1
|
Liu L, Liu M, Zhao W, Zhao YL, Wang Y. Tetrahydropalmatine Regulates BDNF through TrkB/CAM Interaction to Alleviate the Neurotoxicity Induced by Methamphetamine. ACS Chem Neurosci 2021; 12:3373-3386. [PMID: 34448569 DOI: 10.1021/acschemneuro.1c00373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tetrahydropalmatine (THP) has analgesic, hypnotic, sedative, and other pharmacological effects. Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal plasticity, growth, and development. However, their mechanism of action in methamphetamine (MA)-induced neurotoxicity remains unclear. This study aims to explore the important role of BDNF in MA neurotoxicity and whether THP can regulate BDNF through the interaction between tyrosine kinase receptor B (TrkB)/calmodulin (CAM) to alleviate the neurotoxicity induced by MA. SD rats were randomly divided into control, MA, and MA + THP groups. Stereotyped behavior test, captive rejection test, open field test (OFT), and Morris water maze (MWM) were used to evaluate the anxiety, aggression, cognition, learning, and memory. Extracted hippocampus and mesencephalon tissue were detected by Western blot, HE staining, and immunohistochemistry. TUNEL staining was used to detect apoptosis. MOE was used for bioinformatics prediction, and coimmunoprecipitation was used to confirm protein interactions. Long-term abuse of MA resulted in lower weight gain ratio and nerve cell damage and caused various neurotoxicity-related behavioral abnormalities: anxiety, aggression, cognitive motor disorders, and learning and memory disorders. MA-induced neurotoxicity is related to the down-regulation of BDNF and apoptosis. THP attenuated the MA-induced neurotoxicity by decreasing CAM, increasing TrkB, phosphorylating Akt, up-regulating NF-κB and BDNF, and inhibiting cell apoptosis. MA can induce neurotoxicity in rats. BDNF may play a vital role in MA-induced neurotoxicity. THP regulates BDNF through TrkB/CAM interaction to alleviate the neurotoxicity induced by MA. THP may be a potential therapeutic drug for the neurotoxic and neurodegenerative diseases related to MA.
Collapse
Affiliation(s)
- Lian Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Ming Liu
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, Liaoning 110854, P. R. China
| | - Wei Zhao
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, Liaoning 110854, P. R. China
| | - Yuan-Ling Zhao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
| |
Collapse
|
2
|
Retinal Ganglion Cell Transplantation: Approaches for Overcoming Challenges to Functional Integration. Cells 2021; 10:cells10061426. [PMID: 34200991 PMCID: PMC8228580 DOI: 10.3390/cells10061426] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
As part of the central nervous system, mammalian retinal ganglion cells (RGCs) lack significant regenerative capacity. Glaucoma causes progressive and irreversible vision loss by damaging RGCs and their axons, which compose the optic nerve. To functionally restore vision, lost RGCs must be replaced. Despite tremendous advancements in experimental models of optic neuropathy that have elucidated pathways to induce endogenous RGC neuroprotection and axon regeneration, obstacles to achieving functional visual recovery through exogenous RGC transplantation remain. Key challenges include poor graft survival, low donor neuron localization to the host retina, and inadequate dendritogenesis and synaptogenesis with afferent amacrine and bipolar cells. In this review, we summarize the current state of experimental RGC transplantation, and we propose a set of standard approaches to quantifying and reporting experimental outcomes in order to guide a collective effort to advance the field toward functional RGC replacement and optic nerve regeneration.
Collapse
|
3
|
Zhou Y, Sinha S, Schwartz JL, Adami GR. A subtype of oral, laryngeal, esophageal, and lung, squamous cell carcinoma with high levels of TrkB-T1 neurotrophin receptor mRNA. BMC Cancer 2019; 19:607. [PMID: 31221127 PMCID: PMC6587277 DOI: 10.1186/s12885-019-5789-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/31/2019] [Indexed: 01/17/2023] Open
Abstract
Background The NTRK2 genetic locus encodes neurotrophin membrane receptors that play an important role in normal neural tissue plasticity, growth, and survival. One NTRK2-encoded protein is TrkB-FL, which can regulate multiple pathways relevant to cancer. A second NTRK2 gene mRNA isoform encodes TrkB-T1, a receptor that has a different cytoplasmic domain encoded in a mRNA with a unique 3′ terminal exon. Method Tumors from The Cancer Genome Atlas (TCGA) and other studies were classified according to the expression of a single form of NTRK2 mRNA, TrkB-T1, identified by its unique 3′ terminal exon. Analysis of differentially expressed genes in TrkB-T1 high expressers was done to determine if tumors enriched for TrkB-T1 mRNA were a uniform group independent of anatomic site. Results The mRNA for TrkB-T1 is the most abundant NTRK2 gene mRNA in all squamous cell carcinomas (SCCs) in the TCGA database. Comparison of larynx SCC high TrkB-T1 RNA expressers to low expressers (n = 96) revealed gene expression differences consistent with the high TrkB-T1 tumors being more neural-like. The upregulated genes in the TrkB-T1 RNA high expressers also showed enrichment of pathways involved in retinol metabolism, hedgehog signaling, and the Nfe2l2 response, among other pathways. An examination of oral, esophagus, and lung SCCs (n = 284, 97, 501) showed induction of the same pathways among tumors that expressed high levels of TrkB-T1 mRNA. Proteins associated with regulation of the sonic hedgehog pathway, and the Nfe2l2 response, Tp63, and Keap1 and p62/SQSTM1 proteins, showed differential expression in larynx, oral and lung high TrkB1-T1 expresser SCCs. Unexpectantly, the relationship of high level TrkB-T1 expression to patient outcomes was SCC anatomic site specific. High TrkB-T1 mRNA levels in laryngeal SCC correlated with poor survival, but the opposite was true for lung SCC. This may be because pathways enriched in the TrkB high expressers, like those involving oncogenes NFE2L2, PIK3CA, and SOX2, are known to have SCC anatomic site-specific effects on progression. Conclusions High level TrkB-T1 mRNA is a marker of a distinct SCC subtype enriched for at least 3 pathways relevant to tumor progression: Nfe2l2 response, retinol metabolism, and hedgehog signaling. Electronic supplementary material The online version of this article (10.1186/s12885-019-5789-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yalu Zhou
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL, 60612, USA
| | - Saurabh Sinha
- Department of Computer Science and Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 2122 Siebel Center, 201N. Goodwin Ave, Urbana, IL, USA
| | - Joel L Schwartz
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL, 60612, USA
| | - Guy R Adami
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL, 60612, USA.
| |
Collapse
|
4
|
Chan HH, Wathen CA, Mathews ND, Hogue O, Modic JP, Kundalia R, Wyant C, Park HJ, Najm IM, Trapp BD, Machado AG, Baker KB. Lateral cerebellar nucleus stimulation promotes motor recovery and suppresses neuroinflammation in a fluid percussion injury rodent model. Brain Stimul 2018; 11:1356-1367. [PMID: 30061053 DOI: 10.1016/j.brs.2018.07.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Many traumatic brain injury (TBI) survivors live with persistent disability from chronic motor deficits despite contemporary rehabilitation services, underscoring the need for novel treatment. OBJECTIVE/HYPOTHESIS We have previously shown that deep brain stimulation (DBS) of the lateral cerebellar nucleus (LCN) can enhance post-stroke motor recovery and increase the expression of markers of long-term potentiation in perilesional cerebral cortex. We hypothesize that a similar beneficial effect will be for motor deficits induced by unilateral fluid percussion injury (FPI) in rodents through long-term potentiation- and anti-inflammatory based mechanisms. METHODS Male Long Evans rats with a DBS macroelectrode in the LCN underwent FPI over contralateral primary motor cortex. After 4 weeks of spontaneous recovery, DBS treatment was applied for 4 weeks, with the pasta matrix, cylinder, and horizontal ladder tests used to evaluate motor performance. All animals were euthanized and tissue harvested for further analysis by histology, immunohistochemistry, RNA microarray assay and Western Blot. RESULTS LCN DBS-treated animals experienced a significantly greater rate of motor recovery than untreated surgical controls, with treated animals showing enhanced expression of RNA and protein for excitability related genes, suppressed expression of pro-inflammatory genes, suppressed microglial and astrocytic activation, but proliferation of c-fos positive cells. Finally, our data suggest a possible role for anti-apoptotic effects with LCN DBS. CONCLUSION LCN DBS enhanced the motor recovery following TBI, possibly by elevating the neuronal excitability at the perilesional area and mediating anti-apoptotic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Hugh H Chan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Connor A Wathen
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Nicole D Mathews
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Olivia Hogue
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - James P Modic
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ronak Kundalia
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Cara Wyant
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hyun-Joo Park
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Imad M Najm
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andre G Machado
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Kenneth B Baker
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
5
|
Merighi A. The histology, physiology, neurochemistry and circuitry of the substantia gelatinosa Rolandi (lamina II) in mammalian spinal cord. Prog Neurobiol 2018; 169:91-134. [PMID: 29981393 DOI: 10.1016/j.pneurobio.2018.06.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 06/07/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023]
Abstract
The substantia gelatinosa Rolandi (SGR) was first described about two centuries ago. In the following decades an enormous amount of information has permitted us to understand - at least in part - its role in the initial processing of pain and itch. Here, I will first provide a comprehensive picture of the histology, physiology, and neurochemistry of the normal SGR. Then, I will analytically discuss the SGR circuits that have been directly demonstrated or deductively envisaged in the course of the intensive research on this area of the spinal cord, with particular emphasis on the pathways connecting the primary afferent fibers and the intrinsic neurons. The perspective existence of neurochemically-defined sets of primary afferent neurons giving rise to these circuits will be also discussed, with the proposition that a cross-talk between different subsets of peptidergic fibers may be the structural and functional substrate of additional gating mechanisms in SGR. Finally, I highlight the role played by slow acting high molecular weight modulators in these gating mechanisms.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095 Grugliasco (TO), Italy.
| |
Collapse
|
6
|
Shamblott MJ, O’Driscoll ML, Gomez DL, McGuire DL. Neurogenin 3 is regulated by neurotrophic tyrosine kinase receptor type 2 (TRKB) signaling in the adult human exocrine pancreas. Cell Commun Signal 2016; 14:23. [PMID: 27659207 PMCID: PMC5034529 DOI: 10.1186/s12964-016-0146-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/14/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Reports of exocrine-to-endocrine reprogramming through expression or stabilization of the transcription factor neurogenin 3 (NGN3) have generated renewed interest in harnessing pancreatic plasticity for therapeutic applications. NGN3 is expressed by a population of endocrine progenitor cells that give rise exclusively to hormone-secreting cells within pancreatic islets and is necessary and sufficient for endocrine differentiation during development. In the adult human pancreas, NGN3 is expressed by dedifferentiating exocrine cells with a phenotype resembling endocrine progenitor cells and the capacity for endocrine differentiation in vitro. Neurotrophic tyrosine kinase receptor type 2 (TRKB), which regulates neuronal cell survival, differentiation and plasticity, was identified as highly overexpressed in the NGN3 positive cell transcriptome compared to NGN3 negative exocrine cells. This study was designed to determine if NGN3 is regulated by TRKB signaling in the adult human exocrine pancreas. METHODS Transcriptome analysis, quantitative reverse transcriptase polymerase chain reaction (RTPCR) and immunochemistry were used to identify TRKB isoform expression in primary cultures of human islet-depleted exocrine tissue and human cadaveric pancreas biopsies. The effects of pharmacological modulation of TRKB signaling on the expression of NGN3 were assessed by Student's t-test and ANOVA. RESULTS Approximately 30 % of cultured exocrine cells and 95 % of NGN3+ cells express TRKB on their cell surface. Transcriptome-based exon splicing analyses, isoform-specific quantitative RTPCR and immunochemical staining demonstrate that TRKB-T1, which lacks a tyrosine kinase domain, is the predominant isoform expressed in cultured exocrine tissue and is expressed in histologically normal cadaveric pancreas biopsies. Pharmacological inhibition of TRKB significantly decreased the percentage of NGN3+ cells, while a TRKB agonist significantly increased this percentage. Inhibition of protein kinase B (AKT) blocked the effect of the TRKB agonist, while inhibition of tyrosine kinase had no effect. Modulation of TRKB and AKT signaling did not significantly affect the level of NGN3 mRNA. CONCLUSIONS In the adult human exocrine pancreas, TRKB-T1 positively regulates NGN3 independent of effects on NGN3 transcription. Targeting mechanisms controlling the NGN3+ cell population size and endocrine cell fate commitment represent a potential new approach to understand pancreas pathobiology and means whereby cell populations could be expanded for therapeutic purposes.
Collapse
Affiliation(s)
- Michael J. Shamblott
- Department of Pediatrics, Children’s Research Institute, University of South Florida Morsani College of Medicine, 601 4th St. South, CRI 3005, St. Petersburg, FL 33701 USA
- Morphogenesis, Inc, 4613 N. Clark Ave, Tampa, FL 33614 USA
| | - Marci L. O’Driscoll
- Department of Pediatrics, Children’s Research Institute, University of South Florida Morsani College of Medicine, 601 4th St. South, CRI 3005, St. Petersburg, FL 33701 USA
| | - Danielle L. Gomez
- Department of Pediatrics, Children’s Research Institute, University of South Florida Morsani College of Medicine, 601 4th St. South, CRI 3005, St. Petersburg, FL 33701 USA
| | - Dustin L. McGuire
- Department of Pediatrics, Children’s Research Institute, University of South Florida Morsani College of Medicine, 601 4th St. South, CRI 3005, St. Petersburg, FL 33701 USA
| |
Collapse
|
7
|
Hartman W, Helan M, Smelter D, Sathish V, Thompson M, Pabelick CM, Johnson B, Prakash YS. Role of Hypoxia-Induced Brain Derived Neurotrophic Factor in Human Pulmonary Artery Smooth Muscle. PLoS One 2015; 10:e0129489. [PMID: 26192455 PMCID: PMC4507987 DOI: 10.1371/journal.pone.0129489] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 05/08/2015] [Indexed: 01/28/2023] Open
Abstract
Background Hypoxia effects on pulmonary artery structure and function are key to diseases such as pulmonary hypertension. Recent studies suggest that growth factors called neurotrophins, particularly brain-derived neurotrophic factor (BDNF), can influence lung structure and function, and their role in the pulmonary artery warrants further investigation. In this study, we examined the effect of hypoxia on BDNF in humans, and the influence of hypoxia-enhanced BDNF expression and signaling in human pulmonary artery smooth muscle cells (PASMCs). Methods and Results 48h of 1% hypoxia enhanced BDNF and TrkB expression, as well as release of BDNF. In arteries of patients with pulmonary hypertension, BDNF expression and release was higher at baseline. In isolated PASMCs, hypoxia-induced BDNF increased intracellular Ca2+ responses to serotonin: an effect altered by HIF1α inhibition or by neutralization of extracellular BDNF via chimeric TrkB-Fc. Enhanced BDNF/TrkB signaling increased PASMC survival and proliferation, and decreased apoptosis following hypoxia. Conclusions Enhanced expression and signaling of the BDNF-TrkB system in PASMCs is a potential mechanism by which hypoxia can promote changes in pulmonary artery structure and function. Accordingly, the BDNF-TrkB system could be a key player in the pathogenesis of hypoxia-induced pulmonary vascular diseases, and thus a potential target for therapy.
Collapse
Affiliation(s)
- William Hartman
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
- * E-mail:
| | - Martin Helan
- International Clinical Research Center, Department of Cardiovascular Diseases, St. Anne's University Hospital, Brno, Czech Republic
- Department of Anesthesiology and Intensive Care, St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| | - Dan Smelter
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
| | - Venkatachalem Sathish
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
| | - Michael Thompson
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
| | - Christina M. Pabelick
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
| | - Bruce Johnson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
- Department of Internal Medicine, Division of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
| | - Y. S. Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
| |
Collapse
|
8
|
Liang DY, Sun Y, Shi XY, Sahbaie P, Clark JD. Epigenetic regulation of spinal cord gene expression controls opioid-induced hyperalgesia. Mol Pain 2014; 10:59. [PMID: 25217253 PMCID: PMC4171542 DOI: 10.1186/1744-8069-10-59] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 09/04/2014] [Indexed: 12/14/2022] Open
Abstract
Background The long term use of opioids for the treatment of pain leads to a group of maladaptations which includes opioid-induced hyperalgesia (OIH). OIH typically resolves within few days after cessation of morphine treatment in mice but is prolonged for weeks if histone deacetylase (HDAC) activity is inhibited during opioid treatment. The present work seeks to identify gene targets supporting the epigenetic effects responsible for OIH prolongation. Results Mice were treated with morphine according to an ascending dose protocol. Some mice also received the selective HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) additionally. Chronic morphine treatment with simultaneous HDAC inhibition enhanced OIH, and several spinal cord genes were up-regulated. The expression of Bdnf (Brain-derived neurotrophic factor) and Pdyn (Prodynorphin) were most closely related to the observed behavioral changes. ChIP (Chromatin immuoprecipation) assays demonstrated that promoter regions of Pdyn and Bdnf were strongly associated with aceH3K9 (Acetylated histone H3 Lysine9) after morphine and SAHA treatment. Furthermore, morphine treatment caused an increase in spinal BDNF and dynorphin levels, and these levels were further increased in SAHA treated mice. The selective TrkB (tropomyosin-receptor-kinase) antagonist ANA-12 reduced OIH when given one or seven days after cessation of morphine. Treatment with the selective kappa opioid receptor antagonist nor-BNI also reduced established OIH. The co-administration of either receptor antagonist agent daily with morphine resulted in attenuation of hyperalgesia present one day after cessation of treatment. Additionally, repeated morphine exposure induced a rise in BDNF expression that was associated with an increased number of BDNF+ cells in the spinal cord dorsal horn, showing strong co-localization with aceH3K9 in neuronal cells. Lastly, spinal application of low dose BDNF or Dynorphin A after resolution of OIH produced mechanical hypersensitivity, with no effect in controls. Conclusions The present study identified two genes whose expression is regulated by epigenetic mechanisms during morphine exposure. Treatments aimed at preventing the acetylation of histones or blocking BDNF and dynorphin signaling may reduce OIH and improve long-term pain using opioids.
Collapse
Affiliation(s)
| | | | | | - Peyman Sahbaie
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
9
|
Richner M, Ulrichsen M, Elmegaard SL, Dieu R, Pallesen LT, Vaegter CB. Peripheral nerve injury modulates neurotrophin signaling in the peripheral and central nervous system. Mol Neurobiol 2014; 50:945-70. [PMID: 24752592 DOI: 10.1007/s12035-014-8706-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/01/2014] [Indexed: 12/21/2022]
Abstract
Peripheral nerve injury disrupts the normal functions of sensory and motor neurons by damaging the integrity of axons and Schwann cells. In contrast to the central nervous system, the peripheral nervous system possesses a considerable capacity for regrowth, but regeneration is far from complete and functional recovery rarely returns to pre-injury levels. During development, the peripheral nervous system strongly depends upon trophic stimulation for neuronal differentiation, growth and maturation. The perhaps most important group of trophic substances in this context is the neurotrophins (NGF, BDNF, NT-3 and NT-4/5), which signal in a complex spatial and timely manner via the two structurally unrelated p75(NTR) and tropomyosin receptor kinase (TrkA, Trk-B and Trk-C) receptors. Damage to the adult peripheral nerves induces cellular mechanisms resembling those active during development, resulting in a rapid and robust increase in the synthesis of neurotrophins in neurons and Schwann cells, guiding and supporting regeneration. Furthermore, the injury induces neurotrophin-mediated changes in the dorsal root ganglia and in the spinal cord, which affect the modulation of afferent sensory signaling and eventually may contribute to the development of neuropathic pain. The focus of this review is on the expression patterns of neurotrophins and their receptors in neurons and glial cells of the peripheral nervous system and the spinal cord. Furthermore, injury-induced changes of expression patterns and the functional consequences in relation to axonal growth and remyelination as well as to neuropathic pain development will be reviewed.
Collapse
Affiliation(s)
- Mette Richner
- Danish Research Institute of Translational Neuroscience DANDRITE, Nordic EMBL Partnership, and Lundbeck Foundation Research Center MIND, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000, Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
10
|
Cruz CD. Neurotrophins in bladder function: what do we know and where do we go from here? Neurourol Urodyn 2013; 33:39-45. [PMID: 23775873 DOI: 10.1002/nau.22438] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/30/2013] [Indexed: 12/19/2022]
Abstract
AIMS Neurotrophins (NTs) have attracted considerable attention in the urologic community. The reason for this resides in the recognition of their ability to induce plastic changes of the neuronal circuits that govern bladder function. In many pathologic states, urinary symptoms, including urgency and urinary frequency, reflect abnormal activity of bladder sensory afferents that results from neuroplastic changes. Accordingly, in pathologies associated with increased sensory input, such as the overactive bladder syndrome (OAB) or bladder pain syndrome/interstitial cystitis (BPS/IC), significant amounts of NTs have been found in the bladder wall. METHODS Here, current knowledge about the importance of NTs in bladder function will be reviewed, with a focus on the most well-studied NTs, nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF). RESULTS Both NTs are present in the bladder and regulate bladder sensory afferents and urothelial cells. Experimental models of bladder dysfunction show that upregulation of these NTs is strongly linked to bladder hyperactivity and, in some cases, pain. NT manipulation has been tested in animal models of bladder dysfunction, and recently, NGF downregulation, achieved by administration of a monoclonal antibody, has also been tested in patients with BPS/IC and chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). NTs have also been found in high quantities in the urine of OAB and BPS/IC patients, raising the possibility of NTs serving as biomarkers. CONCLUSIONS Available data show that our knowledge of NTs has greatly increased in recent years and that some results may have future clinical application.
Collapse
Affiliation(s)
- Célia Duarte Cruz
- Department of Experimental Biology, Faculty of Medicine of Porto, University of Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Brain-derived neurotrophic factor, acting at the spinal cord level, participates in bladder hyperactivity and referred pain during chronic bladder inflammation. Neuroscience 2013; 234:88-102. [PMID: 23313710 DOI: 10.1016/j.neuroscience.2012.12.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 01/04/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin (NT) known to participate in chronic somatic pain. A recent study has indicated that BDNF may participate in chronic cystitis at the peripheral level. However, the principal site of action for this NT is the central nervous system, most notably the spinal cord. The effects of centrally-acting BDNF on bladder function in normal animals and its central role during chronic cystitis are presently unknown. The present study was undertaken to clarify this issue. For that purpose, control non-inflamed animals were intrathecally injected with BDNF, after which bladder function was evaluated. This treatment caused short-lasting bladder hyperactivity; whereas chronic intrathecal administration of BDNF did not elicit this effect. Cutaneous sensitivity was assessed by mechanical allodynia as an internal control of BDNF action. To ascertain the role of BDNF in bladder inflammation, animals with cyclophosphamide-induced cystitis received intrathecal injections of either a general Trk receptor antagonist or a BDNF scavenger. Blockade of Trk receptors or BDNF sequestration notably improved bladder function. In addition, these treatments also reduced referred pain, typically observed in rats with chronic cystitis. Reduction of referred pain was accompanied by a decrease in the spinal levels of extracellular signal-regulated kinase (ERK) phosphorylation, a marker of increased sensory barrage in the lumbosacral spinal cord, and spinal BDNF expression. Results obtained here indicate that BDNF, acting at the spinal cord level, contributes to bladder hyperactivity and referred pain, important hallmarks of chronic cystitis. In addition, these data also support the development of BDNF modulators as putative therapeutic options for the treatment of chronic bladder inflammation.
Collapse
|
12
|
Dauch JR, Yanik BM, Hsieh W, Oh SS, Cheng HT. Neuron-astrocyte signaling network in spinal cord dorsal horn mediates painful neuropathy of type 2 diabetes. Glia 2012; 60:1301-15. [PMID: 22573263 DOI: 10.1002/glia.22349] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/13/2012] [Accepted: 04/17/2012] [Indexed: 12/13/2022]
Abstract
Activation of the neuronal-glial network in the spinal cord dorsal horn (SCDH) mediates various chronic painful conditions. We studied spinal neuronal-astrocyte signaling interactions involved in the maintenance of painful diabetic neuropathy (PDN) in type 2 diabetes. We used the db/db mouse, an animal model for PDN of type 2 diabetes, which develops mechanical allodynia from 6 to 12 wk of age. In this study, enhanced substance P expression was detected in the presynaptic sensory fibers innervating lamina I-III in the lumbar SCDH (LSCDH) of the db/db mouse at 10 wk of age. This phenomenon is associated with enhanced spinal ERK1/2 phosphorylation in projection sensory neurons and regional astrocyte activation. In addition, peak phosphorylation of the NR1 subunit of N-methyl-D-aspartate receptor (NMDAR), along with upregulation of neuronal and inducible nitric oxide synthase (nNOS and iNOS) expression were detected in diabetic mice. Expression of nNOS and iNOS was detected in both interneurons and astrocytes in lamina I-III of the LSCDH. Treatment with MK801, an NMDAR inhibitor, inhibited mechanical allodynia, ERK1/2 phosphorylation, and nNOS and iNOS upregulation in diabetic mice. MK801 also reduced astrocytosis and glial acidic fibrillary protein upregulation in db/db mice. In addition, N(G)-nitro-L-arginine methyl ester (L-NAME), a nonspecific NOS inhibitor, had similar effects on NMDAR signaling and NOS expression. These results suggest that nitric oxide from surrounding interneurons and astrocytes interacts with NMDAR-dependent signaling in the projection neurons of the SCDH during the maintenance of PDN.
Collapse
Affiliation(s)
- Jacqueline R Dauch
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
OBJECTIVES We examined the role of brain-derived neurotrophic factor (BDNF) in the pathogenesis of pain in an experimental model of chronic pancreatitis (CP). METHODS Pancreatitis was induced by retrograde infusion of trinitrobenzene sulfonic acid into the pancreatic duct of adult rats. Twenty-one days after injection, BDNF expression was examined in pancreas-specific dorsal root ganglia (DRGs) by immunohistochemistry, and protein levels were quantified from DRGs and spinal cord extracts. The effects of intrathecal infusion of a neutralizing antibody to BDNF on pancreatic hyperalgesia were assessed by the sensitivity of the abdominal wall to filament probing as well as the nocifensive behavior to electrical stimulation of the pancreas. RESULTS Levels of BDNF in DRGs and spinal cords (T9-13) were significantly higher in trinitrobenzene sulfonic acid rats compared with controls, accompanied by an increase in the number of pancreas-specific neurons expressing BDNF immunoreactivity. Brain-derived neurotrophic factor antagonism suppressed phospho-tropomyosin-related kinase B receptor levels in the spinal cord and significantly reduced behavioral responses in rats with CP. CONCLUSIONS Brain-derived neurotrophic factor is upregulated in pancreas-specific primary afferent neurons in rats with CP, and BDNF antagonism is associated with a reduction of pain-related behavior in these animals, suggesting an important role for this neurotransmitter in the nociception of CP.
Collapse
|
14
|
Microglia-neuronal signalling in neuropathic pain hypersensitivity 2.0. Curr Opin Neurobiol 2011; 20:474-80. [PMID: 20817512 DOI: 10.1016/j.conb.2010.08.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 08/04/2010] [Accepted: 08/05/2010] [Indexed: 12/15/2022]
Abstract
Microglia are increasingly recognized as critical in the pathogenesis of pain hypersensitivity caused by injury to peripheral nerves. The core signalling pathway is through P2X4 purinergic receptors on the microglia which, via the release of brain-derived neurotrophic factor, cause disinhibition of nociceptive dorsal horn neurons by raising intracellular chloride levels. This disinhibition works in synergy with enhanced excitatory synaptic transmission in the dorsal horn to transform the output of the nociceptive network. There is increased discharge output, unmasking of responses to innocuous peripheral inputs and spontaneous activity in neurons that otherwise only signal nociception. Together the changes caused by microglia-neuron signalling may account for the main symptoms of neuropathic pain in humans.
Collapse
|
15
|
Klinger M, Sacks S, Cervero F. A role for extracellular signal-regulated kinases 1 and 2 in the maintenance of persistent mechanical hyperalgesia in ovariectomized mice. Neuroscience 2011; 172:483-93. [DOI: 10.1016/j.neuroscience.2010.10.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/14/2010] [Accepted: 10/15/2010] [Indexed: 12/13/2022]
|
16
|
Cruz CD, Cruz F. The ERK 1 and 2 pathway in the nervous system: from basic aspects to possible clinical applications in pain and visceral dysfunction. Curr Neuropharmacol 2010; 5:244-52. [PMID: 19305741 PMCID: PMC2644492 DOI: 10.2174/157015907782793630] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 07/09/2007] [Accepted: 07/19/2007] [Indexed: 12/16/2022] Open
Abstract
The extracellular signal-regulated kinases 1 and 2 (ERK) cascade, member of the mitogen-activated protein kinases superfamily of signalling pathways, is one of the best characterized pathways as many protein interactions and phosphorylation events have been systematically studied. Traditionally, ERK are associated with the regulation of proliferation and differentiation as well as survival of various cell types. Their activity is controlled by phosphorylation on specific aminoacidic residues, which is induced by a variety of external cues, including growth-promoting factors. In the nervous system, ERK phosphorylation is induced by binding of neurotrophins to their specific tyrosine kinase receptors or by neuronal activity leading to glutamate release and binding to its ionotropic and metabotropic receptors. Some studies have provided evidence of its importance in neuroplastic events. In particular, ERK phosphorylation in the spinal cord was shown to be nociceptive-specific and its upregulation, occurring in cases of chronic inflammatory and neuropathic pain, seems to be of the utmost importance to behavioural changes observed in those conditions. In fact, experiments using specific inhibitors of ERK phosphorylation have proved that ERK directly contributes to allodynia and hyperalgesia caused by spinal cord injury or chronic pain. Additionally, spinal ERK phosphorylation regulates the micturition reflex in experimental models of bladder inflammation and chronic spinal cord transection. In this review we will address the main findings that suggest that ERK might be a future therapeutic target to treat pain and other complications arising from chronic pain or neuronal injury.
Collapse
Affiliation(s)
- Célia D Cruz
- Institute of Histology and Embryology, Faculty of Medicine and IBMC, University of Porto, Portugal.
| | | |
Collapse
|
17
|
Central sensitization: a generator of pain hypersensitivity by central neural plasticity. THE JOURNAL OF PAIN 2009; 10:895-926. [PMID: 19712899 DOI: 10.1016/j.jpain.2009.06.012] [Citation(s) in RCA: 2286] [Impact Index Per Article: 152.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 02/08/2023]
Abstract
UNLABELLED Central sensitization represents an enhancement in the function of neurons and circuits in nociceptive pathways caused by increases in membrane excitability and synaptic efficacy as well as to reduced inhibition and is a manifestation of the remarkable plasticity of the somatosensory nervous system in response to activity, inflammation, and neural injury. The net effect of central sensitization is to recruit previously subthreshold synaptic inputs to nociceptive neurons, generating an increased or augmented action potential output: a state of facilitation, potentiation, augmentation, or amplification. Central sensitization is responsible for many of the temporal, spatial, and threshold changes in pain sensibility in acute and chronic clinical pain settings and exemplifies the fundamental contribution of the central nervous system to the generation of pain hypersensitivity. Because central sensitization results from changes in the properties of neurons in the central nervous system, the pain is no longer coupled, as acute nociceptive pain is, to the presence, intensity, or duration of noxious peripheral stimuli. Instead, central sensitization produces pain hypersensitivity by changing the sensory response elicited by normal inputs, including those that usually evoke innocuous sensations. PERSPECTIVE In this article, we review the major triggers that initiate and maintain central sensitization in healthy individuals in response to nociceptor input and in patients with inflammatory and neuropathic pain, emphasizing the fundamental contribution and multiple mechanisms of synaptic plasticity caused by changes in the density, nature, and properties of ionotropic and metabotropic glutamate receptors.
Collapse
|
18
|
Kajiya M, Shiba H, Fujita T, Takeda K, Uchida Y, Kawaguchi H, Kitagawa M, Takata T, Kurihara H. Brain-derived neurotrophic factor protects cementoblasts from serum starvation-induced cell death. J Cell Physiol 2009; 221:696-706. [DOI: 10.1002/jcp.21909] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
19
|
Wilkerson JER, Mitchell GS. Daily intermittent hypoxia augments spinal BDNF levels, ERK phosphorylation and respiratory long-term facilitation. Exp Neurol 2009; 217:116-23. [PMID: 19416672 DOI: 10.1016/j.expneurol.2009.01.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 01/23/2009] [Accepted: 01/27/2009] [Indexed: 10/21/2022]
Abstract
Acute intermittent hypoxia (AIH) elicits a form of respiratory plasticity known as long-term facilitation (LTF). We hypothesized that: 1) daily AIH (dAIH) preconditioning enhances phrenic and hypoglossal (XII) LTF in a rat strain with low constitutive LTF expression; 2) dAIH induces brain-derived neurotrophic factor (BDNF), a critical protein for phrenic LTF (pLTF) in the cervical spinal cord; and 3) dAIH increases post-AIH extracellular regulated kinase (ERK) activation. Phrenic and XII motor output were monitored in anesthetized dAIH- or sham-treated Brown Norway rats with and without acute AIH. pLTF was observed in both sham (18+/-9% baseline; 60 min post-hypoxia; p<0.05; n=18) and dAIH treated rats (37+/-8%; p<0.05; n=14), but these values were not significantly different (p=0.13). XII LTF was not observed in sham-treated rats (4+/-5%), but was revealed in dAIH pretreated rats (48+/-18%; p<0.05). dAIH preconditioning increased basal ventral cervical BDNF protein levels (24+/-8%; p<0.05), but had no significant effect on ERK phosphorylation. AIH increased BDNF in sham (25+/-8%; p<0.05), but not dAIH-pretreated rats (-7+/-4%), and had complex effects on ERK phosphorylation (ERK2 increased in shams whereas ERK1 increased in dAIH-treated rats). Thus, dAIH elicits metaplasticity in LTF, revealing XII LTF in a rat strain with no constitutive XII LTF expression. Increased BDNF synthesis may no longer be necessary for phrenic LTF following dAIH preconditioning since BDNF concentration is already elevated.
Collapse
Affiliation(s)
- Julia E R Wilkerson
- Department of Comparative Biosciences, University of Wisconsin, School of Veterinary Medicine, Madison, WI 53706, USA
| | | |
Collapse
|
20
|
Abstract
Mitogen-activated protein kinases (MAPKs) are important for intracellular signal transduction and play critical roles in regulating neural plasticity and inflammatory responses. The MAPK family consists of three major members: extracellular signal-regulated kinases (ERK), p38, and c-Jun N-terminal kinase (JNK), which represent three separate signaling pathways. Accumulating evidence shows that all three MAPK pathways contribute to pain sensitization after tissue and nerve injury via distinct molecular and cellular mechanisms. Activation (phosphorylation) of MAPKs under different persistent pain conditions results in the induction and maintenance of pain hypersensitivity via non-transcriptional and transcriptional regulation. In particular, ERK activation in spinal cord dorsal horn neurons by nociceptive activity, via multiple neurotransmitter receptors, and using different second messenger pathways plays a critical role in central sensitization by regulating the activity of glutamate receptors and potassium channels and inducing gene transcription. ERK activation in amygdala neurons is also required for inflammatory pain sensitization. After nerve injury, ERK, p38, and JNK are differentially activated in spinal glial cells (microglia vs astrocytes), leading to the synthesis of proinflammatory/pronociceptive mediators, thereby enhancing and prolonging pain. Inhibition of all three MAPK pathways has been shown to attenuate inflammatory and neuropathic pain in different animal models. Development of specific inhibitors for MAPK pathways to target neurons and glial cells may lead to new therapies for pain management. Although it is well documented that MAPK pathways can increase pain sensitivity via peripheral mechanisms, this review will focus on central mechanisms of MAPKs, especially ERK.
Collapse
Affiliation(s)
- Ru-Rong Ji
- Pain Research Center, Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, MRB 604, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
21
|
Wang Y, Wu J, Lin Q, Nauta H, Yue Y, Fang L. Effects of general anesthetics on visceral pain transmission in the spinal cord. Mol Pain 2008; 4:50. [PMID: 18973669 PMCID: PMC2584043 DOI: 10.1186/1744-8069-4-50] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 10/30/2008] [Indexed: 12/30/2022] Open
Abstract
Current evidence suggests an analgesic role for the spinal cord action of general anesthetics; however, the cellular population and intracellular mechanisms underlying anti-visceral pain by general anesthetics still remain unclear. It is known that visceral nociceptive signals are transmited via post-synaptic dorsal column (PSDC) and spinothalamic tract (STT) neuronal pathways and that the PSDC pathway plays a major role in visceral nociception. Animal studies report that persistent changes including nociception-associated molecular expression (e.g. neurokinin-1 (NK-1) receptors) and activation of signal transduction cascades (such as the protein kinase A [PKA]-c-AMP-responsive element binding [CREB] cascade)-in spinal PSDC neurons are observed following visceral pain stimulation. The clinical practice of interruption of the spinal PSDC pathway in patients with cancer pain further supports a role of this group of neurons in the development and maintenance of visceral pain. We propose the hypothesis that general anesthetics might affect critical molecular targets such as NK-1 and glutamate receptors, as well as intracellular signaling by CaM kinase II, protein kinase C (PKC), PKA, and MAP kinase cascades in PSDC neurons, which contribute to the neurotransmission of visceral pain signaling. This would help elucidate the mechanism of antivisceral nociception by general anesthetics at the cellular and molecular levels and aid in development of novel therapeutic strategies to improve clinical management of visceral pain.
Collapse
Affiliation(s)
- Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, PR China.
| | | | | | | | | | | |
Collapse
|
22
|
Qiao LY, Gulick MA, Bowers J, Kuemmerle JF, Grider JR. Differential changes in brain-derived neurotrophic factor and extracellular signal-regulated kinase in rat primary afferent pathways with colitis. Neurogastroenterol Motil 2008; 20:928-38. [PMID: 18373519 DOI: 10.1111/j.1365-2982.2008.01119.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has been postulated to participate in inflammation-induced visceral hypersensitivity by modulating the sensitivity of visceral afferents through the activation of intracellular signalling pathways such as the extracellular signal-regulated kinase (ERK) pathway. In the current study, we assessed the expression levels of BDNF and phospho-ERK in lumbosacral dorsal root ganglia (DRG) and spinal cord before and during tri-nitrobenzene sulfonic acid (TNBS)-induced colitis in rats with real-time PCR, ELISA, western blot and immunohistochemical techniques. BDNF mRNA and protein levels were increased in L1 and S1 but not L6 DRG when compared with control (L1: two- to five-fold increases, P < 0.05; S1: two- to three-fold increases, P < 0.05); however, BDNF protein but not mRNA level was increased in L1 and S1 spinal cord when compared with control. In parallel, TNBS colitis significantly induced phospho-ERK1/2 expression in L1 (four- to five-fold, P < 0.05) and S1 (two- to three-fold, P < 0.05) but not in L6 spinal cord levels. Immunohistochemistry results showed that the increase in phospho-ERK1/2 expression occurred at the region of the superficial dorsal horn and grey commisure of the spinal cord. In contrast, there was no change in phospho-ERK5 in any level of the spinal cord examined during colitis. The regional and time-specific changes in the levels of BDNF mRNA, protein and phospho-ERK with colitis may be a result of increased transcription of BDNF in DRG and anterograde transport of BDNF from DRG to spinal cord where it activates intracellular signalling molecules such as ERK1/2.
Collapse
Affiliation(s)
- L-Y Qiao
- Department of Physiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA.
| | | | | | | | | |
Collapse
|
23
|
Sarchielli P, Nardi K, Mancini ML, Corbelli I, Tambasco N, Chiasserini D, Calabresi P. Nerve growth factor and brain-derived neurotrophic factor: potential targets for migraine treatment? Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.7.705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Kajiya M, Shiba H, Fujita T, Ouhara K, Takeda K, Mizuno N, Kawaguchi H, Kitagawa M, Takata T, Tsuji K, Kurihara H. Brain-derived neurotrophic factor stimulates bone/cementum-related protein gene expression in cementoblasts. J Biol Chem 2008; 283:16259-67. [PMID: 18390540 DOI: 10.1074/jbc.m800668200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), recognized as essential in the developing nervous system, is involved in differentiation and proliferation in non-neuronal cells, such as endothelial cells, osteoblasts, and periodontal ligament cells. We have focused on the application of BDNF to the regeneration of periodontal tissue and indicated that BDNF promotes the regeneration of experimentally created periodontal defects. Cementoblasts form cementum, mineralized tissue, which is key to establishing a functional periodontium. The application of BDNF to the regeneration of periodontal tissue requires elucidation of the mechanism by which BDNF regulates the functions of cementoblasts. In this study, we examined how BDNF regulates the mRNA expression of bone/cementum-related proteins (alkaline phosphatase (ALP), osteopontin (OPN), and bone morphogenetic protein-2 (BMP-2)) in cultures of immortalized human cementoblast-like (HCEM) cells. BDNF elevated the mRNA levels of ALP, OPN, and BMP-2 in HCEM cells. Small interfering RNA (siRNA) for TRKB, a high affinity receptor of BDNF, siRNA for ELK-1, which is a downstream target of ERK1/2, and PD98059, an ERK inhibitor, obviated the increase in the mRNA levels. BDNF increased the levels of phosphorylated ERK1/2 and Elk-1, and the blocking of BDNF signaling by treatment with siRNA for TRKB and PD98059 suppressed the phosphorylation of ERK1/2 and Elk-1. Furthermore, BDNF increased the levels of phosphorylated c-Raf, which activates the ERK signaling pathway. These findings provide the first evidence that the TrkB-c-Raf-ERK1/2-Elk-1 signaling pathway is required for the BDNF-induced mRNA expression of ALP, OPN, and BMP-2 in HCEM cells.
Collapse
Affiliation(s)
- Mikihito Kajiya
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical Sciences, Minami-ku, Hiroshima 34-8553, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ren K, Dubner R. Pain facilitation and activity-dependent plasticity in pain modulatory circuitry: role of BDNF-TrkB signaling and NMDA receptors. Mol Neurobiol 2008; 35:224-35. [PMID: 17917111 DOI: 10.1007/s12035-007-0028-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 11/30/1999] [Accepted: 01/08/2007] [Indexed: 12/18/2022]
Abstract
Pain modulatory circuitry in the brainstem exhibits considerable synaptic plasticity. The increased peripheral neuronal barrage after injury activates spinal projection neurons that then activate multiple chemical mediators including glutamatergic neurons at the brainstem level, leading to an increased synaptic strength and facilitatory output. It is not surprising that a well-established regulator of synaptic plasticity, brain-derived neurotrophic factor (BDNF), contributes to the mechanisms of descending pain facilitation. After tissue injury, BDNF and TrkB signaling in the brainstem circuitry is rapidly activated. Through the intracellular signaling cascade that involves phospholipase C, inositol trisphosphate, protein kinase C, and nonreceptor protein tyrosine kinases; N-methyl-D-aspartate (NMDA) receptors are phosphorylated, descending facilitatory drive is initiated, and behavioral hyperalgesia follows. The synaptic plasticity observed in the pain pathways shares much similarity with more extensively studied forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), which typically express NMDA receptor dependency and regulation by trophic factors. However, LTP and LTD are experimental phenomena whose relationship to functional states of learning and memory has been difficult to prove. Although mechanisms of synaptic plasticity in pain pathways have typically not been related to LTP and LTD, pain pathways have an advantage as a model system for synaptic modifications as there are many well-established models of persistent pain with clear measures of the behavioral phenotype. Further studies will elucidate cellular and molecular mechanisms of pain sensitization and further our understanding of principles of central nervous system plasticity and responsiveness to environmental challenge.
Collapse
Affiliation(s)
- Ke Ren
- Department of Biomedical Sciences, Dental School & Program in Neuroscience, University of Maryland, 650 W. Baltimore St., Baltimore, MD 21201-1586, USA.
| | | |
Collapse
|
26
|
Staniszewska I, Sariyer IK, Lecht S, Brown MC, Walsh EM, Tuszynski GP, Safak M, Lazarovici P, Marcinkiewicz C. Integrin alpha9 beta1 is a receptor for nerve growth factor and other neurotrophins. J Cell Sci 2008; 121:504-13. [PMID: 18230652 DOI: 10.1242/jcs.000232] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The integrin alpha9beta1 is a multifunctional receptor that interacts with a variety of ligands including vascular cell adhesion molecule 1, tenascin C and osteopontin. We found that this integrin is a receptor for nerve growth factor (NGF) and two other neurotrophins, brain-derived neurotrophic factor and NT3, using a cell adhesion assay with the alpha9SW480 cell line. Interaction of alpha9beta1 with NGF was confirmed in an ELISA assay by direct binding to purified integrin. alpha9beta1 integrin binds to neurotrophins in a manner similar to another common neurotrophin receptor, p75(NTR) (NGFR), although alpha9beta1 activity is correlated with induction of pro-survival and pro-proliferative signaling cascades. This property of alpha9beta1 resembles the interaction of NGF with a high affinity receptor, TrkA, however, this integrin shows a low affinity for NGF. NGF induces chemotaxis of cells expressing alpha9beta1 and their proliferation. Moreover, alpha9beta1 integrin is a signaling receptor for NGF, which activates the MAPK (Erk1/2) pathway. The alpha9beta1-dependent chemotactic ability of NGF appears to result from the activation of paxillin.
Collapse
Affiliation(s)
- Izabela Staniszewska
- Department of Neuroscience, Center for Neurovirology and Cancer Biology, Temple University, School of Medicine, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Macias M, Dwornik A, Ziemlinska E, Fehr S, Schachner M, Czarkowska-Bauch J, Skup M. Locomotor exercise alters expression of pro-brain-derived neurotrophic factor, brain-derived neurotrophic factor and its receptor TrkB in the spinal cord of adult rats. Eur J Neurosci 2007; 25:2425-44. [PMID: 17445239 DOI: 10.1111/j.1460-9568.2007.05498.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous evidence indicates that locomotor exercise is a powerful means of increasing brain-derived neurotrophic factor (BDNF) and its signal transduction receptor TrkB mRNA levels, immunolabeling intensity and number of BDNF- and TrkB-immunopositive cells in the spinal cord of adult rats but the contribution of specific cell types to changes resulting from long-term activity is unknown. As changes in BDNF protein distribution due to systemic stimuli may reflect either its in-situ synthesis or its translocation from other sources, we investigated where BDNF and TrkB mRNA are expressed in the spinal lumbar segments. We report on the cell types defined by size, BDNF mRNA levels and number of cells with TrkB transcripts in sedentary and exercised animals following 28 days of treadmill walking. In the majority of cells, exercise increased perikaryonal levels of BDNF mRNA but did not affect TrkB transcript levels. Bidirectional changes in a number of TrkB mRNA-expressing cells occurred in small groups of ventral horn neurons. An increase in BDNF transcripts was translated into changes in pro-BDNF and BDNF levels. A 7-day walking regimen increased BDNF protein levels similarly to 28-day treadmill walking. Our observations indicate that long- and short-term locomotor activity of moderate intensity produce stimuli sufficient to recruit a majority of spinal cells to increased BDNF synthesis, suggesting that continuous tuning of pro-BDNF and BDNF levels permits spinal networks to undergo trophic modulation not requiring changes in TrkB mRNA supply.
Collapse
Affiliation(s)
- Matylda Macias
- Department of Neurophysiology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
28
|
Primary and secondary hyperalgesia can be differentiated by postnatal age and ERK activation in the spinal dorsal horn of the rat pup. Pain 2007; 128:157-68. [DOI: 10.1016/j.pain.2006.09.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 08/27/2006] [Accepted: 09/11/2006] [Indexed: 12/22/2022]
|
29
|
Polgár E, Campbell AD, MacIntyre LM, Watanabe M, Todd AJ. Phosphorylation of ERK in neurokinin 1 receptor-expressing neurons in laminae III and IV of the rat spinal dorsal horn following noxious stimulation. Mol Pain 2007; 3:4. [PMID: 17309799 PMCID: PMC1803781 DOI: 10.1186/1744-8069-3-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 02/19/2007] [Indexed: 11/20/2022] Open
Abstract
Background There is a population of large neurons with cell bodies in laminae III and IV of the spinal dorsal horn which express the neurokinin 1 receptor (NK1r) and have dendrites that enter the superficial laminae. Although it has been shown that these are all projection neurons and that they are innervated by substance P-containing (nociceptive) primary afferents, we know little about their responses to noxious stimuli. In this study we have looked for phosphorylation of extracellular signal-regulated kinases (ERKs) in these neurons in response to different types of noxious stimulus applied to one hindlimb of anaesthetised rats. The stimuli were mechanical (repeated pinching), thermal (immersion in water at 52°C) or chemical (injection of 2% formaldehyde). Results Five minutes after each type of stimulus we observed numerous cells with phosphorylated ERK (pERK) in laminae I and IIo, together with scattered positive cells in deeper laminae. We found that virtually all of the lamina III/IV NK1r-immunoreactive neurons contained pERK after each of these stimuli and that in the great majority of cases there was internalisation of the NK1r on the dorsal dendrites of these cells. In addition, we also saw neurons in lamina III that were pERK-positive but lacked the NK1r, and these were particularly evident in animals that had had the pinch stimulus. Conclusion Our results demonstrate that lamina III/IV NK1r-immunoreactive neurons show receptor internalisation and ERK phosphorylation after mechanical, thermal or chemical noxious stimuli.
Collapse
Affiliation(s)
- Erika Polgár
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Annie D Campbell
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Lynsey M MacIntyre
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - Andrew J Todd
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
30
|
Abstract
The neurotrophin family of neurotrophic factors are well-known for their effects on neuronal survival and growth. Over the past decade, considerable evidence has accumulated from both humans and animals that one neurotrophin, nerve growth factor (NGF), is a peripheral pain mediator, particularly in inflammatory pain states. NGF is upregulated in a wide variety of inflammatory conditions, and NGF-neutralizing molecules are effective analgesic agents in many models of persistent pain. Such molecules are now being evaluated in clinical trials. NGF regulates the expression of a second neurotrophin, brain-derived neurotrophic factor (BDNF), in nociceptors. BDNF is released when nociceptors are activated, and it acts as a central modulator of pain. The chapter reviews the evidence for these roles (and briefly the effects of other neurotrophins), the range of conditions under which they act, and their mechanism of action.
Collapse
Affiliation(s)
- Sophie Pezet
- The London Pain Consortium, King's College London, The Wolfson Center for Age-Related Diseases, SE1 1UL London, United Kingdom.
| | | |
Collapse
|
31
|
Zhang X, Bao L. The development and modulation of nociceptive circuitry. Curr Opin Neurobiol 2006; 16:460-6. [PMID: 16828278 DOI: 10.1016/j.conb.2006.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 06/26/2006] [Indexed: 12/21/2022]
Abstract
Nociceptive circuitry processes the signals evoked by activating specialized peripheral sensory receptors for pain perception. Recent studies show that the neuronal phenotypes in the dorsal root ganglia and spinal dorsal horn are determined by distinct sets of transcription factors during development. Anatomical analyses with genetic approaches demonstrate that each subset of nociceptive sensory neurons has topographically distinct circuits at both spinal and brain levels. Moreover, the sensitivity of primary afferents can be rapidly regulated not only by phosphorylation of receptors, ion channels and associated regulatory proteins but also by stimulus-induced cell surface expression of G-protein-coupled receptors. In chronic pain states the molecular characteristics of spinal nociceptive circuits are altered, enabling normal peripheral stimuli to induce pain hypersensitivity.
Collapse
Affiliation(s)
- Xu Zhang
- Institute of Neuroscience, Key Laboratory of Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | | |
Collapse
|