1
|
Lespine A, Blancfuney C, Prichard R, Alberich M. P-glycoproteins in anthelmintic safety, efficacy, and resistance. Trends Parasitol 2024; 40:896-913. [PMID: 39168719 DOI: 10.1016/j.pt.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
P-glycoprotein (PGP) is a pivotal transmembrane transporter governing the cellular flux of diverse substances shielding mammals from toxics. It can thwart the effectiveness of medicines such as ivermectin (IVM) and other macrocyclic lactone (ML) anthelmintics, undermining therapeutic efforts. We analyze the role of PGPs in limiting the toxicity of these drugs in hosts, and their potential contribution to anthelmintic resistance in nematodes. Targeting nematode PGPs to increase drug sensitivity to MLs seems interesting, but is hampered by the lack of selective inhibitors. The nuclear hormone receptor (NHR)-8 should be seriously considered as a target because it upregulates multiple PGPs involved in anthelmintic resistance and it is specific to nematodes. This would advance our understanding of host-pathogen dynamics and foster innovative therapeutic strategies.
Collapse
Affiliation(s)
- Anne Lespine
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| | | | - Roger Prichard
- Institute of Parasitology, McGill University, Ste Anne-de-Bellevue, Canada
| | | |
Collapse
|
2
|
Synergism of macrocyclic lactones against Haemonchus contortus. Parasitol Res 2023; 122:867-876. [PMID: 36764962 DOI: 10.1007/s00436-023-07790-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
A possible synergistic effect of macrocyclic lactones' (MLs) combination has been previously described against resistant gastrointestinal nematodes of cattle. In addition to synergism, drug-drug interactions between MLs can also result in additive or antagonistic effect, considering the different MLs pharmacokinetics, pharmacodynamics, and interactions with molecular mechanisms of resistance. Therefore, the aim of the current work was evaluated the effect of different MLs combinations against Haemonchus contortus. Infecting larvae of two isolates (one susceptible and one resistant to ivermectin) were used in the larval migration inhibition test. After estimating the half maximal effective concentration of abamectin (ABA), eprinomectin, (EPR), ivermectin (IVM), and moxidectin (MOX) for both isolates, combinations were delineated by a simplex-centroid mixture experiment, and the mixture regression analysis was applied to the special cubic model. A synergistic effect was found for the EPR + MOX against the susceptible isolate as well as the EPR + MOX, IVM + MOX, and ABA + EPR + IVM against the resistant isolate. An antagonistic effect of ABA + IVM + MOX was found against the susceptible isolate. For the susceptible isolate, a higher inhibition was found with greater proportions of EPR and lower proportions of the other drugs compared to the reference mixture. For the resistant isolate, inhibition greater than that of the reference mixture was found with higher proportions of IVM as well as lower proportions of the other drugs. The synergistic and antagonistic effects were dependent on the following: (a) parasite drug resistance profile, (b) the composition of the combination, and (c) the proportions used, with EPR and IVM exerting a greater impact on these effects.
Collapse
|
3
|
Choudhary S, Abongwa M, Kashyap SS, Verma S, Mair GR, Kulke D, Martin RJ, Robertson AP. Nodulisporic acid produces direct activation and positive allosteric modulation of AVR-14B, a glutamate-gated chloride channel from adult Brugia malayi. Proc Natl Acad Sci U S A 2022; 119:e2111932119. [PMID: 35969762 PMCID: PMC9407656 DOI: 10.1073/pnas.2111932119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Glutamate-gated chloride channels (GluCls) are unique to invertebrates and are targeted by macrocyclic lactones. In this study, we cloned an AVR-14B GluCl subunit from adult Brugia malayi, a causative agent of lymphatic filariasis in humans. To elucidate this channel's pharmacological properties, we used Xenopus laevis oocytes for expression and performed two-electrode voltage-clamp electrophysiology. The receptor was gated by the natural ligand L-glutamate (effective concentration, 50% [EC50] = 0.4 mM) and ivermectin (IVM; EC50 = 1.8 nM). We also characterized the effects of nodulisporic acid (NA) on Bma-AVR-14B and NA-produced dual effects on the receptor as an agonist and a type II positive allosteric modulator. Here we report characterization of the complex activity of NA on a nematode GluCl. Bma-AVR-14B demonstrated some unique pharmacological characteristics. IVM did not produce potentiation of L-glutamate-mediated responses but instead, reduced the channel's sensitivity for the ligand. Further electrophysiological exploration showed that IVM (at a moderate concentration of 0.1 nM) functioned as an inhibitor of both agonist and positive allosteric modulatory effects of NA. This suggests that IVM and NA share a complex interaction. The pharmacological properties of Bma-AVR-14B indicate that the channel is an important target of IVM and NA. In addition, the unique electrophysiological characteristics of Bma-AVR-14B could explain the observed variation in drug sensitivities of various nematode parasites. We have also shown the inhibitory effects of IVM and NA on adult worm motility using Worminator. RNA interference (RNAi) knockdown suggests that AVR-14 plays a role in influencing locomotion in B. malayi.
Collapse
Affiliation(s)
- Shivani Choudhary
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Melanie Abongwa
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Sudhanva S. Kashyap
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Saurabh Verma
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Gunnar R. Mair
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Daniel Kulke
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Richard J. Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Alan P. Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| |
Collapse
|
4
|
Choudhary S, Kashyap SS, Martin RJ, Robertson AP. Advances in our understanding of nematode ion channels as potential anthelmintic targets. Int J Parasitol Drugs Drug Resist 2022; 18:52-86. [PMID: 35149380 PMCID: PMC8841521 DOI: 10.1016/j.ijpddr.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Ion channels are specialized multimeric proteins that underlie cell excitability. These channels integrate with a variety of neuromuscular and biological functions. In nematodes, the physiological behaviors including locomotion, navigation, feeding and reproduction, are regulated by these protein entities. Majority of the antinematodal chemotherapeutics target the ion channels to disrupt essential biological functions. Here, we have summarized current advances in our understanding of nematode ion channel pharmacology. We review cys-loop ligand gated ion channels (LGICs), including nicotinic acetylcholine receptors (nAChRs), acetylcholine-chloride gated ion channels (ACCs), glutamate-gated chloride channels (GluCls), and GABA (γ-aminobutyric acid) receptors, and other ionotropic receptors (transient receptor potential (TRP) channels and potassium ion channels). We have provided an update on the pharmacological properties of these channels from various nematodes. This article catalogs the differences in ion channel composition and resulting pharmacology in the phylum Nematoda. This diversity in ion channel subunit repertoire and pharmacology emphasizes the importance of pursuing species-specific drug target research. In this review, we have provided an overview of recent advances in techniques and functional assays available for screening ion channel properties and their application.
Collapse
Affiliation(s)
- Shivani Choudhary
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Richard J Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
5
|
Wolstenholme AJ, Neveu C. The avermectin/milbemycin receptors of parasitic nematodes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105010. [PMID: 35082033 DOI: 10.1016/j.pestbp.2021.105010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Glutamate-gated chloride channels are the most important target of ivermectin and related compounds in parasitic nematodes. A small family of genes encode subunits of these channels, allowing the assembly of multiple channel subtypes; the subunit composition of most of the native receptors is unknown. The members of the gene family vary between species, making extrapolation from C. elegans to parasites difficult. Expression of recombinant receptors in Xenopus oocytes can identify subunits that have the ability to co-assemble into novel channels, but localisation data, ideally at the single-cell level, is required to confirm that these subunits are expressed in the same cells and tissues. Fortunately, recent advances in this area are starting to make this information available; this information is adding to our understanding of how the drugs act and of the possible subunit combinations that create their targets in vivo.
Collapse
Affiliation(s)
- Adrian J Wolstenholme
- UMR1282 Infectiologie et Santé Publique, INRAE Centre Val de Loire, 37380 Nouzilly, France.
| | - Cedric Neveu
- UMR1282 Infectiologie et Santé Publique, INRAE Centre Val de Loire, 37380 Nouzilly, France.
| |
Collapse
|
6
|
Jiang H, Qin X, Wang Q, Xu Q, Wang J, Wu Y, Chen W, Wang C, Zhang T, Xing D, Zhang R. Application of carbohydrates in approved small molecule drugs: A review. Eur J Med Chem 2021; 223:113633. [PMID: 34171659 DOI: 10.1016/j.ejmech.2021.113633] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/24/2022]
Abstract
Carbohydrates are an important energy source and play numerous key roles in all living organisms. Carbohydrates chemistry involved in diagnosis and treatment of diseases has been attracting increasing attention. Carbohydrates could be one of the major focuses of new drug discovery. Currently, however, carbohydrate-containing drugs account for only a small percentage of all drugs in clinical use, which does not match the important roles of carbohydrates in the organism. In other words, carbohydrates are a relatively untapped source of new drugs and therefore may offer exciting novel therapeutic opportunities. Here, we presented an overview of the application of carbohydrates in approved small molecule drugs and emphasized and evaluated the roles of carbohydrates in those drugs. The potential development direction of carbohydrate-containing drugs was presented after summarizing the advantages and challenges of carbohydrates in the development of new drugs.
Collapse
Affiliation(s)
- Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Xiaofei Qin
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Qi Wang
- Department of Critical Medicine, Hainan Maternal and Children's Medical Center, Haikou, 570312, China
| | - Qi Xu
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology Shandong Academy of Sciences, Jinan, China
| | - Jie Wang
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Yudong Wu
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Wujun Chen
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Chao Wang
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Tingting Zhang
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
7
|
Wu F, Zhang H, Zhou J, Wu J, Tong D, Chen X, Huang Y, Shi H, Yang Y, Ma G, Yao C, Du A. The trypsin inhibitor-like domain is required for a serine protease inhibitor of Haemonchus contortus to inhibit host coagulation. Int J Parasitol 2021; 51:1015-1026. [PMID: 34126100 DOI: 10.1016/j.ijpara.2021.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
Haemonchus contortus, a blood-feeding nematode, inhibits blood coagulation at the site of infection to facilitate blood-sucking and digesting for successful parasitism. However, the mechanism underlying anti-coagulation at the host-parasite interface is largely unknown. In the current study, Hc-spi-i8, which has two greatly different transcripts named Hc-spi-i8a and Hc-spi-i8b, respectively, was described. Hc-SPI-I8A was a serine protease inhibitor containing a trypsin inhibitor-like cysteine rich (TIL) domain, while Hc-SPI-I8B was not. Hc-SPI-I8A/B were primarily expressed in the hypodermis, intestines and gonads in the parasitic stages of H. contortus. Hc-SPI-I8A interacted with Ovis aries TSP1-containing protein (OaTSP1CP), which was determined by yeast two-hybrid, co-immunoprecipitation (Co-IP), pull down and co-localization experiments. The blood clotting time contributed by the TIL domain was prolonged by Hc-SPI-I8A. Hc-SPI-I8A is most likely interfering in the extrinsic coagulation cascade by interacting with OaTSP1CP through its TIL domain and intrinsic coagulation cascade by an unknown mechanism. These findings depict a crucial point in the host-parasite interaction during H. contortus colonization, which should contribute to drug discovery and vaccine development in fighting against this important parasite worldwide.
Collapse
Affiliation(s)
- Fei Wu
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Zhang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingru Zhou
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Wu
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Danni Tong
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Huang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hengzhi Shi
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chaoqun Yao
- Ross University School of Veterinary Medicine and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts, Trinidad and Tobago
| | - Aifang Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Moreno Y, Geary TG, Tritten L. When Secretomes Meet Anthelmintics: Lessons for Therapeutic Interventions. Trends Parasitol 2021; 37:468-475. [PMID: 33563557 DOI: 10.1016/j.pt.2021.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
Helminth secretomes comprise many potential immunomodulators. The molecular and functional diversity of these entities and their importance at the host-parasite interface have been increasingly recognized. It is now common to hypothesize that parasite-derived molecules (PDMs) are essential mediators used by parasites to establish and remain in their hosts. Suppression of PDM release has been reported for two anthelmintic drug classes, the benzimidazoles and macrocyclic lactones, the mechanisms of action of which remain incompletely resolved. We propose that bringing together recent insights from different streams of parasitology research, for example, immunoparasitology and pharmacology, will stimulate the development of new ways to alter the host-parasite interface in the search for novel anthelmintic strategies.
Collapse
Affiliation(s)
- Yovany Moreno
- Boehringer-Ingelheim Animal Health, Duluth, GA, USA.
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC, Canada; School of Biological Sciences, Queen's University - Belfast, Belfast, UK
| | - Lucienne Tritten
- Institute of Parasitology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
9
|
Medeiros MLS, Alves RRV, Oliveira BF, Napoleão TH, Paiva PMG, Coelho LCBB, Bezerra ACDS, Silva MDC. In vitro effects of Moringa oleifera seed lectins on Haemonchus contortus in larval and adult stages. Exp Parasitol 2020; 218:108004. [PMID: 32961172 DOI: 10.1016/j.exppara.2020.108004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/19/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
Haemonchus contortus is a hematophagous parasite causing damage to the production of ruminant animals throughout the world. This study evaluated the in vitro effect of proteins from Moringa oleifera (WSMoL - Water Soluble M. oleifera Lectin and cMoL - coagulant M. oleifera Lectin) on the motility of infective larvae and adult male and female worms of H. contortus. The specific activity of total proteases and the morphology of the worms exposed to the lectins were observed. Both lectins inhibited motility of all parasite stages tested. WSMoL and cMoL at 500 μg mL-1 interfered in the motility of larvae. Values of 11.1% and 8.1% were the lowest motility indices of larvae with sheath, and 30.6% and 16.4% were the lowest motility indices of exsheathed larvae treated with WSMoL and cMoL, respectively. In 1 mg mL-1 solutions of WSMoL and of cMoL, the motility index of adult male worms was 23.3% (p < 0.001) and 20% (p < 0.001), while the motility index of adult female worms was 63.3% (p > 0.05) and 26.6% (p < 0.001), respectively. Greater proteolytic activity was detected in extracts obtained from adult worms, male and female, after incubation with the lectins. Morphological changes caused by the lectins were revealed by changes in the crests of the cuticle, in the longitudinal striations and at the vulva.
Collapse
Affiliation(s)
- Mário L S Medeiros
- Departamento de Ciências Biomédicas, Faculdade de Ciências da Saúde, Universidade do Estado do Rio Grande do Norte, Rua Atirador Miguel Antônio da Silva Neto, S/n, Aeroporto, 59607-360, Mossoró, Rio Grande do Norte, Brazil.
| | - Robson R V Alves
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Morais Rego S/n, Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil
| | - Benny F Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Morais Rego S/n, Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil
| | - Thiago H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Morais Rego S/n, Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil
| | - Patrícia M G Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Morais Rego S/n, Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil
| | - Luana C B B Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Morais Rego S/n, Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil
| | - Ana C D S Bezerra
- Departamento de Biociências, Centro de Ciências Biológicas e da Saúde, Universidade Federal Rural do Semi-Árido, Av. Francisco Mota 572, Costa e Silva, 59625-900, Mossoró, Rio Grande do Norte, Brazil
| | - Michele D C Silva
- Departamento de Biociências, Centro de Ciências Biológicas e da Saúde, Universidade Federal Rural do Semi-Árido, Av. Francisco Mota 572, Costa e Silva, 59625-900, Mossoró, Rio Grande do Norte, Brazil.
| |
Collapse
|
10
|
Zheng S, Wang S, Zhang Q, Zhang Z, Xu S. Avermectin inhibits neutrophil extracellular traps release by activating PTEN demethylation to negatively regulate the PI3K-ERK pathway and reducing respiratory burst in carp. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121885. [PMID: 31879111 DOI: 10.1016/j.jhazmat.2019.121885] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/25/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Excessive residual avermectin (AVM) in the environment can have toxic effects on non-target organisms. AVM can exert immunotoxicity by inducing genomic demethylation, but its effect on neutrophil extracellular traps (NETs) release in carp is unclear. In this study, carp neutrophils were pretreated with 5 μg/L AVM or 4 μM DNA demethylation inhibitor (aurintricarboxylic acid, ATA), alone or in combination, and then treated with 4 μM phorbol 12-myristate 13-acetate (PMA) to stimulate NETs release. The results showed that exposure of carp neutrophils to AVM significantly suppressed NETs release and MPO expression, increased ROS production, and dramatically reduced PMA-induced cellular respiratory burst. In addition, AVM could bind to the MBD2 molecule, markedly upregulate MBD2 expression to cause demethylation, and clearly activate PTEN expression, thereby inhibiting the expression of PI3K, AKT, Raf, MEK, and ERK. However, these effects were alleviated by ATA. In conclusion, our study showed that AVM could inhibit NETs release in carp by inducing demethylation of PTEN to negatively regulate NETs synthesis pathways and reducing respiratory burst level. Our findings clarify the mechanism of AVM immunotoxicity to fish and are of great significance for efforts to protect the ecological environment and human health.
Collapse
Affiliation(s)
- Shufang Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qiaojian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, HaRbin 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, HaRbin 150030, PR China.
| |
Collapse
|
11
|
Atif M, Smith JJ, Estrada-Mondragon A, Xiao X, Salim AA, Capon RJ, Lynch JW, Keramidas A. GluClR-mediated inhibitory postsynaptic currents reveal targets for ivermectin and potential mechanisms of ivermectin resistance. PLoS Pathog 2019; 15:e1007570. [PMID: 30695069 PMCID: PMC6368337 DOI: 10.1371/journal.ppat.1007570] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/08/2019] [Accepted: 01/08/2019] [Indexed: 12/19/2022] Open
Abstract
Glutamate-gated chloride channel receptors (GluClRs) mediate inhibitory neurotransmission at invertebrate synapses and are primary targets of parasites that impact drastically on agriculture and human health. Ivermectin (IVM) is a broad-spectrum pesticide that binds and potentiates GluClR activity. Resistance to IVM is a major economic and health concern, but the molecular and synaptic mechanisms of resistance are ill-defined. Here we focus on GluClRs of the agricultural endoparasite, Haemonchus contortus. We demonstrate that IVM potentiates inhibitory input by inducing a tonic current that plateaus over 15 minutes and by enhancing post-synaptic current peak amplitude and decay times. We further demonstrate that IVM greatly enhances the active durations of single receptors. These effects are greatly attenuated when endogenous IVM-insensitive subunits are incorporated into GluClRs, suggesting a mechanism of IVM resistance that does not affect glutamate sensitivity. We discovered functional groups of IVM that contribute to tuning its potency at different isoforms and show that the dominant mode of access of IVM is via the cell membrane to the receptor. Glutamate-gated chloride channel receptors (GluClRs) mediate chemoelectric inhibition in invertebrate animals and are targets for broad-spectrum pesticides such as ivermectin. However, resistance to ivermectin threatens the effective control of invertebrates that cause a range of agricultural and human diseases. This study investigates different isoforms of GluClR expressed by the major agricultural endoparasite, Haemonchus contortus, on a synaptic and single receptor level. We discovered that ivermectin enhances synaptic current amplitude and decay and lengthens single receptor activity. Furthermore, ivermectin is less efficacious at GluClRs that incorporate a naturally ivermectin-resistant subunit, suggesting a potential resistance mechanism. Finally, we identify two chemical interactions between the GluClR and ivermectin that determine its potency and show that ivermectin binds to GluClRs via cell membrane interactions.
Collapse
Affiliation(s)
- Mohammed Atif
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Jennifer J. Smith
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | - Xue Xiao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Angela A. Salim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Joseph W. Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- * E-mail: (AK); (JWL)
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- * E-mail: (AK); (JWL)
| |
Collapse
|
12
|
Callanan MK, Habibi SA, Law WJ, Nazareth K, Komuniecki RL, Forrester SG. Investigating the function and possible biological role of an acetylcholine-gated chloride channel subunit (ACC-1) from the parasitic nematode Haemonchus contortus. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:526-533. [PMID: 30401619 PMCID: PMC6287539 DOI: 10.1016/j.ijpddr.2018.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/30/2023]
Abstract
The cys-loop superfamily of ligand-gated ion channels are well recognized as important drug targets for many invertebrate specific compounds. With the rise in resistance seen worldwide to existing anthelmintics, novel drug targets must be identified so new treatments can be developed. The acetylcholine-gated chloride channel (ACC) family is a unique family of cholinergic receptors that have been shown, using Caenorhabditis elegans as a model, to have potential as anti-parasitic drug targets. However, there is little known about the function of these receptors in parasitic nematodes. Here, we have identified an acc gene (hco-acc-1) from the sheep parasitic nematode Haemonchus contortus. While similar in sequence to the previously characterized C. elegans ACC-1 receptor, Hco-ACC-1 does not form a functional homomeric channel in Xenopus oocytes. Instead, co-expression of Hco-ACC-1 with a previously characterized subunit Hco-ACC-2 produced a functional heteromeric channel which was 3x more sensitive to acetylcholine compared to the Hco-ACC-2 homomeric channel. We have also found that Hco-ACC-1 can be functionally expressed in C. elegans. Overexpression of both cel-acc-1 and hco-acc-1 in both C. elegans N2 and acc-1 null mutants decreased the time for worms to initiate reversal avoidance to octanol. Moreover, antibodies were generated against the Hco-ACC-1 protein for use in immunolocalization studies. Hco-ACC-1 consistently localized to the anterior half of the pharynx, specifically in pharyngeal muscle tissue in H. contortus. On the other hand, expression of Hco-ACC-1 in C. elegans was restricted to neuronal tissue. Overall, this research has provided new insight into the potential role of ACC receptors in parasitic nematodes. Isolation of an ACC-1 orthologue from Haemonchus contortus. Hco-ACC-1 may play a role in pharyngeal pumping. Hco-ACC-1 forms a sensitive ACh heteromeric channel when co-expressed with Hco-ACC-2.
Collapse
Affiliation(s)
- Micah K Callanan
- Faculty of Science, University of Ontario Institute of Technology, 2000, Simcoe Street North, Oshawa, ON, L1H 7K4, Canada
| | - Sarah A Habibi
- Faculty of Science, University of Ontario Institute of Technology, 2000, Simcoe Street North, Oshawa, ON, L1H 7K4, Canada
| | - Wen Jing Law
- Department of Biological Sciences, University of Toledo, Toledo, OH, 43606, USA
| | - Kristen Nazareth
- Faculty of Science, University of Ontario Institute of Technology, 2000, Simcoe Street North, Oshawa, ON, L1H 7K4, Canada
| | | | - Sean G Forrester
- Faculty of Science, University of Ontario Institute of Technology, 2000, Simcoe Street North, Oshawa, ON, L1H 7K4, Canada.
| |
Collapse
|
13
|
Atif M, Estrada-Mondragon A, Nguyen B, Lynch JW, Keramidas A. Effects of glutamate and ivermectin on single glutamate-gated chloride channels of the parasitic nematode H. contortus. PLoS Pathog 2017; 13:e1006663. [PMID: 28968469 PMCID: PMC5638611 DOI: 10.1371/journal.ppat.1006663] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/12/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022] Open
Abstract
Ivermectin (IVM) is a widely-used anthelmintic that works by binding to and activating glutamate-gated chloride channel receptors (GluClRs) in nematodes. The resulting chloride flux inhibits the pharyngeal muscle cells and motor neurons of nematodes, causing death by paralysis or starvation. IVM resistance is an emerging problem in many pest species, necessitating the development of novel drugs. However, drug optimisation requires a quantitative understanding of GluClR activation and modulation mechanisms. Here we investigated the biophysical properties of homomeric α (avr-14b) GluClRs from the parasitic nematode, H. contortus, in the presence of glutamate and IVM. The receptor proved to be highly responsive to low nanomolar concentrations of both compounds. Analysis of single receptor activations demonstrated that the GluClR oscillates between multiple functional states upon the binding of either ligand. The G36’A mutation in the third transmembrane domain, which was previously thought to hinder access of IVM to its binding site, was found to decrease the duration of active periods and increase receptor desensitisation. On an ensemble macropatch level the mutation gave rise to enhanced current decay and desensitisation rates. Because these responses were common to both glutamate and IVM, and were observed under conditions where agonist binding sites were likely saturated, we infer that G36’A affects the intrinsic properties of the receptor with no specific effect on IVM binding mechanisms. These unexpected results provide new insights into the activation and modulatory mechanisms of the H. contortus GluClRs and provide a mechanistic framework upon which the actions of drugs can be reliably interpreted. IVM is a gold standard anti-parasitic drug that is used extensively to control invertebrate parasites pest species. The drug targets the glutamate-gated chloride channel receptor (GluClR) found on neurons and muscle cells of these organisms, causing paralysis and death. However, IVM resistance is becoming a serious problem in human and animal health, as well as human food production. We provide the first comprehensive investigation of the functional properties of the GluClR of H. contortus, which is a major parasite in grazing animals, such as sheep and goats. We compared glutamate and IVM induced activity of the wild-type and a mutant GluClR, G36’A, that markedly reduces IVM sensitivity in wild populations of pests. Our data demonstrate that the mutation reduces IVM sensitivity by altering the functional properties of the GluClR rather than specifically affecting the binding of IVM, even though the mutation occurs at the IVM binding site. This study provides a mechanistic framework upon which the actions of new candidate anthelmintic drugs can be interpreted.
Collapse
Affiliation(s)
- Mohammed Atif
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | - Bindi Nguyen
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Joseph W. Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
- * E-mail: (AK); (JL)
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- * E-mail: (AK); (JL)
| |
Collapse
|
14
|
Laing R, Gillan V, Devaney E. Ivermectin - Old Drug, New Tricks? Trends Parasitol 2017; 33:463-472. [PMID: 28285851 PMCID: PMC5446326 DOI: 10.1016/j.pt.2017.02.004] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 11/30/2022]
Abstract
Ivermectin is one of the most important drugs in veterinary and human medicine for the control of parasitic infection and was the joint focus of the 2015 Nobel Prize in Physiology or Medicine, some 35 years after its remarkable discovery. Although best described for its activity on glutamate-gated chloride channels in parasitic nematodes, understanding of its mode of action remains incomplete. In the field of veterinary medicine, resistance to ivermectin is now widespread, but the mechanisms underlying resistance are unresolved. Here we discuss the history of this versatile drug and its use in global health. Based on recent studies in a variety of systems, we question whether ivermectin could have additional modes of action on parasitic nematodes. Ligand-gated ion channels, particularly glutamate-gated chloride channels, are well characterised as the targets of IVM in nematodes and insects. Nematode genomes are helping to cast light on the diversity of ion-channel subunits in different parasite species of human and veterinary importance. Resistance to IVM is an increasing problem in the control of parasitic nematodes, and resolving the mechanisms is an important research priority. Recent studies in other biological systems suggest that IVM can affect a number of additional pathways. IVM may have novel applications in the treatment and control of important human diseases.
Collapse
Affiliation(s)
- Roz Laing
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK.
| | - Victoria Gillan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Eileen Devaney
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| |
Collapse
|
15
|
Liu H, French AS, Torkkeli PH. Expression of Cys-loop receptor subunits and acetylcholine binding protein in the mechanosensory neurons, glial cells, and muscle tissue of the spider Cupiennius salei. J Comp Neurol 2016; 525:1139-1154. [PMID: 27650259 DOI: 10.1002/cne.24122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/30/2016] [Accepted: 09/10/2016] [Indexed: 12/23/2022]
Abstract
The central and peripheral nervous system transcriptomes of the spider Cupiennius salei have 15 Cys-loop receptor subunits and an acetylcholine-binding protein (AChBP). Twelve subunits are predicted to form anion channels gated by γ-aminobutyric acid (GABA), glutamate, histamine, or changes in pH, and three are putative ACh-gated cation channels. Spiders have a variety of mechanosensilla and proprioceptive organs that are innervated by efferents in their peripherally located parts, and efferents also innervate muscle fibers. We investigated Cys-loop gene expression in muscle tissue by qPCR and localized this expression in mechanosensilla via in situ hybridization. The cuticular mechanosensory neurons had only CsGABArdl and CspHCl2 subunits, whereas the muscle tissue expressed a wider variety of subunits, especially CsGABAgrd, CsGABAA β, CsGluCl1 and CspHCl, but very low levels of the CsGABArdl or CsnACh subunits. An nACh non-α subunit was expressed in a group of unidentified cells in the hypodermis and at low level in the muscle tissue, but the physiological function of this subunit is unknown. The CsnAChα subunit was not expressed in sensory neurons and was expressed at extremely low level in the muscle tissue. None of the probes gave signals in proprioceptive joint receptors, suggesting that efferent innervation to this sense organ employs other receptor types. CsAChBP and a glia-specific homeodomain CsREPO were both expressed in glial cells that surround sensory neurons and also in muscle tissue, probably around the nerve endings of the neuromuscular junction. These locations have large numbers of synapses, suggesting that AChBP may have a function in modulating synaptic transmission. J. Comp. Neurol. 525:1139-1154, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
16
|
Polymorphism in ion channel genes of Dirofilaria immitis: Relevant knowledge for future anthelmintic drug design. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:343-355. [PMID: 27682347 PMCID: PMC5196487 DOI: 10.1016/j.ijpddr.2016.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/22/2016] [Indexed: 11/24/2022]
Abstract
Dirofilaria immitis, a filarial parasite, causes cardiopulmonary dirofilariasis in dogs, cats and wild canids. The macrocyclic lactone (ML) class of drugs has been used to prevent heartworm infection. There is confirmed ML resistance in D. immitis and thus there is an urgent need to find new anthelmintics that could prevent and/or control the disease. Targeting ion channels of D. immitis for drug design has obvious advantages. These channels, present in the nematode nervous system, control movement, feeding, mating and respond to environmental cues which are necessary for survival of the parasite. Any new drug that targets these ion channels is likely to have a motility phenotype and should act to clear the worms from the host. Many of the successful anthelmintics in the past have targeted these ion channels and receptors. Knowledge about genetic variability of the ion channel and receptor genes should be useful information for drug design as receptor polymorphism may affect responses to a drug. Such information may also be useful for anticipation of possible resistance development. A total of 224 ion channel genes/subunits have been identified in the genome of D. immitis. Whole genome sequencing data of parasites from eight different geographical locations, four from ML-susceptible populations and the other four from ML-loss of efficacy (LOE) populations, were used for polymorphism analysis. We identified 1762 single nucleotide polymorphic (SNP) sites (1508 intronic and 126 exonic) in these 224 ion channel genes/subunits with an overall polymorphic rate of 0.18%. Of the SNPs found in the exon regions, 129 of them caused a non-synonymous type of polymorphism. Fourteen of the exonic SNPs caused a change in predicted secondary structure. A few of the SNPs identified may have an effect on gene expression, function of the protein and resistance selection processes. In the Dirofilaria immitis genome, 126 ion channel genes were identified. Within 126 ion channel genes, 1762 polymorphic loci were identified. Fourteen exonic SNPs caused a change in predicted secondary structure. SNPs may effect gene expression, protein function or resistance selection. D. immitis populations have low genetic variability among ion channel genes.
Collapse
|
17
|
Wolstenholme AJ, Maclean MJ, Coates R, McCoy CJ, Reaves BJ. How do the macrocyclic lactones kill filarial nematode larvae? INVERTEBRATE NEUROSCIENCE 2016; 16:7. [PMID: 27279086 DOI: 10.1007/s10158-016-0190-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/30/2016] [Indexed: 12/17/2022]
Abstract
The macrocyclic lactones (MLs) are one of the few classes of drug used in the control of the human filarial infections, onchocerciasis and lymphatic filariasis, and the only one used to prevent heartworm disease in dogs and cats. Despite their importance in preventing filarial diseases, the way in which the MLs work against these parasites is unclear. In vitro measurements of nematode motility have revealed a large discrepancy between the maximum plasma concentrations achieved after drug administration and the amounts required to paralyze worms. Recent evidence has shed new light on the likely functions of the ML target, glutamate-gated chloride channels, in filarial nematodes and supports the hypothesis that the rapid clearance of microfilariae that follows treatment involves the host immune system.
Collapse
Affiliation(s)
- Adrian J Wolstenholme
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA. .,Department of Infectious Diseases, College of Veterinary Medicine, 501 D. W. Brooks Drive, Athens, GA, 30602, USA.
| | - Mary J Maclean
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Ruby Coates
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.,Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Ciaran J McCoy
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.,School of Biological Sciences, Medical Biology Centre, Queen's University, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Barbara J Reaves
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
18
|
Harder A. The Biochemistry of Haemonchus contortus and Other Parasitic Nematodes. ADVANCES IN PARASITOLOGY 2016; 93:69-94. [PMID: 27238003 DOI: 10.1016/bs.apar.2016.02.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Different life cycle stages of Haemonchus contortus adapt to different ecosystems. This adaptation is accompanied by alterations in gene transcription and expression associated with the energy, amino acid, nitrogen, lipid and/or nucleic acid metabolism of the respective stages. For example, the aerobic metabolism of larvae depends on an efficient citric acid cycle, whereas the anaerobic metabolism of adults requires glycolysis, resulting in the production of volatile fatty acids, such as acetic acid and propionic acid. There are only few anthelmintics targeting nematode energy metabolism. In addition, H. contortus has reduced pathways for amino acid metabolism, polyamine metabolism and nitrogen excretion pathways. Moreover, nucleic acid metabolism comprising purine and pyrimidine salvage pathways as well as lipid metabolism are reduced. In addition, nematodes possess a particular composition of their cuticle. Energy production of adult worms is mainly linked to egg production and complex regulation of the neuromuscular system in both females and males. In this context, microtubules consisting of α- and β-tubulin heterodimers play a crucial role in the presynaptic vesicle transport. Due to the significant distinction of its quarternary structure in nematodes in comparison to other organisms, β-tubulin was identified as a major target for benzimidazoles used for anthelmintic treatment. Concerning the function of the neuromuscular system, acetylcholine, a ligand of the nicotinic acetylcholine receptor (nAChR), is the major excitatory neurotransmitter in H. contortus. In contrast, glutamate-gated chloride channels, calcium- and voltage-dependent potassium channels as well as γ-aminobutyric acid (GABA)A and its receptors act as inhibitory neurotransmitters and thus opponents to nAChR. For example, the calcium- and voltage-dependent potassium channel SLO-1 is an important target of emodepside, which is involved in the sensitive regulation of activatory and inhibitory receptors of the nervous system. Most of the modern anthelmintics target these different neuromuscular receptors. The mechanisms of resistance to anthelmintics, either specific or non-specific, are associated with changes in the molecular targets of the drugs, changes in metabolism of the drug (inactivation, removal or prevention of its activation) and/or increased efflux systems. The biochemical and molecular analyses of key developmental, metabolic and structural process of H. contortus still require substantial efforts. The nAChR, glutamate-gated chloride channel and calcium- and voltage-dependent potassium channel SLO-1 have long been known as being essential for nematode survival. Therefore, future research should be intensified to fully resolve the three-dimensional structures of these receptors, as has already been started for glutamate-gated chloride channel. With this knowledge, it should be possible to design new anthelmintics, which possess improved binding capacities to corresponding receptors.
Collapse
Affiliation(s)
- A Harder
- WE Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
19
|
Wever CM, Farrington D, Dent JA. The Validation of Nematode-Specific Acetylcholine-Gated Chloride Channels as Potential Anthelmintic Drug Targets. PLoS One 2015; 10:e0138804. [PMID: 26393923 PMCID: PMC4578888 DOI: 10.1371/journal.pone.0138804] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/03/2015] [Indexed: 01/06/2023] Open
Abstract
New compounds are needed to treat parasitic nematode infections in humans, livestock and plants. Small molecule anthelmintics are the primary means of nematode parasite control in animals; however, widespread resistance to the currently available drug classes means control will be impossible without the introduction of new compounds. Adverse environmental effects associated with nematocides used to control plant parasitic species are also motivating the search for safer, more effective compounds. Discovery of new anthelmintic drugs in particular has been a serious challenge due to the difficulty of obtaining and culturing target parasites for high-throughput screens and the lack of functional genomic techniques to validate potential drug targets in these pathogens. We present here a novel strategy for target validation that employs the free-living nematode Caenorhabditis elegans to demonstrate the value of new ligand-gated ion channels as targets for anthelmintic discovery. Many successful anthelmintics, including ivermectin, levamisole and monepantel, are agonists of pentameric ligand-gated ion channels, suggesting that the unexploited pentameric ion channels encoded in parasite genomes may be suitable drug targets. We validated five members of the nematode-specific family of acetylcholine-gated chloride channels as targets of agonists with anthelmintic properties by ectopically expressing an ivermectin-gated chloride channel, AVR-15, in tissues that endogenously express the acetylcholine-gated chloride channels and using the effects of ivermectin to predict the effects of an acetylcholine-gated chloride channel agonist. In principle, our strategy can be applied to validate any ion channel as a putative anti-parasitic drug target.
Collapse
Affiliation(s)
- Claudia M. Wever
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | - Joseph A. Dent
- Department of Biology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
20
|
A new methodology for evaluation of nematode viability. BIOMED RESEARCH INTERNATIONAL 2015; 2015:879263. [PMID: 25866820 PMCID: PMC4383492 DOI: 10.1155/2015/879263] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/19/2015] [Indexed: 01/19/2023]
Abstract
Nematodes infections are responsible for debilitating conditions and economic losses in domestic animals as well as livestock and are considered an important public health problem due to the high prevalence in humans. The nematode resistance for drugs has been reported for livestock, highlighting the importance for development of new anthelmintic compounds. The aim of the current study was to apply and compare fluorimetric techniques using Sytox and propidium iodide for evaluating the viability of C. elegans larvae after treatment with anthelmintic drugs. These fluorescent markers were efficient to stain larvae treated with ivermectin and albendazole sulfoxide. We observed that densitometric values were proportional to the concentration of dead larvae stained with both markers. Furthermore, data on motility test presented an inverse correlation with fluorimetric data when ivermectin was used. Our results showed that lower concentrations of drugs were effective to interfere in the processes of cellular transport while higher drugs concentrations were necessary in order to result in any damage to cell integrity. The methodology described in this work might be useful for studies that aim to evaluate the viability of nematodes, particularly for testing of new anthelminthic compounds using an easy, economic, reproducible, and no time-consuming technique.
Collapse
|
21
|
Molecular basis for convergent evolution of glutamate recognition by pentameric ligand-gated ion channels. Sci Rep 2015; 5:8558. [PMID: 25708000 PMCID: PMC4338433 DOI: 10.1038/srep08558] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/27/2015] [Indexed: 12/31/2022] Open
Abstract
Glutamate is an indispensable neurotransmitter, triggering postsynaptic signals upon recognition by postsynaptic receptors. We questioned the phylogenetic position and the molecular details of when and where glutamate recognition arose in the glutamate-gated chloride channels. Experiments revealed that glutamate recognition requires an arginine residue in the base of the binding site, which originated at least three distinct times according to phylogenetic analysis. Most remarkably, the arginine emerged on the principal face of the binding site in the Lophotrochozoan lineage, but 65 amino acids upstream, on the complementary face, in the Ecdysozoan lineage. This combined experimental and computational approach throws new light on the evolution of synaptic signalling.
Collapse
|
22
|
Li M, Wang XS, Xu FP, Liu S, Xu SW, Li S. The change in heat shock protein expression in avermectin induced neurotoxicity of the pigeon (Columba livia) both in vivo and in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:95-102. [PMID: 25202854 DOI: 10.1016/j.ecoenv.2014.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/10/2014] [Accepted: 08/11/2014] [Indexed: 06/03/2023]
Abstract
The expression of heat shock proteins (Hsps) commonly increases to provide neuroprotection when brain tissues are under stress conditions. Residues of avermectins (AVMs) have neurotoxic effects on a number of non-target organisms. The aim of this study was to investigate the effects of AVM exposure on the expression levels of Hsp 60, Hsp 70 and Hsp 90 for pigeon (Columba livia) neurons both in vivo and in vitro. The results showed that in general, the mRNA and protein levels of Hsps were increased in treated groups relative to control groups after AVM exposure for 30d, 60d and 90d in the cerebrum, cerebellum and optic lobe in vivo. However, AVM exposure had no significant effects on the transcription expression of Hsps for 90d in the optic lobe and decreased the translation expression of Hsps significantly for 90d in the optic lobe. In vitro, the LC50 of avermectin for King pigeon neurons is between 15μgL(-1) and 20μgL(-1). Following AVM (2.5-20μgL(-1)) exposure, the mRNA expression of the 3 Hsps was up-regulated to different degrees. Compared with the control groups, a significant decrease, a remarkable increase and a non-significant change was found in the protein expression of Hsp 60, Hsp 70 and Hsp 90 separately following AVM (2.5-20μgL(-1)) exposure. Based on these results, we conclude that AVM exposure can induce a protective stress response in pigeons by means of promoting the mRNA and protein expression of Hsps under in vivo and in vitro conditions, thus easing the neurotoxic effects of AVM to some extent.
Collapse
Affiliation(s)
- Ming Li
- College of Life Science, Daqing Normal College, Daqing 163712, PR China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xian-Song Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Feng-Ping Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shuang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shi-Wen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
23
|
Démares F, Drouard F, Massou I, Crattelet C, Lœuillet A, Bettiol C, Raymond V, Armengaud C. Differential involvement of glutamate-gated chloride channel splice variants in the olfactory memory processes of the honeybee Apis mellifera. Pharmacol Biochem Behav 2014; 124:137-44. [PMID: 24911646 DOI: 10.1016/j.pbb.2014.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 05/27/2014] [Accepted: 05/31/2014] [Indexed: 11/16/2022]
Abstract
Glutamate-gated chloride channels (GluCl) belong to the cys-loop ligand-gated ion channel superfamily and their expression had been described in several invertebrate nervous systems. In the honeybee, a unique gene amel_glucl encodes two alternatively spliced subunits, Amel_GluCl A and Amel_GluCl B. The expression and differential localization of those variants in the honeybee brain had been previously reported. Here we characterized the involvement of each variant in olfactory learning and memory processes, using specific small-interfering RNA (siRNA) targeting each variant. Firstly, the efficacy of the two siRNAs to decrease their targets' expression was tested, both at mRNA and protein levels. The two proteins showed a decrease of their respective expression 24h after injection. Secondly, each siRNA was injected into the brain to test whether or not it affected olfactory memory by using a classical paradigm of conditioning the proboscis extension reflex (PER). Amel_GluCl A was found to be involved only in retrieval of 1-nonanol, whereas Amel_GluCl B was involved in the PER response to 2-hexanol used as a conditioned stimulus or as new odorant. Here for the first time, a differential behavioral involvement of two highly similar GluCl subunits has been characterized in an invertebrate species.
Collapse
Affiliation(s)
- Fabien Démares
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France.
| | - Florian Drouard
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Isabelle Massou
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Cindy Crattelet
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Aurore Lœuillet
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Célia Bettiol
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Valérie Raymond
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM), UPRES-EA2647 USC INRA 1330 SFR 4207 QUASAV, LUNAM Université d'Angers, 2 blvd Lavoisier, F-49045 Angers Cedex 01, France
| | - Catherine Armengaud
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| |
Collapse
|
24
|
Measuring the effect of avermectins and milbemycins on somatic muscle contraction of adult Haemonchus contortus and on motility of Ostertagia circumcincta in vitro. Parasitology 2014; 141:948-56. [PMID: 24576444 DOI: 10.1017/s0031182013002291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mechanism of anthelmintic resistance against the widely used macrocyclic lactones (MLs) is still not fully understood. Pharyngeal, somatic body muscles and the ovijector have been proposed as putative sites of action as well as resistance. In the present study the effects of three avermectins and three milbemycins on adult parasitic nematodes were evaluated in vitro. The Muscle Transducer system was used to investigate the effects of MLs on muscle contraction in female Haemonchus contortus and effects on motility were measured in Ostertagia (Teladorsagia) circumcincta using the Micromotility Meter. Concentration-response curves for all substances in both systems shifted to the right in the resistant isolates. Resistance was present to ivermectin (IVM) and its components IVM B1a and IVM B1b, suggesting that both components are involved in the mode of action and resistance. No consistent patterns of potency and resistance of the substances were observed except that milbemycins generally showed lower resistance ratios (RRs) than IVM. IVM and IVM B1b were the most potent inhibitors of contraction and motility in both susceptible isolates and also showed the highest RR in both species. Low RRs for milbemycins recorded in vitro for highly resistant isolates in vivo suggest that other factors such as pharmacokinetics influence drug potency in vivo.
Collapse
|
25
|
Li BW, Rush AC, Weil GJ. High level expression of a glutamate-gated chloride channel gene in reproductive tissues of Brugia malayi may explain the sterilizing effect of ivermectin on filarial worms. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 4:71-6. [PMID: 25057456 PMCID: PMC4095040 DOI: 10.1016/j.ijpddr.2014.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/02/2014] [Accepted: 01/13/2014] [Indexed: 02/08/2023]
Abstract
Glutamate-gated chloride channels (GluCl) are targets for avermectin/milbemycin (A/M) anthelmintics such as ivermectin that cause paralysis of somatic and pharyngeal muscles in gastrointestinal nematodes. Ivermectin is useful for onchocerciasis control programs because of its activity against microfilariae that often cause ocular disease and severe dermatitis. However, mechanisms responsible for reduced microfilaria production by adult worms following ivermectin treatment are poorly understood. We synthesized subunit-specific RNA probes for the Brugia malayi GluCl gene avr-14 (BmAVR-14) to localize expression of this gene in adult filarial worms. Both subunits of BmAVR-14 exhibited very similar expression patterns. In female worms, strong expression signals were detected in the ovary, developing embryos and lateral hypodermal chords, with moderate expression in the uterus wall adjacent to stretched microfilariae. These genes were also highly expressed in adult male worms (in spermatogonia, in the wall of the vas deferens, and in the lateral chords, but not in mature spermatozoa). In addition, avr-14 was highly expressed in somatic muscles adjacent to the terminal end of the vas deferens which contains mature sperm. These results show that avr-14 is highly expressed in B. malayi developing embryos and reproductive tissues, and they provide evidence for the involvement of GluCl in gamete production and embryogenesis in filarial worms. This may explain the observed suppression of microfilaria (Mf) production by female worms following treatment with avermectin/milbemycin anthelmintics.
Collapse
Affiliation(s)
- Ben Wen Li
- Corresponding author. Address: Campus Box 8051, 660 South Euclid Avenue, St. Louis, MO 63110, USA. Tel.: +1 314 747 5198; fax: +1 314 454 5293.
| | | | | |
Collapse
|
26
|
Démares F, Raymond V, Armengaud C. Expression and localization of glutamate-gated chloride channel variants in honeybee brain (Apis mellifera). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:115-124. [PMID: 23085357 DOI: 10.1016/j.ibmb.2012.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/07/2012] [Accepted: 10/10/2012] [Indexed: 06/01/2023]
Abstract
Due to its specificity to invertebrate species, glutamate-gated chloride channels (GluCls) are the target sites of antiparasitic agents and insecticides, e.g. ivermectin and fipronil, respectively. In nematodes and insects, the GluCls diversity is broadened by alternative splicing. GluCl subunits have been characterized according to their sensitivity to drugs, and to their anatomical localization. In the honeybee, the GluCl gene can encode different alpha subunits due to alternative splicing of exon 3. We examined mRNA expression in brain parts and we confirmed the existence of two GluCl variants with RT-PCR, Amel_GluCl A and Amel_GluCl B. Surprisingly, a mixed isoform not yet described in insect was obtained, we called it Amel_GluCl C. We determined precise immunolocalization of peptide sequence corresponding to Amel_GluCl A and Amel_GluCl B in the honeybee brain. Amel_GluCl A is mainly located in neuropils, whereas Amel_GluCl B is mostly expressed in cell bodies. Both proteins can also be co-localized. According to their anatomical localization, different GluCl variants might be involved in olfactory and visual modalities and in learning and memory.
Collapse
Affiliation(s)
- Fabien Démares
- Université de Toulouse, UPS, Centre de Recherche sur la Cognition Animale, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France.
| | | | | |
Collapse
|
27
|
Abstract
Glutamate-gated chloride channels (GluCls) are found only in protostome invertebrate phyla but are closely related to mammalian glycine receptors. They have a number of roles in these animals, controlling locomotion and feeding and mediating sensory inputs into behavior. In nematodes and arthropods, they are targeted by the macrocyclic lactone family of anthelmintics and pesticides, making the GluCls of considerable medical and economic importance. Recently, the three-dimensional structure of a GluCl was solved, the first for any eukaryotic ligand-gated anion channel, revealing a macrocyclic lactone-binding site between the channel domains of adjacent subunits. This minireview will highlight some unique features of the GluCls and illustrate their contribution to our knowledge of the entire Cys loop ligand-gated ion channel superfamily.
Collapse
|
28
|
Siddiqui SZ, Brown DDR, Accardi MV, Forrester SG. Hco-LGC-38 is novel nematode cys-loop GABA receptor subunit. Mol Biochem Parasitol 2012; 185:137-44. [PMID: 22940478 DOI: 10.1016/j.molbiopara.2012.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/11/2012] [Accepted: 08/15/2012] [Indexed: 11/28/2022]
Abstract
We have identified and characterized a novel cys-loop GABA receptor subunit (Hco-LGC-38) from the parasitic nematode Haemonchus contortus. This subunit is present in parasitic and free-living nematodes and shares similarity to both the UNC-49 group of GABA receptor subunits from nematodes and the resistant to dieldrin (RDL) receptors of insects. Expression of the Hco-lgc-38 gene in Xenopus oocytes and subsequent electrophysiological analysis has revealed that the gene encodes a homomeric channel sensitive to GABA (EC(50) 19 μM) and the GABA analogue muscimol. The sensitivity of the Hco-LGC-38 channel to GABA is similar to reported values for the Drosophila RDL receptor whereas its lower sensitivity to muscimol is similar to nematode GABA receptors. Hco-LGC-38 is also highly sensitive to the channel blocker picrotoxin and moderately sensitive to fipronil and dieldrin. Homology modeling of Hco-LGC-38 and subsequent docking of GABA and muscimol into the binding site has uncovered several types of potential interactions with binding-site residues and overall appears to share similarity with models of other invertebrate GABA receptors.
Collapse
Affiliation(s)
- Salma Z Siddiqui
- Applied Bioscience Graduate Program, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | | | | | | |
Collapse
|
29
|
El Hassani AK, Schuster S, Dyck Y, Demares F, Leboulle G, Armengaud C. Identification, localization and function of glutamate-gated chloride channel receptors in the honeybee brain. Eur J Neurosci 2012; 36:2409-20. [PMID: 22632568 DOI: 10.1111/j.1460-9568.2012.08144.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Glutamate-gated chloride channels (GluCls) are members of the cys-loop ligand-gated ion channel superfamily whose presence has been reported in a variety of invertebrate tissues. In the honeybee, a single gene, amel_glucl, encoding a GluClα subunit, was found in the genome but both the pattern of expression of this gene in the bee brain and its functional role remained unknown. Here we localised the expression sites of the honeybee GluClα subunit at the mRNA and protein levels. To characterise the functional role of GluCls in the honeybee brain, we studied their implication in olfactory learning and memory by means of RNA interference (RNAi) against the GluClα subunit. We found that the GluClα subunit is expressed in the muscles, the antennae and the brain of honeybees. Expression of the GluClα protein was necessary for the retrieval of olfactory memories; more specifically, injection of dsRNA or siRNA resulted in a decrease in retention performances ∼24 h after injection. Knockdown of GluClα subunits impaired neither olfaction nor sucrose sensitivity, and did not affect the capacity to associate odor and sucrose. Our data provide the first evidence for the involvement of glutamate-gated chloride channels in olfactory memory in an invertebrate.
Collapse
|
30
|
Yamaguchi M, Sawa Y, Matsuda K, Ozoe F, Ozoe Y. Amino acid residues of both the extracellular and transmembrane domains influence binding of the antiparasitic agent milbemycin to Haemonchus contortus AVR-14B glutamate-gated chloride channels. Biochem Biophys Res Commun 2012; 419:562-6. [PMID: 22369940 DOI: 10.1016/j.bbrc.2012.02.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 02/08/2023]
Abstract
Glutamate-gated chloride (GluCl) channels are pentameric receptors for the inhibitory neurotransmitter glutamate in invertebrates and are a major target for macrolide anthelmintics. Three amino acids in GluCl channels are reported to render macrolide resistance in nematodes and insects. To examine whether these three amino acids are involved in binding of the antiparasitic agent milbemycin (MLM) to the GluCl channels of the nematode parasite Haemonchus contortus, the equivalent amino acids (L256, P316, and G329) of the Hco-AVR-14B subunit were substituted with various amino acids. cDNAs encoding the wild type and mutants of this subunit were transfected into COS-1 cells for transient expression and analysis of GluCl channels. The abilities of these mutant channels to bind [(3)H]MLM A(4) were remarkably decreased when compared with the wild-type channel. In patch clamp analysis, L256F and P316S mutant channels were 37- and 100-fold less sensitive to MLM A(4) when compared with the wild-type channel, respectively. These findings indicate that amino acid changes in the β10 strand, the M2-M3 linker, and the M3 region influence MLM A(4) binding to the channel. Homology modeling and ligand docking studies suggest the presence of two potential binding sites for MLM A(4).
Collapse
Affiliation(s)
- Mao Yamaguchi
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | | | | | | | | |
Collapse
|
31
|
Wolstenholme AJ. Ion channels and receptor as targets for the control of parasitic nematodes. Int J Parasitol Drugs Drug Resist 2011; 1:2-13. [PMID: 24533259 PMCID: PMC3898135 DOI: 10.1016/j.ijpddr.2011.09.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/14/2011] [Accepted: 09/21/2011] [Indexed: 01/19/2023]
Abstract
Many of the anthelmintic drugs in use today act on the nematode nervous system. Ion channel targets have some obvious advantages. They tend to act quickly, which means that they will clear many infections rapidly. They produce very obvious effects on the worms, typically paralyzing them, and these effects are suitable for use in rapid and high-throughput assays. Many of the ion channels and enzymes targeted can also be incorporated into such assays. The macrocyclic lactones bind to an allosteric site on glutamate-gated chloride channels, either directly activating the channel or enhancing the effect of the normal agonist, glutamate. Many old and new anthelmintics, including tribendimidine and the amino-acetonitrile derivatives, act as agonists at nicotinic acetylcholine receptors; derquantel is an antagonist at these receptors. Nematodes express many different types of nicotinic receptor and this diversity means that they are likely to remain important targets for the foreseeable future. Emodepside may have multiple effects, affecting both a potassium channel and a pre-synaptic G protein-coupled receptor; although few other current drugs act at such targets, this example indicates that they may be more important in the future. The nematode nervous system contains many other ion channels and receptors that have not so far been exploited in worm control but which should be explored in the development of effective new compounds.
Collapse
Affiliation(s)
- Adrian J. Wolstenholme
- Dept. of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
32
|
Strycharz JP, Berge NM, Alves AM, Clark JM. Ivermectin acts as a posteclosion nymphicide by reducing blood feeding of human head lice (Anoplura: Pediculidae) that hatched from treated eggs. JOURNAL OF MEDICAL ENTOMOLOGY 2011; 48:1174-1182. [PMID: 22238876 DOI: 10.1603/me11051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The 0.5% ivermectin topical cream formulation was not directly ovicidal to treated eggs of head lice, as hatchability was not decreased. Nevertheless, the percent of hatched lice from treated eggs that took a blood meal significantly decreased (80-95%) compared with lice that hatched from untreated eggs and all treated lice died within 48 h of hatching, including those that fed. Dilutions of ivermectin formulation of 0.15 and 0.2 microg/ml, which were topically applied to 0-8 d old eggs, were not lethal to lice at 24 h posteclosion. However, 9 and 16% less lice fed when hatched from these treated eggs, respectively. Total [3H] inulin ingested by untreated first instars significantly increased over a 48 h feeding interval but was significantly less in instars that hatched from eggs receiving the 0.15 (36% less) and 0.2 (55% less) microg/ml ivermectin treatments compared with placebo. The reduced feeding that occurred after the 0.15 and 0.2 microg/ml ivermectin treatments occurred in the absence of mortality and suggests a unique mode of action of ivermectin on feeding that is separate from the mode of action of ivermectin leading to mortality. Failure of hatched instars to take a blood meal after egg treatments with formulated ivermectin is likely responsible for its action as a posteclosion nymphicide.
Collapse
Affiliation(s)
- Joseph P Strycharz
- Department of Veterinary and Animal Science, Morrill 1, N311B, 639 N. Pleasant Street, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
33
|
Glendinning SK, Buckingham SD, Sattelle DB, Wonnacott S, Wolstenholme AJ. Glutamate-gated chloride channels of Haemonchus contortus restore drug sensitivity to ivermectin resistant Caenorhabditis elegans. PLoS One 2011; 6:e22390. [PMID: 21818319 PMCID: PMC3144221 DOI: 10.1371/journal.pone.0022390] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/20/2011] [Indexed: 11/24/2022] Open
Abstract
Anthelmintic resistance is a major problem in livestock farming, especially of small ruminants, but our understanding of it has been limited by the difficulty in carrying out functional genetic studies on parasitic nematodes. An important nematode infecting sheep and goats is Haemonchus contortus; in many parts of the world this species is resistant to almost all the currently available drugs, including ivermectin. It is extremely polymorphic and to date it has proved impossible to relate any sequence polymorphisms to its ivermectin resistance status. Expression of candidate drug-resistance genes in Caenorhabditis elegans could provide a convenient means to study the effects of polymorphisms found in resistant parasites, but may be complicated by differences between the gene families of target and model organisms. We tested this using the glutamate-gated chloride channel (GluCl) gene family, which forms the ivermectin drug target and are candidate resistance genes. We expressed GluCl subunits from C. elegans and H. contortus in a highly resistant triple mutant C. elegans strain (DA1316) under the control of the avr-14 promoter; expression of GFP behind this promoter recapitulated the pattern previously reported for avr-14. Expression of ivermectin-sensitive subunits from both species restored drug sensitivity to transgenic worms, though some quantitative differences were noted between lines. Expression of an ivermectin-insensitive subunit, Hco-GLC-2, had no effect on drug sensitivity. Expression of a previously uncharacterised parasite-specific subunit, Hco-GLC-6, caused the transgenic worms to become ivermectin sensitive, suggesting that this subunit also encodes a GluCl that responds to the drug. These results demonstrate that both orthologous and paralogous subunits from C. elegans and H. contortus are able to rescue the ivermectin sensitivity of mutant C. elegans, though some quantitative differences were observed between transgenic lines in some assays. C. elegans is a suitable system for studying parasitic nematode genes that may be involved in drug resistance.
Collapse
Affiliation(s)
- Susan K. Glendinning
- Departmenty of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | - David B. Sattelle
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Susan Wonnacott
- Departmenty of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Adrian J. Wolstenholme
- Departmenty of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
34
|
Localisation of serotonin and dopamine in Haemonchus contortus. Int J Parasitol 2011; 41:249-54. [DOI: 10.1016/j.ijpara.2010.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 11/20/2022]
|
35
|
Moreno Y, Nabhan JF, Solomon J, Mackenzie CD, Geary TG. Ivermectin disrupts the function of the excretory-secretory apparatus in microfilariae of Brugia malayi. Proc Natl Acad Sci U S A 2010; 107:20120-5. [PMID: 21041637 PMCID: PMC2993382 DOI: 10.1073/pnas.1011983107] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ivermectin (IVM) is a broad-spectrum anthelmintic used in filariasis control programs. By binding to nematode glutamate-gated chloride channels (GluCls), IVM disrupts neurotransmission processes regulated by GluCl activity. IVM treatment of filarial infections is characterized by an initial dramatic drop in the levels of circulating microfilariae, followed by long-term suppression of their production, but the drug has little direct effect on microfilariae in culture at pharmacologically relevant concentrations. We localized Brugia malayi GluCl expression solely in a muscle structure that surrounds the microfilarial excretory-secretory (ES) vesicle, which suggests that protein release from the ES vesicle is regulated by GluCl activity. Consistent with this hypothesis, exposure to IVM in vitro decreased the amount of protein released from microfilariae. To better understand the scope of IVM effects on protein release by the parasite, three different expression patterns were identified from immunolocalization assays on a representative group of five microfilarial ES products. Patterns of expression suggest that the ES apparatus is the main source of regulated ES product release from microfilariae, as it is the only compartment that appears to be under neuromuscular control. Our results show that IVM treatment of microfilariae results in a marked reduction of protein release from the ES apparatus. Under in vivo conditions, the rapid microfilarial clearance induced by IVM treatment is proposed to result from suppression of the ability of the parasite to secrete proteins that enable evasion of the host immune system.
Collapse
Affiliation(s)
- Yovany Moreno
- Institute of Parasitology, McGill University-Macdonald Campus, Sainte Anne de Bellevue, Quebec, Canada H9X 3V9
| | | | | | | | | |
Collapse
|
36
|
Association of ion-channel genotype and macrocyclic lactone sensitivity traits in Haemonchus contortus. Mol Biochem Parasitol 2010; 171:74-80. [DOI: 10.1016/j.molbiopara.2010.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 02/24/2010] [Accepted: 02/25/2010] [Indexed: 11/23/2022]
|
37
|
Siddiqui SZ, Brown DDR, Rao VTS, Forrester SG. An UNC-49 GABA receptor subunit from the parasitic nematode Haemonchus contortus is associated with enhanced GABA sensitivity in nematode heteromeric channels. J Neurochem 2010; 113:1113-22. [PMID: 20180830 DOI: 10.1111/j.1471-4159.2010.06651.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have identified two genes from the parasitic nematode Haemonchus contortus, Hco-unc-49B and Hco-unc-49C that encode two GABA-gated chloride channel subunits. Electrophysiological analysis revealed that this channel has properties similar to those of the UNC-49 channel from the free-living nematode Caenorhabditis elegans. For example, the Hco-UNC-49B subunit forms a functional homomeric channel that responds to GABA and is highly sensitive to picrotoxin. Hco-UNC-49C alone does not respond to GABA but can assemble with Hco-UNC-49B to form a heteromeric channel with a lower sensitivity to picrotoxin. However, we did find that the Hco-UNC-49B/C heteromeric channel is significantly more responsive to agonists compared to the Hco-UNC-49B homomeric channel, which is the opposite trend to what has been found previously for the C. elegans channel. To investigate the subunit requirements for high agonist sensitivity, we generated cross-assembled channels by co-expressing the H. contortus subunits with UNC-49 subunits from C. elegans (Cel-UNC-49). Co-expressing Cel-UNC-49B with Hco-UNC-49C produced a heteromeric channel with a reduced sensitivity to GABA compared to that of the Cel-UNC-49B homomeric channel. In contrast, co-expressing Hco-UNC-49B with Cel-UNC-49C produced a heteromeric channel that, like the Hco-UNC-49B/C heteromeric channel, exhibits an increased sensitivity to GABA. These results suggest that the Hco-UNC-49B subunit is the key determinant for the high agonist sensitivity of heteromeric channels.
Collapse
Affiliation(s)
- Salma Z Siddiqui
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | | | | | | |
Collapse
|
38
|
Sun YJ, Long DX, Li W, Hou WY, Wu YJ, Shen JZ. Effects of avermectins on neurite outgrowth in differentiating mouse neuroblastoma N2a cells. Toxicol Lett 2010; 192:206-11. [DOI: 10.1016/j.toxlet.2009.10.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/29/2009] [Accepted: 10/20/2009] [Indexed: 10/20/2022]
|
39
|
McCavera S, Rogers AT, Yates DM, Woods DJ, Wolstenholme AJ. An ivermectin-sensitive glutamate-gated chloride channel from the parasitic nematode Haemonchus contortus. Mol Pharmacol 2009; 75:1347-55. [PMID: 19336526 DOI: 10.1124/mol.108.053363] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nematode glutamate-gated chloride channels are targets of the macrocyclic lactones, the most important group of anthelmintics available. In Xenopus laevis oocytes, channels formed by the GluClalpha3B subunit from the parasite Haemonchus contortus were more sensitive to l-glutamate (EC(50) = 27.6 +/- 2.7 microM) than those formed by the homologous subunit from Caenorhabditis elegans (EC(50) = 2.2 +/- 0.12 mM). Ibotenate was a partial agonist (EC(50) = 87.7 +/- 3.5 microM). The H. contortus channels responded to low concentrations of ivermectin (estimated EC(50) = approximately 0.1 +/- 1.0 nM), opening slowly and irreversibly in a highly cooperative manner: the rate of channel opening was concentration-dependent. Responses to glutamate and ivermectin were inhibited by picrotoxinin and fipronil. Mutating an N-terminal domain amino acid, leucine 256, to phenylalanine increased the EC(50) for l-glutamate to 92.2 +/- 3.5 microM, and reduced the Hill number from 1.89 +/- 0.35 to 1.09 +/- 0.16. It increased the K(d) for radiolabeled ivermectin binding from 0.35 +/- 0.1 to 2.26 +/- 0.78 nM. Two other mutations (E114G and V235A) had no effect on l-glutamate activation or ivermectin binding: one (T300S) produced no detectable channel activity, but ivermectin binding was similar to wild-type. The substitution of any aromatic amino acid for Leu256 had similar effects in the radioligand binding assay. Molecular modeling studies suggested that the GluCl subunits have a fold similar to that of other Cys-loop ligand-gated ion channels and that amino acid 256 was unlikely to play a direct role in ligand binding but may be involved in mediating the allosteric properties of the receptor.
Collapse
|
40
|
El Hassani AK, Giurfa M, Gauthier M, Armengaud C. Inhibitory neurotransmission and olfactory memory in honeybees. Neurobiol Learn Mem 2008; 90:589-95. [PMID: 18755283 DOI: 10.1016/j.nlm.2008.07.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 06/20/2008] [Accepted: 07/22/2008] [Indexed: 11/25/2022]
Abstract
In insects, gamma-aminobutyric acid (GABA) and glutamate mediate fast inhibitory neurotransmission through ligand-gated chloride channel receptors. Both GABA and glutamate have been identified in the olfactory circuit of the honeybee. Here we investigated the role of inhibitory transmission mediated by GABA and glutamate-gated chloride channels (GluCls) in olfactory learning and memory in honeybees. We combined olfactory conditioning with injection of ivermectin, an agonist of GluCl receptors. We also injected a blocker of glutamate transporters (L-trans-PDC) or a GABA analog (TACA). We measured acquisition and retention 1, 24 and 48 h after the last acquisition trial. A low dose of ivermectin (0.01 ng/bee) impaired long-term olfactory memory (48 h) while a higher dose (0.05 ng/bee) had no effect. Double injections of ivermectin and L-trans-PDC or TACA had different effects on memory retention, depending on the doses and agents combined. When the low dose of ivermectin was injected after Ringer, long-term memory was again impaired (48 h). Such an effect was rescued by injection of both TACA and L-trans-PDC. A combination of the higher dose of ivermectin and TACA decreased retention at 48 h. We interpret these results as reflecting the involvement of both GluCl and GABA receptors in the impairment of olfactory long-term memory induced by ivermectin. These results illustrate the diversity of inhibitory transmission and its implication in long-term olfactory memory in honeybees.
Collapse
Affiliation(s)
- Abdessalam Kacimi El Hassani
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, CNRS UMR 5169, 118 Route de Narbonne, 31062 TOULOUSE Cedex 4, France
| | | | | | | |
Collapse
|
41
|
McCavera S, Walsh TK, Wolstenholme AJ. Nematode ligand-gated chloride channels: an appraisal of their involvement in macrocyclic lactone resistance and prospects for developing molecular markers. Parasitology 2007; 134:1111-21. [PMID: 17608971 DOI: 10.1017/s0031182007000042] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYLigand-gated chloride channels, including the glutamate-(GluCl) and GABA-gated channels, are the targets of the macrocyclic lactone (ML) family of anthelmintics. Changes in the sequence and expression of these channels can cause resistance to the ML in laboratory models, such as Caenorhabditis elegans and Drosophila melanogaster. Mutations in multiple GluCl subunit genes are required for high-level ML resistance in C. elegans, and this can be influenced by additional mutations in gap junction and amphid genes. Parasitic nematodes have a different complement of channel subunit genes from C. elegans, but a few genes, including avr-14, are widely present. A polymorphism in an avr-14 orthologue, which makes the subunit less sensitive to ivermectin and glutamate, has been identified in Cooperia oncophora, and polymorphisms in several subunits have been reported from resistant isolates of Haemonchus contortus. This has led to suggestions that ML resistance may be polygenic. Possible reasons for this, and its consequences for the development of molecular tests for resistance, are explored.
Collapse
Affiliation(s)
- S McCavera
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | | |
Collapse
|
42
|
Janssen D, Derst C, Buckinx R, Van den Eynden J, Rigo JM, Van Kerkhove E. Dorsal Unpaired Median Neurons ofLocusta migratoriaExpress Ivermectin- and Fipronil-Sensitive Glutamate-Gated Chloride Channels. J Neurophysiol 2007; 97:2642-50. [PMID: 17267752 DOI: 10.1152/jn.01234.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Together with type A GABA and strychnine-sensitive glycine receptors, glutamate-gated chloride channels (GluCl) are members of the Cys-loop family of ionotropic receptors, which mediate fast inhibitory neurotransmission. To date, GluCls are found in invertebrates only and therefore represent potential specific targets for insecticides, such as ivermectin and fipronil. In this study, we identified the functional expression of GluCls in dorsal unpaired median (DUM) neurons of the metathoracic ganglion of Locusta migratoria using electrophysiological and molecular biological techniques. In whole cell patch-clamped DUM neurons, glutamate-induced changes in both their membrane potentials (current-clamp) and currents (voltage-clamp) were dependent on the chloride equilibrium potential. On continuous application of glutamate, the glutamate-elicited current response became rapidly and completely desensitized. Application of glutamate in the presence of 10 μM fipronil or 100 μM picrotoxin reversibly decreased GluCl-mediated currents by 87 and 39%, respectively. Furthermore, 1 μM ivermectin induced a persistent chloride current, suggesting the expression of ivermectin-sensitive GluCl α subunits. A degenerate PCR/RACE strategy was used to clone the full-length L. migratoria LmGlClα subunit. Finally, RT-PCR experiments demonstrated the presence of LmGluClα transcripts in locust DUM neurons. Our results provide the first direct evidence of a functional ivermectin-sensitive GluCl channel on the cell surface of DUM neurons of L. migratoria.
Collapse
Affiliation(s)
- Daniel Janssen
- Centre of Environmental Sciences, Department of Physiology, Hasselt University and Transnationale Universiteit Limburg, Agoralaan, Diepenbeek, 3590, Belgium.
| | | | | | | | | | | |
Collapse
|
43
|
Wolstenholme AJ, Rogers AT. Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics. Parasitology 2006; 131 Suppl:S85-95. [PMID: 16569295 DOI: 10.1017/s0031182005008218] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The macrocyclic lactones are the biggest selling and arguably most effective anthelmintics currently available. They are good substrates for the P-glycoproteins, which might explain their selective toxicity for parasites over their vertebrate hosts. Changes in the expression of these pumps have been implicated in resistance to the macrocyclic lactones, but it is clear that they exert their anthelmintic effects by binding to glutamate-gated chloride channels expressed on nematode neurones and pharyngeal muscle cells. This effect is quite distinct from the channel opening induced by glutamate, the endogenous transmitter acting at these receptors, which produces rapidly opening and desensitising channels. Ivermectin-activated channels open very slowly but essentially irreversibly, leading to a very long-lasting hyperpolarisation or depolarisation of the neurone or muscle cell and therefore blocking further function. Molecular and genetic studies have shown that there are multiple GluCl isoforms in both free-living and parasitic nematodes: the exact genetic make-up and functions of the GluCl may vary between species. The known expression patterns of the GluCl explain most of the observed biological effects of treatment with the macrocyclic lactones, though the reason for the long-lasting inhibition of larval production in filarial species is still poorly understood.
Collapse
Affiliation(s)
- A J Wolstenholme
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | | |
Collapse
|
44
|
Sangster NC, Song J, Demeler J. Resistance as a tool for discovering and understanding targets in parasite neuromusculature. Parasitology 2006; 131 Suppl:S179-90. [PMID: 16569289 DOI: 10.1017/s0031182005008656] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The problem of anthelmintic resistance prevents efficient control of parasites of livestock and may soon compromise human parasite control. Research into the mechanisms of resistance and the quest for diagnostic tools to aid control has required research that focuses on field resistance. On the other hand, resistant worms, including those kept in the laboratory, provide useful tools for studying drug action, especially at neuromuscular targets in worms. While the needs and directions of these research aims overlap, this review concentrates on research on drug targets. In this context, resistance is a useful tool for site of action confirmation. For example, correlations between molecular expression studies and resistance assays conducted on whole worms can strengthen claims for sites of anthelmintic action. Model systems such as Caenorhabditis elegans have been very useful in understanding targets but give a limited picture as it is now clear that resistance mechanisms in this worm are different from those in parasites. Accordingly, research on parasites themselves must also be performed. Resistant isolates of the sheep nematode parasite Haemonchus contortus are the most widely used for this purpose as in vivo, in vitro, physiological and molecular studies can be performed with this species. Neuromuscular target sites for the anthelmintics levamisole and ivermectin are the best studied and have benefited most from the use of resistant worm isolates. Resistance to praziquantel and the newer chemical groups should provide new tools to explore targets in the future.
Collapse
Affiliation(s)
- N C Sangster
- Faculty of Veterinary Science, University of Sydney, 2006, Australia.
| | | | | |
Collapse
|
45
|
Cook A, Aptel N, Portillo V, Siney E, Sihota R, Holden-Dye L, Wolstenholme A. Caenorhabditis elegans ivermectin receptors regulate locomotor behaviour and are functional orthologues of Haemonchus contortus receptors. Mol Biochem Parasitol 2006; 147:118-25. [PMID: 16527366 DOI: 10.1016/j.molbiopara.2006.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 01/30/2006] [Accepted: 02/01/2006] [Indexed: 11/30/2022]
Abstract
The target site for the anthelmintic action of ivermectin is a family of nematode glutamate-gated chloride channel alpha subunits (GluClalpha) that bind the drug with high affinity and mediate its potent paralytic action. Whilst the action of ivermectin on the pharyngeal muscle of nematodes is relatively well understood, its effect on locomotor activity is less clear. Here we use RNAi and gene knockouts to show that four GluClalpha subunits are involved in regulating the pattern of locomotor activity in Caenorhabditis elegans. A Haemonchus contortus orthologue of these subunits, HcGluClalpha3, has been shown to be expressed in the motor nervous system and here we have shown that it is a functional, as well as a structural, orthologue by virtue of the observation that it can restore normal motor movement in the C. elegans GluClalpha mutant, avr-14(ad1032), when expressed under the control of the avr-14 promoter. This supports the contention that ivermectin exerts its paralytic action on parasitic nematodes through activation of GluCl channels in the motor nervous system. Furthermore, functional complementation in C. elegans provides a method to further the understanding of this important class of anthelmintic targets.
Collapse
Affiliation(s)
- Alan Cook
- Neurosciences Research Group, School of Biological Sciences, Bassett Crescent East, University of Southampton, Southampton SO16 7PX, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
Liu HP, Lin SC, Lin CY, Yeh SR, Chiang AS. Glutamate-gated chloride channels inhibit juvenile hormone biosynthesis in the cockroach, Diploptera punctata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:1260-8. [PMID: 16203207 DOI: 10.1016/j.ibmb.2005.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 06/27/2005] [Accepted: 06/30/2005] [Indexed: 05/04/2023]
Abstract
Juvenile hormone (JH) synthesized and released from endocrine gland corpus allatum (CA) plays an important role in insect metamorphosis, vitellogenesis and reproduction. Glutamate is a major neurotransmitter in the nervous system and its activated receptors possess excitatory and inhibitory forms in muscle fibers of invertebrates. Previously, we have shown that the rise of intracellular calcium through excitatory glutamate receptors, N-methyl-d-aspartate (NMDA) and non-NMDA-type channels stimulates JH synthesis in the cockroach, Diploptera punctata. Here, we demonstrate the occurrence of inhibitory chloride permeable glutamate (GluCl) receptors on CA cell membranes. Application of the GluCl channel activators, ibotenic acid (Ibo) and ivermectin, but not gamma-aminobutyric acid caused a decline in JH synthesis in glands of either high or low activity during the gonadotrophic cycle. Also, while recording the membrane potential of the isolated whole CA glands intracellularly, Ibo induced a hyperpolarizated response. Both changes in the membrane potential and inhibition of JH synthesis could be abolished by the application of the chloride channel blocker picrotoxin. Finally, we found both excitatory and inhibitory glutamate receptors cause antagonistic effects on rates of JH synthesis. These results indicate a novel function of GluCl channels in the inhibition of JH synthesis that could be a potential pathway for developing a new generation of insecticides.
Collapse
Affiliation(s)
- Hsin-Ping Liu
- Institute of Biotechnology, National Tsing-Hua University, Hsinchu 300, Taiwan, ROC
| | | | | | | | | |
Collapse
|
47
|
Prichard RK. Is anthelmintic resistance a concern for heartworm control? What can we learn from the human filariasis control programs? Vet Parasitol 2005; 133:243-53. [PMID: 16198824 DOI: 10.1016/j.vetpar.2005.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Heartworm prophylaxis is currently largely dependent on the ability of avermectins and milbemycins to arrest the development of third and fourth stages of Dirofilaria immitis for prolonged periods, without producing adulticidal effects. Major control programs, dependent on the activity of ivermectin, are being implemented for human onchocerciasis and lymphatic filariasis. The avermectins and milbemycins act on glutamate-gated and gamma-aminobutyrate-gated chloride channel subunit proteins in nematodes. Ivermectin resistance has been widely described in trichostrongylid nematodes of ruminants. There is evidence that when ivermectin resistance occurs in nematodes, there may be selection on some, but not all of the genes that code for ligand-gated chloride channel subunit proteins as well as on some ABC-transporter genes, whose products may be involved in regulating macrocyclic lactone drug concentrations at receptors, and on some structural protein genes of amphidial neurones. Although ivermectin resistance has not been reported in filarial nematodes, there have recently been reports of suboptimal responses to ivermectin in Onchocerca volvulus. Evidence has been found of ivermectin selection on at least ABC-transporter genes and some neuronal structural protein genes in O. volvulus. To date, there is no evidence of avermectin/milbemycin resistance in D. immitis, also a filarial nematode. Chemotherapy against trichostrongylids of animals, human filariae, and D. immitis, relies on avermectins or milbemycins. However, control involves targeting different stages or processes in the nematode life cycles, different control strategies, different proportions of the nematode population in refugia, and different drug dosage rates. Consideration of the proportion of the D. immitis population normally in refugia, the life cycle stage targeted, and the anthelmintic dosages used suggest that it is unlikely that significant avermectin/milbemycin resistance will be selected in D. immitis with current treatment strategies.
Collapse
Affiliation(s)
- R K Prichard
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Que. H9X 3V9, Canada.
| |
Collapse
|
48
|
Njue AI, Prichard RK. Genetic variability of glutamate-gated chloride channel genes in ivermectin-susceptible and -resistant strains ofCooperia oncophora. Parasitology 2004; 129:741-51. [PMID: 15648697 DOI: 10.1017/s0031182004006183] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The glutamate-gated chloride channels (GluCls) are members of the ligand-gated ion channel superfamily that are thought to be involved in the mode of action of ivermectin and mechanism of resistance. Using reverse-transcriptase PCR techniques, 2 full-length GluCl cDNAs, encoding GluClα3 and GluClβ subunits, were cloned fromCooperia oncophora, a nematode parasite of cattle. The two sequences show a high degree of identity to similar subunits from other nematodes. TheC. oncophoraGluClα3 subunit is most closely related to theHaemonchus contortusGluClα3B subunit, whileC. oncophoraGluClβ subunit shares high sequence identity with theH. contortusGluClβ subunit. Using single-strand conformation polymorphism, the genetic variability of these two genes was analysed in an ivermectin-susceptible isolate and an ivermectin-resistant field isolate ofC. oncophora. Statistical analysis suggested an association between theC. oncophora GluClα3gene and ivermectin resistance. No such association was seen with theGluClβ gene.
Collapse
Affiliation(s)
- A I Njue
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | | |
Collapse
|
49
|
Wolstenholme AJ, Fairweather I, Prichard R, von Samson-Himmelstjerna G, Sangster NC. Drug resistance in veterinary helminths. Trends Parasitol 2004; 20:469-76. [PMID: 15363440 DOI: 10.1016/j.pt.2004.07.010] [Citation(s) in RCA: 559] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
At present, there is no effective alternative to chemical control of parasitic helminths where livestock are grazed intensively. Resistance to anthelmintics has become a major problem in veterinary medicine, and threatens both agricultural income and animal welfare. The molecular and biochemical basis of this resistance is not well understood. The lack of reliable biological and molecular tests means that we are not able to follow the emergence and spread of resistance alleles and clinical resistance as well as we need. This review summarizes some of the recent findings on resistance mechanisms, puts forward some recommendations for limiting its impact and suggests some priorities for research in this area.
Collapse
|
50
|
Yates DM, Wolstenholme AJ. An ivermectin-sensitive glutamate-gated chloride channel subunit from Dirofilaria immitis. Int J Parasitol 2004; 34:1075-81. [PMID: 15313134 DOI: 10.1016/j.ijpara.2004.04.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 04/20/2004] [Accepted: 04/22/2004] [Indexed: 11/27/2022]
Abstract
Dirofilaria immitis is a filarial nematode that infects dogs and causes cardiopulmonary disease. The most effective way of controlling the infection is by chemoprophylaxis, using members of the avermectin/milbemycin (A/M) class of anthelmintics, which includes ivermectin; these drugs act at invertebrate glutamate-gated chloride channels (GluCl). We have cloned two cDNAs encoding D. immitis GluCl subunits and demonstrated that at least one may be an important molecular target for the A/Ms in vivo. The subunits are orthologues of the alternatively spliced GluClalpha3A and alpha3B subunits (encoded by the avr-14 gene) previously identified in Caenorhabditis elegans and in Haemonchus contortus. Although the alternative splicing of avr-14 is conserved across the species, the processing of the mature GluClalpha3A mRNA differs in D. immitis compared to C. elegans and H. contortus. Two-electrode voltage clamp recordings were made from Xenopus oocytes injected with subunit-specific cRNAs. The DiGluClalpha3B subunit formed channels that were gated by L-glutamate (1-100 mM) and ivermectin (1 microM). Oocytes injected with DiGluClalpha3A cRNA failed to respond to L-glutamate. The qualitative responses obtained were consistent with the pharmacology observed for the GluClalpha3 subunits from C. elegans and H. contortus.
Collapse
Affiliation(s)
- Darran M Yates
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | |
Collapse
|