1
|
An opinion on the debatable function of brain resident immune protein, T-cell receptor beta subunit in the central nervous system. IBRO Neurosci Rep 2022; 13:235-242. [PMID: 36590097 PMCID: PMC9795316 DOI: 10.1016/j.ibneur.2022.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/02/2022] [Indexed: 01/04/2023] Open
Abstract
In recent years scientific research has established that the nervous and immune systems have shared molecular signaling components. Proteins native to immune cells, which are also found in the brain, have neuronal functions in the nervous system where they affect synaptic plasticity, axonal regeneration, neurogenesis, and neurotransmission. Certain native immune molecules like major histocompatibility complex I (MHC-I), paired immunoglobulin receptor B (PirB), toll-like receptor (TLR), cluster of differentiation-3 zeta (CD3ζ), CD4 co-receptor, and T-cell receptor beta (TCR-β) expression in neurons have been extensively documented. In this review, we provide our opinion and discussed the possible roles of T-cell receptor beta subunits in modulating the function of neurons in the central nervous system. Based on the previous findings of Syken and Shatz., 2003; Nishiyori et al., 2004; Rodriguez et., 1993 and Komal et., 2014; we discuss whether restrictive expression of TCR-β subunits in selected brain regions could be involved in the pathology of neurological disorders and whether their aberrant enhancement in expression may be considered as a suitable biomarker for aging or neurodegenerative diseases like Huntington's disease (HD).
Collapse
|
2
|
Shani N, Shinder V, Zipori D. Mitochondria as a sequestration site for incomplete TCRβ peptides: the TCRβ transmembrane domain is a sufficient mitochondrial targeting signal. Mol Immunol 2011; 49:239-52. [PMID: 21943707 DOI: 10.1016/j.molimm.2011.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 08/23/2011] [Accepted: 08/25/2011] [Indexed: 11/26/2022]
Abstract
The existence of incomplete T cell receptor (TCR) mRNA forms, including germline transcripts and products of unfruitful TCR rearrangements, has long been known. However, it is unclear whether these molecules are functional. We have previously shown that T cells also contain truncated TCRβ peptides that lack the N-terminal part and contain C-terminus sequences. These partial forms of TCRβ, target the mitochondrion and induce apoptosis, exhibiting a novel mode of TCR mediated cell death. Here we aimed at analyzing the minimal TCR sequences that direct the peptide to the mitochondrion. It is shown that truncated TCRβ, targets mitochondria and induces mitochondrial perinuclear clustering, in both monkey COS-7 and human 293 cells. These phenomena are mediated by the C-terminus of the molecule. Whereas the positively charged amino acids flanking the transmembrane domain (TMD) of TCRβ are beneficial for this process, they are not essential. Indeed, the isolated TMD of TCRβ serves as a sufficient mitochondrial targeting sequence. These results indicate that any given partial form of TCRβ, that contains the TMD, is bound to be sequestered by the mitochondrion. This may assure that incomplete TCR forms would not interfere with correct TCR complex formation.
Collapse
Affiliation(s)
- Nir Shani
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
3
|
Rouer E. [Neuronal isoforms of Src, Fyn and Lck tyrosine kinases: A specific role for p56lckN in neuron protection]. C R Biol 2010; 333:1-10. [PMID: 20176329 DOI: 10.1016/j.crvi.2009.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 10/14/2009] [Accepted: 10/15/2009] [Indexed: 12/06/2022]
Abstract
The two main tyrosine kinases (TK) in the brain are p60Src and p59Fyn, expressed as specific isoforms (p60SrcNI, p60SrcNI+NII and p59fynB). They play a pivotal role in some major processes such as neuronal growth and myelinisation. Another member of this TK family was then reported in brain, the p56lck. Its name Lck (lymphocyte cell kinase) indicates its cellular specificity observed initially, so its presence in the brain was intriguing. But no further studies were performed to understand its role in brain until recent clinical studies on Alzheimer patients' brains. One study reveals a decreased p56lck level in the brains of these patients while another study shows an association between one peculiar SNP (single nucleotide polymorphism) of the lck gene and some cases of the disease. These new data prompt us to reinvestigate the original biochemical data and to confront them with the present knowledge. This analysis suggests some hypothesis concerning both the Lck protein expressed in the brain (rather an isoform than the lymphocyte protein itself) and its role (to maintain the neuronal survival presumably by protecting them from inflammation, the main pathway that leads to neuron degeneracy).
Collapse
Affiliation(s)
- Evelyne Rouer
- Inserm U-839, institut du Fer-à-Moulin, 37, rue du Fer-à-Moulin, 75005 Paris, France.
| |
Collapse
|
4
|
Abstract
Many proteins first identified in the immune system are also expressed in the developing and adult nervous system. Unexpectedly, recent studies reveal that a number of these proteins, in addition to their immunological roles, are essential for the establishment, function, and modification of synaptic connections. These include proinflammatory cytokines (e.g., TNFalpha, IL-6), proteins of the innate immune system (e.g., complement C1q and C3, pentraxins, Dscam), members of the major histocompatibility complex class I (MHCI) family, and MHCI-binding immunoreceptors and their components (e.g., PIRB, Ly49, DAP12, CD3zeta). Understanding how these proteins function in neurons will clarify the molecular basis of fundamental events in brain development and plasticity and may add a new dimension to our understanding of neural-immune interactions in health and disease.
Collapse
|
5
|
Habibi L, Ebtekar M, Jameie SB. Immune and nervous systems share molecular and functional similarities: memory storage mechanism. Scand J Immunol 2009; 69:291-301. [PMID: 19284492 DOI: 10.1111/j.1365-3083.2008.02215.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the most complex and important features of both the nervous and immune systems is their data storage and retrieval capability. Both systems encounter a common and complex challenge on how to overcome the cumbersome task of data management. Because each neuron makes many synapses with other neurons, they are capable of receiving data from thousands of synaptic connections. The immune system B and T cells have to deal with a similar level of complexity because of their unlimited task of recognizing foreign antigens. As for the complexity of memory storage, it has been proposed that both systems may share a common set of molecular mechanisms. Here, we review the molecular bases of memory storage in neurons and immune cells based on recent studies and findings. The expression of certain molecules and mechanisms shared between the two systems, including cytokine networks, and cell surface receptors, are reviewed. Intracellular signaling similarities and certain mechanisms such as diversity, memory storage, and their related molecular properties are briefly discussed. Moreover, two similar genetic mechanisms used by both systems is discussed, putting forward the idea that DNA recombination may be an underlying mechanism involved in CNS memory storage.
Collapse
Affiliation(s)
- L Habibi
- Medical Human Genetics Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
6
|
Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 2008; 135:749-62. [PMID: 19013282 DOI: 10.1016/j.cell.2008.10.029] [Citation(s) in RCA: 692] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/18/2008] [Accepted: 10/28/2008] [Indexed: 12/19/2022]
Abstract
Comparative analysis can provide important insights into complex biological systems. As demonstrated in the accompanying paper, translating ribosome affinity purification (TRAP) permits comprehensive studies of translated mRNAs in genetically defined cell populations after physiological perturbations. To establish the generality of this approach, we present translational profiles for 24 CNS cell populations and identify known cell-specific and enriched transcripts for each population. We report thousands of cell-specific mRNAs that were not detected in whole-tissue microarray studies and provide examples that demonstrate the benefits deriving from comparative analysis. To provide a foundation for further biological and in silico studies, we provide a resource of 16 transgenic mouse lines, their corresponding anatomic characterization, and translational profiles for cell types from a variety of central nervous system structures. This resource will enable a wide spectrum of molecular and mechanistic studies of both well-known and previously uncharacterized neural cell populations.
Collapse
|
7
|
Abstract
The default pathway of cell-surface T-cell receptor (TCR) complex formation, and the subsequent transport to the membrane, is thought to entail endoplasmic reticulum (ER) localization followed by proteasome degradation of the unassembled chains. We show herein an alternative pathway: short, incomplete peptide versions of TCRbeta naturally occur in the thymus. Such peptides, which have minimally lost the leader sequence or have been massively truncated, leaving only the very C terminus intact, are sorted preferentially to the mitochondrion. As a consequence of the mitochondrial localization, apoptotic cell death is induced. Structure function analysis showed that both the specific localization and induction of apoptosis depend on the transmembrane domain (TMD) and associated residues at the COOH-terminus of TCR. Truncated forms of TCR, such as the short peptides that we detected in the thymus, may be products of protein degradation within thymocytes. Alternatively, they may occur through the translation of truncated mRNAs resulting from unfruitful rearrangement or from germline transcription. It is proposed that mitochondria serve as a subcellular sequestration site for incomplete TCR molecules.
Collapse
|
8
|
Baudouin SJ, Angibaud J, Loussouarn G, Bonnamain V, Matsuura A, Kinebuchi M, Naveilhan P, Boudin H. The signaling adaptor protein CD3zeta is a negative regulator of dendrite development in young neurons. Mol Biol Cell 2008; 19:2444-56. [PMID: 18367546 DOI: 10.1091/mbc.e07-09-0947] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A novel idea is emergxsing that a large molecular repertoire is common to the nervous and immune systems, which might reflect the existence of novel neuronal functions for immune molecules in the brain. Here, we show that the transmembrane adaptor signaling protein CD3zeta, first described in the immune system, has a previously uncharacterized role in regulating neuronal development. Biochemical and immunohistochemical analyses of the rat brain and cultured neurons showed that CD3zeta is mainly expressed in neurons. Distribution of CD3zeta in developing cultured hippocampal neurons, as determined by immunofluorescence, indicates that CD3zeta is preferentially associated with the somatodendritic compartment as soon as the dendrites initiate their differentiation. At this stage, CD3zeta was selectively concentrated at dendritic filopodia and growth cones, actin-rich structures involved in neurite growth and patterning. siRNA-mediated knockdown of CD3zeta in cultured neurons or overexpression of a loss-of-function CD3zeta mutant lacking the tyrosine phosphorylation sites in the immunoreceptor tyrosine-based activation motifs (ITAMs) increased dendritic arborization. Conversely, activation of endogenous CD3zeta by a CD3zeta antibody reduced the size of the dendritic arbor. Altogether, our findings reveal a novel role for CD3zeta in the nervous system, suggesting its contribution to dendrite development through ITAM-based mechanisms.
Collapse
|
9
|
Cullheim S, Thams S. The microglial networks of the brain and their role in neuronal network plasticity after lesion. ACTA ACUST UNITED AC 2007; 55:89-96. [PMID: 17509690 DOI: 10.1016/j.brainresrev.2007.03.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 03/13/2007] [Accepted: 03/13/2007] [Indexed: 10/23/2022]
Abstract
Microglia are the resident inflammatory cells of the central nervous system (CNS) extending a network of processes in the CNS parenchyma. Following axon lesion to neurons, most extensively studied in motoneurons, there is a typical retrograde response at the cell body level, including the removal or 'stripping' of synapses from the perikaryon and dendrites of affected cells. Microglia have been attributed a main and active role in this process, although also an involvement of activated astrocytes has been suggested. The signaling pathways for this 'synaptic stripping' have so far been unknown, but recently some classical immune recognition molecules, the MHC class I molecules, have been shown to have a strong influence on the strength and pattern of the synapse elimination response. Since there is an expression of MHC class I in both neurons and glia, in particular microglia, as well as MHC class I related receptors in axons and microglia, there are good reasons to believe that classical immune recognition signaling between neurons and glia underlies part of the 'stripping' response. A role for microglia in an interplay with synapses based on this type of signaling is further exemplified by the fact that, in the absence of some MHC class I related receptors normally found on microglia during development, profound effects on synaptic function and biochemistry have been demonstrated. Such effects may be linked to the development of various disorders of the CNS, such as degenerative disease.
Collapse
Affiliation(s)
- Staffan Cullheim
- Department of Neuroscience, Retzius v 8, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | |
Collapse
|
10
|
Nakamura K, Hirai H, Torashima T, Miyazaki T, Tsurui H, Xiu Y, Ohtsuji M, Lin QS, Tsukamoto K, Nishimura H, Ono M, Watanabe M, Hirose S. CD3 and immunoglobulin G Fc receptor regulate cerebellar functions. Mol Cell Biol 2007; 27:5128-34. [PMID: 17502348 PMCID: PMC1951947 DOI: 10.1128/mcb.01072-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 07/16/2006] [Accepted: 04/23/2007] [Indexed: 11/20/2022] Open
Abstract
The immune and nervous systems display considerable overlap in their molecular repertoire. Molecules originally shown to be critical for immune responses also serve neuronal functions that include normal brain development, neuronal differentiation, synaptic plasticity, and behavior. We show here that FcgammaRIIB, a low-affinity immunoglobulin G Fc receptor, and CD3 are involved in cerebellar functions. Although membranous CD3 and FcgammaRIIB are crucial regulators on different cells in the immune system, both CD3epsilon and FcgammaRIIB are expressed on Purkinje cells in the cerebellum. Both CD3epsilon-deficient mice and FcgammaRIIB-deficient mice showed an impaired development of Purkinje neurons. In the adult, rotarod performance of these mutant mice was impaired at high speed. In the two knockout mice, enhanced paired-pulse facilitation of parallel fiber-Purkinje cell synapses was shared. These results indicate that diverse immune molecules play critical roles in the functional establishment in the cerebellum.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Department of Pathology, Juntendo University School of Medicine, Tokyo 113-8421, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, Laurie C, Gendelman HE. Neuroinflammation, Oxidative Stress and the Pathogenesis of Parkinson's Disease. CLINICAL NEUROSCIENCE RESEARCH 2006; 6:261-281. [PMID: 18060039 PMCID: PMC1831679 DOI: 10.1016/j.cnr.2006.09.006] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neuroinflammatory processes play a significant role in the pathogenesis of Parkinson's disease (PD). Epidemiologic, animal, human, and therapeutic studies all support the presence of an neuroinflammatory cascade in disease. This is highlighted by the neurotoxic potential of microglia . In steady state, microglia serve to protect the nervous system by acting as debris scavengers, killers of microbial pathogens, and regulators of innate and adaptive immune responses. In neurodegenerative diseases, activated microglia affect neuronal injury and death through production of glutamate, pro-inflammatory factors, reactive oxygen species, quinolinic acid amongst others and by mobilization of adaptive immune responses and cell chemotaxis leading to transendothelial migration of immunocytes across the blood-brain barrier and perpetuation of neural damage. As disease progresses, inflammatory secretions engage neighboring glial cells, including astrocytes and endothelial cells, resulting in a vicious cycle of autocrine and paracrine amplification of inflammation perpetuating tissue injury. Such pathogenic processes contribute to neurodegeneration in PD. Research from others and our own laboratories seek to harness such inflammatory processes with the singular goal of developing therapeutic interventions that positively affect the tempo and progression of human disease.
Collapse
Affiliation(s)
- R. Lee Mosley
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Eric J. Benner
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Irena Kadiu
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Mark Thomas
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Michael D. Boska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
- Radiology, University of Nebraska Medical Center, Omaha, NE
| | - Khader Hasan
- Department of Diagnostic and Interventional Imaging, University of Texas School at Houston, Houston, TX
| | - Chad Laurie
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Howard E. Gendelman
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
12
|
Lapter S, Livnat I, Faerman A, Zipori D. Structure and implied functions of truncated B-cell receptor mRNAs in early embryo and adult mesenchymal stem cells: Cdelta replaces Cmu in mu heavy chain-deficient mice. Stem Cells 2006; 25:761-70. [PMID: 17124007 DOI: 10.1634/stemcells.2006-0582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stem cells exhibit a promiscuous gene expression pattern. We show herein that the early embryo and adult MSCs express B-cell receptor component mRNAs. To examine possible bearings of these genes on the expressing cells, we studied immunoglobulin mu chain-deficient mice. Pregnant mu chain-deficient females were found to produce a higher percentage of defective morulae compared with control females. Structure analysis indicated that the mu mRNA species found in embryos and in mesenchyme consist of the constant region of the mu heavy chain that encodes a recombinant 50-kDa protein. In situ hybridization localized the constant mu gene expression to loose mesenchymal tissues within the day-12.5 embryo proper and the yolk sac. In early embryo and in adult mesenchyme from mu-deficient mice, delta replaced mu chain, implying a possible requirement of these alternative molecules for embryo development and mesenchymal functions. Indeed, overexpression of the mesenchymal-truncated mu heavy chain in 293T cells resulted in specific subcellular localization and in G(1) growth arrest. The lack of such occurrence following overexpression of a complete, rearranged form of mu chain suggests that the mesenchymal version of this mRNA may possess unique functions.
Collapse
Affiliation(s)
- Smadar Lapter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
13
|
Colón-Cesario M, Wang J, Ramos X, García HG, Dávila JJ, Laguna J, Rosado C, Peña de Ortiz S. An inhibitor of DNA recombination blocks memory consolidation, but not reconsolidation, in context fear conditioning. J Neurosci 2006; 26:5524-33. [PMID: 16707804 PMCID: PMC6675301 DOI: 10.1523/jneurosci.3050-05.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Genomic recombination requires cutting, processing, and rejoining of DNA by endonucleases, polymerases, and ligases, among other factors. We have proposed that DNA recombination mechanisms may contribute to long-term memory (LTM) formation in the brain. Our previous studies with the nucleoside analog 1-beta-D-arabinofuranosylcytosine triphosphate (ara-CTP), a known inhibitor of DNA ligases and polymerases, showed that this agent blocked consolidation of conditioned taste aversion without interfering with short-term memory (STM). However, because polymerases and ligases are also essential for DNA replication, it remained unclear whether the effects of this drug on consolidation were attributable to interference with DNA recombination or neurogenesis. Here we show, using C57BL/6 mice, that ara-CTP specifically blocks consolidation but not STM of context fear conditioning, a task previously shown not to require neurogenesis. The effects of a single systemic dose of cytosine arabinoside (ara-C) on LTM were evident as early as 6 h after training. In addition, although ara-C impaired LTM, it did not impair general locomotor activity nor induce brain neurotoxicity. Importantly, hippocampal, but not insular cortex, infusions of ara-C also blocked consolidation of context fear conditioning. Separate studies revealed that context fear conditioning training significantly induced nonhomologous DNA end joining activity indicative of DNA ligase-dependent recombination in hippocampal, but not cortex, protein extracts. Finally, unlike inhibition of protein synthesis, systemic ara-C did not block reconsolidation of context fear conditioning. Our results support the idea that DNA recombination is a process specific to consolidation that is not involved in the postreactivation editing of memories.
Collapse
|
14
|
Zipori D. Mesenchymal stem cells: harnessing cell plasticity to tissue and organ repair. Blood Cells Mol Dis 2005; 33:211-5. [PMID: 15528133 DOI: 10.1016/j.bcmd.2004.08.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Accepted: 08/03/2004] [Indexed: 12/22/2022]
Abstract
Plastic behavior of cells is a hallmark of embryonic development. The emergence of primary mesenchyme from within the inner cell mass entails the first epithelial-mesenchymal transition step that is then followed by sequential transitions; the formation of new tissues and organs requires transitions from mesenchyme into epithelium and vice versa. Although it is currently believed that in the adult such transitions do not persist, the frequent occurrence of mesenchymal stem cells (MSCs) in various tissues of the adult organisms, and the reported plasticity of such adult mesenchymal cells, raises the question as to whether the frequency of mesenchymal epithelial transitions in the adult have been underestimated. Indeed, adult mesenchymal stem cells have been reported to differentiate in culture into a multitude of mature cell types including epithelial cells. This opens the way to the use of these stem cells for the construction of new tissues and organs for therapeutic purposes, but the question is still open as to whether mesenchymal stem cells transdifferentiate also in vivo. The molecular mechanism that underlies the plasticity of mesenchymal stem cells and their capacity to transdifferentiate is unresolved. We found that these cells have a promiscuous gene expression pattern; mesenchymal cells, whether primary or cloned cell lines, express T cell receptor (TCR) beta and alpha genes, along with other components of the TCR complex. These cells may therefore be in a standby state, in which many gene families are expressed at a low level thereby making the cell readily capable of shifting fates.
Collapse
Affiliation(s)
- Dov Zipori
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
15
|
Wekerle H. Planting and pruning in the brain: MHC antigens involved in synaptic plasticity? Proc Natl Acad Sci U S A 2004; 102:3-4. [PMID: 15623557 PMCID: PMC544060 DOI: 10.1073/pnas.0408495101] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Hartmut Wekerle
- Max Planck Institute for Neurobiology, Am Klopferspitz 18a, 82152 Martinsried, Germany.
| |
Collapse
|
16
|
Boulanger LM, Shatz CJ. Immune signalling in neural development, synaptic plasticity and disease. Nat Rev Neurosci 2004; 5:521-31. [PMID: 15208694 DOI: 10.1038/nrn1428] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lisa M Boulanger
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, Pacific Hall 1212A, 9500 Gilman Drive, La Jolla, California, USA.
| | | |
Collapse
|