1
|
Wang S, Zhu A, Paudel S, Jang CG, Lee YS, Kim KM. Structure-Activity Relationship and Evaluation of Phenethylamine and Tryptamine Derivatives for Affinity towards 5-Hydroxytryptamine Type 2A Receptor. Biomol Ther (Seoul) 2023; 31:176-182. [PMID: 36224112 PMCID: PMC9970836 DOI: 10.4062/biomolther.2022.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022] Open
Abstract
Among 14 subtypes of serotonin receptors (5-HTRs), 5-HT2AR plays important roles in drug addiction and various psychiatric disorders. Agonists for 5-HT2AR have been classified into three structural groups: phenethylamines, tryptamines, and ergolines. In this study, the structure-activity relationship (SAR) of phenethylamine and tryptamine derivatives for binding 5-HT2AR was determined. In addition, functional and regulatory evaluation of selected compounds was conducted for extracellular signal-regulated kinases (ERKs) and receptor endocytosis. SAR studies showed that phenethylamines possessed higher affinity to 5-HT2AR than tryptamines. In phenethylamines, two phenyl groups were attached to the carbon and nitrogen (R3) atoms of ethylamine, the backbone of phenethylamines. Alkyl or halogen groups on the phenyl ring attached to the β carbon exerted positive effects on the binding affinity when they were at para positions. Oxygen-containing groups attached to R3 exerted mixed influences depending on the position of their attachment. In tryptamine derivatives, tryptamine group was attached to the β carbon of ethylamine, and ally groups were attached to the nitrogen atom. Oxygen-containing substituents on large ring and alkyl substituents on the small ring of tryptamine groups exerted positive and negative influence on the affinity for 5-HT2AR, respectively. Ally groups attached to the nitrogen atom of ethylamine exerted negative influences. Functional and regulatory activities of the tested compounds correlated with their affinity for 5-HT2AR, suggesting their agonistic nature. In conclusion, this study provides information for designing novel ligands for 5-HT2AR, which can be used to control psychiatric disorders and drug abuse.
Collapse
Affiliation(s)
- Shujie Wang
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61146, Republic of Korea
| | - Anlin Zhu
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61146, Republic of Korea
| | - Suresh Paudel
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61146, Republic of Korea
| | - Choon-Gon Jang
- Pharmacology Laboratory, College of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyeong-Man Kim
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61146, Republic of Korea,Corresponding Author E-mail: , Tel: +82-62-530-2936, Fax: +82-62-530-2949
| |
Collapse
|
2
|
Muñoz A, Lopez-Lopez A, Labandeira CM, Labandeira-Garcia JL. Interactions Between the Serotonergic and Other Neurotransmitter Systems in the Basal Ganglia: Role in Parkinson's Disease and Adverse Effects of L-DOPA. Front Neuroanat 2020; 14:26. [PMID: 32581728 PMCID: PMC7289026 DOI: 10.3389/fnana.2020.00026] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. However, other non-dopaminergic neuronal systems such as the serotonergic system are also involved. Serotonergic dysfunction is associated with non-motor symptoms and complications, including anxiety, depression, dementia, and sleep disturbances. This pathology reduces patient quality of life. Interaction between the serotonergic and other neurotransmitters systems such as dopamine, noradrenaline, glutamate, and GABA controls the activity of striatal neurons and are particularly interesting for understanding the pathophysiology of PD. Moreover, serotonergic dysfunction also causes motor symptoms. Interestingly, serotonergic neurons play an important role in the effects of L-DOPA in advanced PD stages. Serotonergic terminals can convert L-DOPA to dopamine, which mediates dopamine release as a "false" transmitter. The lack of any autoregulatory feedback control in serotonergic neurons to regulate L-DOPA-derived dopamine release contributes to the appearance of L-DOPA-induced dyskinesia (LID). This mechanism may also be involved in the development of graft-induced dyskinesias (GID), possibly due to the inclusion of serotonin neurons in the grafted tissue. Consistent with this, the administration of serotonergic agonists suppressed LID. In this review article, we summarize the interactions between the serotonergic and other systems. We also discuss the role of the serotonergic system in LID and if therapeutic approaches specifically targeting this system may constitute an effective strategy in PD.
Collapse
Affiliation(s)
- Ana Muñoz
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Deptartment of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Andrea Lopez-Lopez
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Deptartment of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Carmen M Labandeira
- Department of Clinical Neurology, Hospital Alvaro Cunqueiro, University Hospital Complex, Vigo, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Deptartment of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| |
Collapse
|
3
|
Antipsychotic-evoked dopamine supersensitivity. Neuropharmacology 2020; 163:107630. [DOI: 10.1016/j.neuropharm.2019.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
|
4
|
Fan F, Yang M, Geng X, Ma X, Sun H. Effects of Restraint Water-Immersion Stress-Induced Gastric Mucosal Damage on Astrocytes and Neurons in the Nucleus Raphe Magnus of Rats via the ERK1/2 Signaling Pathway. Neurochem Res 2019; 44:1841-1850. [PMID: 31119435 DOI: 10.1007/s11064-019-02818-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/03/2019] [Accepted: 05/20/2019] [Indexed: 01/31/2023]
Abstract
Restraint water-immersion stress (RWIS) consists of psychological and physical stimulation, and it has been utilized in the research of gastric mucosal damage. It has been shown by previous studies that the nucleus raphe magnus (NRM) is closely involved in the gastrointestinal function, but its functions on the stress-induced gastric mucosal injury (SGMI) have not been thoroughly elucidated to date. Consequently, in this research, we aim to measure the expression of astrocytic glial fibrillary acidic protein (GFAP), neuronal c-Fos, and phosphorylation extracellular signal regulated kinase 1/2 (p-ERK1/2) in the process of RWIS with immunohistochemistry and western blot methods. What is more, we detect the relation between astrocytes and neurons throughout the stress procedure and explore the regulation of the ERK1/2 signaling pathway on the activity of astrocytes and neurons after RWIS. The results indicated that all three proteins expression multiplied following peaked 3 h substantially. The SMGI, astrocyte and neuron activity were affected after the astrocytotoxin L-A-aminohexanedioic acid (L-AA) and c-fos antisense oligonucleotide (ASO) injections. After the injection of PD98059, the gastric mucosal injury, astrocyte and neuron activity significantly fell off. These results suggested that RWIS-induced activity of astrocytes and neurons in the NRM may play a significant part in gastric mucosa damage via the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Fangcheng Fan
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Mengzhu Yang
- Qingdao No. 31 Middle School, Qingdao, 266041, China
| | - Xiwen Geng
- Shandong Traditional Chinese Medicine University, Jinan, 250014, China
| | - Xiaoli Ma
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, China.
| | - Haiji Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
5
|
Kulikova EA, Khotskin NV, Illarionova NB, Sorokin IE, Bazhenova EY, Kondaurova EM, Volcho KP, Khomenko TM, Salakhutdinov NF, Ponimaskin E, Naumenko VS, Kulikov AV. Inhibitor of Striatal-Enriched Protein Tyrosine Phosphatase, 8-(Trifluoromethyl)-1,2,3,4,5-Benzopentathiepin-6-Amine hydrochloride (TC-2153), Produces Antidepressant-Like Effect and Decreases Functional Activity and Protein Level of 5-HT 2A Receptor in the Brain. Neuroscience 2018; 394:220-231. [PMID: 30367948 DOI: 10.1016/j.neuroscience.2018.10.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 11/25/2022]
Abstract
The serotoninergic 5-HT2A receptor is involved in the mechanism of depression and antidepressant drugs action. Earlier we showed that striatal-enriched protein tyrosine phosphatase (STEP) inhibitor - 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (TC-2153) affects both the brain serotoninergic system and the brain-derived neurotropic factor that are known to be involved in the psychopathology of depression. In the present study we investigated the effects of chronic TC-2153 administration on behavior in the standard battery of tests as well as the effects of acute and chronic TC-2153 treatment on the brain 5-HT2A receptors in mice. We obtained a prominent antidepressant-like effect of chronic TC-2153 treatment in the forced swim test without any adverse side effects on locomotor activity, anxiety, exploration, motor skill and obsessive-compulsive-like behavior. Moreover, both acute and chronic TC-2153 administration inhibited the functional activity of 5-HT2A receptors estimated by the number of 2,5-dimethoxy-4-iodoamphetamine (DOI, agonist of 5-HT2A receptors)-induced head-twitches. TC-2153 treatment also attenuated the DOI-induced c-fos expression in cortical and hippocampal neurons and reduced the 5-HT2A receptor protein level in the hippocampus and frontal cortex, but not in the striatum. Taken together, our combined data demonstrate that the antidepressant effect of STEP inhibitor TC-2153 could be mediated by its inhibitory properties towards the 5-HT2A receptor-mediated signaling.
Collapse
Affiliation(s)
- E A Kulikova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia.
| | - N V Khotskin
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - N B Illarionova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - I E Sorokin
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - E Y Bazhenova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - E M Kondaurova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - K P Volcho
- Novosibirsk Institute of Organic Chemistry, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| | - T M Khomenko
- Novosibirsk Institute of Organic Chemistry, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| | - N F Salakhutdinov
- Novosibirsk Institute of Organic Chemistry, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| | - E Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - V S Naumenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - A V Kulikov
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| |
Collapse
|
6
|
Sahu A, Gopalakrishnan L, Gaur N, Chatterjee O, Mol P, Modi PK, Dagamajalu S, Advani J, Jain S, Keshava Prasad TS. The 5-Hydroxytryptamine signaling map: an overview of serotonin-serotonin receptor mediated signaling network. J Cell Commun Signal 2018; 12:731-735. [PMID: 30043327 DOI: 10.1007/s12079-018-0482-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 07/18/2018] [Indexed: 12/25/2022] Open
Abstract
The monoamine neurotransmitter, 5-Hydroxytryptamine or serotonin, is derived from tryptophan and synthesized both centrally and systemically. Fourteen structurally and functionally distinct receptor subtypes have been identified for serotonin, each of which mediates the neurotransmitter's effects through a range of downstream signaling molecules and effectors. Although it is most frequently described for its role in the etiology of neuropsychiatric and mood disorders, serotonin has been implicated in a slew of fundamental physiological processes, including apoptosis, mitochondrial biogenesis, cell proliferation and migration. Its roles as the neurotransmitter have also emerged in pathogenic conditions ranging from anorexia nervosa to cancer. This has necessitated the understanding of the signaling mechanisms underlying the serotonergic system, which led us to construct a consolidative pathway map, which will provide as a resource for future biomedical investigation on this pathway. Using a set of stringent NetPath annotation criteria, we manually curated molecular reactions associated with serotonin and its receptors from publicly available literature; the reaction categories included molecular associations, activation/inhibition, post-translation modification, transport, and gene regulation at transcription and translational level. We identified 90 molecules in serotonin-serotonin receptor pathway. We submitted the curated data to NetPath, a publicly available database of human signaling pathways, in order to enable the wider scientific community to readily access data and contribute further to this pathway.
Collapse
Affiliation(s)
- Apeksha Sahu
- Institute of Bioinformatics, International Tech Park, Bangalore, 560066, India
| | - Lathika Gopalakrishnan
- Institute of Bioinformatics, International Tech Park, Bangalore, 560066, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Nayana Gaur
- Institute of Bioinformatics, International Tech Park, Bangalore, 560066, India
- Hans Berger, Department of Neurology, Universitätsklinikum Jena, Jena, Germany
| | - Oishi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore, 560066, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525, India
| | - Praseeda Mol
- Institute of Bioinformatics, International Tech Park, Bangalore, 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Jayshree Advani
- Institute of Bioinformatics, International Tech Park, Bangalore, 560066, India
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Sanjeev Jain
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Tech Park, Bangalore, 560066, India.
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
7
|
Weilnau JN, Carcella MA, Miner KM, Bhatia TN, Hutchison DF, Pant DB, Nouraei N, Leak RK. Evidence for cross-hemispheric preconditioning in experimental Parkinson's disease. Brain Struct Funct 2018; 223:1255-1273. [PMID: 29103154 PMCID: PMC11061878 DOI: 10.1007/s00429-017-1552-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 10/19/2017] [Indexed: 12/12/2022]
Abstract
Dopamine loss and motor deficits in Parkinson's disease typically commence unilaterally and remain asymmetric for many years, raising the possibility that endogenous defenses slow the cross-hemispheric transmission of pathology. It is well-established that the biological response to subtoxic stress prepares cells to survive subsequent toxic challenges, a phenomenon known as preconditioning, tolerance, or stress adaptation. Here we demonstrate that unilateral striatal infusions of the oxidative toxicant 6-hydroxydopamine (6-OHDA) precondition the contralateral nigrostriatal pathway against the toxicity of a second 6-OHDA infusion in the opposite hemisphere. 6-OHDA-induced loss of dopaminergic terminals in the contralateral striatum was ablated by cross-hemispheric preconditioning, as shown by two independent markers of the dopaminergic phenotype, each measured by two blinded observers. Similarly, loss of dopaminergic somata in the contralateral substantia nigra was also abolished, according to two blinded measurements. Motor asymmetries in floor landings, forelimb contacts with a wall, and spontaneous turning behavior were consistent with these histological observations. Unilateral 6-OHDA infusions increased phosphorylation of the kinase ERK2 and expression of the antioxidant enzyme CuZn superoxide dismutase in both striata, consistent with our previous mechanistic work showing that these two proteins mediate preconditioning in dopaminergic cells. These findings support the existence of cross-hemispheric preconditioning in Parkinson's disease and suggest that dopaminergic neurons mount impressive natural defenses, despite their reputation as being vulnerable to oxidative injury. If these results generalize to humans, Parkinson's pathology may progress slowly and asymmetrically because exposure to a disease-precipitating insult induces bilateral upregulation of endogenous defenses and elicits cross-hemispheric preconditioning.
Collapse
Affiliation(s)
- Justin N Weilnau
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Michael A Carcella
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Kristin M Miner
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Tarun N Bhatia
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Daniel F Hutchison
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Deepti B Pant
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Negin Nouraei
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA.
| |
Collapse
|
8
|
Wirth A, Holst K, Ponimaskin E. How serotonin receptors regulate morphogenic signalling in neurons. Prog Neurobiol 2017; 151:35-56. [DOI: 10.1016/j.pneurobio.2016.03.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/09/2016] [Accepted: 03/19/2016] [Indexed: 11/25/2022]
|
9
|
Charron A, Hage CE, Servonnet A, Samaha AN. 5-HT2 receptors modulate the expression of antipsychotic-induced dopamine supersensitivity. Eur Neuropsychopharmacol 2015; 25:2381-93. [PMID: 26508706 DOI: 10.1016/j.euroneuro.2015.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/20/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Antipsychotic treatment can produce supersensitivity to dopamine receptor stimulation. This compromises the efficacy of ongoing treatment and increases the risk of relapse to psychosis upon treatment cessation. Serotonin 5-HT2 receptors modulate dopamine function and thereby influence dopamine-dependent responses. Here we evaluated the hypothesis that 5-HT2 receptors modulate the behavioural expression of antipsychotic-induced dopamine supersensitivity. To this end, we first treated rats with the antipsychotic haloperidol using a clinically relevant treatment regimen. We then assessed the effects of a 5-HT2 receptor antagonist (ritanserin; 0.01 and 0.1mg/kg) and of a 5-HT2A receptor antagonist (MDL100,907; 0.025-0.1mg/kg) on amphetamine-induced psychomotor activity. Antipsychotic-treated rats showed increased amphetamine-induced locomotion relative to antipsychotic-naïve rats, indicating a dopamine supersensitive state. At the highest dose tested (0.1mg/kg for both antagonists), both ritanserin and MDL100,907 suppressed amphetamine-induced locomotion in antipsychotic-treated rats, while having no effect on this behaviour in control rats. In parallel, antipsychotic treatment decreased 5-HT2A receptor density in the prelimbic cortex and nucleus accumbens core and increased 5-HT2A receptor density in the caudate-putamen. Thus, activation of either 5-HT2 receptors or of 5-HT2A receptors selectively is required for the full expression of antipsychotic-induced dopamine supersensitivity. In addition, antipsychotic-induced dopamine supersensitivity enhances the ability of 5-HT2/5-HT2A receptors to modulate dopamine-dependent behaviours. These effects are potentially linked to changes in 5-HT2A receptor density in the prefrontal cortex and the striatum. These observations raise the possibility that blockade of 5-HT2A receptors might overcome some of the behavioural manifestations of antipsychotic-induced dopamine supersensitivity.
Collapse
Affiliation(s)
- Alexandra Charron
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Canada
| | - Cynthia El Hage
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Canada
| | - Alice Servonnet
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Canada
| | - Anne-Noël Samaha
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Canada; CNS Research Group, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
10
|
Silkis IG. Mutual influence of serotonin and dopamine on the functioning of the dorsal striatum and motor activity (hypothetical mechanism). NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414030118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Zhong SY, Chen YX, Fang M, Zhu XL, Zhao YX, Liu XY. Low-dose levodopa protects nerve cells from oxidative stress and up-regulates expression of pCREB and CD39. PLoS One 2014; 9:e95387. [PMID: 24743653 PMCID: PMC3990701 DOI: 10.1371/journal.pone.0095387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/25/2014] [Indexed: 11/18/2022] Open
Abstract
Objective This study aimed to investigate the influence of low-dose levodopa (L-DOPA) on neuronal cell death under oxidative stress. Methods PC12 cells were treated with L-DOPA at different concentrations. We detected the L-DOPA induced reactive oxygen species (ROS). Meanwhile, MTT and LDH assay were performed to determine the proliferation and growth of PC12 cells with or without ROS scavenger. In addition, after pretreatment with L-DOPA at different concentrations alone or in combination with CD39 inhibitor, PC12 cells were incubated with hydrogen peroxide (H2O2) and the cell viability was evaluated by MTT and LDH assay. In addition, the expression of pCREB and CD39 was detected by immunofluorescence staining and Western blot assay in both cells and rat’s brain after L-DOPA treatment. Results After treatment with L-DOPA for 3 days, the cell proliferation and growth were promoted when the L-DOPA concentration was <30 µM, while cell proliferation was comparable to that in control group when the L-DOPA concentration was >30 µM. Low dose L-DOPA could protect the PC12 cells from H2O2 induced oxidative stress, which was compromised by CD39 inhibitor. In addition, the expression of CD39 and pCREB increased in both PC12 cells and rats’ brain after L-DOPA treatment. Conclusions L-DOPA at different concentrations has distinct influence on proliferation and growth of PC12 cells, and low dose (<30 µM) L-DOPA protects PC12 cells against oxidative stress which might be related to the up-regulation of CD39 and pCREB expression.
Collapse
Affiliation(s)
- Shi-Ying Zhong
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
| | - Yong-Xing Chen
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
| | - Min Fang
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
| | - Xiao-Long Zhu
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
| | - Yan-Xin Zhao
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
- * E-mail: (YXZ); (XYL)
| | - Xue-Yuan Liu
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
- * E-mail: (YXZ); (XYL)
| |
Collapse
|
12
|
Wang CC, Man GCW, Chu CY, Borchert A, Ugun-Klusek A, Billett EE, Kühn H, Ufer C. Serotonin receptor 6 mediates defective brain development in monoamine oxidase A-deficient mouse embryos. J Biol Chem 2014; 289:8252-63. [PMID: 24497636 DOI: 10.1074/jbc.m113.522094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Monoamine oxidases A and B (MAO-A and MAO-B) are enzymes of the outer mitochondrial membrane that metabolize biogenic amines. In the adult central nervous system, MAOs have important functions for neurotransmitter homeostasis. Expression of MAO isoforms has been detected in the developing embryo. However, suppression of MAO-B does not induce developmental alterations. In contrast, targeted inhibition and knockdown of MAO-A expression (E7.5-E10.5) caused structural abnormalities in the brain. Here we explored the molecular mechanisms underlying defective brain development induced by MAO-A knockdown during in vitro embryogenesis. The developmental alterations were paralleled by diminished apoptotic activity in the affected neuronal structures. Moreover, dysfunctional MAO-A expression led to elevated levels of embryonic serotonin (5-hydroxytryptamine (5-HT)), and we found that knockdown of serotonin receptor-6 (5-Htr6) expression or pharmacologic inhibition of 5-Htr6 activity rescued the MAO-A knockdown phenotype and restored apoptotic activity in the developing brain. Our data suggest that excessive 5-Htr6 activation reduces activation of caspase-3 and -9 of the intrinsic apoptotic pathway and enhances expression of antiapoptotic proteins Bcl-2 and Bcl-XL. Moreover, we found that elevated 5-HT levels in MAO-A knockdown embryos coincided with an enhanced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and a reduction of proliferating cell numbers. In summary, our findings suggest that excessive 5-HT in MAO-A-deficient mouse embryos triggers cellular signaling cascades via 5-Htr6, which suppresses developmental apoptosis in the brain and thus induces developmental retardations.
Collapse
|
13
|
Sharifi H, Mohajjel Nayebia A, Farajnia S. Dose-Dependent Effect of Flouxetine on 6-OHDA-Induced Catalepsy in Male Rats: A Possible Involvement of 5-HT1A Receptors. Adv Pharm Bull 2013; 3:203-6. [PMID: 24312836 DOI: 10.5681/apb.2013.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Progressive loss of dopaminergic neurons of the substantia nigra pars compacta (SNc) in Parkinson's disease (PD) leads to impairment of motor skills. Several evidences show that the role of serotonergic system in regulation of normal movement is pivotal and mediates via 5-HT1A receptors. Our previous study has shown that fluoxetine in acute injections able to attenuate catalepsy in 6-hydroxydopamine (6-OHDA)-lesioned rats. Since drugs are used chronically in clinic, in this study we attempted to evaluate effect of chronic administration of fluoxetine on 6-OHDA-induced catalepsy. METHODS Catalepsy was induced by unilateral infusion of 6-OHDA (8 µg/2 µl/rat) into the central region of SNc and assayed by using bar-test. Fluoxetine (1, 2.5, 5 and 10 mg/kg) was injected intraperitonealy (ip) for 10 days and its anti-cataleptic effect was assessed at the 10th day. RESULTS Fluoxetine in high doses (5 and 10 mg/kg) worsened 6-OHDA-induced catalepsy while it had anti-cataleptic effect at the dose of 1mg/kg. The anti-cataleptic effect of fluoxetine (1mg/kg) was reversed by co-administration with NAN-190 (0.5 mg/kg, ip), as a5-HT1Areceptor antagonist. CONCLUSION According to the results it can be concluded that fluoxetine has anti-cataleptic effect in parkinsonian rats only at low doses, whereas at higher doses it worsens catalepsy. It's anti-cataleptic effect is exerted through affecting on 5-HT1Areceptors. However, at high doses other mechanisms may be involved. Further clinical studies are needed to prove it's possible clinical application as an adjuvant therapy in reducing catalepsy of PD.
Collapse
Affiliation(s)
- Hamdolah Sharifi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences.Tabriz, Iran
| | | | | |
Collapse
|
14
|
Li L, Qiu G, Ding S, Zhou FM. Serotonin hyperinnervation and upregulated 5-HT2A receptor expression and motor-stimulating function in nigrostriatal dopamine-deficient Pitx3 mutant mice. Brain Res 2012; 1491:236-50. [PMID: 23159831 DOI: 10.1016/j.brainres.2012.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 10/29/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
Abstract
The striatum receives serotonin (5-hydroxytryptamine, 5-HT) innervation and expresses 5-HT2A receptors (5-HT2ARs) and other 5-HT receptors, raising the possibility that the striatal 5-HT system may undergo adaptive changes after chronic severe dopamine (DA) loss and contribute to the function and dysfunction of the striatum. Here we show that in transcription factor Pitx3 gene mutant mice with a selective, severe DA loss in the dorsal striatum mimicking the DA denervation in late Parkinson's disease (PD), both the 5-HT innervation and the 5-HT2AR mRNA expression were increased in the dorsal striatum. Functionally, while having no detectable motor effect in wild type mice, the 5-HT2R agonist 2,5-dimethoxy-4-iodoamphetamine increased both the baseline and l-dopa-induced normal ambulatory and dyskinetic movements in Pitx3 mutant mice, whereas the selective 5-HT2AR blocker volinanserin had the opposite effects. These results demonstrate that Pitx3 mutant mice are a convenient and valid mouse model to study the compensatory 5-HT upregulation following the loss of the nigrostriatal DA projection and that the upregulated 5-HT2AR function in the DA deficient dorsal striatum may enhance both normal and dyskinetic movements.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
15
|
eyhani-rad S, Mohajjel Nayebi A, Mahmoudi J, Samini M, Babapour V. Role of 5-Hydroxytryptamine 1A Receptors in 6-Hydroxydopmaine-induced Catalepsy-like Immobilization in Rats: a Therapeutic Approach for Treating Catalepsy of Parkinson's Disease. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2012; 11:1175-81. [PMID: 24250551 PMCID: PMC3813151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have shown that buspirone, a partial agonist of 5-hydroxytryptamine 1A (5-HT1A) receptors, improves motor dysfunctions induced by 6-hydroxydopamine (6-OHDA) and haloperidol in rats. The present work extends these findings by investigating the role of 5-HT1A receptors on catalepsy-like immobilization in rats, a model of Parkinson's disease. Catalepsy was induced by unilateral infusion of 6-OH-dopamine (8 μg/2μL/rat) into the central region of the substantia nigra, compact part (SNc) and assayed by bar-test method 5, 60, 120 and 180 min after the drugs administration. The involvement of 5-HT1A receptors in 6-OHDA-induced catalepsy was studied through intraperitoneal (0.25, 0.5 and 1mg/Kg IP) and intrasubstantia nigra, compact part (10 μg/rat, intra-SNc) injection of 8-hydroxy-2-[di-n-propylamino] tetralin (8-OHDPAT) as well as administration of 1-(2-methoxyphenyl)-4-[4-(2-pthalimmido) butyl] piperazine hydrobromide (0.1, 0.5 and 1 mg/Kg, NAN-190, IP). NAN-190 (1 mg/Kg, IP) and 8-OHDPAT (1 mg/Kg, IP and 10 μg/rat, intra-SNc) increased and decreased 6-OHDA-induced catalepsy respectively. In normal (non 6-OHDA-lesioned) rats, NAN-190 (1 mg/Kg, IP) increased the elapsed time in bar-test while 8-OHDPAT did not produce any significant effect. The anticataleptic effect of 8-OHDPAT (1 mg/Kg, IP) was reversed markedly by co-injection with NAN-190 (1 mg/Kg, IP). These findings suggest that 5-HT1A receptors are involved in 6-OHDA-induced catalepsy-like immobilization.
Collapse
Affiliation(s)
| | - Alireza Mohajjel Nayebi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences. ,Drug Applied Research Center, Tabriz University of Medical Sciences. dNeurosciences ,Corresponding author: E-mail:
| | - Javad Mahmoudi
- Research Center (NSRC), Tabriz University of medical Sciences, Tabriz Iran.
| | - Morteza Samini
- Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Vahab Babapour
- Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
16
|
Nayebi AM, Rad SR, Saberian M, Azimzadeh S, Samini M. Buspirone improves 6-hydroxydopamine-induced catalepsy through stimulation of nigral 5-HT(1A) receptors in rats. Pharmacol Rep 2010; 62:258-64. [PMID: 20508280 DOI: 10.1016/s1734-1140(10)70264-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 01/26/2010] [Indexed: 10/25/2022]
Abstract
Receptors for 5-HT(1A) are widely distributed throughout the basal ganglia, and their activation results in an inhibition of dopamine (DA) release. This study aimed to investigate the effect of buspirone, as a partial agonist of 5-HT(1A) receptors, on 6-hydroxydopamine (6-OHDA)-induced catalepsy in male Wistar rats. Catalepsy was induced by unilateral infusion of 6-OH-DA (6 microg/2 microl/rat) into the central region of the substantia nigra pars compacta (SNc) and assayed by the bar-test method 60, 120 and 180 min after drug administration. The results demonstrated that intraperitoneal (ip) injection of buspirone at doses of 5, 7.5 and 10 mg/kg decreased catalepsy compared with the control group. In addition, intra-SNc injection of 8-hydroxy-2-[di-n-propylamino]tetralin (8-OH-DPAT; 10 microg/rat), a 5-HT(1A) receptor agonist, decreased 6-OHDA-induced catalepsy. The effects of buspirone (7.5 mg/kg, ip) and 8-OH-DPAT (10 microg/rat, intra-SNc) were abolished by 1-(2-methoxyphenyl)-4-[4-(2-phthalimido) butyl]piperazine hydrobromide (NAN-190; 10 microg/rat, intra-SNc), a 5-HT(1A) receptor antagonist. Our study indicates that buspirone improves catalepsy in a 6-OHDA-induced animal model of Parkinson's disease through activation of nigral 5-HT(1A) receptors. However, further investigations should be undertaken to clarify the exact mechanism of interaction between 5-HT(1A) and DA receptors.
Collapse
Affiliation(s)
- Alireza M Nayebi
- Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51664, Iran.
| | | | | | | | | |
Collapse
|
17
|
Soderstrom KE, O'Malley JA, Levine ND, Sortwell CE, Collier TJ, Steece-Collier K. Impact of dendritic spine preservation in medium spiny neurons on dopamine graft efficacy and the expression of dyskinesias in parkinsonian rats. Eur J Neurosci 2010; 31:478-90. [PMID: 20105237 DOI: 10.1111/j.1460-9568.2010.07077.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dopamine deficiency associated with Parkinson's disease (PD) results in numerous changes in striatal transmitter function and neuron morphology. Specifically, there is marked atrophy of dendrites and dendritic spines on striatal medium spiny neurons (MSN), primary targets of inputs from nigral dopamine and cortical glutamate neurons, in advanced PD and rodent models of severe dopamine depletion. Dendritic spine loss occurs via dysregulation of intraspine Cav1.3 L-type Ca(2+)channels and can be prevented, in animal models, by administration of the calcium channel antagonist, nimodipine. The impact of MSN dendritic spine loss in the parkinsonian striatum on dopamine neuron graft therapy remains unexamined. Using unilaterally parkinsonian Sprague-Dawley rats, we tested the hypothesis that MSN dendritic spine preservation through administration of nimodipine would result in improved therapeutic benefit and diminished graft-induced behavioral abnormalities in rats grafted with embryonic ventral midbrain cells. Analysis of rotational asymmetry and spontaneous forelimb use in the cylinder task found no significant effect of dendritic spine preservation in grafted rats. However, analyses of vibrissae-induced forelimb use, levodopa-induced dyskinesias and graft-induced dyskinesias showed significant improvement in rats with dopamine grafts associated with preserved striatal dendritic spine density. Nimodipine treatment in this model did not impact dopamine graft survival but allowed for increased graft reinnervation of striatum. Taken together, these results demonstrate that even with grafting suboptimal numbers of cells, maintaining normal spine density on target MSNs results in overall superior behavioral efficacy of dopamine grafts.
Collapse
Affiliation(s)
- Katherine E Soderstrom
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
18
|
Dow-Edwards D. Sex differences in the effects of cocaine abuse across the life span. Physiol Behav 2010; 100:208-15. [PMID: 20045010 DOI: 10.1016/j.physbeh.2009.12.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 12/08/2009] [Accepted: 12/14/2009] [Indexed: 11/26/2022]
Abstract
Cocaine alters brain function from the early days of development throughout the entire life of an individual. Since the first preclinical research on cocaine sensitization was published, sex differences in response to the drug in adult rats have been noted. With the appearance of reports on "crack babies" during the 1980s, sex differences in response to prenatal (developmental) exposure have been identified in both clinical and preclinical reports. Cocaine administered during early development in the rat produces wide-spread alterations in function which depend on the timing of drug administration as well as the sex of the animal. In males, the response patterns following postnatal days (PND) 11-20 cocaine administration (equivalent to the late prenatal period in humans) are quite similar to those seen following prenatal exposure (equivalent to the first half of pregnancy in humans). There is a general decrease in dopaminergic (DA) markers and reactivity perhaps due to the uncoupling of the D1 receptor from its second messenger system. While similar changes in D1 uncoupling are seen in females, behavioral and metabolic responses to drug challenges generally show increases in DA responsivity (except adolescents) perhaps due to the activational effects of estrogen and/or decreases in serotonin (5-HT) mediated regulation of DA function. We have found that a significant factor in the hyper-responsivity of the female is the role of the testing environment and the responses to stress which can obscure underlying neurochemical dysregulation. Whether parallel factors are operational in adult males and females is currently under investigation.
Collapse
Affiliation(s)
- Diana Dow-Edwards
- Department of Physiology and Pharmacology, State University of New York, Health Sciences Center at Brooklyn (Downstate), Brooklyn, NY 11203, United States.
| |
Collapse
|
19
|
Blockade of adenosine A2A receptors downregulates DARPP-32 but increases ERK1/2 activity in striatum of dopamine deficient "weaver" mouse. Neurochem Int 2009; 56:245-9. [PMID: 19852993 DOI: 10.1016/j.neuint.2009.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 12/18/2022]
Abstract
In the present study we investigated the signal transduction cascade modulated by adenosine A(2A) receptors under chronic dopamine deficiency in the "weaver" mouse. We determined the phosphorylation state of cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) at Thr34 and of Extracellular Signal-regulated Protein Kinases 1/2 (ERK1/2), under basal conditions and after in vivo stimulation of A(2A) receptors by administration of the agonist CGS21680. Our results revealed that the endogenous levels of phospho-DARPPP-32 and phospho-ERK1/2 are elevated in "weaver" striatum probably as an adaptation phenomenon to gradual dopaminergic neurodegeneration appearing in this animal model, characterized as phenocopy of Parkinson's disease. Stimulation of A(2A) receptors by CGS21680 further increases phospho-DARPP-32 but downregulates significantly the elevated phospho-ERK1/2 levels bringing them close to those observed in wild type animals. Consistently, blockade of A(2A) receptors by MSX-3 (A(2A) receptor antagonist) downregulates phospho-DARPP-32 but significantly increases even more the phosphorylation/activation of ERK1/2. These results indicate that under chronic dopamine deficiency (a) the A(2A)/cAMP/PKA/DARPP-32 cascade is overactive due to the elevated endogenous phospho-DARPP-32 levels and (b) the A(2A) receptor modulatory effect on ERK1/2 signaling is dysregulated exerting opposing action compared to that observed in normal animals (Quiroz et al., 2006), i.e. in "weaver" animals A(2A) receptor blockade increases the activity of ERK1/2 cascade. This could be of clinical relevance since A(2A) antagonists are already used in clinical trials for ameliorating Parkinson's disease (PD) symptoms.
Collapse
|
20
|
Dopamine-dependent periadolescent maturation of corticostriatal functional connectivity in mouse. J Neurosci 2009; 29:2496-509. [PMID: 19244524 DOI: 10.1523/jneurosci.4421-08.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Altered corticostriatal information processing associated with early dopamine systems dysfunction may contribute to attention deficit/hyperactivity disorder (ADHD). Mice with neonatal dopamine-depleting lesions exhibit hyperactivity that wanes after puberty and is reduced by psychostimulants, reminiscent of some aspects of ADHD. To assess whether the maturation of corticostriatal functional connectivity is altered by early dopamine depletion, we examined preadolescent and postadolescent urethane-anesthetized mice with or without dopamine-depleting lesions. Specifically, we assessed (1) synchronization between striatal neuron discharges and oscillations in frontal cortex field potentials and (2) striatal neuron responses to frontal cortex stimulation. In adult control mice striatal neurons were less spontaneously active, less responsive to cortical stimulation, and more temporally tuned to cortical rhythms than in infants. Striatal neurons from hyperlocomotor mice required more current to respond to cortical input and were less phase locked to ongoing oscillations, resulting in fewer neurons responding to refined cortical commands. By adulthood some electrophysiological deficits waned together with hyperlocomotion, but striatal spontaneous activity remained substantially elevated. Moreover, dopamine-depleted animals showing normal locomotor scores exhibited normal corticostriatal synchronization, suggesting that the lesion allows, but is not sufficient, for the emergence of corticostriatal changes and hyperactivity. Although amphetamine normalized corticostriatal tuning in hyperlocomotor mice, it reduced horizontal activity in dopamine-depleted animals regardless of their locomotor phenotype, suggesting that amphetamine modified locomotion through a parallel mechanism, rather than that modified by dopamine depletion. In summary, functional maturation of striatal activity continues after infancy, and early dopamine depletion delays the maturation of core functional capacities of the corticostriatal system.
Collapse
|
21
|
Nic Dhonnchadha BA, Cunningham KA. Serotonergic mechanisms in addiction-related memories. Behav Brain Res 2008; 195:39-53. [PMID: 18639587 PMCID: PMC2630382 DOI: 10.1016/j.bbr.2008.06.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 06/10/2008] [Accepted: 06/10/2008] [Indexed: 11/22/2022]
Abstract
Drug-associated memories are a hallmark of addiction and a contributing factor in the continued use and relapse to drugs of abuse. Repeated association of drugs of abuse with conditioned stimuli leads to long-lasting behavioral responses that reflect reward-controlled learning and participate in the establishment of addiction. A greater understanding of the mechanisms underlying the formation and retrieval of drug-associated memories may shed light on potential therapeutic approaches to effectively intervene with drug use-associated memory. There is evidence to support the involvement of serotonin (5-HT) neurotransmission in learning and memory formation through the families of the 5-HT(1) receptor (5-HT(1)R) and 5-HT(2)R which have also been shown to play a modulatory role in the behavioral effects induced by many psychostimulants. While there is a paucity of studies examining the effects of selective 5-HT(1A)R ligands, the available dataset suggests that 5-HT(1B)R agonists may inhibit retrieval of cocaine-associated memories. The 5-HT(2A)R and 5-HT(2C)R appear to be integral in the strong conditioned associations made between cocaine and environmental cues with 5-HT(2A)R antagonists and 5-HT(2C)R agonists possessing potency in blocking retrieval of cocaine-associated memories following cocaine self-administration procedures. The complex anatomical connectivity between 5-HT neurons and other neuronal phenotypes in limbic-corticostriatal brain structures, the heterogeneity of 5-HT receptors (5-HT(X)R) and the conflicting results of behavioral experiments which employ non-specific 5-HT(X)R ligands contribute to the complexity of interpreting the involvement of 5-HT systems in addictive-related memory processes. This review briefly traces the history of 5-HT involvement in retrieval of drug-cue associations and future targets of serotonergic manipulation that may reduce the impact that drug cues have on addictive behavior and relapse.
Collapse
Affiliation(s)
- Bríd A Nic Dhonnchadha
- Center for Addiction Research, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | |
Collapse
|
22
|
Pharmacological characterization of mitogen-activated protein kinase activation by recombinant human 5-HT2C, 5-HT2A, and 5-HT2B receptors. Naunyn Schmiedebergs Arch Pharmacol 2008; 379:461-71. [DOI: 10.1007/s00210-008-0378-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 11/11/2008] [Indexed: 01/16/2023]
|
23
|
Abstract
Lesch-Nyhan syndrome is a rare genetic disorder, caused by a mutation in the gene coding for the enzyme hypoxanthine-guanine phosphoribosyltransferase, which is characterized by hyperuricemia and its associated symptoms along with motor disorders and compulsive self-mutilation. We show that the temporal difference learning algorithm that has been often used to interpret dopaminergic activity in the basal ganglia offers an explanation for the self-mutilation behaviors. We propose that a dysfunctional dopamine signal inadvertently reinforces early, accidental injurious behavior that is initially caused by clumsiness owing to the motor disorders. Simulations of this model reproduce findings on the results of behavioral treatments for dealing with self-mutilation behaviors.
Collapse
|
24
|
Sivam SP, Pugazhenthi S, Pugazhenthi V, Brown H. L-DOPA-induced activation of striatal p38MAPK and CREB in neonatal dopaminergic denervated rat: Relevance to self-injurious behavior. J Neurosci Res 2008; 86:339-49. [PMID: 17893915 DOI: 10.1002/jnr.21504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The destruction of nigrostriatal dopaminergic neurons with 6-hydroxydopamine (6OHDA) during the neonatal period results in dopamine (DA) loss and susceptibility for self-injurious behavior (SIB) when challenged with L-dihydroxyphenylalanine (L-DOPA), via a supersensitive D1 receptor-mediated mechanism. However, there are no changes in D1 receptor binding or mRNA levels, suggesting a potential postreceptor signaling mechanism(s). Here, we examined whether L-DOPA-induced SIB is associated with altered MAPK signaling (p38MAPK, ERK1/2, and JNK) and their nuclear target, CREB. Neonatal dopaminergic lesioned animals were challenged, as adults, with L-DOPA, observed for SIB for 6 hr, and then sacrificed. The data were grouped as follows: control, lesioned rats without SIB (SIB(-)), and lesioned rats that were positive for SIB (SIB(+)). HPLC analysis of striatal extracts revealed a more significant loss of DA and an increase of serotonin in the SIB(+) than in the SIB(-) group. The striatal levels of TH protein were severely decreased, but D1 receptor levels were unaltered in the lesioned groups. These results confirm and extend previous studies indicating that SIB is associated with a near-total loss of DA and TH, an increase in serotonin, and no change in D1 receptor levels. The present studies further revealed that the levels of active phosphorylated forms of p38MAPK and CREB were significantly higher in the SIB(+) group than in the SIB(-) group in the striatum, but not in cortex or olfactory tubercle. The results indicate an induction of striatal p38MAPK and an activation of its nuclear target, CREB, as additional mechanisms in the genesis of L-DOPA-induced SIB.
Collapse
Affiliation(s)
- Subbiah P Sivam
- Department of Pharmacology and Toxicology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA.
| | | | | | | |
Collapse
|
25
|
Grundmann K, Reischmann B, Vanhoutte G, Hübener J, Teismann P, Hauser TK, Bonin M, Wilbertz J, Horn S, Nguyen HP, Kuhn M, Chanarat S, Wolburg H, Van der Linden A, Riess O. Overexpression of human wildtype torsinA and human DeltaGAG torsinA in a transgenic mouse model causes phenotypic abnormalities. Neurobiol Dis 2007; 27:190-206. [PMID: 17601741 DOI: 10.1016/j.nbd.2007.04.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 04/13/2007] [Accepted: 04/27/2007] [Indexed: 11/30/2022] Open
Abstract
Primary torsion dystonia is an autosomal-dominant inherited movement disorder. Most cases are caused by an in-frame deletion (GAG) of the DYT1 gene encoding torsinA. Reduced penetrance and phenotypic variability suggest that alteration of torsinA amino acid sequence is necessary but not sufficient for development of clinical symptoms and that additional factors must contribute to the factual manifestation of the disease. We generated 4 independent transgenic mouse lines, two overexpressing human mutant torsinA and two overexpressing human wildtype torsinA using a strong murine prion protein promoter. Our data provide for the first time in vivo evidence that not only mutant torsinA is detrimental to neuronal cells but that also wildtype torsinA can lead to neuronal dysfunction when overexpressed at high levels. This hypothesis is supported by (i) neuropathological findings, (ii) neurochemistry, (iii) behavioral abnormalities and (iv) DTI-MRI analysis.
Collapse
Affiliation(s)
- K Grundmann
- Department of Medical Genetics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|