1
|
Light adaptation in the chick retina: Dopamine, nitric oxide, and gap-junction coupling modulate spatiotemporal contrast sensitivity. Exp Eye Res 2020; 195:108026. [PMID: 32246982 DOI: 10.1016/j.exer.2020.108026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 11/20/2022]
Abstract
Adaptation to changes in ambient light intensity, in retinal cells and circuits, optimizes visual functions. In the retina, light-adaptation results in changes in light-sensitivity and spatiotemporal tuning of ganglion cells. Under light-adapted conditions, contrast sensitivity (CS) of ganglion cells is a bandpass function of spatial frequency; in contrast, dark-adaptation reduces CS, especially at higher spatial frequencies. In this work, we aimed to understand intrinsic neuromodulatory mechanisms that underlie retinal adaptation to changes in ambient light level. Specifically, we investigated how CS is affected by dopamine (DA), nitric oxide (NO), and modifiers of electrical coupling through gap junctions, under different conditions of adapting illumination. Using the optokinetic response as a behavioral readout of direction-selective ganglion cell activity, we characterized the spatial CS of chicks under high- and low-photopic conditions and how it was regulated by DA, NO, and gap-junction uncouplers. We observed that: (1) DA D2R-family agonists and a donor of NO increased CS tested in low-photopic illumination, as if observed in the high-photopic light; whereas (2) removing their effects using either DA antagonists or NO- synthase inhibitors mimicked low-photopic CS; (3) simulation of high-photopic CS by DA agonists was abolished by NO-synthase inhibitors; and (4) selectively blocking coupling via connexin 35/36-containing gap junctions, using a "designer" mimetic peptide, increased CS, as does strong illumination. We conclude that, in the chicken retina: (1) DA and NO induce changes in spatiotemporal processing, similar to those driven by increasing illumination, (2) DA possibly acts through stimulating NO synthesis, and (3) blockade of coupling via gap junctions containing connexin 35/36 also drives a change in retinal CS functions. As a noninvasive method, the optokinetic response can provide rapid, conditional, and reversible assessment of retinal functions when pharmacological reagents are injected into the vitreous humor. Finally, the chick's large eyes, and the many similarities between their adaptational circuit functions and those in mammals such as the mouse, make them a promising model for future retinal research.
Collapse
|
2
|
López JM, Morona R, González A. Pattern of nitrergic cells and fibers organization in the central nervous system of the Australian lungfish, Neoceratodus forsteri (Sarcopterygii: Dipnoi). J Comp Neurol 2019; 527:1771-1800. [PMID: 30689201 DOI: 10.1002/cne.24645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/18/2022]
Abstract
The Australian lungfish Neoceratodus forsteri is the only extant species of the order Ceratodontiformes, which retained most of the primitive features of ancient lobe finned-fishes. Lungfishes are the closest living relatives of land vertebrates and their study is important for deducing the neural traits that were conserved, modified, or lost with the transition from fishes to land vertebrates. We have investigated the nitrergic system with neural nitric oxide synthase (NOS) immunohistochemistry and NADPH-diaphorase (NADPH-d) histochemistry, which yielded almost identical results except for the primary olfactory projections and the terminal and preoptic nerve fibers labeled only for NADPH-d. Combined immunohistochemistry was used for simultaneous detection of NOS with catecholaminergic, cholinergic, and serotonergic structures, aiming to establish accurately the localization of the nitrergic elements and to assess possible interactions between these neurotransmitter systems. The results demonstrated abundant nitrergic cells in the basal ganglia, amygdaloid complex, preoptic area, basal hypothalamus, mesencephalic tectum and tegmentum, laterodorsal tegmental nucleus, reticular formation, spinal cord, and retina. In addition, low numbers of nitrergic cells were observed in the olfactory bulb, all pallial divisions, lateral septum, suprachiasmatic nucleus, prethalamic and thalamic areas, posterior tubercle, pretectum, torus semicircularis, cerebellar nucleus, interpeduncular nucleus, the medial octavolateral nucleus, nucleus of the solitary tract, and the dorsal column nucleus. Colocalization of NOS and tyrosine hydroxylase was observed in numerous cells of the ventral tegmental area/substantia nigra complex. Comparison with other vertebrates, using a neuromeric analysis, reveals that the nitrergic system of Neoceratodus shares many neuroanatomical features with tetrapods and particularly with amphibians.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
3
|
López JM, Lozano D, Morona R, González A. Organization of the nitrergic neuronal system in the primitive bony fishes Polypterus senegalus and Erpetoichthys calabaricus (Actinopterygii: Cladistia). J Comp Neurol 2015; 524:1770-804. [PMID: 26517971 DOI: 10.1002/cne.23922] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/22/2023]
Abstract
Cladistians are a group of basal actinopterygian fishes that constitute a good model for studying primitive brain features, most likely present in the ancestral bony fishes. The analysis of the nitrergic neurons (with the enzyme nitric oxide synthase; NOS) has helped in understanding important aspects of brain organization in all vertebrates studied. We investigated the nitrergic system of two cladistian species by means of specific antibodies against NOS and NADPH-diaphorase (NADPH-d) histochemistry, which, with the exception of the primary olfactory and terminal nerve fibers, labeled only for NADPH-d, yielded identical results. Double immunohistochemistry was conducted for simultaneous detection of NOS with tyrosine hydroxylase, choline acetyltransferase, calbindin, calretinin, and serotonin, to establish accurately the localization of the nitrergic neurons and fibers and to assess possible interactions between these neuroactive substances. The pattern of distribution in both species showed only subtle differences in the density of labeled cells. Distinct groups of NOS-immunoreactive cells were observed in pallial and subpallial areas, paraventricular region, tuberal and retromammillary hypothalamic areas, posterior tubercle, prethalamic and thalamic areas, optic tectum, torus semicircularis, mesencephalic tegmentum, interpeduncular nucleus, superior and middle reticular nuclei, magnocellular vestibular nucleus, solitary tract nucleus, nucleus medianus magnocellularis, the spinal cord and amacrine cells in the retina. Large neurons in cranial nerve sensory ganglia were also labeled. The comparison of these results with those from other vertebrates, using a neuromeric analysis, reveals a conserved pattern of organization of the nitrergic system from this primitive fish group to amniotes, including mammals.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Daniel Lozano
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| |
Collapse
|
4
|
Popova E. Role of dopamine in distal retina. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:333-58. [PMID: 24728309 DOI: 10.1007/s00359-014-0906-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/11/2023]
Abstract
Dopamine is the most abundant catecholamine in the vertebrate retina. Despite the description of retinal dopaminergic cells three decades ago, many aspects of their function in the retina remain unclear. There is no consensus among the authors about the stimulus conditions for dopamine release (darkness, steady or flickering light) as well as about its action upon the various types of retinal cells. Many contradictory results exist concerning the dopamine effect on the gross electrical activity of the retina [reflected in electroretinogram (ERG)] and the receptors involved in its action. This review summarized current knowledge about the types of the dopaminergic neurons and receptors in the retina as well as the effects of dopamine receptor agonists and antagonists on the light responses of photoreceptors, horizontal and bipolar cells in both nonmammalian and mammalian retina. Special focus of interest concerns their effects upon the diffuse ERG as a useful tool for assessment of the overall function of the distal retina. An attempt is made to reveal some differences between the dopamine actions upon the activity of the ON versus OFF channel in the distal retina. The author has included her own results demonstrating such differences.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431, Sofia, Bulgaria,
| |
Collapse
|
5
|
Vielma AH, Retamal MA, Schmachtenberg O. Nitric oxide signaling in the retina: what have we learned in two decades? Brain Res 2011; 1430:112-25. [PMID: 22133309 DOI: 10.1016/j.brainres.2011.10.045] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 10/14/2011] [Accepted: 10/27/2011] [Indexed: 01/21/2023]
Abstract
Two decades after its first detection in the retina, nitric oxide (NO) continues to puzzle visual neuroscientists. While its liberation by photoreceptors remains controversial, recent evidence supports three subtypes of amacrine cells as main sources of NO in the inner retina. NO synthesis was shown to depend on light stimulation, and mounting evidence suggests that NO is a regulator of visual adaptation at different signal processing levels. NO modulates light responses in all retinal neuron classes, and specific ion conductances are activated by NO in rods, cones, bipolar and ganglion cells. Light-dependent gap junction coupling in the inner and outer plexiform layers is also affected by NO. The vast majority of these effects were shown to be mediated by activation of the NO receptor soluble guanylate cyclase and resultant cGMP elevation. This review analyzes the current state of knowledge on physiological NO signaling in the retina.
Collapse
Affiliation(s)
- Alex H Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | | |
Collapse
|
6
|
The light-induced reduction of horizontal cell receptive field size in the goldfish retina involves nitric oxide. Vis Neurosci 2011; 28:137-44. [PMID: 21324227 DOI: 10.1017/s0952523810000490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Horizontal cells of the vertebrate retina have large receptive fields as a result of extensive gap junction coupling. Increased ambient illumination reduces horizontal cell receptive field size. Using the isolated goldfish retina, we have assessed the contribution of nitric oxide to the light-dependent reduction of horizontal cell receptive field size. Horizontal cell receptive field size was assessed by comparing the responses to centered spot and annulus stimuli and from the responses to translated slit stimuli. A period of steady illumination decreased the receptive field size of horizontal cells, as did treatment with the nitric oxide donor (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (100 μM). Blocking the endogenous production of nitric oxide with the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester (1 mM), decreased the light-induced reduction of horizontal cell receptive field size. These findings suggest that nitric oxide is involved in light-induced reduction of horizontal cell receptive field size.
Collapse
|
7
|
Bui BV, Fortune B. Origin of electroretinogram amplitude growth during light adaptation in pigmented rats. Vis Neurosci 2006; 23:155-67. [PMID: 16638169 DOI: 10.1017/s0952523806232024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Accepted: 02/06/2006] [Indexed: 11/06/2022]
Abstract
We assessed the growth of the rat photopic electroretinogram (ERG) during light adaptation and the mechanisms underlying this process. Full field ERG responses were recorded from anesthetized adult Brown-Norway rats at each minute for 20 min of light adaptation (backgrounds: 1.8, 2.1, 2.4 log scotopic cd m(-2)). The rat photopic b-wave amplitude increased with duration of light adaptation and its width at 33% maximal amplitude narrowed (by approximately 40 ms). These effects peaked 12-15 min after background onset. The narrowing of the b-wave reflected steepening of the b-wave recovery phase, with little change in the rising phase. OP amplitudes grew in proportion to the b-wave. Inhibition of inner retinal responses using TTX resulted in a greater relative growth of b-wave and OP amplitude compared with fellow control eyes, and delayed the change in recovery phase by approximately 5 min. Inhibition of all ionotropic glutamate receptors with CNQX/D-AP7 delayed both rising and recovery phases equally (approximately 12 ms) without altering b-wave width or the time course of adaptation changes. These outcomes suggest that inner retinal light responses are not directly responsible for b-wave amplitude growth, but may contribute to the change in its recovery phase during adaptation. A TTX-sensitive mechanism may help to hasten this process. The cone a-wave was isolated using PDA/L-AP4 or CNQX/L-AP4. A-wave amplitude (35 ms after stimulus onset) also increased with time during light adaptation and reached a maximum (130 +/- 29% above baseline) 12-15 min after background onset. B-wave amplitude growth in fellow control eyes closely followed the course and relative magnitude of cone a-wave amplitude growth. Hence, the increase of the cone response during light adaptation is sufficient to explain b-wave amplitude growth.
Collapse
Affiliation(s)
- Bang V Bui
- Discoveries in Sight, Devers Eye Institute, Legacy Health System, Portland, Oregon 97232, USA
| | | |
Collapse
|
8
|
Sekaran S, Cunningham J, Neal MJ, Hartell NA, Djamgoz MBA. Nitric oxide release is induced by dopamine during illumination of the carp retina: serial neurochemical control of light adaptation. Eur J Neurosci 2005; 21:2199-208. [PMID: 15869516 DOI: 10.1111/j.1460-9568.2005.04051.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several lines of indirect evidence have suggested that nitric oxide may play an important role during light adaptation of the vertebrate retina. We aimed to verify directly the effect of light on nitric oxide release in the isolated carp retina and to investigate the relationship between nitric oxide and dopamine, an established neuromodulator of retinal light adaptation. Using a biochemical nitric oxide assay, we found that steady or flicker light stimulation enhanced retinal nitric oxide production from a basal level. The metabotropic glutamate receptor agonist L-amino-4-phosphonobutyric acid, inhibited the light adaptation-induced nitric oxide production suggesting that the underlying cellular pathway involved centre-depolarizing bipolar cell activity. Application of exogenous dopamine to retinas in the dark significantly enhanced the basal production of nitric oxide and importantly, inhibition of endogenous dopaminergic activity completely suppressed the light-evoked nitric oxide release. The effect of dopamine was mediated through the D1 receptor subtype. Imaging of the nitric oxide-sensitive fluorescent indicator 4,5-diaminofluorescein di-acetate in retinal slices revealed that activation of D1 receptors resulted in nitric oxide production from two main spatial sources corresponding to the photoreceptor inner segment region and the inner nuclear layer. The results taken together would suggest that during the progression of retinal light adaptation there is a switch from dopaminergic to nitrergic control, probably to induce further neuromodulatory effects at higher levels of illumination and to enable more efficient spreading of the light adaptive signal.
Collapse
Affiliation(s)
- S Sekaran
- Department of Visual Neuroscience, Faculty of Medicine, Imperial College London, Charing Cross Campus, W6 8RF, UK.
| | | | | | | | | |
Collapse
|
9
|
Wellard JW, Morgan IG. Inhibitory modulation of photoreceptor melatonin synthesis via a nitric oxide-mediated mechanism. Neurochem Int 2004; 45:1143-53. [PMID: 15380624 DOI: 10.1016/j.neuint.2004.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 06/23/2004] [Accepted: 06/23/2004] [Indexed: 11/21/2022]
Abstract
Nitric oxide (NO) has been suggested to have many physiological functions in the vertebrate retina, including a role in light-adaptive processes. The aim of this study was to examine the influence of the NO-donor sodium nitroprusside (SNP) on the activity of arylalkylamine-N-acetyltransferase (AA-NAT; EC. 2.3.1.87), the activity of which responds to light and reflects the changes in retinal melatonin synthesis--a key feature of light-adaptive responses in photoreceptors. Incubation of dark-adapted and dark-maintained retinas with SNP lead to the NO-specific suppression of AA-NAT activity, with NO suppressing AA-NAT activity to a level similar to that seen in the presence of dopaminergic agonists or light. Increased levels of cGMP appeared to be causally involved in the suppression of AA-NAT activity by SNP, as non-hydrolysable analogues of cGMP and the cGMP-specific phosphodiesterase (PDE) inhibitor zaprinast also significantly suppressed AA-NAT activity, while an inhibitor of soluble guanylate cyclase blocked the effect of SNP. While this chain of events may not be part of the normal physiology of the retina, it could be important in pathological circumstances that are associated with marked increase in levels of cGMP, as is found to be the case in certain forms photoreceptor degeneration, which are produced by defects in cGMP phosphodiesterase activity.
Collapse
Affiliation(s)
- John W Wellard
- Visual Sciences Group, Research School of Biological Sciences, The Australian National University, GPO Box 475, Canberra ACT 2601, Australia
| | | |
Collapse
|
10
|
Levy H, Twig G, Perlman I. Nitric oxide modulates the transfer function between cones and horizontal cells during changing conditions of ambient illumination. Eur J Neurosci 2004; 20:2963-74. [PMID: 15579150 DOI: 10.1111/j.1460-9568.2004.03758.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been suggested that nitric oxide (NO) serves as a retinal neuromodulator, adjusting retinal function to changing conditions of adaptation. We tested this hypothesis in the intact turtle retina by recording the photoresponses of L-cones and L1-horizontal cells, while changing retinal NO level and background illumination. Raising the retinal level of NO, by adding an NO donor (sodium nitroprusside) or the precursor for NO synthesis (L-arginine), induced response augmentation in L-cones and L1-horizontal cells. Lowering retinal level of NO by adding L-NAME, an inhibitor of NO synthesis, reduced the amplitudes of the photoresponses in these retinal neurons. The transfer function between L-cones and L1-horizontal cells, constructed from the photoresponses of these cells, was modified by NO and by background lights. The nonlinear transfer function, characteristic of the dark-adapted retina, became linear and of low gain when the retinal NO level was increased or by increasing the level of ambient illumination. In contrast, inhibiting NO synthesis in the light-adapted retina induced nonlinearity in the cone-to-horizontal cell transfer function similar to that seen in the dark-adapted state. NADPH diaphorase histochemistry, conducted on isolated retinal cells, demonstrated activity in cone inner segments and distal process of Müller cells. These findings support the hypothesis that NO synthesis in the distal turtle retina is triggered by background illumination, and that NO acts to adjust the modes of visual information processing in the outer plexiform layer to the conditions required during continuous background illumination.
Collapse
Affiliation(s)
- H Levy
- The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology and the Rappaport Institute, P.O.Box 9649, Haifa 31096, Israel
| | | | | |
Collapse
|