1
|
Porceddu R, Porcu C, Mulas G, Spiga S, Follesa MC. Ontogenetic changes in the tyrosine hydroxylase immunoreactive preoptic area in the small-spotted catshark Scyliorhinus canicula (L., 1758) females: catecholaminergic involvement in sexual maturation. Front Neuroanat 2024; 17:1301651. [PMID: 38239387 PMCID: PMC10794776 DOI: 10.3389/fnana.2023.1301651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The catecholaminergic component of the brain-pituitary-gonadal axis, which mediates the influence of external and internal stimuli on the central nervous system and gonad development in vertebrates, is largely unexplored in Chondrichthyes. We considered Scyliorhinus canicula (L., 1758) females as a model for this vertebrate's class, to assess the involvement of the catecholaminergic system of the brain in its reproduction. Along the S. canicula reproductive cycle, we characterized and evaluated differences in somata morphometry and the number of putative catecholaminergic neurons in two brain nuclei: the periventricular preoptic nucleus, hypothesized to be a positive control for ovarian development, and the suprachiasmatic nucleus, examined as a negative control. Materials and methods 16 S. canicula wild females were sampled and grouped in maturity stages (immature, maturing, mature, and mature egg-laying). The ovary was histologically processed for the qualitative description of maturity stages. Anti-tyrosine hydroxylase immunofluorescence was performed on the diencephalic brain sections. The immunoreactive somata were investigated for morphometry and counted using the optical fractionator method, throughout the confocal microscopy. Results and discussions Qualitative and quantitative research confirmed two separate populations of immunoreactive neurons. The modifications detected in the preoptic nucleus revealed that somata were more numerous, significantly smaller in size, and more excitable during the maturing phase but decreased, becoming slightly bigger and less excitable in the egg-laying stage. This may indicate that the catecholaminergic preoptic nucleus is involved in the control of reproduction, regulating both the onset of puberty and the imminent spawning. In contrast, somata in the suprachiasmatic nucleus grew in size and underwent turnover in morphometry, increasing the total number from the immature-virgin to maturing stage, with similar values in the more advanced maturity stages. These changes were not linked to a reproductive role. These findings provide new valuable information on Chondrichthyes, suggesting the existence of an additional brain system implicated in the integration of internal and environmental cues for reproduction.
Collapse
Affiliation(s)
- Riccardo Porceddu
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
- CoNISMa Consorzio Nazionale Interuniversitario per le Scienze Mare, Rome, Italy
| | - Cristina Porcu
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
- CoNISMa Consorzio Nazionale Interuniversitario per le Scienze Mare, Rome, Italy
| | - Giovanna Mulas
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Saturnino Spiga
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Maria Cristina Follesa
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
- CoNISMa Consorzio Nazionale Interuniversitario per le Scienze Mare, Rome, Italy
| |
Collapse
|
2
|
Demski LS, Beaver JA. The Cytoarchitecture of the Tectal-Related Pallium of Squirrelfish, Holocentrus sp. Front Neuroanat 2022; 16:819365. [PMID: 35573443 PMCID: PMC9095963 DOI: 10.3389/fnana.2022.819365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
The squirrelfish, which live in visually complex coral reefs, have very large eyes and a special dual-system “day and night vision” retina. They also have atypical expansions of brain areas involved in processing visual information. The midbrain tectum sends information via diencephalic relay to two enlarged dorsal telencephalic regions. The latter include a superficial dorsal/lateral “cortex-like area” of small to medium-sized cells [area dorsalis telencephali, pars lateralis-dorsal region (dorsal segment); Dld1] which projects to an underlying dorsocentral region of relatively large cells (the area dorsalis telencephali, pars centralis-dorsal region; Dcd) which in turn reconnects with the tectum. Additionally, the cerebellum is also involved in this pathway. The hypertrophied pallial regions, termed the tectal-related pallium (TRP), most likely exert major influences on a variety of visually-related sensorimotor systems. This research aimed at better establishing the cellular structures and possible connections within the TRP. Nissl and rapid Golgi staining, biotinylated dextran amine tracing and cell-filling, and electron microscopy were used in this study. For gross observation of the pallial areas and plotting of the study sites, a mini-atlas of transverse and horizontal sections was constructed. This research better documented the known cellular elements of the TRP and defined two novel cell types. Species differences in the TRP may be related to possible differences in behavior and ecology.
Collapse
|
3
|
Kalarani A, Vinodha V, Moses IR. Inter-relations of brain neurosteroids and monoamines towards reproduction in fish. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
4
|
Macedo-Lima M, Remage-Healey L. Dopamine Modulation of Motor and Sensory Cortical Plasticity among Vertebrates. Integr Comp Biol 2021; 61:316-336. [PMID: 33822047 PMCID: PMC8600016 DOI: 10.1093/icb/icab019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Goal-directed learning is a key contributor to evolutionary fitness in animals. The neural mechanisms that mediate learning often involve the neuromodulator dopamine. In higher order cortical regions, most of what is known about dopamine's role is derived from brain regions involved in motivation and decision-making, while significantly less is known about dopamine's potential role in motor and/or sensory brain regions to guide performance. Research on rodents and primates represents over 95% of publications in the field, while little beyond basic anatomy is known in other vertebrate groups. This significantly limits our general understanding of how dopamine signaling systems have evolved as organisms adapt to their environments. This review takes a pan-vertebrate view of the literature on the role of dopamine in motor/sensory cortical regions, highlighting, when available, research on non-mammalian vertebrates. We provide a broad perspective on dopamine function and emphasize that dopamine-induced plasticity mechanisms are widespread across all cortical systems and associated with motor and sensory adaptations. The available evidence illustrates that there is a strong anatomical basis-dopamine fibers and receptor distributions-to hypothesize that pallial dopamine effects are widespread among vertebrates. Continued research progress in non-mammalian species will be crucial to further our understanding of how the dopamine system evolved to shape the diverse array of brain structures and behaviors among the vertebrate lineage.
Collapse
Affiliation(s)
- Matheus Macedo-Lima
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, USA
- CAPES Foundation, Ministry of Education of Brazil, 70040-031 Brasília, Brazil
| | - Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
5
|
First identification of dopamine receptors in pikeperch, Sander lucioperca, during the pre-ovulatory period. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100747. [PMID: 32987329 DOI: 10.1016/j.cbd.2020.100747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/28/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
Dopamine (DA) is a ubiquitous neurotransmitter exerting a range of pleiotropic actions through two DA receptor families, the D1 and the D2. To date in vertebrates, a maximum of four receptor subtypes have been identified within the D1 family, D1 (former D1A), D5 (former D1B), D6 (former D1C and D1D) and D7 (former D1E), while the D2 family encloses five subtypes, D2, D3, D4, D8 (former D2like or D2l) and D9 (former D4-related sequence or D4-rs). In teleosts, no study has investigated in parallel all the DA receptors to identify and localize the whole receptor repertoire from both families. In pikeperch, Sander lucioperca, a species of interest for aquaculture development, the existence, number and location of the DA receptors are totally unknown. To address these questions, RNA-seq with de novo transcriptome reconstruction, functional annotation and phylogenetic analysis were performed to characterize the transcript repertoire of DA receptors in the brain of female pikeperch at the pre-ovulatory period. Ten different cDNA were identified and showed to belong to the D1 family: two D1, one D5a, one D6a and one D6b and to the D2 family: two spliced variants of D2, one D3, one D8 and one D9. Unlike zebrafish, the subtypes D4 and D7 have not yet been isolated in pikeperch. As expected D1, D3, D8 and D9 are mostly expressed in brain parts except for the cerebellum (D1 and D3). The inter-species differences in the number of DA receptors and the inter-organ differences in the gene expression of all receptors support the complexity of the dopaminergic actions in vertebrate.
Collapse
|
6
|
Dopamine inhibits somatolactin gene expression in tilapia pituitary cells through the dopamine D2 receptors. Comp Biochem Physiol A Mol Integr Physiol 2016; 197:35-42. [PMID: 26970582 DOI: 10.1016/j.cbpa.2016.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 01/11/2023]
Abstract
Dopamine (DA) is an important neurotransmitter in the central nervous system of vertebrates and possesses key hypophysiotropic functions. Early studies have shown that DA has a potent inhibitory effect on somatolactin (SL) release in fish. However, the mechanisms responsible for DA inhibition of SL gene expression are largely unknown. To this end, tilapia DA type-1 (D1) and type-2 (D2) receptor transcripts were examined in the neurointermediate lobe (NIL) of the tilapia pituitary by real-time PCR. In tilapia, DA not only was effective in inhibiting SL mRNA levels in vivo and in vitro, but also could abolish pituitary adenylate cyclase-activating polypeptide (PACAP)- and salmon gonadotropin-releasing hormone (sGnRH)-stimulated SL gene expression at the pituitary level. In parallel studies, the specific D2 receptor agonists quinpirole and bromocriptine could mimic the DA-inhibited SL gene expression. Furthermore, the D2 receptor antagonists domperidone and (-)-sulpiride could abolish the SL response to DA or the D2 agonist quinpirole, whereas D1 receptor antagonists SCH23390 and SKF83566 were not effective in this respect. In primary cultures of tilapia NIL cells, D2 agonist quinpirole-inhibited cAMP production could be blocked by co-treatment with the D2 antagonist domperidone and the ability of forskolin to increase cAMP production was also inhibited by quinpirole. Using a pharmacological approach, the AC/cAMP pathway was shown to be involved in quinpirole-inhibited SL mRNA expression. These results provide evidence that DA can directly inhibit SL gene expression at the tilapia pituitary level via D2 receptor through the AC/cAMP-dependent mechanism.
Collapse
|
7
|
Neuroanatomical Evidence for Catecholamines as Modulators of Audition and Acoustic Behavior in a Vocal Teleost. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 877:439-75. [PMID: 26515325 DOI: 10.1007/978-3-319-21059-9_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The plainfin midshipman fish (Porichthys notatus) is a well-studied model to understand the neural and endocrine mechanisms underlying vocal-acoustic communication across vertebrates. It is well established that steroid hormones such as estrogen drive seasonal peripheral auditory plasticity in female Porichthys in order to better encode the male's advertisement call. However, little is known of the neural substrates that underlie the motivation and coordinated behavioral response to auditory social signals. Catecholamines, which include dopamine and noradrenaline, are good candidates for this function, as they are thought to modulate the salience of and reinforce appropriate behavior to socially relevant stimuli. This chapter summarizes our recent studies which aimed to characterize catecholamine innervation in the central and peripheral auditory system of Porichthys as well as test the hypotheses that innervation of the auditory system is seasonally plastic and catecholaminergic neurons are activated in response to conspecific vocalizations. Of particular significance is the discovery of direct dopaminergic innervation of the saccule, the main hearing end organ, by neurons in the diencephalon, which also robustly innervate the cholinergic auditory efferent nucleus in the hindbrain. Seasonal changes in dopamine innervation in both these areas appear dependent on reproductive state in females and may ultimately function to modulate the sensitivity of the peripheral auditory system as an adaptation to the seasonally changing soundscape. Diencephalic dopaminergic neurons are indeed active in response to exposure to midshipman vocalizations and are in a perfect position to integrate the detection and appropriate motor response to conspecific acoustic signals for successful reproduction.
Collapse
|
8
|
The Conservative Evolution of the Vertebrate Basal Ganglia. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-12-802206-1.00004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
9
|
Guzmán JM, Luckenbach JA, da Silva DAM, Ylitalo GM, Swanson P. Development of approaches to induce puberty in cultured female sablefish (Anoplopoma fimbria). Gen Comp Endocrinol 2015; 221:101-13. [PMID: 25843684 DOI: 10.1016/j.ygcen.2015.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/18/2015] [Accepted: 02/23/2015] [Indexed: 12/13/2022]
Abstract
Efforts to establish sustainable and efficient aquaculture production of sablefish (Anoplopoma fimbria) have been constrained by delayed puberty in cultured females. This study integrates a series of experiments aimed at gaining an understanding of the reproductive physiology of puberty in female sablefish. We detected transcripts for the dopamine D2 receptor (drd2) in brain, pituitary and ovary of sablefish, and prepubertal females exhibited significantly elevated brain and pituitary drd2 expression relative to wild maturing females. Treatments with sustained-release cholesterol pellets containing testosterone (T) and the dopamine D2 receptor antagonist, metoclopramide (Met), stimulated expression of pituitary luteinizing hormone beta subunit (lhb) and follicle-stimulating hormone beta subunit (fshb), respectively, in prepubertal females, whereas a combination of T and gonadotropin-releasing hormone agonist (GnRHa) had a strong synergistic effect on lhb expression (2000-fold higher than control). Although T induced a significant increase in the maximum ovarian follicle volume, none of the treatments tested stimulated onset of vitellogenesis. Using liquid chromatography/tandem mass spectrometry, we demonstrated that Met stimulated production of T by previtellogenic ovarian follicles in vitro, whereas gonadotropin preparations enhanced 17α-hydroxyprogesterone, androstenedione (A4), T and 17β-estradiol (E2) production. Treatment with T increased production of A4, 11β-hydroxyandrostenedione, 11β-hydroxytestosterone, E2, 11-ketotestosterone, and 5α-dihydrotestosterone (DHT). Interestingly, in the presence of high doses of T the previtellogenic ovary preferentially produced A4 and DHT over any other metabolite. Our data suggest the existence of dopamine inhibition of the reproductive axis in female sablefish. Treatments with Met and T elevated gonadotropin mRNAs in prepubertal females but failed to stimulate the transition into vitellogenic growth, suggesting a possible failure in pituitary gonadotropin protein synthesis/release. Previtellogenic ovarian follicles of sablefish are equipped to synthesize steroids, including those required for vitellogenic growth, and DHT, a steroid hormone whose role in reproduction of fishes remains unknown.
Collapse
Affiliation(s)
- José M Guzmán
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration - National Marine Fisheries Service, Seattle, WA 98112, USA.
| | - J Adam Luckenbach
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration - National Marine Fisheries Service, Seattle, WA 98112, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Denis A M da Silva
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration - National Marine Fisheries Service, Seattle, WA 98112, USA
| | - Gina M Ylitalo
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration - National Marine Fisheries Service, Seattle, WA 98112, USA
| | - Penny Swanson
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration - National Marine Fisheries Service, Seattle, WA 98112, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
10
|
Hall ZJ, De Serrano AR, Rodd FH, Tropepe V. Casting a wider fish net on animal models in neuropsychiatric research. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:7-15. [PMID: 24726811 DOI: 10.1016/j.pnpbp.2014.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 01/11/2023]
Abstract
Neuropsychiatric disorders, such as schizophrenia, are associated with abnormal brain development. In this review, we discuss how studying dimensional components of these disorders, or endophenotypes, in a wider range of animal models will deepen our understanding of how interactions between biological and environmental factors alter the trajectory of neurodevelopment leading to aberrant behavior. In particular, we discuss some of the advantages of incorporating studies of brain and behavior using a range of teleost fish species into current neuropsychiatric research. From the perspective of comparative neurobiology, teleosts share a fundamental pattern of neurodevelopment and functional brain organization with other vertebrates, including humans. These shared features provide a basis for experimentally probing the mechanisms of disease-associated brain abnormalities. Moreover, incorporating information about how behaviors have been shaped by evolution will allow us to better understand the relevance of behavioral variation to determine their physiological underpinnings. We believe that exploiting the conservation in brain development across vertebrate species, and the rich diversity of fish behavior in lab and natural populations will lead to significant new insights and a holistic understanding of the neurobiological systems implicated in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zachary J Hall
- Department of Cell & Systems Biology, University of Toronto, Canada
| | - Alex R De Serrano
- Department of Ecology & Evolutionary Biology, University of Toronto, Canada
| | - F Helen Rodd
- Department of Ecology & Evolutionary Biology, University of Toronto, Canada.
| | - Vincent Tropepe
- Department of Cell & Systems Biology, University of Toronto, Canada.
| |
Collapse
|
11
|
Forlano PM, Kim SD, Krzyminska ZM, Sisneros JA. Catecholaminergic connectivity to the inner ear, central auditory, and vocal motor circuitry in the plainfin midshipman fish porichthys notatus. J Comp Neurol 2014; 522:2887-927. [PMID: 24715479 PMCID: PMC4107124 DOI: 10.1002/cne.23596] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 01/25/2023]
Abstract
Although the neuroanatomical distribution of catecholaminergic (CA) neurons has been well documented across all vertebrate classes, few studies have examined CA connectivity to physiologically and anatomically identified neural circuitry that controls behavior. The goal of this study was to characterize CA distribution in the brain and inner ear of the plainfin midshipman fish (Porichthys notatus) with particular emphasis on their relationship with anatomically labeled circuitry that both produces and encodes social acoustic signals in this species. Neurobiotin labeling of the main auditory end organ, the saccule, combined with tyrosine hydroxylase immunofluorescence (TH-ir) revealed a strong CA innervation of both the peripheral and central auditory system. Diencephalic TH-ir neurons in the periventricular posterior tuberculum, known to be dopaminergic, send ascending projections to the ventral telencephalon and prominent descending projections to vocal-acoustic integration sites, notably the hindbrain octavolateralis efferent nucleus, as well as onto the base of hair cells in the saccule via nerve VIII. Neurobiotin backfills of the vocal nerve in combination with TH-ir revealed CA terminals on all components of the vocal pattern generator, which appears to largely originate from local TH-ir neurons but may include input from diencephalic projections as well. This study provides strong neuroanatomical evidence that catecholamines are important modulators of both auditory and vocal circuitry and acoustic-driven social behavior in midshipman fish. This demonstration of TH-ir terminals in the main end organ of hearing in a nonmammalian vertebrate suggests a conserved and important anatomical and functional role for dopamine in normal audition.
Collapse
Affiliation(s)
- Paul M. Forlano
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
- Programs in Neuroscience, Ecology, Evolutionary Biology and Behavior, and Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, Brooklyn, NY 11210
- Aquatic Research and Environmental Assessment Center, Brooklyn College, Brooklyn, NY
- Marine Biological Laboratory, Woods Hole, MA 02543
| | - Spencer D. Kim
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Zuzanna M. Krzyminska
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Joseph A. Sisneros
- Departments of Psychology and Biology, University of Washington, Seattle, WA, 98195
- Virginia Merrill Bloedel Hearing Research Center, Seattle
- Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
12
|
Pérez-Fernández J, Stephenson-Jones M, Suryanarayana SM, Robertson B, Grillner S. Evolutionarily conserved organization of the dopaminergic system in lamprey: SNc/VTA afferent and efferent connectivity and D2 receptor expression. J Comp Neurol 2014; 522:3775-94. [DOI: 10.1002/cne.23639] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Juan Pérez-Fernández
- Department of Neuroscience; the Nobel Institute for Neurophysiology, Karolinska Institutet; SE-171 77 Stockholm Sweden
| | - Marcus Stephenson-Jones
- Department of Neuroscience; the Nobel Institute for Neurophysiology, Karolinska Institutet; SE-171 77 Stockholm Sweden
| | - Shreyas M. Suryanarayana
- Department of Neuroscience; the Nobel Institute for Neurophysiology, Karolinska Institutet; SE-171 77 Stockholm Sweden
| | - Brita Robertson
- Department of Neuroscience; the Nobel Institute for Neurophysiology, Karolinska Institutet; SE-171 77 Stockholm Sweden
| | - Sten Grillner
- Department of Neuroscience; the Nobel Institute for Neurophysiology, Karolinska Institutet; SE-171 77 Stockholm Sweden
| |
Collapse
|
13
|
Seale AP, Yamaguchi Y, Johnstone WM, Borski RJ, Lerner DT, Grau EG. Endocrine regulation of prolactin cell function and modulation of osmoreception in the Mozambique tilapia. Gen Comp Endocrinol 2013; 192:191-203. [PMID: 23722201 DOI: 10.1016/j.ygcen.2013.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/11/2013] [Accepted: 05/14/2013] [Indexed: 01/06/2023]
Abstract
Prolactin (PRL) cells of the Mozambique tilapia, Oreochromis mossambicus, are osmoreceptors by virtue of their intrinsic osmosensitivity coupled with their ability to directly regulate hydromineral homeostasis through the actions of PRL. Layered upon this fundamental osmotic reflex is an array of endocrine control of PRL synthesis and secretion. Consistent with its role in fresh water (FW) osmoregulation, PRL release in tilapia increases as extracellular osmolality decreases. The hyposmotically-induced release of PRL can be enhanced or attenuated by a variety of hormones. Prolactin release has been shown to be stimulated by gonadotropin-releasing hormone (GnRH), 17-β-estradiol (E2), testosterone (T), thyrotropin-releasing hormone (TRH), atrial natriuretic peptide (ANP), brain-natriuretic peptide (BNP), C-type natriuretic peptide (CNP), ventricular natriuretic peptide (VNP), PRL-releasing peptide (PrRP), angiotensin II (ANG II), leptin, insulin-like growth factors (IGFs), ghrelin, and inhibited by somatostatin (SS), urotensin-II (U-II), dopamine, cortisol, ouabain and vasoactive intestinal peptide (VIP). This review is aimed at providing an overview of the hypothalamic and extra-hypothalamic hormones that regulate PRL release in euryhaline Mozambique tilapia, particularly in the context on how they may modulate osmoreception, and mediate the multifunctional actions of PRL. Also considered are the signal transduction pathways through which these secretagogues regulate PRL cell function.
Collapse
Affiliation(s)
- A P Seale
- Hawai'i Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Fontaine R, Affaticati P, Yamamoto K, Jolly C, Bureau C, Baloche S, Gonnet F, Vernier P, Dufour S, Pasqualini C. Dopamine inhibits reproduction in female zebrafish (Danio rerio) via three pituitary D2 receptor subtypes. Endocrinology 2013; 154:807-18. [PMID: 23295741 DOI: 10.1210/en.2012-1759] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In many teleosts, the stimulatory control of gonadotrope axis by GnRH is opposed by an inhibitory control by dopamine (DA). The functional importance of this inhibitory pathway differs widely from one teleostean species to another. The zebrafish (Danio rerio) is a teleost fish that has become increasingly popular as an experimental vertebrate model. However, the role of DA in the neuroendocrine control of its reproduction has never been studied. Here the authors evaluated in sexually regressed female zebrafish the effects of in vivo treatments with a DA D2 receptor (D2-R) antagonist domperidone, or a GnRH agonist, alone and in combination, on the pituitary level of FSHβ and LHβ transcripts, the gonadosomatic index, and the ovarian histology. Only the double treatment with GnRH agonist and domperidone could induce an increase in the expression of LHβ, in the gonadosomatic index, and a stimulation of ovarian vitellogenesis, indicating that removal of dopaminergic inhibition is required for the stimulatory action of GnRH and reactivation of ovarian function to occur. Using double immunofluorescent staining on pituitary, the authors showed in this species the innervation of LH cells by tyrosine-hydroxylase immunoreactive fibers. Finally, using in situ hybridization and immunofluorescence, the authors showed that the three subtypes of zebrafish DA D2-R (D2a, D2b, and D2c) were expressed in LH-producing cells, suggesting that they all may be involved in mediating this inhibition. These results show for the first time that, in zebrafish, DA has a direct and potent inhibitory action capable of opposing the stimulatory effect of GnRH in the neuroendocrine control of reproduction.
Collapse
Affiliation(s)
- Romain Fontaine
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 3294, Neurobiologie et Développement, Avenue de la Terrasse, bat 5E, Gif-sur-Yvette, 91198 Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Darland T, Mauch JT, Meier EM, Hagan SJ, Dowling JE, Darland DC. Sulpiride, but not SCH23390, modifies cocaine-induced conditioned place preference and expression of tyrosine hydroxylase and elongation factor 1α in zebrafish. Pharmacol Biochem Behav 2012; 103:157-67. [PMID: 22910534 DOI: 10.1016/j.pbb.2012.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/21/2012] [Accepted: 07/31/2012] [Indexed: 01/27/2023]
Abstract
Finding genetic polymorphisms and mutations linked to addictive behavior can provide important targets for pharmaceutical and therapeutic interventions. Forward genetic approaches in model organisms such as zebrafish provide a potentially powerful avenue for finding new target genes. In order to validate this use of zebrafish, the molecular nature of its reward system must be characterized. We have previously reported the use of cocaine-induced conditioned place preference (CPP) as a reliable method for screening mutagenized fish for defects in the reward pathway. Here we test if CPP in zebrafish involves the dopaminergic system by co-treating fish with cocaine and dopaminergic antagonists. Sulpiride, a potent D2 receptor (DR2) antagonist, blocked cocaine-induced CPP, while the D1 receptor (DR1) antagonist SCH23390 had no effect. Acute cocaine exposure also induced a rise in the expression of tyrosine hydroxylase (TH), an important enzyme in dopamine synthesis, and a significant decrease in the expression of elongation factor 1α (EF1α), a housekeeping gene that regulates protein synthesis. Cocaine selectively increased the ratio of TH/EF1α in the telencephalon, but not in other brain regions. The cocaine-induced change in TH/EF1α was blocked by co-treatment with sulpiride, but not SCH23390, correlating closely with the action of these drugs on the CPP behavioral response. Immunohistochemical analysis revealed that the drop in EF1α was selective for the dorsal nucleus of the ventral telencephalic area (Vd), a region believed to be the teleost equivalent of the striatum. Examination of TH mRNA and EF1α transcripts suggests that regulation of expression is post-transcriptional, but this requires further examination. These results highlight important similarities and differences between zebrafish and more traditional mammalian model organisms.
Collapse
Affiliation(s)
- Tristan Darland
- Biology Department, University of North Dakota, United States; Turtle Mountain Community College, United States.
| | | | | | | | | | | |
Collapse
|
16
|
The dopamine D2 receptor gene in lamprey, its expression in the striatum and cellular effects of D2 receptor activation. PLoS One 2012; 7:e35642. [PMID: 22563388 PMCID: PMC3338520 DOI: 10.1371/journal.pone.0035642] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/19/2012] [Indexed: 11/19/2022] Open
Abstract
All basal ganglia subnuclei have recently been identified in lampreys, the phylogenetically oldest group of vertebrates. Furthermore, the interconnectivity of these nuclei is similar to mammals and tyrosine hydroxylase-positive (dopaminergic) fibers have been detected within the input layer, the striatum. Striatal processing is critically dependent on the interplay with the dopamine system, and we explore here whether D2 receptors are expressed in the lamprey striatum and their potential role. We have identified a cDNA encoding the dopamine D2 receptor from the lamprey brain and the deduced protein sequence showed close phylogenetic relationship with other vertebrate D2 receptors, and an almost 100% identity within the transmembrane domains containing the amino acids essential for dopamine binding. There was a strong and distinct expression of D2 receptor mRNA in a subpopulation of striatal neurons, and in the same region tyrosine hydroxylase-immunoreactive synaptic terminals were identified at the ultrastructural level. The synaptic incidence of tyrosine hydroxylase-immunoreactive boutons was highest in a region ventrolateral to the compact layer of striatal neurons, a region where most striatal dendrites arborise. Application of a D2 receptor agonist modulates striatal neurons by causing a reduced spike discharge and a diminished post-inhibitory rebound. We conclude that the D2 receptor gene had already evolved in the earliest group of vertebrates, cyclostomes, when they diverged from the main vertebrate line of evolution (560 mya), and that it is expressed in striatum where it exerts similar cellular effects to that in other vertebrates. These results together with our previous published data (Stephenson-Jones et al. 2011, 2012) further emphasize the high degree of conservation of the basal ganglia, also with regard to the indirect loop, and its role as a basic mechanism for action selection in all vertebrates.
Collapse
|
17
|
O'Connell LA, Hofmann HA. The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J Comp Neurol 2012; 519:3599-639. [PMID: 21800319 DOI: 10.1002/cne.22735] [Citation(s) in RCA: 706] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
All animals evaluate the salience of external stimuli and integrate them with internal physiological information into adaptive behavior. Natural and sexual selection impinge on these processes, yet our understanding of behavioral decision-making mechanisms and their evolution is still very limited. Insights from mammals indicate that two neural circuits are of crucial importance in this context: the social behavior network and the mesolimbic reward system. Here we review evidence from neurochemical, tract-tracing, developmental, and functional lesion/stimulation studies that delineates homology relationships for most of the nodes of these two circuits across the five major vertebrate lineages: mammals, birds, reptiles, amphibians, and teleost fish. We provide for the first time a comprehensive comparative analysis of the two neural circuits and conclude that they were already present in early vertebrates. We also propose that these circuits form a larger social decision-making (SDM) network that regulates adaptive behavior. Our synthesis thus provides an important foundation for understanding the evolution of the neural mechanisms underlying reward processing and behavioral regulation.
Collapse
Affiliation(s)
- Lauren A O'Connell
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
18
|
Wang X, Zhao T, Wei H, Zhou H. Regulation of dopamine D2 receptor expression in grass carp pituitary cells: a possible mechanism for dopaminergic modification of luteinizing hormone synthesis. Gen Comp Endocrinol 2011; 173:48-55. [PMID: 21570980 DOI: 10.1016/j.ygcen.2011.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/28/2011] [Accepted: 04/22/2011] [Indexed: 01/28/2023]
Abstract
In many fishes, dopamine (DA) strongly inhibits luteinizing hormone (LH) release by direct action at the pituitary level. In this study, the effect of DA on LH synthesis was examined by detecting its β-subunit mRNA level in immature grass carp pituitary cells. Results showed that DA inhibited LHβ mRNA expression and its inhibition was antagonized by a DA D2 receptor (DRD2) antagonist, sulpiride, suggesting that DA inhibited LH synthesis via DRD2. This notion was further supported by the finding that the grass carp DRD2 (gcDRD2) immunoreactivity was observed in the proximal pars distalis of the pituitary in which gonadotrophs are distributed. Accordingly, a full-length cDNA for DRD2 was cloned from grass carp pituitary and it showed closer phylogenetic relationships to the DA D2 receptors compared with the D3 and D4 or D1-like receptors in other vertebrates. Besides brain, the expression of this receptor in pituitary was revealed by tissue distribution assay, implying the pituitary function of gcDRD2 in immature grass carp. In grass carp pituitary cells, gcDRD2 transcript level was stimulated by DA and this stimulation was blocked by sulpiride. However, hCG, a functional homolog of grass carp LH, was found to inhibit gcDRD2 mRNA expression, indicating an intrapituitary negative feedback of LH on gcDRD2 expression. In view of our observation that the DRD2 mediated the dopaminergic inhibition of LH synthesis, we speculate that the DA stimulation and LH suppression on gcDRD2 may reinforce or attenuate the DA inhibition on LH synthesis, respectively and this regulation of gcDRD2 may at least partially contribute to the steady state levels of LH mRNA in prepubertal grass carp.
Collapse
Affiliation(s)
- Xinyan Wang
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | | | | | | |
Collapse
|
19
|
Popesku JT, Navarro-Martín L, Trudeau VL. Evidence for Alternative Splicing of a Dopamine D2 Receptor in a Teleost. Physiol Biochem Zool 2011; 84:135-46. [DOI: 10.1086/658290] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
O'Connell LA, Fontenot MR, Hofmann HA. Characterization of the dopaminergic system in the brain of an African cichlid fish, Astatotilapia burtoni. J Comp Neurol 2010; 519:75-92. [DOI: 10.1002/cne.22506] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Dufour S, Sebert ME, Weltzien FA, Rousseau K, Pasqualini C. Neuroendocrine control by dopamine of teleost reproduction. JOURNAL OF FISH BIOLOGY 2010; 76:129-160. [PMID: 20738703 DOI: 10.1111/j.1095-8649.2009.02499.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
While gonadotropin-releasing hormone (GnRH) is considered as the major hypothalamic factor controlling pituitary gonadotrophins in mammals and most other vertebrates, its stimulatory actions may be opposed by the potent inhibitory actions of dopamine (DA) in teleosts. This dual neuroendocrine control of reproduction by GnRH and DA has been demonstrated in various, but not all, adult teleosts, where DA participates in an inhibitory role in the neuroendocrine regulation of the last steps of gametogenesis (final oocyte maturation and ovulation in females and spermiation in males). This has major implications for inducing spawning in aquaculture. In addition, DA may also play an inhibitory role during the early steps of gametogenesis in some teleost species, and thus interact with GnRH in the control of puberty. Various neuroanatomical investigations have shown that DA neurones responsible for the inhibitory control of reproduction originate in a specific nucleus of the preoptic area (NPOav) and project directly to the region of the pituitary where gonadotrophic cells are located. Pharmacological studies showed that the inhibitory effects of DA on pituitary gonadotrophin production are mediated by DA-D2 type receptors. DA-D2 receptors have now been sequenced in several teleosts, and the coexistence of several DA-D2 subtypes has been demonstrated in a few species. Hypophysiotropic DA activity varies with development and reproductive cycle and probably is controlled by environmental cues as well as endogenous signals. Sex steroids have been shown to regulate dopaminergic systems in several teleost species, affecting both DA synthesis and DA-D2 receptor expression. This demonstrates that sex steroid feedbacks target DA hypophysiotropic system, as well as the other components of the brain-pituitary gonadotrophic axis, GnRH and gonadotrophins. Recent studies have revealed that melatonin modulates the activity of DA systems in some teleosts, making the melatonin-DA pathway a prominent relay between environmental cues and control of reproduction. The recruitment of DA neurons for the neuroendocrine control of reproduction provides an additional brain pathway for the integration of various internal and environmental cues. The plasticity of the DA neuroendocrine role observed in teleosts may have contributed to their large diversity of reproductive cycles.
Collapse
Affiliation(s)
- S Dufour
- Muséum National d'Histoire Naturelle, UMR Biologie des Organismes et Ecosystèmes Aquatiques" MNHN-CNRS-IRD-UPMC, 7 rue Cuvier, CP 32, 75231 Paris Cedex 05, France.
| | | | | | | | | |
Collapse
|
22
|
Reiner A. The Conservative Evolution of the Vertebrate Basal Ganglia. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/b978-0-12-374767-9.00002-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Chapter 6 Regulation And Contribution Of The Corticotropic, Melanotropic And Thyrotropic Axes To The Stress Response In Fishes. FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(09)28006-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Reiner A. You Cannot Have a Vertebrate Brain Without a Basal Ganglia. ADVANCES IN BEHAVIORAL BIOLOGY 2009. [DOI: 10.1007/978-1-4419-0340-2_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Popesku JT, Martyniuk CJ, Mennigen J, Xiong H, Zhang D, Xia X, Cossins AR, Trudeau VL. The goldfish (Carassius auratus) as a model for neuroendocrine signaling. Mol Cell Endocrinol 2008; 293:43-56. [PMID: 18657592 DOI: 10.1016/j.mce.2008.06.017] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 04/30/2008] [Accepted: 06/11/2008] [Indexed: 12/25/2022]
Abstract
Goldfish (Carassius auratus) are excellent model organisms for the neuroendocrine signaling and the regulation of reproduction in vertebrates. Goldfish also serve as useful model organisms in numerous other fields. In contrast to mammals, teleost fish do not have a median eminence; the anterior pituitary is innervated by numerous neuronal cell types and thus, pituitary hormone release is directly regulated. Here we briefly describe the neuroendocrine control of luteinizing hormone. Stimulation by gonadotropin-releasing hormone and a multitude of classical neurotransmitters and neuropeptides is opposed by the potent inhibitory actions of dopamine. The stimulatory actions of gamma-aminobutyric acid and serotonin are also discussed. We will focus on the development of a cDNA microarray composed of carp and goldfish sequences which has allowed us to examine neurotransmitter-regulated gene expression in the neuroendocrine brain and to investigate potential genomic interactions between these key neurotransmitter systems. We observed that isotocin (fish homologue of oxytocin) and activins are regulated by multiple neurotransmitters, which is discussed in light of their roles in reproduction in other species. We have also found that many novel and uncharacterized goldfish expressed sequence tags in the brain are also regulated by neurotransmitters. Their sites of production and whether they play a role in neuroendocrine signaling and control of reproduction remain to be determined. The transcriptomic tools developed to study reproduction could also be used to advance our understanding of neuroendocrine-immune interactions and the relationship between growth and food intake in fish.
Collapse
|
26
|
Nocillado JN, Levavi-Sivan B, Carrick F, Elizur A. Temporal expression of G-protein-coupled receptor 54 (GPR54), gonadotropin-releasing hormones (GnRH), and dopamine receptor D2 (drd2) in pubertal female grey mullet, Mugil cephalus. Gen Comp Endocrinol 2007; 150:278-87. [PMID: 17083940 DOI: 10.1016/j.ygcen.2006.09.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 09/18/2006] [Accepted: 09/25/2006] [Indexed: 11/16/2022]
Abstract
The G-protein-coupled receptor 54 (muGPR54) cDNA was cloned from the brain of the grey mullet, and its expression level, as well as those of the gonadotropin-releasing hormones (GnRH1, GnRH2, GnRH3) and dopamine receptor D2 (drd2), in the brain, pituitary and ovary of pubertal fish (early, intermediate, advanced) were determined by real-time quantitative RT-PCR (QPCR). The muGPR54 cDNA has an open reading frame of 1140 bp with a predicted 380 amino acid peptide, containing seven putative transmembrane domains and putative N-glycosylation and protein kinase C phosphorylation sites. QPCR results showed that the early stage of puberty in grey mullet is characterized by significantly high levels of expression of GPR54, GnRH and drd2 in the brain relative to the intermediate and advanced stages, except for GnRH1 that increased at the advanced stage of puberty. In the pituitary, drd2 expression declined significantly at the advanced stage relative to levels at the intermediate stage. Ovarian expression of GPR54 significantly increased from the intermediate stage of puberty relative to the early stage while that of GnRH1 acutely increased at the advanced stage of puberty. The ovarian expression of drd2 decreased as puberty progressed, but the changes were not significant. The results suggest the possible role of GPR54 and GnRH in positively regulating pubertal development in grey mullet and the dopaminergic inhibition of reproductive function mediated by drd2.
Collapse
Affiliation(s)
- Josephine N Nocillado
- Department of Primary Industries and Fisheries, Bribie Island Aquaculture Research Centre, 144 North Street, Woorim 4507, Qld, Australia
| | | | | | | |
Collapse
|
27
|
Levavi-Sivan B, Aizen J, Avitan A. Cloning, characterization and expression of the D2 dopamine receptor from the tilapia pituitary. Mol Cell Endocrinol 2005; 236:17-30. [PMID: 15876479 DOI: 10.1016/j.mce.2005.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 03/16/2005] [Accepted: 03/18/2005] [Indexed: 11/19/2022]
Abstract
A full-length cDNA encoding a dopamine receptor (DA-R) was obtained from the pituitary of tilapia (ta). This cDNA encodes a protein of 469 amino acids that exhibits the typical arrangement of GPCR. The taDA-R shows high similarity to the DA-Rs of mullet and fugu, and over 70% similarity to Xenopus, mouse and turkey D2 DA-Rs. Northern blot analysis revealed transcript for a single transcript in the pituitary, of approximately 3 kb. In a Southern analysis, the tilapia probe recognized specific bands in the genomic DNA of both mullet and catfish, suggesting high similarity between the corresponding genes. Phylogenetic analysis clearly aligned the taDA-D2-R with all vertebrate D2-like receptor sequences cloned to date, and it was therefore designated taDA-D2-R. taDA-D2-R was transiently expressed in COS-7 cells together with the reporter construct CRE-luciferase. Addition of the specific D2 dopamine agonists quinpirole or bromocriptine, in the presence of forskolin, led to a dose-dependent decrease in forskolin-induced cAMP levels. Both agonists yielded the same maximal inhibition (around 40%). However, the potency of taDA-D2-R for bromocriptine was higher than for quinpirole. As established for mammalian D2-like receptors, stimulation of the taDA-D2-R with quinpirole triggers pertussis-toxin-sensitive Gi/o-mediated, but not Gs-mediated signaling. In contrast to mammals, PCR analysis gave no evidence of alternative splicing in taDA-D2-R. Pharmacological and genetic manipulation of the taDA-D2-R should enable us to better define its physiological role and to further explore the usefulness of fish as a model system for understanding dopaminergic function in higher organisms.
Collapse
Affiliation(s)
- Berta Levavi-Sivan
- Department of Animal Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University, P.O. Box 12, Rehovot 76100, Israel.
| | | | | |
Collapse
|
28
|
Nocillado JN, Levavi-Sivan B, Avitan A, Carrick F, Elizur A. Isolation of dopamine D(2) receptor (D (2)R) promoters in Mugil cephalus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2005; 31:149-152. [PMID: 20035449 DOI: 10.1007/s10695-006-0017-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This paper reports the isolation of two putative D(2)R promoters from grey mullet, one 5'flanking and the other an intronic sequence immediately upstream of the first coding exon. Promoter activity of the intronic sequence was confirmed in vitro through functional analysis using luciferase as reporter gene. The functional characteristics of the region flanking the 5'UTR is currently under investigation.
Collapse
Affiliation(s)
- J N Nocillado
- Department of Primary Industries and Fisheries, Bribie Island Aquaculture Research Centre, QLD, 4507, Australia
| | | | | | | | | |
Collapse
|
29
|
Johansson V, Winberg S, Björnsson BT. Growth hormone-induced stimulation of swimming and feeding behaviour of rainbow trout is abolished by the D1 dopamine antagonist SCH23390. Gen Comp Endocrinol 2005; 141:58-65. [PMID: 15707603 DOI: 10.1016/j.ygcen.2004.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 11/17/2004] [Accepted: 11/29/2004] [Indexed: 11/16/2022]
Abstract
The effects of GH on various types of behaviour in fish are well documented although the underlying mechanisms are not fully understood. In rainbow trout, an involvement of the brain dopaminergic system in mediating the behavioural effects of GH has been indicated, as GH can alter the brain dopaminergic activity. To further examine the role of the dopaminergic system in the mediation of GH effects on locomotion and foraging, GH- and sham-implanted juvenile rainbow trout were injected with the selective D1 dopamine antagonist SCH23390 or vehicle. Swimming and feeding activity was then studied by direct observation. Brains were thereafter sampled and analysed for the content of serotonin, dopamine and their metabolites in the hypothalamus, optic tectum, cerebellum, telencephalon, and brain stem. GH increased swimming activity as well as feed intake, effects which were abolished by SCH23390. By itself, the antagonist did not affect behaviour, nor did it affect the brain monoamines. In contrast, treatment with GH, with or without SCH23390, decreased the content of the dopamine metabolite homovanillic acid (HVA) in the optic tectum and the cerebellum, as well as the serotonin content (5-HT) in the optic tectum. It is concluded that the D1 dopamine receptor of the dopaminergic system appears to be of importance in the mediation of the effects of GH on behaviour.
Collapse
Affiliation(s)
- Viktoria Johansson
- Fish Endocrinology Laboratory, Department of Zoology/Zoophysiology, Göteborg University, Box 463, S-405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
30
|
Wullimann MF, Mueller T. Teleostean and mammalian forebrains contrasted: Evidence from genes to behavior. J Comp Neurol 2004; 475:143-62. [PMID: 15211457 DOI: 10.1002/cne.20183] [Citation(s) in RCA: 350] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mario F Wullimann
- Institute of Neurobiology A. Fessard Development, Evolution, Plasticity of the Nervous System Research Unit 2197, Centre National de la Recherche Scientifique, F-91198 Gif-sur-Yvette, France.
| | | |
Collapse
|