscular rehabilitation with training of the reflex and joint protective senses.
Collapse
Affiliation(s)
- Elisabet Hagert
- Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar; Karolinska Institutet, Department of Clinical Science and Education, Stockholm, Sweden.
| | - Susanne Rein
- Department of Plastic and Hand Surgery, Burn Unit, Hospital Sankt Georg, Leipzig, Germany; Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
5
|
Bhat GM, Bashir S, Jan SS, Banoo S, Khan JA. Bovine Meissner-like corpuscle and evolutionary ecology of mammalian somatosensory acuity. Anat Histol Embryol 2024; 53:e12969. [PMID: 37724616 DOI: 10.1111/ahe.12969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
The mammalian snout has Meissner's corpuscles (MCs), which transmit epicritic sensations as the animal explores its surroundings. To comprehend the somatosensory acuity in mammals, we examined the structural organization and density of bovine Meissner-like corpuscles (BMLCs) at various ages and compared the changes with other mammalian MCs. The skin from the snout of cows or oxen (2-11 years old) was obtained and processed through routine histological technique. Five-μm thick sections were prepared, silver stained according to the Bielschowsky technique as modified by Winkelman and Schmidt (Mayo Clinic Proceedings, 1957, 217), and observed under a compound light microscope quantitatively and qualitatively. The glabrous skin of the cow snout consisted of two types of BMLCs: One was a cylindrical or elongated structure found in the dermal papillae. The other type was spherical and developed in the superficial layers of the epidermis. BMLCs consisted of both coarse and fine nerve fibres. In the young, the corpuscle comprised thin nerve fibres with indistinct cell outlines. In adults, nerve fibres in the corpuscles were closely packed, and networks, varicosities and end bulbs were well developed. With advancing age, the MCs attenuated into a disorganized mass of nerve fibres. The bovine snout is a highly evolved somatosensory organ due to its rich nerve supply and functionally resembles the anthropoid fingertip. Somatosensory acuity will be lower in the glabrous bovine skin than in primate glabrous skin of the fingertip, as the nerve terminals within the BMLCs are less elaborate in content and structural complexity.
Collapse
Affiliation(s)
- Ghulam M Bhat
- Department of Anatomy, Government Medical College Srinagar, Srinagar, Jammu and Kashmir, India
| | - Samina Bashir
- Department of Anatomy, Government Medical College Srinagar, Srinagar, Jammu and Kashmir, India
| | - Shah S Jan
- Department of Anatomy, Government Medical College Srinagar, Srinagar, Jammu and Kashmir, India
| | - Shamima Banoo
- Department of Anatomy, Government Medical College Srinagar, Srinagar, Jammu and Kashmir, India
| | - Javeed A Khan
- Department of Anatomy, Government Medical College Srinagar, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
6
|
Tomlinson JCL, Zwirner J, Oorschot DE, Morawski M, Ondruschka B, Zhang M, Hammer N. Microstructural analysis on the innervation of the anterior, medial, and lateral human hip capsule: Preliminary evidence on its neuromechanical contribution. Osteoarthritis Cartilage 2023; 31:1469-1480. [PMID: 37574111 DOI: 10.1016/j.joca.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
OBJECTIVE Capsular repair aims to minimize damage to the hip joint capsular complex (HJCC) and subsequent dislocation risk following total hip arthroplasty (THA). Numerous explanations for its success have been advocated, including neuromuscular feedback loops originating from within the intact HJCC. This research investigates the hypothesis that the HJCC contributes to hip joint stability by analyzing HJCC innervation. METHOD Twenty-nine samples from the anterior, medial, and lateral aspects of the midportion HJCC of 29 individuals were investigated stereologically and immunohistochemically to identify encapsulated mechanoreceptors according to a modified Freeman and Wyke classification, totaling 11,745 sections. Consecutive slices were observed to determine the nerve course within the HJCC. RESULTS Few encapsulated mechanoreceptors were found in the HJCC subregions and overlying tissues across the cohort studied. Of regions studied, no significant regional differences in the density of mechanoreceptors were found. No significant difference in mechanoreceptor density was found between sides (left, 10.2×10-4/mm3, 4.0×10-4 - 19.0×10-4/mm3; right 12.9×10-4/mm3, 5.0×10-4 - 22.0×10-4/mm3; mean, 95% confidence intervals) sexes (female 10.4×10-4/mm3, 4.0×10-4 - 18.0×10-4/mm3; male 11.6×10-4/mm3, 5.0×10-4 - 20.0×10-4/mm3; mean, 95% confidence intervals), nor in correlation with age demographics. Myelinated nerves coursed consistently within the HJCC in various orientations. CONCLUSION Sparse mechanoreceptor density suggests that the HJCC contributes to a limited extent to hip joint stabilization. HJCC nerve terminals may potentially contribute to neuromuscular feedback loops with associated muscles to mediate joint stability in tandem with the active and passive components of the joint.
Collapse
Affiliation(s)
- Joanna C L Tomlinson
- School of Anatomy, University of Bristol, Bristol, United Kingdom; Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, Otago, New Zealand.
| | - Johann Zwirner
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Oral Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Dorothy E Oorschot
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Markus Morawski
- Paul Flechsig Institute for Brain Research, Medical Faculty, University of Leipzig, Leipzig, Saxony, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ming Zhang
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Niels Hammer
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Styria, Austria; Division of Biomechatronics, Fraunhofer Institute for Machine Tools and Forming Technology (Fraunhofer IWU), Dresden, Saxony, Germany; Department of Orthopaedic and Trauma Surgery, University of Leipzig, Germany
| |
Collapse
|
7
|
Pomaville MB, Wright KM. Follicle-innervating Aδ-low threshold mechanoreceptive neurons form receptive fields through homotypic competition. Neural Dev 2023; 18:2. [PMID: 37106422 PMCID: PMC10134579 DOI: 10.1186/s13064-023-00170-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
The mammalian somatosensory system is comprised of multiple neuronal populations that form specialized, highly organized sensory endings in the skin. The organization of somatosensory endings is essential to their functions, yet the mechanisms which regulate this organization remain unclear. Using a combination of genetic and molecular labeling approaches, we examined the development of mouse hair follicle-innervating low-threshold mechanoreceptors (LTMRs) and explored competition for innervation targets as a mechanism involved in the patterning of their receptive fields. We show that follicle innervating neurons are present in the skin at birth and that LTMR receptive fields gradually add follicle-innervating endings during the first two postnatal weeks. Using a constitutive Bax knockout to increase the number of neurons in adult animals, we show that two LTMR subtypes have differential responses to an increase in neuronal population size: Aδ-LTMR neurons shrink their receptive fields to accommodate the increased number of neurons innervating the skin, while C-LTMR neurons do not. Our findings suggest that competition for hair follicles to innervate plays a role in the patterning and organization of follicle-innervating LTMR neurons.
Collapse
Affiliation(s)
- Matthew B Pomaville
- Vollum Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Cell, Developmental, and Cancer Biology, Cell and Developmental Biology Graduate Program, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Kevin M Wright
- Vollum Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
8
|
Diamond ME, Toso A. Tactile cognition in rodents. Neurosci Biobehav Rev 2023; 149:105161. [PMID: 37028580 DOI: 10.1016/j.neubiorev.2023.105161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Since the discovery 50 years ago of the precisely ordered representation of the whiskers in somatosensory cortex, the rodent tactile sensory system has been a fertile ground for the study of sensory processing. With the growing sophistication of touch-based behavioral paradigms, together with advances in neurophysiological methodology, a new approach is emerging. By posing increasingly complex perceptual and memory problems, in many cases analogous to human psychophysical tasks, investigators now explore the operations underlying rodent problem solving. We define the neural basis of tactile cognition as the transformation from a stage in which neuronal activity encodes elemental features, local in space and in time, to a stage in which neuronal activity is an explicit representation of the behavioral operations underlying the current task. Selecting a set of whisker-based behavioral tasks, we show that rodents achieve high level performance through the workings of neuronal circuits that are accessible, decodable, and manipulatable. As a means towards exploring tactile cognition, this review presents leading psychophysical paradigms and, where known, their neural correlates.
Collapse
Affiliation(s)
- Mathew E Diamond
- Cognitive Neuroscience, International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy.
| | - Alessandro Toso
- Cognitive Neuroscience, International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
9
|
Sukumar V, Johansson RS, Pruszynski JA. Precise and stable edge orientation signaling by human first-order tactile neurons. eLife 2022; 11:e81476. [PMID: 36314774 PMCID: PMC9642991 DOI: 10.7554/elife.81476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/27/2022] [Indexed: 12/04/2022] Open
Abstract
Fast-adapting type 1 (FA-1) and slow-adapting type 1 (SA-1) first-order neurons in the human tactile system have distal axons that branch in the skin and form many transduction sites, yielding receptive fields with many highly sensitive zones or 'subfields.' We previously demonstrated that this arrangement allows FA-1 and SA-1 neurons to signal the geometric features of touched objects, specifically the orientation of raised edges scanned with the fingertips. Here, we show that such signaling operates for fine edge orientation differences (5-20°) and is stable across a broad range of scanning speeds (15-180 mm/s); that is, under conditions relevant for real-world hand use. We found that both FA-1 and SA-1 neurons weakly signal fine edge orientation differences via the intensity of their spiking responses and only when considering a single scanning speed. Both neuron types showed much stronger edge orientation signaling in the sequential structure of the evoked spike trains, and FA-1 neurons performed better than SA-1 neurons. Represented in the spatial domain, the sequential structure was strikingly invariant across scanning speeds, especially those naturally used in tactile spatial discrimination tasks. This speed invariance suggests that neurons' responses are structured via sequential stimulation of their subfields and thus links this capacity to their terminal organization in the skin. Indeed, the spatial precision of elicited action potentials rationally matched spatial acuity of subfield arrangements, which corresponds to a spatial period similar to the dimensions of individual fingertip ridges.
Collapse
|
10
|
Deflorio D, Di Luca M, Wing AM. Skin and Mechanoreceptor Contribution to Tactile Input for Perception: A Review of Simulation Models. Front Hum Neurosci 2022; 16:862344. [PMID: 35721353 PMCID: PMC9201416 DOI: 10.3389/fnhum.2022.862344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
We review four current computational models that simulate the response of mechanoreceptors in the glabrous skin to tactile stimulation. The aim is to inform researchers in psychology, sensorimotor science and robotics who may want to implement this type of quantitative model in their research. This approach proves relevant to understanding of the interaction between skin response and neural activity as it avoids some of the limitations of traditional measurement methods of tribology, for the skin, and neurophysiology, for tactile neurons. The main advantage is to afford new ways of looking at the combined effects of skin properties on the activity of a population of tactile neurons, and to examine different forms of coding by tactile neurons. Here, we provide an overview of selected models from stimulus application to neuronal spiking response, including their evaluation in terms of existing data, and their applicability in relation to human tactile perception.
Collapse
|
11
|
Eldridge SA, Mortazavi F, Rice FL, Ketten DR, Wiley DN, Lyman E, Reidenberg JS, Hanke FD, DeVreese S, Strobel SM, Rosene DL. Specializations of somatosensory innervation in the skin of humpback whales (Megaptera novaeangliae). Anat Rec (Hoboken) 2022; 305:514-534. [PMID: 35023618 DOI: 10.1002/ar.24856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/12/2022]
Abstract
Cetacean behavior and life history imply a role for somatosensory detection of critical signals unique to their marine environment. As the sensory anatomy of cetacean glabrous skin has not been fully explored, skin biopsy samples of the flank skin of humpback whales were prepared for general histological and immunohistochemical (IHC) analyses of innervation in this study. Histology revealed an exceptionally thick epidermis interdigitated by numerous, closely spaced long, thin diameter penicillate dermal papillae (PDP). The dermis had a stratified organization including a deep neural plexus (DNP) stratum intermingled with small arteries that was the source of intermingled nerves and arterioles forming a more superficial subepidermal neural plexus (SNP) stratum. The patterns of nerves branching through the DNP and SNP that distribute extensive innervation to arteries and arterioles and to the upper dermis and PDP provide a dense innervation associated through the whole epidermis. Some NF-H+ fibers terminated at the base of the epidermis and as encapsulated endings in dermal papillae similar to Merkel innervation and encapsulated endings seen in terrestrial mammals. However, unlike in all mammalian species assessed to date, an unusual acellular gap was present between the perineural sheaths and the central core of axons in all the cutaneous nerves perhaps as mechanism to prevent high hydrostatic pressure from compressing and interfering with axonal conductance. Altogether the whale skin has an exceptionally dense low-threshold mechanosensory system innervation most likely adapted for sensing hydrodynamic stimuli, as well as nerves that can likely withstand high pressure experienced during deep dives.
Collapse
Affiliation(s)
- Sherri A Eldridge
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA.,Biology Department, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA
| | - Farzad Mortazavi
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Frank L Rice
- Integrated Tissue Dynamics, Rensselaer, New York, USA
| | - Darlene R Ketten
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - David N Wiley
- National Oceanic and Atmospheric Administration/ National Ocean Service/Stellwagen Bank National Marine Sanctuary, Scituate, Massachusetts, USA
| | - Ed Lyman
- Hawaiian Islands Humpback Whale National Marine Sanctuary, Kihei, Hawaii, USA
| | - Joy S Reidenberg
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Frederike D Hanke
- University of Rostock, Institute for Biosciences, Neuroethology, Rostock, Germany
| | - Steffen DeVreese
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy.,Laboratory of Applied Bioacoustics, Technical University of Catalonia, BarcelonaTech, Barcelona, Spain
| | - Sarah McKay Strobel
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Douglas L Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
12
|
The cellular and molecular basis of somatosensory neuron development. Neuron 2021; 109:3736-3757. [PMID: 34592169 DOI: 10.1016/j.neuron.2021.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022]
Abstract
Primary somatosensory neurons convey salient information about our external environment and internal state to the CNS, allowing us to detect, perceive, and react to a wide range of innocuous and noxious stimuli. Pseudo-unipolar in shape, and among the largest (longest) cells of most mammals, dorsal root ganglia (DRG) somatosensory neurons have peripheral axons that extend into skin, muscle, viscera, or bone and central axons that innervate the spinal cord and brainstem, where they synaptically engage the central somatosensory circuitry. Here, we review the diversity of mammalian DRG neuron subtypes and the intrinsic and extrinsic mechanisms that control their development. We describe classical and contemporary advances that frame our understanding of DRG neurogenesis, transcriptional specification of DRG neurons, and the establishment of morphological, physiological, and synaptic diversification across somatosensory neuron subtypes.
Collapse
|
13
|
Tactile sensitivity in the rat: a correlation between receptor structure and function. Exp Brain Res 2021; 239:3457-3469. [PMID: 34519842 PMCID: PMC8599332 DOI: 10.1007/s00221-021-06193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/11/2021] [Indexed: 11/04/2022]
Abstract
Single cutaneous fibers were recorded in the median nerve of the deeply anesthetized rat and the receptor morphology in the forelimb glabrous skin was analyzed to establish a probable correlation between receptor anatomy and physiology. Receptor complexes in the glabrous skin of the rat forelimb were stained immunologically with antibodies NF-200 and PGP-9.5, confirming the presence of Meissner corpuscles and Merkel complexes within the dermal papilla similar to other mammals including primates. Both the Meissner corpuscles and Merkel cell complexes were sparse and located in the pyramidal-shaped palmer pads and the apex of the digit extremities. They were almost totally absent elsewhere in the glabrous skin. No Ruffini receptors or Pacinian corpuscles were found in our samples. A total of 92 cutaneous fibers were retained long enough for analysis. Thirty-five (38%) were characterized as rapidly adapting fibers (RA) and 57 (62%) were slowly adapting afferents (SA). Despite the very limited number of receptors at the tip of the digit, RA receptors outnumbered SA fibers 3.2/1.0. In contrast, SA fibers on the thenar pad outnumbered RA receptors by a ratio of 3–1. Despite the very limited number of low threshold mechanoreceptors in the glabrous skin of the rat forelimb, the prevalence of SA afferents in the palm and more frequent occurrence of RA afferents in the digit extremity suggest differences in functionality both for locomotion and object manipulation.
Collapse
|
14
|
Handler A, Ginty DD. The mechanosensory neurons of touch and their mechanisms of activation. Nat Rev Neurosci 2021; 22:521-537. [PMID: 34312536 PMCID: PMC8485761 DOI: 10.1038/s41583-021-00489-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Our sense of touch emerges from an array of mechanosensory structures residing within the fabric of our skin. These tactile end organ structures convert innocuous forces acting on the skin into electrical signals that propagate to the CNS via the axons of low-threshold mechanoreceptors (LTMRs). Our rich capacity for tactile discrimination arises from the dissimilar intrinsic properties of the LTMR subtypes that innervate different regions of the skin and the structurally distinct end organ complexes with which they associate. These end organ structures comprise a range of non-neuronal cell types, which may themselves actively contribute to the transformation of tactile forces into neural impulses within the LTMR afferents. Although the mechanism and the site of transduction across end organs remain unclear, PIEZO2 has emerged as the principal mechanosensitive channel involved in light touch of the skin. Here we review the physiological properties of LTMR subtypes and discuss how features of their cutaneous end organ complexes shape subtype-specific tuning.
Collapse
Affiliation(s)
- Annie Handler
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Strobel SM, Miller MA, Murray MJ, Reichmuth C. Anatomy of the sense of touch in sea otters: Cutaneous mechanoreceptors and structural features of glabrous skin. Anat Rec (Hoboken) 2021; 305:535-555. [PMID: 34425043 DOI: 10.1002/ar.24739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/06/2021] [Accepted: 05/27/2021] [Indexed: 11/08/2022]
Abstract
Sea otters (Enhydra lutris) demonstrate rapid, accurate tactile abilities using their paws and facial vibrissae. Anatomical investigations of neural organization in the vibrissal bed and somatosensory cortex coincide with measured sensitivity, but no studies describe sensory receptors in the paws or other regions of glabrous (i.e., hairless) skin. In this study, we use histology to assess the presence, density, and distribution of mechanoreceptors in the glabrous skin of sea otters: paws, rhinarium, lips, and flipper digits, and we use scanning electron microscopy to describe skin-surface texture and its potential effect on the transduction of mechanical stimuli. Our results confirm the presence of Merkel cells and Pacinian corpuscles, but not Meissner corpuscles, in all sea otter glabrous skin. The paws showed the highest density of Merkel cells and Pacinian corpuscles. Within the paw, relative densities of mechanoreceptor types were highest in the distal metacarpal pad and digits, which suggests that the distal paw is a tactile fovea for sea otters. In addition to the highest receptor density, the paw displayed the thickest epidermis. Rete ridges (epidermal projections into the dermis) and dermal papillae (dermal projections into the epidermis) were developed across all glabrous skin. These quantitative and qualitative descriptions of neural organization and physical features, combined with previous behavioral results, contribute to our understanding of how structure relates to function in the tactile modality. Our findings coincide with behavioral observations of sea otters, which use touch to maintain thermoregulatory integrity of their fur, explore objects, and capture visually cryptic prey.
Collapse
Affiliation(s)
- Sarah McKay Strobel
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Melissa A Miller
- California Department of Fish and Wildlife, Marine Wildlife Veterinary Care and Research Center, Santa Cruz, California, USA
| | | | - Colleen Reichmuth
- Long Marine Laboratory, Institute of Marine Sciences, Santa Cruz, California, USA
| |
Collapse
|
16
|
Moayedi Y, Michlig S, Park M, Koch A, Lumpkin EA. Somatosensory innervation of healthy human oral tissues. J Comp Neurol 2021; 529:3046-3061. [PMID: 33786834 PMCID: PMC10052750 DOI: 10.1002/cne.25148] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
The oral somatosensory system relays essential information about mechanical stimuli to enable oral functions such as feeding and speech. The neurochemical and anatomical diversity of sensory neurons across oral cavity sites have not been systematically compared. To address this gap, we analyzed healthy human tongue and hard-palate innervation. Biopsies were collected from 12 volunteers and underwent fluorescent immunohistochemistry (≥2 specimens per marker/structure). Afferents were analyzed for markers of neurons (βIII tubulin), myelinated afferents (neurofilament heavy, NFH), and Merkel cells and taste cells (keratin 20, K20). Hard-palate innervation included Meissner corpuscles, glomerular endings, Merkel cell-neurite complexes, and free nerve endings. The organization of these somatosensory endings is reminiscent of fingertips, suggesting that the hard palate is equipped with a rich repertoire of sensory neurons for pressure sensing and spatial localization of mechanical inputs, which are essential for speech production and feeding. Likewise, the tongue is innervated by afferents that impart it with exquisite acuity and detection of moving stimuli that support flavor construction and speech. Filiform papillae contained end bulbs of Krause, as well as endings that have not been previously reported, including subepithelial neuronal densities, and NFH+ neurons innervating basal epithelia. Fungiform papillae had Meissner corpuscles and densities of NFH+ intraepithelial neurons surrounding taste buds. The differing compositions of sensory endings within filiform and fungiform papillae suggest that these structures have distinct roles in mechanosensation. Collectively, this study has identified previously undescribed neuronal endings in human oral tissues and provides an anatomical framework for understanding oral mechanosensory functions.
Collapse
Affiliation(s)
- Yalda Moayedi
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA.,Department of Neurology, Columbia University, New York, New York, USA.,Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, New York, USA
| | | | - Mark Park
- Oral and Maxillofacial Surgery, New York Presbyterian, Columbia University, New York, New York, USA
| | - Alia Koch
- Oral and Maxillofacial Surgery, New York Presbyterian, Columbia University, New York, New York, USA
| | - Ellen A Lumpkin
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA.,Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
17
|
Nakatani M, Kobayashi Y, Ohno K, Uesaka M, Mogami S, Zhao Z, Sushida T, Kitahata H, Nagayama M. Temporal coherency of mechanical stimuli modulates tactile form perception. Sci Rep 2021; 11:11737. [PMID: 34083558 PMCID: PMC8175693 DOI: 10.1038/s41598-021-90661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 05/11/2021] [Indexed: 11/09/2022] Open
Abstract
The human hand can detect both form and texture information of a contact surface. The detection of skin displacement (sustained stimulus) and changes in skin displacement (transient stimulus) are thought to be mediated in different tactile channels; however, tactile form perception may use both types of information. Here, we studied whether both the temporal frequency and the temporal coherency information of tactile stimuli encoded in sensory neurons could be used to recognize the form of contact surfaces. We used the fishbone tactile illusion (FTI), a known tactile phenomenon, as a probe for tactile form perception in humans. This illusion typically occurs with a surface geometry that has a smooth bar and coarse textures in its adjacent areas. When stroking the central bar back and forth with a fingertip, a human observer perceives a hollow surface geometry even though the bar is physically flat. We used a passive high-density pin matrix to extract only the vertical information of the contact surface, suppressing tangential displacement from surface rubbing. Participants in the psychological experiment reported indented surface geometry by tracing over the FTI textures with pin matrices of the different spatial densities (1.0 and 2.0 mm pin intervals). Human participants reported that the relative magnitude of perceived surface indentation steeply decreased when pins in the adjacent areas vibrated in synchrony. To address possible mechanisms for tactile form perception in the FTI, we developed a computational model of sensory neurons to estimate temporal patterns of action potentials from tactile receptive fields. Our computational data suggest that (1) the temporal asynchrony of sensory neuron responses is correlated with the relative magnitude of perceived surface indentation and (2) the spatiotemporal change of displacements in tactile stimuli are correlated with the asynchrony of simulated sensory neuron responses for the fishbone surface patterns. Based on these results, we propose that both the frequency and the asynchrony of temporal activity in sensory neurons could produce tactile form perception.
Collapse
Affiliation(s)
- Masashi Nakatani
- Faculty of Environment and Information Studies, Keio University, Tokyo, Japan.
| | - Yasuaki Kobayashi
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Kota Ohno
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Masaaki Uesaka
- Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, Japan
| | - Sayako Mogami
- Faculty of Policy and Management, Keio University, Tokyo, Japan
| | - Zixia Zhao
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Takamichi Sushida
- Department of Computer Science and Technology, Salesian Polytechnic, Machida, Japan
| | | | - Masaharu Nagayama
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
18
|
Yin C, Peterman E, Rasmussen JP, Parrish JZ. Transparent Touch: Insights From Model Systems on Epidermal Control of Somatosensory Innervation. Front Cell Neurosci 2021; 15:680345. [PMID: 34135734 PMCID: PMC8200473 DOI: 10.3389/fncel.2021.680345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
Somatosensory neurons (SSNs) densely innervate our largest organ, the skin, and shape our experience of the world, mediating responses to sensory stimuli including touch, pressure, and temperature. Historically, epidermal contributions to somatosensation, including roles in shaping innervation patterns and responses to sensory stimuli, have been understudied. However, recent work demonstrates that epidermal signals dictate patterns of SSN skin innervation through a variety of mechanisms including targeting afferents to the epidermis, providing instructive cues for branching morphogenesis, growth control and structural stability of neurites, and facilitating neurite-neurite interactions. Here, we focus onstudies conducted in worms (Caenorhabditis elegans), fruit flies (Drosophila melanogaster), and zebrafish (Danio rerio): prominent model systems in which anatomical and genetic analyses have defined fundamental principles by which epidermal cells govern SSN development.
Collapse
Affiliation(s)
| | | | | | - Jay Z. Parrish
- Department of Biology, University of Washington, Seattle, WA, United States
| |
Collapse
|
19
|
Ouyang Q, Wu J, Shao Z, Chen D, Bisley JW. A Simplified Model for Simulating Population Responses of Tactile Afferents and Receptors in the Skin. IEEE Trans Biomed Eng 2021; 68:556-567. [PMID: 32746053 PMCID: PMC8016390 DOI: 10.1109/tbme.2020.3007397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tactile information about an object can only be extracted from population responses of tactile receptors and their afferents. Thus, to best control tactile information in robots, neuroprostheses or haptic devices, inputs should represent responses from full populations of afferents. Here, we describe a simplified model that recreates afferent population responses of thousands of tactile afferents in a personal computer. The whole model includes a resistance network model to simplify the skin mechanics and an improved version of a single unit model that we have previously described. The whole model was implemented by short and efficient python code. The parameters of the model were fit based on a simple vibrating stimulus, but the simulated outputs generalize to match receptive field sizes, edge enhancement, and neurophysiological responses to dot textures, embossed letters and curved surfaces. We discuss how to use this work to model haptic perception and provide guidance in designing and controlling highly realistic tactile interfaces in robots, neural prostheses and haptic devices.
Collapse
|
20
|
Page DM, George JA, Wendelken SM, Davis TS, Kluger DT, Hutchinson DT, Clark GA. Discriminability of multiple cutaneous and proprioceptive hand percepts evoked by intraneural stimulation with Utah slanted electrode arrays in human amputees. J Neuroeng Rehabil 2021; 18:12. [PMID: 33478534 PMCID: PMC7819250 DOI: 10.1186/s12984-021-00808-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Electrical stimulation of residual afferent nerve fibers can evoke sensations from a missing limb after amputation, and bionic arms endowed with artificial sensory feedback have been shown to confer functional and psychological benefits. Here we explore the extent to which artificial sensations can be discriminated based on location, quality, and intensity. METHODS We implanted Utah Slanted Electrode Arrays (USEAs) in the arm nerves of three transradial amputees and delivered electrical stimulation via different electrodes and frequencies to produce sensations on the missing hand with various locations, qualities, and intensities. Participants performed blind discrimination trials to discriminate among these artificial sensations. RESULTS Participants successfully discriminated cutaneous and proprioceptive sensations ranging in location, quality and intensity. Performance was significantly greater than chance for all discrimination tasks, including discrimination among up to ten different cutaneous location-intensity combinations (15/30 successes, p < 0.0001) and seven different proprioceptive location-intensity combinations (21/40 successes, p < 0.0001). Variations in the site of stimulation within the nerve, via electrode selection, enabled discrimination among up to five locations and qualities (35/35 successes, p < 0.0001). Variations in the stimulation frequency enabled discrimination among four different intensities at the same location (13/20 successes, p < 0.0005). One participant also discriminated among individual stimulation of two different USEA electrodes, simultaneous stimulation on both electrodes, and interleaved stimulation on both electrodes (20/24 successes, p < 0.0001). CONCLUSION Electrode location, stimulation frequency, and stimulation pattern can be modulated to evoke functionally discriminable sensations with a range of locations, qualities, and intensities. This rich source of artificial sensory feedback may enhance functional performance and embodiment of bionic arms endowed with a sense of touch.
Collapse
Affiliation(s)
| | - Jacob A George
- Division of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Suzanne M Wendelken
- Department of Anesthesiology, Maine Medical Center, Portland, ME, 04102, USA
| | - Tyler S Davis
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, 84112, USA
| | | | | | - Gregory A Clark
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
21
|
Pham TQ, Hoshi T, Tanaka Y, Sano A. An FE Simulation Study on Population Response of RA-I Mechanoreceptor to Different Widths of Square Indenter. ACTA ACUST UNITED AC 2021. [DOI: 10.9746/jcmsi.10.426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Trung Quang Pham
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology
| | - Takayuki Hoshi
- Department of Information Physics and Computing, The University of Tokyo
| | - Yoshihiro Tanaka
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology
| | - Akihito Sano
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology
| |
Collapse
|
22
|
Cobo R, García‐Mesa Y, Cárcaba L, Martin‐Cruces J, Feito J, García‐Suárez O, Cobo J, García‐Piqueras J, Vega JA. Verification and characterisation of human digital Ruffini's sensory corpuscles. J Anat 2021; 238:13-19. [PMID: 32864772 PMCID: PMC7754963 DOI: 10.1111/joa.13301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023] Open
Abstract
Ruffini's corpuscles are present as long fusiform encapsulated sensory structures in different tissues including the skin. Although physiological analyses strongly suggest their existence in glabrous digital skin, such localisation remains unconfirmed. Here, we have investigated the occurrence of typical Ruffini's corpuscles in 372 sections of human digital skin obtained from 186 subjects of both sexes and different ages (19-92 years). S100 protein, neuron-specific enolase and neurofilament proteins were detected, and the basic immunohistochemical profile of these corpuscles was analysed. Fewer than 0.3 Ruffini's corpuscles/mm2 were detected, with density distribution across the fingers being F4 > F3 > F2 > F1 > F5 and absolute values being F2 > F1 > F3 > F4 > F5. Axons displayed neuron-specific enolase immunoreactivity, glial cells forming the core contained S100 protein, and the capsule was positive for CD34 but not Glut1, demonstrating an endoneurial origin. Present results demonstrate the existence of Ruffini's corpuscles in human glabrous digital skin at very low densities. Moreover, the identified Ruffini's corpuscles share the basic immunohistochemical characteristics of other dermal sensory corpuscles.
Collapse
Affiliation(s)
- Ramón Cobo
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - Yolanda García‐Mesa
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - Lucía Cárcaba
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - José Martin‐Cruces
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - Jorge Feito
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain,Servicio de Anatomía PatológicaComplejo Hospitalario Universitario de SalamancaSalamancaSpain
| | - Olivia García‐Suárez
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - Juan Cobo
- Departamento de Cirugía y Especialidades Médico‐QuirúrgicasUniversidad de OviedoOviedoSpain,Instituto Asturiano de OdontologíaOviedoSpain
| | - Jorge García‐Piqueras
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - José A. Vega
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain,Facultad de Ciencias de la SaludUniversidad Autónoma de ChileSantiagoChile
| |
Collapse
|
23
|
Corniani G, Saal HP. Tactile innervation densities across the whole body. J Neurophysiol 2020; 124:1229-1240. [DOI: 10.1152/jn.00313.2020] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The skin is our largest sensory organ and innervated by afferent fibers carrying tactile information to the spinal cord and onto the brain. The density with which different classes of tactile afferents innervate the skin is not constant but varies considerably across different body regions. However, precise estimates of innervation density are only available for some body parts, such as the hands, and estimates of the total number of tactile afferent fibers are inconsistent and incomplete. Here we reconcile different estimates and provide plausible ranges and best estimates for the number of different tactile fiber types innervating different regions of the skin, using evidence from dorsal root fiber counts, microneurography, histology, and psychophysics. We estimate that the skin across the whole body of young adults is innervated by ∼230,000 tactile afferent fibers (plausible range: 200,000–270,000), with a subsequent decrement of 5–8% every decade due to aging. Fifteen percent of fibers innervate the palmar skin of both hands and 19% the region surrounding the face and lips. Slowly and fast-adapting fibers are split roughly evenly, but this breakdown varies with skin region. Innervation density correlates well with psychophysical spatial acuity across different body regions, and, additionally, on hairy skin, with hair follicle density. Innervation density is also weakly correlated with the size of the cortical somatotopic representation but cannot fully account for the magnification of the hands and the face.
Collapse
Affiliation(s)
- Giulia Corniani
- Active Touch Laboratory, Department of Psychology, University of Sheffield, Sheffield, United Kingdom
- Sheffield Robotics, University of Sheffield, Sheffield, United Kingdom
| | - Hannes P. Saal
- Active Touch Laboratory, Department of Psychology, University of Sheffield, Sheffield, United Kingdom
- Sheffield Robotics, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
24
|
Peripheral Mechanobiology of Touch-Studies on Vertebrate Cutaneous Sensory Corpuscles. Int J Mol Sci 2020; 21:ijms21176221. [PMID: 32867400 PMCID: PMC7504094 DOI: 10.3390/ijms21176221] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
The vertebrate skin contains sensory corpuscles that are receptors for different qualities of mechanosensitivity like light brush, touch, pressure, stretch or vibration. These specialized sensory organs are linked anatomically and functionally to mechanosensory neurons, which function as low-threshold mechanoreceptors connected to peripheral skin through Aβ nerve fibers. Furthermore, low-threshold mechanoreceptors associated with Aδ and C nerve fibers have been identified in hairy skin. The process of mechanotransduction requires the conversion of a mechanical stimulus into electrical signals (action potentials) through the activation of mechanosensible ion channels present both in the axon and the periaxonal cells of sensory corpuscles (i.e., Schwann-, endoneurial- and perineurial-related cells). Most of those putative ion channels belong to the degenerin/epithelial sodium channel (especially the family of acid-sensing ion channels), the transient receptor potential channel superfamilies, and the Piezo family. This review updates the current data about the occurrence and distribution of putative mechanosensitive ion channels in cutaneous mechanoreceptors including primary sensory neurons and sensory corpuscles.
Collapse
|
25
|
Fonia A, Richert B. Onychalgia Causes and Mechanisms: The “GIFTED KID” and the “FOMITE”. Skin Appendage Disord 2020; 6:77-87. [DOI: 10.1159/000504347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/23/2019] [Indexed: 11/19/2022] Open
Abstract
This article gives an account of the commonest causes of nail pain. The acronyms GIFTED KID and FOMITE will help aid doctors in a busy clinical setting to remember the main causes of onychalgia, respectively, on the fingers and toes. It includes a brief overview of the clinical characteristics and focuses on the type of pain for each condition as well as the mechanisms that cause it.
Collapse
|
26
|
Crawford LK, Caterina MJ. Functional Anatomy of the Sensory Nervous System: Updates From the Neuroscience Bench. Toxicol Pathol 2019; 48:174-189. [PMID: 31554486 DOI: 10.1177/0192623319869011] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The simple tripartite classification of sensory neurons as A-beta, A-delta, and C fibers fails to convey the complexity of the neurons that encode stimuli as diverse as the texture of a surface, the location of a pinprick, or the direction of hair movement as a breeze moves across the skin. It has also proven to be inadequate when investigating the molecular mechanisms underlying pain, which can encompass any combination of chemical, tactile, and thermal modalities. Beginning with a brief overview of visceral and sensory neuroanatomy, this review expands upon sensory innervation of the skin as a prime example of the heterogeneity and complexity of the somatosensory nervous system. Neuroscientists have characterized defining features of over 15 subtypes of sensory neurons that innervate the skin of the mouse. This has enabled the study of cell-specific mechanisms of pain, which suggests that diverse sensory neuron subtypes may have distinct susceptibilities to toxic injury and different roles in pathologic mechanisms underlying altered sensation. Leveraging this growing body of knowledge for preclinical trials and models of neurotoxicity can vastly improve our understanding of peripheral nervous system dysfunction, advancing the fields of toxicologic pathology and neuropathology alike.
Collapse
Affiliation(s)
- LaTasha K Crawford
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, USA, Madison, WI, USA
| | - Michael J Caterina
- Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Dhong C, Miller R, Root NB, Gupta S, Kayser LV, Carpenter CW, Loh KJ, Ramachandran VS, Lipomi DJ. Role of indentation depth and contact area on human perception of softness for haptic interfaces. SCIENCE ADVANCES 2019; 5:eaaw8845. [PMID: 31497646 PMCID: PMC6716960 DOI: 10.1126/sciadv.aaw8845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/23/2019] [Indexed: 05/22/2023]
Abstract
In engineering, the "softness" of an object, as measured by an indenter, manifests as two measurable parameters: (i) indentation depth and (ii) contact area. For humans, softness is not well defined, although it is believed that perception depends on the same two parameters. Decoupling their relative contributions, however, has not been straightforward because most bulk-"off-the-shelf"-materials exhibit the same ratio between the indentation depth and contact area. Here, we decoupled indentation depth and contact area by fabricating elastomeric slabs with precise thicknesses and microstructured surfaces. Human subject experiments using two-alternative forced-choice and magnitude estimation tests showed that the indentation depth and contact area contributed independently to perceived softness. We found an explicit relationship between the perceived softness of an object and its geometric properties. Using this approach, it is possible to design objects for human interaction with a desired level of perceived softness.
Collapse
Affiliation(s)
- Charles Dhong
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448, USA
| | - Rachel Miller
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448, USA
| | - Nicholas B. Root
- Department of Psychology, University of California, San Diego, 9500 Gilman Drive, Mail Code 0109, La Jolla, CA 92093-0109, USA
| | - Sumit Gupta
- Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92003-0085, USA
| | - Laure V. Kayser
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448, USA
| | - Cody W. Carpenter
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448, USA
| | - Kenneth J. Loh
- Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92003-0085, USA
| | - Vilayanur S. Ramachandran
- Department of Psychology, University of California, San Diego, 9500 Gilman Drive, Mail Code 0109, La Jolla, CA 92093-0109, USA
| | - Darren J. Lipomi
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448, USA
| |
Collapse
|
28
|
Ouyang Q, Wu J, Shao Z, Wu M, Cao Z. A Python Code for Simulating Single Tactile Receptors and the Spiking Responses of Their Afferents. Front Neuroinform 2019; 13:27. [PMID: 31057386 PMCID: PMC6478814 DOI: 10.3389/fninf.2019.00027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 03/25/2019] [Indexed: 11/17/2022] Open
Abstract
This work presents a pieces of Python code to rapidly simulate the spiking responses of large numbers of single cutaneous tactile afferents with millisecond precision. To simulate the spike responses of all the major types of cutaneous tactile afferents, we proposed an electromechanical circuit model, in which a two-channel filter was developed to characterize the mechanical selectivity of tactile receptors, and a spike synthesizer was designed to recreate the action potentials evoked in afferents. The parameters of this model were fitted using previous neurophysiological datasets. Several simulation examples were presented in this paper to reproduce action potentials, sensory adaptation, frequency characteristics and spiking timing for each afferent type. The results indicated that the simulated responses matched previous neurophysiological recordings well. The model allows for a real-time reproduction of the spiking responses of about 4,000 tactile units with a timing precision of <6 ms. The current work provides a valuable guidance to designing highly realistic tactile interfaces such as neuroprosthesis and haptic devices.
Collapse
Affiliation(s)
- Qiangqiang Ouyang
- State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Juan Wu
- State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | | | | | | |
Collapse
|
29
|
Dhong C, Kayser LV, Arroyo R, Shin A, Finn M, Kleinschmidt AT, Lipomi DJ. Role of fingerprint-inspired relief structures in elastomeric slabs for detecting frictional differences arising from surface monolayers. SOFT MATTER 2018; 14:7483-7491. [PMID: 30152497 PMCID: PMC6146067 DOI: 10.1039/c8sm01233d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The perception of fine texture of an object is influenced by its microscopic topography and surface chemistry-i.e., the topmost layer of atoms and molecules responsible for its surface energy, adhesion, and friction generated when probed by a fingertip. Recently, it has been shown that human subjects can discriminate high-energy (i.e., hydrophilic), oxidized silicon from low-energy (i.e., hydrophobic), fluorinated alkylsilane-coated silicon. The basis of discrimination was consistent with differences between stick-slip friction frequencies generated when sliding the fingertip across the two surfaces. One aspect that was not examined was the presence of surface relief structures on the fingertip. Indeed, papillary ridges-fingerprints-may be involved in enhanced discrimination of fine textures arising from surface roughness, but how (or whether) fingerprints may also be involved in the discrimination of surface chemistry-through its effect on friction-is unknown. Here, using a mock finger made from a slab of silicone rubber shows that relief structures amplify differences in stick-slip friction when slid across either a hydrophilic oxide or a hydrophobic monolayer on silicon. We quantify the similarity between the friction traces of the mock fingers sliding across hydrophilic and hydrophobic surfaces under varying velocities and applied masses using a cross-correlation analysis. We then convert the cross-correlational data into convenient "discriminability matrices." These matrices identify combinations of downward forces and sliding velocities that enhance differences in friction between hydrophilic and hydrophobic monolayers. In addition, a computational model of macroscopic, "rate-and-state" friction confirms that frictional differences in chemistry are amplified when elastic slabs bear a patterned interface. This biomimetic approach to engineering sliding interfaces may inform the development of improved electronic skin and haptic devices and may contribute to understanding the role of relief structure in tactile perception.
Collapse
Affiliation(s)
- Charles Dhong
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Pruszynski JA, Flanagan JR, Johansson RS. Fast and accurate edge orientation processing during object manipulation. eLife 2018; 7:31200. [PMID: 29611804 PMCID: PMC5922971 DOI: 10.7554/elife.31200] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 03/29/2018] [Indexed: 12/03/2022] Open
Abstract
Quickly and accurately extracting information about a touched object’s orientation is a critical aspect of dexterous object manipulation. However, the speed and acuity of tactile edge orientation processing with respect to the fingertips as reported in previous perceptual studies appear inadequate in these respects. Here we directly establish the tactile system’s capacity to process edge-orientation information during dexterous manipulation. Participants extracted tactile information about edge orientation very quickly, using it within 200 ms of first touching the object. Participants were also strikingly accurate. With edges spanning the entire fingertip, edge-orientation resolution was better than 3° in our object manipulation task, which is several times better than reported in previous perceptual studies. Performance remained impressive even with edges as short as 2 mm, consistent with our ability to precisely manipulate very small objects. Taken together, our results radically redefine the spatial processing capacity of the tactile system. Putting on a necklace requires using your fingertips to hold open a clasp, which you then insert into a small ring. For you to do this, your nervous system must first work out which way the clasp and the ring are facing relative to one another. It then uses that information to coordinate the movements of your fingertips. If you fasten the necklace behind your head, your nervous system must perform these tasks without information from your eyes. Instead, it must use the way in which the edges of the clasp and the ring indent the skin on your fingertips to work out their orientation. Earlier studies have examined this process by asking healthy volunteers to judge the orientation of objects – or more precisely edges – that an experimenter has pressed against their fingertips. But people perform worse than expected on this task given their manual dexterity. Pruszynski et al. wondered whether the task might underestimate the abilities of the volunteers because it involves passively perceiving objects, rather than actively manipulating them. To test this idea, Pruszynski et al. designed a new experiment. Healthy volunteers were asked to use a fingertip to rotate a pointer on a dial to a target location. The participants could not see the dial, and so they had to use touch alone to determine which way the pointer was facing. They performed the task faster and more accurately than volunteers in the earlier passive experiments. Indeed, when the pointer was longer than a fingertip, the volunteers performed almost as well using touch alone as when allowed to look at the dial. Speed and accuracy remained impressive even when the pointer was only 2mm long. The results of Pruszynski et al. show that we judge orientation more accurately when we manipulate objects than when we passively perceive them. In other words, we do better when we perform tasks in which being aware of orientation is vital. The results also suggest that the nervous system processes sensory information in different ways when it uses sensations to help control objects as opposed to just perceiving them. This could influence the development of new technology that aims to use brain activity to control computers or robotic limbs.
Collapse
Affiliation(s)
- J Andrew Pruszynski
- Department of Physiology and Pharmacology, Western University, London, Canada.,Department of Psychology, Western University, London, Canada.,Robarts Research Institute, Western University, London, Canada.,Brain and Mind Institute, Western University, London, Canada.,Department of Integrative Medical Biology, Umea University, Umea, Sweden
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada.,Department of Psychology, Queen's University, Kingston, Canada
| | - Roland S Johansson
- Department of Integrative Medical Biology, Umea University, Umea, Sweden
| |
Collapse
|
31
|
A finite-element model of mechanosensation by a Pacinian corpuscle cluster in human skin. Biomech Model Mechanobiol 2018; 17:1053-1067. [DOI: 10.1007/s10237-018-1011-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/06/2018] [Indexed: 11/26/2022]
|
32
|
Pham TQ, Hoshi T, Tanaka Y, Sano A. Effect of 3D microstructure of dermal papillae on SED concentration at a mechanoreceptor location. PLoS One 2017; 12:e0189293. [PMID: 29220415 PMCID: PMC5722322 DOI: 10.1371/journal.pone.0189293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 11/02/2017] [Indexed: 11/25/2022] Open
Abstract
The feeling of touch is an essential human sensation. Four types of mechanoreceptors (i.e., FA-I, SA-I, FA-II, and SA-II) in human skin signalize physical properties, such as shape, size, and texture, of an object that is touched and transmit the signal to the brain. Previous studies attempted to investigate the mechanical properties of skin microstructure and their effect on mechanoreceptors by using finite element modeling. However, very few studies have focused on the three-dimensional microstructure of dermal papillae, and this is related to that of FA-I receptors. A gap exists between conventional 2D models of dermal papillae and the natural configuration, which corresponds to a complex and uneven structure with depth. In this study, the three-dimensional microstructure of dermal papillae is modeled, and the differences between two-dimensional and three-dimensional aspects of dermal papillae on the strain energy density at receptor positions are examined. The three-dimensional microstructure has a focalizing effect and a localizing effect. Results also reveal the potential usefulness of these effects for tactile sensor design, and this may improve edge discrimination.
Collapse
Affiliation(s)
- Trung Quang Pham
- Department of Engineering Physics, Electronics and Mechanics, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
- * E-mail:
| | - Takayuki Hoshi
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Tanaka
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Akihito Sano
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
33
|
Abstract
The sensation of touch is mediated by mechanosensory neurons that are embedded in skin and relay signals from the periphery to the central nervous system. During embryogenesis, axons elongate from these neurons to make contact with the developing skin. Concurrently, the epithelium of skin transforms from a homogeneous tissue into a heterogeneous organ that is made up of distinct layers and microdomains. Throughout this process, each neuronal terminal must form connections with an appropriate skin region to serve its function. This Review presents current knowledge of the development of the sensory microdomains in mammalian skin and the mechanosensory neurons that innervate them.
Collapse
Affiliation(s)
- Blair A Jenkins
- Department of Physiology & Cellular Biophysics and Department of Dermatology, Columbia University in the City of New York, New York, NY 10032, USA
| | - Ellen A Lumpkin
- Department of Physiology & Cellular Biophysics and Department of Dermatology, Columbia University in the City of New York, New York, NY 10032, USA
| |
Collapse
|
34
|
Tymms C, Zorin D, Gardner EP. Tactile perception of the roughness of 3D-printed textures. J Neurophysiol 2017; 119:862-876. [PMID: 29167326 DOI: 10.1152/jn.00564.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Surface roughness is one of the most important qualities in haptic perception. Roughness is a major identifier for judgments of material composition, comfort, and friction and is tied closely to manual dexterity. Some attention has been given to the study of roughness perception in the past, but it has typically focused on noncontrollable natural materials or on a narrow range of artificial materials. The advent of high-resolution three-dimensional (3D) printing technology provides the ability to fabricate arbitrary 3D textures with precise surface geometry to be used in tactile studies. We used parametric modeling and 3D printing to manufacture a set of textured plates with defined element spacing, shape, and arrangement. Using active touch and two-alternative forced-choice protocols, we investigated the contributions of these surface parameters to roughness perception in human subjects. Results indicate that large spatial periods produce higher estimations of roughness (with Weber fraction = 0.19), small texture elements are perceived as rougher than large texture elements of the same wavelength, perceptual differences exist between textures with the same spacing but different arrangements, and roughness equivalencies exist between textures differing along different parameters. We posit that papillary ridges serve as tactile processing units, and neural ensembles encode the spatial profiles of the texture contact area to produce roughness estimates. The stimuli and the manufacturing process may be used in further studies of tactile roughness perception and in related neurophysiological applications. NEW & NOTEWORTHY Surface roughness is an integral quality of texture perception. We manufactured textures using high-resolution 3D printing, which allows precise specification of the surface spatial topography. In human psychophysical experiments we investigated the contributions of specific surface parameters to roughness perception. We found that textures with large spatial periods, small texture elements, and irregular, isotropic arrangements elicit the highest estimations of roughness. We propose that roughness correlates inversely with the total contacted surface area.
Collapse
Affiliation(s)
- Chelsea Tymms
- Department of Computer Science, New York University , New York, New York
| | - Denis Zorin
- Department of Computer Science, New York University , New York, New York
| | - Esther P Gardner
- Department of Neuroscience and Physiology and NYU Neuroscience Institute, New York University School of Medicine , New York, New York
| |
Collapse
|
35
|
Olson W, Abdus-Saboor I, Cui L, Burdge J, Raabe T, Ma M, Luo W. Sparse genetic tracing reveals regionally specific functional organization of mammalian nociceptors. eLife 2017; 6:29507. [PMID: 29022879 PMCID: PMC5648527 DOI: 10.7554/elife.29507] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/11/2017] [Indexed: 12/31/2022] Open
Abstract
The human distal limbs have a high spatial acuity for noxious stimuli but a low density of pain-sensing neurites. To elucidate mechanisms underlying regional differences in processing nociception, we sparsely traced non-peptidergic nociceptors across the body using a newly generated MrgprdCreERT2 mouse line. We found that mouse plantar paw skin is also innervated by a low density of Mrgprd+ nociceptors, while individual arbors in different locations are comparable in size. Surprisingly, the central arbors of plantar paw and trunk innervating nociceptors have distinct morphologies in the spinal cord. This regional difference is well correlated with a heightened signal transmission for plantar paw circuits, as revealed by both spinal cord slice recordings and behavior assays. Taken together, our results elucidate a novel somatotopic functional organization of the mammalian pain system and suggest that regional central arbor structure could facilitate the “enlarged representation” of plantar paw regions in the CNS.
Collapse
Affiliation(s)
- William Olson
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Ishmail Abdus-Saboor
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Lian Cui
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Justin Burdge
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Tobias Raabe
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Minghong Ma
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
36
|
Simulating tactile signals from the whole hand with millisecond precision. Proc Natl Acad Sci U S A 2017; 114:E5693-E5702. [PMID: 28652360 DOI: 10.1073/pnas.1704856114] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
When we grasp and manipulate an object, populations of tactile nerve fibers become activated and convey information about the shape, size, and texture of the object and its motion across the skin. The response properties of tactile fibers have been extensively characterized in single-unit recordings, yielding important insights into how individual fibers encode tactile information. A recurring finding in this extensive body of work is that stimulus information is distributed over many fibers. However, our understanding of population-level representations remains primitive. To fill this gap, we have developed a model to simulate the responses of all tactile fibers innervating the glabrous skin of the hand to any spatiotemporal stimulus applied to the skin. The model first reconstructs the stresses experienced by mechanoreceptors when the skin is deformed and then simulates the spiking response that would be produced in the nerve fiber innervating that receptor. By simulating skin deformations across the palmar surface of the hand and tiling it with receptors at their known densities, we reconstruct the responses of entire populations of nerve fibers. We show that the simulated responses closely match their measured counterparts, down to the precise timing of the evoked spikes, across a wide variety of experimental conditions sampled from the literature. We then conduct three virtual experiments to illustrate how the simulation can provide powerful insights into population coding in touch. Finally, we discuss how the model provides a means to establish naturalistic artificial touch in bionic hands.
Collapse
|
37
|
Integration of vibrotactile frequency information beyond the mechanoreceptor channel and somatotopy. Sci Rep 2017; 7:2758. [PMID: 28584282 PMCID: PMC5459808 DOI: 10.1038/s41598-017-02922-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/19/2017] [Indexed: 11/08/2022] Open
Abstract
A wide variety of tactile sensations arise from the activation of several types of mechanoreceptor-afferent channels scattered all over the body, and their projections create a somatotopic map in the somatosensory cortex. Recent findings challenge the traditional view that tactile signals from different mechanoreceptor-channels/locations are independently processed in the brain, though the contribution of signal integration to perception remains obscure. Here we show that vibrotactile frequency perception is functionally enriched by signal integration across different mechanoreceptor channels and separate skin locations. When participants touched two sinusoidal vibrations of far-different frequency, which dominantly activated separate channels with the neighboring fingers or the different hand and judged the frequency of one vibration, the perceived frequency shifted toward the other (assimilation effect). Furthermore, when the participants judged the frequency of the pair as a whole, they consistently reported an intensity-based interpolation of the two vibrations (averaging effect). Both effects were similar in magnitude between the same and different hand conditions and significantly diminished by asynchronous presentation of the vibration pair. These findings indicate that human tactile processing is global and flexible in that it can estimate the ensemble property of a large-scale tactile event sensed by various receptors distributed over the body.
Collapse
|
38
|
Pham TQ, Hoshi T, Tanaka Y, Sano A, Kawaue T, Miyata T. Two-Photon Imaging of DiO-Labelled Meissner Corpuscle in Living Mouse's Fingertip. IEEE TRANSACTIONS ON HAPTICS 2016; 9:483-491. [PMID: 27254872 DOI: 10.1109/toh.2016.2574718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Meissner corpuscles are the fast adapting type I (FA-I) mechanoreceptor that locates at the dermal papillae of skin. The Meissner corpuscle is well known for its complex structure, consisting of spiral axons, lamellar cells, and a collagen capsule. Fluorescent microscopy has become a convenient method for observing the Meissner corpuscle and its inner structure. This method requires preparing samples with fingertip cross-sections and performing antibody staining before observation. Various kinds of microscopy can be used for observation, such as confocal microscopy, transmission electron microscopy (TEM), or scanning electron microscopy (SEM). Although the anatomical shape, distribution, and components of Meissner corpuscle are recognized, they have been mostly determined from observations of fixed tissues. Therefore, knowledge of mechanical transduction is limited by the lack of in vivo experiments and individual differences among samples. In this study, we propose a novel less invasive imaging method that incorporates a staining technique with lipophilic carbocyanine [Formula: see text] and two-photon microscopy. This combination allows us to repetitively observe the Meissner corpuscle in a living mouse.
Collapse
|
39
|
Suresh AK, Saal HP, Bensmaia SJ. Edge orientation signals in tactile afferents of macaques. J Neurophysiol 2016; 116:2647-2655. [PMID: 27655968 DOI: 10.1152/jn.00588.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/15/2016] [Indexed: 11/22/2022] Open
Abstract
The orientation of edges indented into the skin has been shown to be encoded in the responses of neurons in primary somatosensory cortex in a manner that draws remarkable analogies to their counterparts in primary visual cortex. According to the classical view, orientation tuning arises from the integration of untuned input from thalamic neurons with aligned but spatially displaced receptive fields (RFs). In a recent microneurography study with human subjects, the precise temporal structure of the responses of individual mechanoreceptive afferents to scanned edges was found to carry information about their orientation. This putative mechanism could in principle contribute to or complement the classical rate-based code for orientation. In the present study, we further examine orientation information carried by mechanoreceptive afferents of Rhesus monkeys. To this end, we record the activity evoked in cutaneous mechanoreceptive afferents when edges are indented into or scanned across the skin. First, we confirm that information about the edge orientation can be extracted from the temporal patterning in afferent responses of monkeys, as is the case in humans. Second, we find that while the coarse temporal profile of the response can be predicted linearly from the layout of the RF, the fine temporal profile cannot. Finally, we show that orientation signals in tactile afferents are often highly dependent on stimulus features other than orientation, which complicates putative decoding strategies. We discuss the challenges associated with establishing a neural code at the somatosensory periphery, where afferents are exquisitely sensitive and nearly deterministic.
Collapse
Affiliation(s)
- Aneesha K Suresh
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois; and
| | - Hannes P Saal
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Sliman J Bensmaia
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois; and .,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| |
Collapse
|
40
|
Sawyer EK, Catania KC. Somatosensory organ topography across the star of the star-nosed mole (Condylura cristata). J Comp Neurol 2016; 524:917-29. [PMID: 26659700 PMCID: PMC4731273 DOI: 10.1002/cne.23943] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 11/06/2022]
Abstract
Quantifying somatosensory receptor distribution in glabrous skin is usually difficult because of the diversity of skin receptor subtypes and their location within the dermis and epidermis. However, the glabrous noses of moles are an exception. In most species of moles, the skin on the nose is covered with domed mechanosensory units known as an Eimer's organs. Eimer's organs contain a stereotyped array of different mechanosensory neurons, meaning that the distribution of mechanosensitive nerve endings can be inferred by visual inspection of the skin surface. Here we detail the distribution of Eimer's organs on the highly derived somatosensory star on the rostrum of the star-nosed mole (Condylura cristata). The star consists of 22 fleshy appendages, or rays, that are covered in Eimer's organs. We find that the density of Eimer's organs increases from proximal to distal locations along the length of the star's rays with a ratio of 1:2.3:3.1 from the surface nearest to the nostril, to the middle part of ray, to the ray tip, respectively. This ratio is comparable to the increase in receptor unit density reported for the human hand, from the palm, to the middle of the digits, to the distal fingertips. We also note that the tactile fovea of the star-nosed mole, located on the medial ventral ray, does not have increased sensory organ density, and we describe these findings in comparison with other sensory fovea.
Collapse
Affiliation(s)
- Eva K Sawyer
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee, 37240
| | - Kenneth C Catania
- Department of Biological Science, Vanderbilt University, Nashville, Tennessee, 37232
| |
Collapse
|
41
|
Olson W, Dong P, Fleming M, Luo W. The specification and wiring of mammalian cutaneous low-threshold mechanoreceptors. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:389-404. [PMID: 26992078 DOI: 10.1002/wdev.229] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 11/08/2022]
Abstract
The mammalian cutaneous low-threshold mechanoreceptors (LTMRs) are a diverse set of primary somatosensory neurons that function to sense external mechanical force. Generally, LTMRs are composed of Aβ-LTMRs, Aδ-LTMRs, and C-LTMRs, which have distinct molecular, physiological, anatomical, and functional features. The specification and wiring of each type of mammalian cutaneous LTMRs is established during development by the interplay of transcription factors with trophic factor signalling. In this review, we summarize the cohort of extrinsic and intrinsic factors generating the complex mammalian cutaneous LTMR circuits that mediate our tactile sensations and behaviors. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- William Olson
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter Dong
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Fleming
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
42
|
Yau JM, Kim SS, Thakur PH, Bensmaia SJ. Feeling form: the neural basis of haptic shape perception. J Neurophysiol 2016; 115:631-42. [PMID: 26581869 PMCID: PMC4752307 DOI: 10.1152/jn.00598.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/23/2015] [Indexed: 11/22/2022] Open
Abstract
The tactile perception of the shape of objects critically guides our ability to interact with them. In this review, we describe how shape information is processed as it ascends the somatosensory neuraxis of primates. At the somatosensory periphery, spatial form is represented in the spatial patterns of activation evoked across populations of mechanoreceptive afferents. In the cerebral cortex, neurons respond selectively to particular spatial features, like orientation and curvature. While feature selectivity of neurons in the earlier processing stages can be understood in terms of linear receptive field models, higher order somatosensory neurons exhibit nonlinear response properties that result in tuning for more complex geometrical features. In fact, tactile shape processing bears remarkable analogies to its visual counterpart and the two may rely on shared neural circuitry. Furthermore, one of the unique aspects of primate somatosensation is that it contains a deformable sensory sheet. Because the relative positions of cutaneous mechanoreceptors depend on the conformation of the hand, the haptic perception of three-dimensional objects requires the integration of cutaneous and proprioceptive signals, an integration that is observed throughout somatosensory cortex.
Collapse
Affiliation(s)
- Jeffrey M Yau
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas;
| | - Sung Soo Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| | | | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| |
Collapse
|
43
|
Fortier-Poisson P, Smith AM. Neuronal activity in somatosensory cortex related to tactile exploration. J Neurophysiol 2015; 115:112-26. [PMID: 26467519 DOI: 10.1152/jn.00747.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/11/2015] [Indexed: 11/22/2022] Open
Abstract
The very light contact forces (∼0.60 N) applied by the fingertips during tactile exploration reveal a clearly optimized sensorimotor strategy. To investigate the cortical mechanisms involved with this behavior, we recorded 230 neurons in the somatosensory cortex (S1), as two monkeys scanned different surfaces with the fingertips in search of a tactile target without visual feedback. During the exploration, the monkeys, like humans, carefully controlled the finger forces. High-friction surfaces offering greater tangential shear force resistance to the skin were associated with decreased normal contact forces. The activity of one group of neurons was modulated with either the normal or tangential force, with little or no influence from the orthogonal force component. A second group responded to kinetic friction or the ratio of tangential to normal forces rather than responding to a specific parameter, such as force magnitude or direction. A third group of S1 neurons appeared to respond to particular vectors of normal and tangential force on the skin. Although 45 neurons correlated with scanning speed, 32 were also modulated by finger forces, suggesting that forces on the finger should be considered as the primary parameter encoding the skin compliance and that finger speed is a secondary parameter that co-varies with finger forces. Neurons (102) were also tested with different textures, and the activity of 62 of these increased or decreased in relation to the surface friction.
Collapse
Affiliation(s)
- Pascal Fortier-Poisson
- Groupe de Recherche sur le Système Nerveux Central, Département de Physiologie, Université de Montréal, Québec, Canada
| | - Allan M Smith
- Groupe de Recherche sur le Système Nerveux Central, Département de Physiologie, Université de Montréal, Québec, Canada
| |
Collapse
|
44
|
Sarko DK, Rice FL, Reep RL. Elaboration and Innervation of the Vibrissal System in the Rock Hyrax (Procavia capensis). BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:170-88. [PMID: 26022696 PMCID: PMC4490970 DOI: 10.1159/000381415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/04/2015] [Indexed: 12/16/2022]
Abstract
Mammalian tactile hairs are commonly found on specific, restricted regions of the body, but Florida manatees represent a unique exception, exhibiting follicle-sinus complexes (FSCs, also known as vibrissae or tactile hairs) on their entire body. The orders Sirenia (including manatees and dugongs) and Hyracoidea (hyraxes) are thought to have diverged approximately 60 million years ago, yet hyraxes are among the closest relatives to sirenians. We investigated the possibility that hyraxes, like manatees, are tactile specialists with vibrissae that cover the entire postfacial body. Previous studies suggested that rock hyraxes possess postfacial vibrissae in addition to pelage hair, but this observation was not verified through histological examination. Using a detailed immunohistochemical analysis, we characterized the gross morphology, innervation and mechanoreceptors present in FSCs sampled from facial and postfacial vibrissae body regions to determine that the long postfacial hairs on the hyrax body are in fact true vibrissae. The types and relative densities of mechanoreceptors associated with each FSC also appeared to be relatively consistent between facial and postfacial FSCs. The presence of vibrissae covering the hyrax body presumably facilitates navigation in the dark caves and rocky crevices of the hyrax's environment where visual cues are limited, and may alert the animal to predatory or conspecific threats approaching the body. Furthermore, the presence of vibrissae on the postfacial body in both manatees and hyraxes indicates that this distribution may represent the ancestral condition for the supraorder Paenungulata.
Collapse
Affiliation(s)
- Diana K. Sarko
- Dept of Anatomy, Cell Biology & Physiology, Edward Via College of Osteopathic Medicine, 350 Howard Street, Spartanburg, SC 29303
| | - Frank L. Rice
- Integrated Tissue Dynamics, 7 University Place, Suite B236, Rensselaer, NY 12144
| | - Roger L. Reep
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610
| |
Collapse
|
45
|
Peppin JF, Albrecht PJ, Argoff C, Gustorff B, Pappagallo M, Rice FL, Wallace MS. Skin Matters: A Review of Topical Treatments for Chronic Pain. Part One: Skin Physiology and Delivery Systems. Pain Ther 2015; 4:17-32. [PMID: 25627665 PMCID: PMC4470967 DOI: 10.1007/s40122-015-0031-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is a complex disorder with multiple etiologies for which the pathologic mechanisms are still largely unknown, making effective treatment a difficult clinical task. Achieving pain relief along with improved function and quality of life is the primary goal of pain clinicians; however, most patients and healthcare professionals consider 30% pain improvement to be clinically significant—a success level that would be unacceptable in other areas of medicine. Furthermore, patients with chronic pain frequently have multiple comorbidities, including depression and sleep apnea, and most have seen several physicians prior to being seen by a pain specialist, have more than three specific pain generators, and are taking multiple medications. The addition of further oral medications to control pain increases the risk of drug–drug interactions and side effects. However, topical analgesics have the advantage of local application with limited systemic levels of drug. Topical therapies benefit from reduced side effects, lower risk of drug–drug interactions, better patient acceptability/compliance, and improved tolerability. This two-part paper is a review of topical analgesics and their potential role in the treatment of chronic pain.
Collapse
Affiliation(s)
- John F Peppin
- Center for Bioethics Pain Management and Medicine, St. Louis, MO, USA,
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The skin is our largest sensory organ, transmitting pain, temperature, itch, and touch information to the central nervous system. Touch sensations are conveyed by distinct combinations of mechanosensory end organs and the low-threshold mechanoreceptors (LTMRs) that innervate them. Here we explore the various structures underlying the diverse functions of cutaneous LTMR end organs. Beyond anchoring of LTMRs to the surrounding dermis and epidermis, recent evidence suggests that the non-neuronal components of end organs play an active role in signaling to LTMRs and may physically gate force-sensitive channels in these receptors. Combined with LTMR intrinsic properties, the balance of these factors comprises the response properties of mechanosensory neurons and, thus, the neural encoding of touch.
Collapse
Affiliation(s)
- Amanda Zimmerman
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Ling Bai
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA. The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Touch is a team effort: interplay of submodalities in cutaneous sensibility. Trends Neurosci 2014; 37:689-97. [DOI: 10.1016/j.tins.2014.08.012] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/01/2014] [Accepted: 08/29/2014] [Indexed: 11/23/2022]
|
48
|
Cabo R, Alonso P, San José I, Vázquez G, Pastor JF, Germanà A, Vega JA, García-Suárez O. Brain-derived neurotrofic factor and its receptor TrkB are present, but segregated, within mature cutaneous Pacinian corpuscles of Macaca fascicularis. Anat Rec (Hoboken) 2014; 298:624-9. [PMID: 25230956 DOI: 10.1002/ar.23050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/23/2014] [Accepted: 04/29/2014] [Indexed: 12/28/2022]
Abstract
Some mechanoreceptors in mammals depend totally or in part on the neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4), and their receptor TrkB, for development and maintenance. These actions are presumably exerced regulating the survival of discrete sensory neurons in the dorsal root ganglia which form mechanoreceptors at the periphery. In addition, the cells forming the mechanoreceptors also express both neurotrophins and their receptors although large differences have been described among species. Pacinian corpuscles are rapidly adapting low-threshold mechanoreceptors whose dependence from neurotrophins is not known. In the present study, we analyzed expression of TrkB and their ligands BDNF and NT-4 in the cutaneous Pacinian corpuscles of Macaca fascicularis using immunohistochemistry and fluorescent microscopy. TrkB immunoreactivity was found in Pacinian corpuscles where it co-localized with neuron-specific enolase, and occasionally with S100 protein, thus suggesting that TrkB expression is primarily into axons but also in the lamellar cells and even in the outer core. On the other hand, BDNF immunoreactivity was found the inner core cells where it co-localized with S100 protein but also in the innermost layers of the outer core; NT-4 immunostaining was not detected. These results describe for the first time the expression and distribution of a full neurotrophin system in the axon-inner core complex of mature Pacinian corpuscles. The data support previous findings demonstrating large differences in the expression of BDNF-TrkB in mammalian mechanoreceptors, and also suggest the existence of a retrograde trophic signaling mechanism to maintain morphological and functional integrity of sensory neurons supplying Pacinian corpuscles.
Collapse
Affiliation(s)
- R Cabo
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Asturias, Spain
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Edge-orientation processing in first-order tactile neurons. Nat Neurosci 2014; 17:1404-9. [DOI: 10.1038/nn.3804] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/08/2014] [Indexed: 11/08/2022]
|
50
|
Abstract
Our tactile perception of external objects depends on skin-object interactions. The mechanics of contact dictates the existence of fundamental spatiotemporal input features—contact initiation and cessation, slip, and rolling contact—that originate from the fact that solid objects do not interpenetrate. However, it is unknown whether these features are represented within the brain. We used a novel haptic interface to deliver such inputs to the glabrous skin of finger/digit pads and recorded from neurons of the cuneate nucleus (the brain’s first level of tactile processing) in the cat. Surprisingly, despite having similar receptive fields and response properties, each cuneate neuron responded to a unique combination of these inputs. Hence, distinct haptic input features are encoded already at subcortical processing stages. This organization maps skin-object interactions into rich representations provided to higher cortical levels and may call for a re-evaluation of our current understanding of the brain’s somatosensory systems. Specific haptic input features were selectively delivered to glabrous skin The input features were segregated in the neurons of the cuneate nucleus These observations may call for a shift in current views of tactile processing
Collapse
|