1
|
Asinof SK, Card GM. Neural Control of Naturalistic Behavior Choices. Annu Rev Neurosci 2024; 47:369-388. [PMID: 38724026 DOI: 10.1146/annurev-neuro-111020-094019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
In the natural world, animals make decisions on an ongoing basis, continuously selecting which action to undertake next. In the lab, however, the neural bases of decision processes have mostly been studied using artificial trial structures. New experimental tools based on the genetic toolkit of model organisms now make it experimentally feasible to monitor and manipulate neural activity in small subsets of neurons during naturalistic behaviors. We thus propose a new approach to investigating decision processes, termed reverse neuroethology. In this approach, experimenters select animal models based on experimental accessibility and then utilize cutting-edge tools such as connectomes and genetically encoded reagents to analyze the flow of information through an animal's nervous system during naturalistic choice behaviors. We describe how the reverse neuroethology strategy has been applied to understand the neural underpinnings of innate, rapid decision making, with a focus on defensive behavioral choices in the vinegar fly Drosophila melanogaster.
Collapse
Affiliation(s)
- Samuel K Asinof
- Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, Maryland, USA
- Janelia Research Campus, Ashburn, Virginia, USA
| | - Gwyneth M Card
- Howard Hughes Medical Institute, Department of Neuroscience, and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA;
- Janelia Research Campus, Ashburn, Virginia, USA
| |
Collapse
|
2
|
MaBouDi H, Marshall JAR, Dearden N, Barron AB. How honey bees make fast and accurate decisions. eLife 2023; 12:e86176. [PMID: 37365884 PMCID: PMC10299826 DOI: 10.7554/elife.86176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Honey bee ecology demands they make both rapid and accurate assessments of which flowers are most likely to offer them nectar or pollen. To understand the mechanisms of honey bee decision-making, we examined their speed and accuracy of both flower acceptance and rejection decisions. We used a controlled flight arena that varied both the likelihood of a stimulus offering reward and punishment and the quality of evidence for stimuli. We found that the sophistication of honey bee decision-making rivalled that reported for primates. Their decisions were sensitive to both the quality and reliability of evidence. Acceptance responses had higher accuracy than rejection responses and were more sensitive to changes in available evidence and reward likelihood. Fast acceptances were more likely to be correct than slower acceptances; a phenomenon also seen in primates and indicative that the evidence threshold for a decision changes dynamically with sampling time. To investigate the minimally sufficient circuitry required for these decision-making capacities, we developed a novel model of decision-making. Our model can be mapped to known pathways in the insect brain and is neurobiologically plausible. Our model proposes a system for robust autonomous decision-making with potential application in robotics.
Collapse
Affiliation(s)
- HaDi MaBouDi
- Department of Computer Science, University of SheffieldSheffieldUnited Kingdom
- Sheffield Neuroscience Institute, University of SheffieldSheffieldUnited Kingdom
| | - James AR Marshall
- Department of Computer Science, University of SheffieldSheffieldUnited Kingdom
- Sheffield Neuroscience Institute, University of SheffieldSheffieldUnited Kingdom
| | - Neville Dearden
- Department of Computer Science, University of SheffieldSheffieldUnited Kingdom
| | - Andrew B Barron
- Department of Computer Science, University of SheffieldSheffieldUnited Kingdom
- School of Natural Sciences, Macquarie UniversityNorth RydeAustralia
| |
Collapse
|
3
|
Wu Z, Guo A. Bioinspired figure-ground discrimination via visual motion smoothing. PLoS Comput Biol 2023; 19:e1011077. [PMID: 37083880 PMCID: PMC10155969 DOI: 10.1371/journal.pcbi.1011077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
Flies detect and track moving targets among visual clutter, and this process mainly relies on visual motion. Visual motion is analyzed or computed with the pathway from the retina to T4/T5 cells. The computation of local directional motion was formulated as an elementary movement detector (EMD) model more than half a century ago. Solving target detection or figure-ground discrimination problems can be equivalent to extracting boundaries between a target and the background based on the motion discontinuities in the output of a retinotopic array of EMDs. Individual EMDs cannot measure true velocities, however, due to their sensitivity to pattern properties such as luminance contrast and spatial frequency content. It remains unclear how local directional motion signals are further integrated to enable figure-ground discrimination. Here, we present a computational model inspired by fly motion vision. Simulations suggest that the heavily fluctuating output of an EMD array is naturally surmounted by a lobula network, which is hypothesized to be downstream of the local motion detectors and have parallel pathways with distinct directional selectivity. The lobula network carries out a spatiotemporal smoothing operation for visual motion, especially across time, enabling the segmentation of moving figures from the background. The model qualitatively reproduces experimental observations in the visually evoked response characteristics of one type of lobula columnar (LC) cell. The model is further shown to be robust to natural scene variability. Our results suggest that the lobula is involved in local motion-based target detection.
Collapse
Affiliation(s)
- Zhihua Wu
- School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Aike Guo
- School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- International Academic Center of Complex Systems, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Honkanen A, Hensgen R, Kannan K, Adden A, Warrant E, Wcislo W, Heinze S. Parallel motion vision pathways in the brain of a tropical bee. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01625-x. [PMID: 37017717 DOI: 10.1007/s00359-023-01625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 04/06/2023]
Abstract
Spatial orientation is a prerequisite for most behaviors. In insects, the underlying neural computations take place in the central complex (CX), the brain's navigational center. In this region different streams of sensory information converge to enable context-dependent navigational decisions. Accordingly, a variety of CX input neurons deliver information about different navigation-relevant cues. In bees, direction encoding polarized light signals converge with translational optic flow signals that are suited to encode the flight speed of the animals. The continuous integration of speed and directions in the CX can be used to generate a vector memory of the bee's current position in space in relation to its nest, i.e., perform path integration. This process depends on specific, complex features of the optic flow encoding CX input neurons, but it is unknown how this information is derived from the visual periphery. Here, we thus aimed at gaining insight into how simple motion signals are reshaped upstream of the speed encoding CX input neurons to generate their complex features. Using electrophysiology and anatomical analyses of the halictic bees Megalopta genalis and Megalopta centralis, we identified a wide range of motion-sensitive neurons connecting the optic lobes with the central brain. While most neurons formed pathways with characteristics incompatible with CX speed neurons, we showed that one group of lobula projection neurons possess some physiological and anatomical features required to generate the visual responses of CX optic-flow encoding neurons. However, as these neurons cannot explain all features of CX speed cells, local interneurons of the central brain or alternative input cells from the optic lobe are additionally required to construct inputs with sufficient complexity to deliver speed signals suited for path integration in bees.
Collapse
Affiliation(s)
- Anna Honkanen
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Ronja Hensgen
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Kavitha Kannan
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Andrea Adden
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
- Neural Circuits and Evolution Lab, The Francis Crick Institute, London, UK
| | - Eric Warrant
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - William Wcislo
- Smithsonian Tropical Research Institute, Panama City, República de Panamá
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden.
- NanoLund, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
Shinomiya K, Nern A, Meinertzhagen IA, Plaza SM, Reiser MB. Neuronal circuits integrating visual motion information in Drosophila melanogaster. Curr Biol 2022; 32:3529-3544.e2. [PMID: 35839763 DOI: 10.1016/j.cub.2022.06.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/17/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
The detection of visual motion enables sophisticated animal navigation, and studies on flies have provided profound insights into the cellular and circuit bases of this neural computation. The fly's directionally selective T4 and T5 neurons encode ON and OFF motion, respectively. Their axons terminate in one of the four retinotopic layers in the lobula plate, where each layer encodes one of the four directions of motion. Although the input circuitry of the directionally selective neurons has been studied in detail, the synaptic connectivity of circuits integrating T4/T5 motion signals is largely unknown. Here, we report a 3D electron microscopy reconstruction, wherein we comprehensively identified T4/T5's synaptic partners in the lobula plate, revealing a diverse set of new cell types and attributing new connectivity patterns to the known cell types. Our reconstruction explains how the ON- and OFF-motion pathways converge. T4 and T5 cells that project to the same layer connect to common synaptic partners and comprise a core motif together with bilayer interneurons, detailing the circuit basis for computing motion opponency. We discovered pathways that likely encode new directions of motion by integrating vertical and horizontal motion signals from upstream T4/T5 neurons. Finally, we identify substantial projections into the lobula, extending the known motion pathways and suggesting that directionally selective signals shape feature detection there. The circuits we describe enrich the anatomical basis for experimental and computations analyses of motion vision and bring us closer to understanding complete sensory-motor pathways.
Collapse
Affiliation(s)
- Kazunori Shinomiya
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Ian A Meinertzhagen
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Psychology and Neuroscience, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - Stephen M Plaza
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Michael B Reiser
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
6
|
A functionally ordered visual feature map in the Drosophila brain. Neuron 2022; 110:1700-1711.e6. [DOI: 10.1016/j.neuron.2022.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/30/2021] [Accepted: 02/16/2022] [Indexed: 12/19/2022]
|
7
|
Jernigan CM, Zaba NC, Sheehan MJ. Age and social experience induced plasticity across brain regions of the paper wasp Polistes fuscatus. Biol Lett 2021; 17:20210073. [PMID: 33849349 PMCID: PMC8086938 DOI: 10.1098/rsbl.2021.0073] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
Developmental studies of brain volumes can reveal which portions of neural circuits are sensitive to environmental inputs. In social insects, differences in relative investment across brain regions emerge as behavioural repertoires change during ontogeny or as a result of experience. Here, we test the effects of maturation and social experience on morphological brain development in Polistes fuscatus paper wasps, focusing on brain regions involved in visual and olfactory processing. We find that mature wasps regardless of social experience have relatively larger brains than newly emerged wasps and this difference is driven by changes to mushroom body calyx and visual regions but not olfactory processing neuropils. Notably, social wasps invest more in the anterior optic tubercle (AOT), a visual glomerulus involved in colour and object processing in other taxa, relative to other visual integration centres the mushroom body calyces compared with aged socially naive wasps. Differences in developmental plasticity between visual and olfactory neuropil volumes are discussed in light of behavioural maturation in paper wasps, especially as it relates to social recognition. Previous research has shown that P. fuscatus need social experience to develop specialized visual processing of faces, which is used to individually recognize conspecifics. The present study suggests that the AOT is a candidate brain region that could mediate facial processing in this species.
Collapse
Affiliation(s)
| | - Natalie C. Zaba
- Department of Neurobiology and Behaviour, Cornell University, Ithaca, NY 14853, USA
| | - Michael J. Sheehan
- Department of Neurobiology and Behaviour, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Strausfeld NJ, Olea-Rowe B. Convergent evolution of optic lobe neuropil in Pancrustacea. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 61:101040. [PMID: 33706077 DOI: 10.1016/j.asd.2021.101040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
A prevailing opinion since 1926 has been that optic lobe organization in malacostracan crustaceans and insects reflects a corresponding organization in their common ancestor. Support for this refers to malacostracans and insects both possessing three, in some instances four, nested retinotopic neuropils beneath their compound eyes. Historically, the rationale for claiming homology of malacostracan and insect optic lobes referred to those commonalities, and to comparable arrangements of neurons. However, recent molecular phylogenetics has firmly established that Malacostraca belong to Multicrustacea, whereas Hexapoda and its related taxa Cephalocarida, Branchiopoda, and Remipedia belong to the phyletically distinct clade Allotriocarida. Insects are more closely related to remipedes than are either to malacostracans. Reconciling neuroanatomy with molecular phylogenies has been complicated by studies showing that the midbrains of remipedes share many attributes with the midbrains of malacostracans. Here we review the organization of the optic lobes in Malacostraca and Insecta to inquire which of their characters correspond genealogically across Pancrustacea and which characters do not. We demonstrate that neuroanatomical characters pertaining to the third optic lobe neuropil, called the lobula complex, may indicate convergent evolution. Distinctions of the malacostracan and insect lobula complexes are sufficient to align neuroanatomical descriptions of the pancrustacean optic lobes within the constraints of molecular-based phylogenies.
Collapse
|
9
|
Städele C, Keleş MF, Mongeau JM, Frye MA. Non-canonical Receptive Field Properties and Neuromodulation of Feature-Detecting Neurons in Flies. Curr Biol 2020; 30:2508-2519.e6. [PMID: 32442460 PMCID: PMC7343589 DOI: 10.1016/j.cub.2020.04.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/10/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
Several fundamental aspects of motion vision circuitry are prevalent across flies and mice. Both taxa segregate ON and OFF signals. For any given spatial pattern, motion detectors in both taxa are tuned to speed, selective for one of four cardinal directions, and modulated by catecholamine neurotransmitters. These similarities represent conserved, canonical properties of the functional circuits and computational algorithms for motion vision. Less is known about feature detectors, including how receptive field properties differ from the motion pathway or whether they are under neuromodulatory control to impart functional plasticity for the detection of salient objects from a moving background. Here, we investigated 19 types of putative feature selective lobula columnar (LC) neurons in the optic lobe of the fruit fly Drosophila melanogaster to characterize divergent properties of feature selection. We identified LC12 and LC15 as feature detectors. LC15 encodes moving bars, whereas LC12 is selective for the motion of discrete objects, mostly independent of size. Neither is selective for contrast polarity, speed, or direction, highlighting key differences in the underlying algorithms for feature detection and motion vision. We show that the onset of background motion suppresses object responses by LC12 and LC15. Surprisingly, the application of octopamine, which is released during flight, reverses the suppressive influence of background motion, rendering both LCs able to track moving objects superimposed against background motion. Our results provide a comparative framework for the function and modulation of feature detectors and new insights into the underlying neuronal mechanisms involved in visual feature detection.
Collapse
Affiliation(s)
- Carola Städele
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7239, USA
| | - Mehmet F Keleş
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7239, USA
| | - Jean-Michel Mongeau
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7239, USA
| | - Mark A Frye
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7239, USA.
| |
Collapse
|
10
|
Habenstein J, Amini E, Grübel K, el Jundi B, Rössler W. The brain of
Cataglyphis
ants: Neuronal organization and visual projections. J Comp Neurol 2020; 528:3479-3506. [DOI: 10.1002/cne.24934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Jens Habenstein
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| | - Emad Amini
- Biocenter, Neurobiology and Genetics University of Würzburg Würzburg Germany
| | - Kornelia Grübel
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| | - Basil el Jundi
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| | - Wolfgang Rössler
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| |
Collapse
|
11
|
Direction Selective Neurons Responsive to Horizontal Motion in a Crab Reflect an Adaptation to Prevailing Movements in Flat Environments. J Neurosci 2020; 40:5561-5571. [PMID: 32499380 DOI: 10.1523/jneurosci.0372-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 11/21/2022] Open
Abstract
All animals need information about the direction of motion to be able to track the trajectory of a target (prey, predator, cospecific) or to control the course of navigation. This information is provided by direction selective (DS) neurons, which respond to images moving in a unique direction. DS neurons have been described in numerous species including many arthropods. In these animals, the majority of the studies have focused on DS neurons dedicated to processing the optic flow generated during navigation. In contrast, only a few studies were performed on DS neurons related to object motion processing. The crab Neohelice is an established experimental model for the study of neurons involved in visually-guided behaviors. Here, we describe in male crabs of this species a new group of DS neurons that are highly directionally selective to moving objects. The neurons were physiologically and morphologically characterized by intracellular recording and staining in the optic lobe of intact animals. Because of their arborization in the lobula complex, we called these cells lobula complex directional cells (LCDCs). LCDCs also arborize in a previously undescribed small neuropil of the lateral protocerebrum. LCDCs are responsive only to horizontal motion. This nicely fits in the behavioral adaptations of a crab inhabiting a flat, densely crowded environment, where most object motions are generated by neighboring crabs moving along the horizontal plane.SIGNIFICANCE STATEMENT Direction selective (DS) neurons are key to a variety of visual behaviors including, target tracking (preys, predators, cospecifics) and course control. Here, we describe the physiology and morphology of a new group of remarkably directional neurons exclusively responsive to horizontal motion in crabs. These neurons arborize in the lobula complex and in a previously undescribed small neuropil of the lateral protocerebrum. The strong sensitivity of these cells for horizontal motion represents a clear example of functional neuronal adaptation to the lifestyle of an animal inhabiting a flat environment.
Collapse
|
12
|
Neuromodulation of insect motion vision. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:125-137. [DOI: 10.1007/s00359-019-01383-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
|
13
|
Lee SG, Celestino CF, Stagg J, Kleineidam C, Vickers NJ. Moth pheromone-selective projection neurons with cell bodies in the antennal lobe lateral cluster exhibit diverse morphological and neurophysiological characteristics. J Comp Neurol 2019; 527:1443-1460. [PMID: 30723902 DOI: 10.1002/cne.24611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 11/08/2022]
Abstract
Olfactory projection neurons convey information from the insect antennal lobe (AL) to higher brain centers. Previous reports have demonstrated that pheromone-responsive projection neurons with cell bodies in the moth medial cell cluster (mcPNs) predominantly have dendritic arborizations in the sexually dimorphic macroglomerular complex (MGC) and send an axon from the AL to the calyces of the mushroom body (CA) as well as the lateral horn (LH) of the protocerebrum via the medial AL tract. These neurons typically exhibit a narrow odor tuning range related to the restriction of their dendritic arbors within a single glomerulus (uniglomerular). In this study, we report on the diverse physiological and morphological properties of a group of pheromone-responsive olfactory projection neurons with cell bodies in the AL lateral cell cluster (MGC lcPNs) of two closely related moth species. All pheromone-responsive lcPNs appeared to exhibit "basket-like" dendritic arborizations in two MGC compartments and made connections with various protocerebral targets including ventrolateral and superior neuropils via projections primarily through the lateral AL tract and to a lesser extent the mediolateral antennal lobe tract. Physiological characterization of MGC lcPNs also revealed a diversity of response profiles including those either enhanced by or reliant upon presentation of a pheromone blend. These responses manifested themselves as higher maximum firing rates and/or improved temporal resolution of pulsatile stimuli. MGC lcPNs therefore participate in conveying diverse olfactory information relating to qualitative and temporal facets of the pheromone stimulus to a more expansive number of protocerebral targets than their mcPN counterparts.
Collapse
Affiliation(s)
- Seong-Gyu Lee
- School of Biological Sciences, University of Utah, Salt Lake City, Utah
| | - Christine Fogarty Celestino
- School of Biological Sciences, University of Utah, Salt Lake City, Utah.,Program in Neuroscience, University of Utah, Salt Lake City, Utah
| | - Jeffrey Stagg
- School of Biological Sciences, University of Utah, Salt Lake City, Utah
| | | | - Neil J Vickers
- School of Biological Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|
14
|
Namiki S, Dickinson MH, Wong AM, Korff W, Card GM. The functional organization of descending sensory-motor pathways in Drosophila. eLife 2018; 7:e34272. [PMID: 29943730 PMCID: PMC6019073 DOI: 10.7554/elife.34272] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/09/2018] [Indexed: 12/12/2022] Open
Abstract
In most animals, the brain controls the body via a set of descending neurons (DNs) that traverse the neck. DN activity activates, maintains or modulates locomotion and other behaviors. Individual DNs have been well-studied in species from insects to primates, but little is known about overall connectivity patterns across the DN population. We systematically investigated DN anatomy in Drosophila melanogaster and created over 100 transgenic lines targeting individual cell types. We identified roughly half of all Drosophila DNs and comprehensively map connectivity between sensory and motor neuropils in the brain and nerve cord, respectively. We find the nerve cord is a layered system of neuropils reflecting the fly's capability for two largely independent means of locomotion -- walking and flight -- using distinct sets of appendages. Our results reveal the basic functional map of descending pathways in flies and provide tools for systematic interrogation of neural circuits.
Collapse
Affiliation(s)
- Shigehiro Namiki
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael H Dickinson
- Division of Biology and BioengineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Allan M Wong
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
15
|
Song BM, Lee CH. Toward a Mechanistic Understanding of Color Vision in Insects. Front Neural Circuits 2018; 12:16. [PMID: 29527156 PMCID: PMC5829095 DOI: 10.3389/fncir.2018.00016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/07/2018] [Indexed: 01/09/2023] Open
Abstract
Many visual animals exploit spectral information for seeking food and mates, for identifying preys and predators, and for navigation. Animals use chromatic information in two ways. "True color vision," the ability to discriminate visual stimuli on the basis of their spectral content independent of brightness, is thought to play an important role in object identification. In contrast, "wavelength-specific behavior," which is strongly dependent on brightness, often associates with foraging, navigation, and other species-specific needs. Among animals capable of chromatic vision, insects, with their diverse habitats, stereotyped behaviors, well-characterized anatomy and powerful genetic tools, are attractive systems for studying chromatic information processing. In this review, we first discuss insect photoreceptors and the relationship between their spectral sensitivity and animals' color vision and ecology. Second, we review recent studies that dissect chromatic circuits and explore neural mechanisms of chromatic information processing. Finally, we review insect behaviors involving "true color vision" and "wavelength-specific behaviors," especially in bees, butterflies, and flies. We include examples of high-order color vision, such as color contrast and constancy, which are shared by vertebrates. We focus on Drosophila studies that identified neuronal correlates of color vision and innate spectral preferences. We also discuss the electrophysiological studies in bees that reveal color encoding. Despite structural differences between insects' and vertebrates' visual systems, their chromatic vision appears to employ the same processing principles, such as color opponency, suggesting convergent solutions of neural computation to common problems.
Collapse
|
16
|
Lin C, Cronin TW. Two visual systems in one eyestalk: The unusual optic lobe metamorphosis in the stomatopod Alima pacifica. Dev Neurobiol 2017; 78:3-14. [PMID: 29082670 DOI: 10.1002/dneu.22550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/13/2017] [Accepted: 10/25/2017] [Indexed: 11/11/2022]
Abstract
The compound eyes of adult stomatopod crustaceans have two to six ommatidial rows at the equator, called the midband, that are often specialized for color and polarization vision. Beneath the retina, this midband specialization is represented as enlarged optic lobe lamina cartridges and a hernia-like expansion in the medulla. We studied how the optic lobe transforms from the larvae, which possess typical crustacean larval compound eyes without a specialized midband, through metamorphosis into the adults with the midband in a two midband-row species Alima pacifica. Using histological staining, immunolabeling, and 3D reconstruction, we show that the last-stage stomatopod larvae possess double-retina eyes, in which the developing adult visual system forms adjacent to, but separate from, the larval visual system. Beneath the two retinas, the optic lobe also contains two sets of optic neuropils, comprising of a larval lamina, medulla, and lobula, as well as an adult lamina, medulla, and lobula. The larval eye and all larval optic neuropils degenerate and disappear approximately a week after metamorphosis. In stomatopods, the unique adult visual system and all optic neuropils develop alongside the larval system in the eyestalk of last-stage larvae, where two visual systems and two independent visual processing pathways coexist. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 3-14, 2018.
Collapse
Affiliation(s)
- Chan Lin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, 21250
| | - Thomas W Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, 21250
| |
Collapse
|
17
|
von Reyn CR, Nern A, Williamson WR, Breads P, Wu M, Namiki S, Card GM. Feature Integration Drives Probabilistic Behavior in the Drosophila Escape Response. Neuron 2017. [PMID: 28641115 DOI: 10.1016/j.neuron.2017.05.036] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Animals rely on dedicated sensory circuits to extract and encode environmental features. How individual neurons integrate and translate these features into behavioral responses remains a major question. Here, we identify a visual projection neuron type that conveys predator approach information to the Drosophila giant fiber (GF) escape circuit. Genetic removal of this input during looming stimuli reveals that it encodes angular expansion velocity, whereas other input cell type(s) encode angular size. Motor program selection and timing emerge from linear integration of these two features within the GF. Linear integration improves size detection invariance over prior models and appropriately biases motor selection to rapid, GF-mediated escapes during fast looms. Our findings suggest feature integration, and motor control may occur as simultaneous operations within the same neuron and establish the Drosophila escape circuit as a model system in which these computations may be further dissected at the circuit level. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Catherine R von Reyn
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA; Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 W. Queen Lane, Philadelphia, PA 19129, USA
| | - Aljoscha Nern
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - W Ryan Williamson
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Patrick Breads
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Ming Wu
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Shigehiro Namiki
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Gwyneth M Card
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
18
|
Northcutt BD, Dyhr JP, Higgins CM. An insect-inspired model for visual binding I: learning objects and their characteristics. BIOLOGICAL CYBERNETICS 2017; 111:185-206. [PMID: 28303333 DOI: 10.1007/s00422-017-0715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
Visual binding is the process of associating the responses of visual interneurons in different visual submodalities all of which are responding to the same object in the visual field. Recently identified neuropils in the insect brain termed optic glomeruli reside just downstream of the optic lobes and have an internal organization that could support visual binding. Working from anatomical similarities between optic and olfactory glomeruli, we have developed a model of visual binding based on common temporal fluctuations among signals of independent visual submodalities. Here we describe and demonstrate a neural network model capable both of refining selectivity of visual information in a given visual submodality, and of associating visual signals produced by different objects in the visual field by developing inhibitory neural synaptic weights representing the visual scene. We also show that this model is consistent with initial physiological data from optic glomeruli. Further, we discuss how this neural network model may be implemented in optic glomeruli at a neuronal level.
Collapse
Affiliation(s)
- Brandon D Northcutt
- Department of Electrical and Computer Engineering, University of Arizona, 1230 E. Speedway Blvd., Tucson, AZ, 85721, USA.
| | - Jonathan P Dyhr
- Department of Biology, Northwest University, 5520 108th Ave. N.E., Kirkland, WA, 98033, USA
| | - Charles M Higgins
- Departments of Neuroscience and Electrical/Computer Engineering, University of Arizona, 1040 E. 4th St., Tucson, AZ, 85721, USA
| |
Collapse
|
19
|
Northcutt BD, Higgins CM. An insect-inspired model for visual binding II: functional analysis and visual attention. BIOLOGICAL CYBERNETICS 2017; 111:207-227. [PMID: 28303334 DOI: 10.1007/s00422-017-0716-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
We have developed a neural network model capable of performing visual binding inspired by neuronal circuitry in the optic glomeruli of flies: a brain area that lies just downstream of the optic lobes where early visual processing is performed. This visual binding model is able to detect objects in dynamic image sequences and bind together their respective characteristic visual features-such as color, motion, and orientation-by taking advantage of their common temporal fluctuations. Visual binding is represented in the form of an inhibitory weight matrix which learns over time which features originate from a given visual object. In the present work, we show that information represented implicitly in this weight matrix can be used to explicitly count the number of objects present in the visual image, to enumerate their specific visual characteristics, and even to create an enhanced image in which one particular object is emphasized over others, thus implementing a simple form of visual attention. Further, we present a detailed analysis which reveals the function and theoretical limitations of the visual binding network and in this context describe a novel network learning rule which is optimized for visual binding.
Collapse
Affiliation(s)
- Brandon D Northcutt
- Department of Electrical and Computer Engineering, University of Arizona, 1230 E. Speedway Blvd., Tucson, AZ, 85721, USA.
| | - Charles M Higgins
- Departments of Neuroscience and Electrical/Computer Eng., University of Arizona, 1040 E. 4th St., Tucson, AZ, 85721, USA
| |
Collapse
|
20
|
Immonen EV, Dacke M, Heinze S, El Jundi B. Anatomical organization of the brain of a diurnal and a nocturnal dung beetle. J Comp Neurol 2017; 525:1879-1908. [PMID: 28074466 DOI: 10.1002/cne.24169] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/14/2016] [Accepted: 12/21/2016] [Indexed: 12/25/2022]
Abstract
To avoid the fierce competition for food, South African ball-rolling dung beetles carve a piece of dung off a dung-pile, shape it into a ball and roll it away along a straight line path. For this unidirectional exit from the busy dung pile, at night and day, the beetles use a wide repertoire of celestial compass cues. This robust and relatively easily measurable orientation behavior has made ball-rolling dung beetles an attractive model organism for the study of the neuroethology behind insect orientation and sensory ecology. Although there is already some knowledge emerging concerning how celestial cues are processed in the dung beetle brain, little is known about its general neural layout. Mapping the neuropils of the dung beetle brain is thus a prerequisite to understand the neuronal network that underlies celestial compass orientation. Here, we describe and compare the brains of a day-active and a night-active dung beetle species based on immunostainings against synapsin and serotonin. We also provide 3D reconstructions for all brain areas and many of the fiber bundles in the brain of the day-active dung beetle. Comparison of neuropil structures between the two dung beetle species revealed differences that reflect adaptations to different light conditions. Altogether, our results provide a reference framework for future studies on the neuroethology of insects in general and dung beetles in particular.
Collapse
Affiliation(s)
- Esa-Ville Immonen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland.,Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Marie Dacke
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Stanley Heinze
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Basil El Jundi
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| |
Collapse
|
21
|
Xi J, Toyoda I, Shiga S. Afferent neural pathways from the photoperiodic receptor in the bean bug, Riptortus pedestris. Cell Tissue Res 2017; 368:469-485. [PMID: 28144785 DOI: 10.1007/s00441-016-2565-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/20/2016] [Indexed: 11/24/2022]
Abstract
Adult diapause in the bean bug, Riptortus pedestris, is controlled by the photoperiod, which is received by retinal cells in the central region of the compound eyes. To resolve the afferent neural pathways involved in the photoperiodic response, we examine fibre projections from the photoperiodic receptors to the brain and investigate the roles of the posterior optic tract (POT) in the photoperiodic response. Reduced-silver impregnation and synapsin immunolabelling revealed that the medulla was divided into nine strata: the outer layer comprises 4 strata, the inner layer comprises 4 strata and a serpentine layer separates the inner and outer layers. Biotin injection revealed that retinal fibres from the central region of the compound eye terminated in either the central part of the lamina or the central part of the medulla 3rd or 4th layer. Biotin injection into the central part of the medulla labelled 5 distinct afferent pathways: two terminated in a region of ipsilateral anterior protocerebrum, while the other three had contralateral projections. One pathway ran through the POT and connected to the bilateral medulla serpentine layers. When the POT was surgically severed, diapause incidence under short-day conditions was significantly reduced compared to that observed following a sham operation. However, an incision at a posterior part of the medulla and lobula boundary, as a control experiment, did not affect the photoperiodic response. These results suggest that photoperiodic signals from the central region of the compound eye are transferred to neurons with fibres running in the POT for photoperiodic response in R. pedestris.
Collapse
Affiliation(s)
- Jili Xi
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Ikuyo Toyoda
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Sakiko Shiga
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan. .,Department of Biological Science, Graduate School of Science, Osaka University, Osaka, 560-0043, Japan.
| |
Collapse
|
22
|
Wu M, Nern A, Williamson WR, Morimoto MM, Reiser MB, Card GM, Rubin GM. Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs. eLife 2016; 5. [PMID: 28029094 PMCID: PMC5293491 DOI: 10.7554/elife.21022] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022] Open
Abstract
Visual projection neurons (VPNs) provide an anatomical connection between early visual processing and higher brain regions. Here we characterize lobula columnar (LC) cells, a class of Drosophila VPNs that project to distinct central brain structures called optic glomeruli. We anatomically describe 22 different LC types and show that, for several types, optogenetic activation in freely moving flies evokes specific behaviors. The activation phenotypes of two LC types closely resemble natural avoidance behaviors triggered by a visual loom. In vivo two-photon calcium imaging reveals that these LC types respond to looming stimuli, while another type does not, but instead responds to the motion of a small object. Activation of LC neurons on only one side of the brain can result in attractive or aversive turning behaviors depending on the cell type. Our results indicate that LC neurons convey information on the presence and location of visual features relevant for specific behaviors.
Collapse
Affiliation(s)
- Ming Wu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - W Ryan Williamson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Mai M Morimoto
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Michael B Reiser
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
23
|
Panser K, Tirian L, Schulze F, Villalba S, Jefferis GSXE, Bühler K, Straw AD. Automatic Segmentation of Drosophila Neural Compartments Using GAL4 Expression Data Reveals Novel Visual Pathways. Curr Biol 2016; 26:1943-1954. [PMID: 27426516 PMCID: PMC4985560 DOI: 10.1016/j.cub.2016.05.052] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/14/2016] [Accepted: 05/20/2016] [Indexed: 01/26/2023]
Abstract
Identifying distinct anatomical structures within the brain and developing genetic tools to target them are fundamental steps for understanding brain function. We hypothesize that enhancer expression patterns can be used to automatically identify functional units such as neuropils and fiber tracts. We used two recent, genome-scale Drosophila GAL4 libraries and associated confocal image datasets to segment large brain regions into smaller subvolumes. Our results (available at https://strawlab.org/braincode) support this hypothesis because regions with well-known anatomy, namely the antennal lobes and central complex, were automatically segmented into familiar compartments. The basis for the structural assignment is clustering of voxels based on patterns of enhancer expression. These initial clusters are agglomerated to make hierarchical predictions of structure. We applied the algorithm to central brain regions receiving input from the optic lobes. Based on the automated segmentation and manual validation, we can identify and provide promising driver lines for 11 previously identified and 14 novel types of visual projection neurons and their associated optic glomeruli. The same strategy can be used in other brain regions and likely other species, including vertebrates. Genome-scale enhancer expression patterns can be used to predict brain structure Automated clustering of images finds known structures such as olfactory glomeruli Results identify GAL4 lines with strong expression in the predicted structures We validate novel predictions to reveal previously undescribed optic glomeruli
Collapse
Affiliation(s)
- Karin Panser
- Research Institute of Molecular Pathology (IMP), Vienna Bio-Center, Doktor-Bohr-Gasse 7, 1030 Vienna, Austria
| | - Laszlo Tirian
- Research Institute of Molecular Pathology (IMP), Vienna Bio-Center, Doktor-Bohr-Gasse 7, 1030 Vienna, Austria
| | - Florian Schulze
- VRVis Zentrum für Virtual Reality und Visualisierung Forschungs, Donau-City-Strasse 1, 1220 Vienna, Austria
| | - Santiago Villalba
- Research Institute of Molecular Pathology (IMP), Vienna Bio-Center, Doktor-Bohr-Gasse 7, 1030 Vienna, Austria
| | - Gregory S X E Jefferis
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Katja Bühler
- VRVis Zentrum für Virtual Reality und Visualisierung Forschungs, Donau-City-Strasse 1, 1220 Vienna, Austria
| | - Andrew D Straw
- Research Institute of Molecular Pathology (IMP), Vienna Bio-Center, Doktor-Bohr-Gasse 7, 1030 Vienna, Austria; Department of Neurobiology and Behavior, Institute of Biology I, University of Freiburg, Hauptstrasse 1, 79104 Freiburg, Germany.
| |
Collapse
|
24
|
Montgomery SH, Merrill RM, Ott SR. Brain composition inHeliconiusbutterflies, posteclosion growth and experience-dependent neuropil plasticity. J Comp Neurol 2016; 524:1747-69. [DOI: 10.1002/cne.23993] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Stephen H. Montgomery
- Department of Genetics, Evolution & Environment; University College London; London UK
- Smithsonian Tropical Research Institute; Panama
| | - Richard M. Merrill
- Smithsonian Tropical Research Institute; Panama
- Department of Zoology; University of Cambridge; Cambridge UK
| | - Swidbert R. Ott
- Department of Neuroscience, Psychology and Behaviour; University of Leicester; Leicester UK
| |
Collapse
|
25
|
Hsu CT, Bhandawat V. Organization of descending neurons in Drosophila melanogaster. Sci Rep 2016; 6:20259. [PMID: 26837716 PMCID: PMC4738306 DOI: 10.1038/srep20259] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/31/2015] [Indexed: 12/18/2022] Open
Abstract
Neural processing in the brain controls behavior through descending neurons (DNs) - neurons which carry signals from the brain to the spinal cord (or thoracic ganglia in insects). Because DNs arise from multiple circuits in the brain, the numerical simplicity and availability of genetic tools make Drosophila a tractable model for understanding descending motor control. As a first step towards a comprehensive study of descending motor control, here we estimate the number and distribution of DNs in the Drosophila brain. We labeled DNs by backfilling them with dextran dye applied to the neck connective and estimated that there are ~1100 DNs distributed in 6 clusters in Drosophila. To assess the distribution of DNs by neurotransmitters, we labeled DNs in flies in which neurons expressing the major neurotransmitters were also labeled. We found DNs belonging to every neurotransmitter class we tested: acetylcholine, GABA, glutamate, serotonin, dopamine and octopamine. Both the major excitatory neurotransmitter (acetylcholine) and the major inhibitory neurotransmitter (GABA) are employed equally; this stands in contrast to vertebrate DNs which are predominantly excitatory. By comparing the distribution of DNs in Drosophila to those reported previously in other insects, we conclude that the organization of DNs in insects is highly conserved.
Collapse
Affiliation(s)
- Cynthia T Hsu
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.,Deparment of Neurobiology, Duke University, Durham, North Carolina 27708, USA
| | - Vikas Bhandawat
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.,Deparment of Neurobiology, Duke University, Durham, North Carolina 27708, USA.,Duke Institute for Brain Sciences, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
26
|
Zeller M, Held M, Bender J, Berz A, Heinloth T, Hellfritz T, Pfeiffer K. Transmedulla Neurons in the Sky Compass Network of the Honeybee (Apis mellifera) Are a Possible Site of Circadian Input. PLoS One 2015; 10:e0143244. [PMID: 26630286 PMCID: PMC4667876 DOI: 10.1371/journal.pone.0143244] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/02/2015] [Indexed: 01/27/2023] Open
Abstract
Honeybees are known for their ability to use the sun's azimuth and the sky's polarization pattern for spatial orientation. Sky compass orientation in bees has been extensively studied at the behavioral level but our knowledge about the underlying neuronal systems and mechanisms is very limited. Electrophysiological studies in other insect species suggest that neurons of the sky compass system integrate information about the polarization pattern of the sky, its chromatic gradient, and the azimuth of the sun. In order to obtain a stable directional signal throughout the day, circadian changes between the sky polarization pattern and the solar azimuth must be compensated. Likewise, the system must be modulated in a context specific way to compensate for changes in intensity, polarization and chromatic properties of light caused by clouds, vegetation and landscape. The goal of this study was to identify neurons of the sky compass pathway in the honeybee brain and to find potential sites of circadian and neuromodulatory input into this pathway. To this end we first traced the sky compass pathway from the polarization-sensitive dorsal rim area of the compound eye via the medulla and the anterior optic tubercle to the lateral complex using dye injections. Neurons forming this pathway strongly resembled neurons of the sky compass pathway in other insect species. Next we combined tracer injections with immunocytochemistry against the circadian neuropeptide pigment dispersing factor and the neuromodulators serotonin, and γ-aminobutyric acid. We identified neurons, connecting the dorsal rim area of the medulla to the anterior optic tubercle, as a possible site of neuromodulation and interaction with the circadian system. These neurons have conspicuous spines in close proximity to pigment dispersing factor-, serotonin-, and GABA-immunoreactive neurons. Our data therefore show for the first time a potential interaction site between the sky compass pathway and the circadian clock.
Collapse
Affiliation(s)
- Maximilian Zeller
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Martina Held
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Julia Bender
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Annuska Berz
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Tanja Heinloth
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Timm Hellfritz
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Keram Pfeiffer
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
27
|
Lin TY, Luo J, Shinomiya K, Ting CY, Lu Z, Meinertzhagen IA, Lee CH. Mapping chromatic pathways in the Drosophila visual system. J Comp Neurol 2015; 524:213-27. [PMID: 26179639 DOI: 10.1002/cne.23857] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/13/2015] [Accepted: 07/13/2015] [Indexed: 11/06/2022]
Abstract
In Drosophila, color vision and wavelength-selective behaviors are mediated by the compound eye's narrow-spectrum photoreceptors R7 and R8 and their downstream medulla projection (Tm) neurons Tm5a, Tm5b, Tm5c, and Tm20 in the second optic neuropil or medulla. These chromatic Tm neurons project axons to a deeper optic neuropil, the lobula, which in insects has been implicated in processing and relaying color information to the central brain. The synaptic targets of the chromatic Tm neurons in the lobula are not known, however. Using a modified GFP reconstitution across synaptic partners (GRASP) method to probe connections between the chromatic Tm neurons and 28 known and novel types of lobula neurons, we identify anatomically the visual projection neurons LT11 and LC14 and the lobula intrinsic neurons Li3 and Li4 as synaptic targets of the chromatic Tm neurons. Single-cell GRASP analyses reveal that Li4 receives synaptic contacts from over 90% of all four types of chromatic Tm neurons, whereas LT11 is postsynaptic to the chromatic Tm neurons, with only modest selectivity and at a lower frequency and density. To visualize synaptic contacts at the ultrastructural level, we develop and apply a "two-tag" double-labeling method to label LT11's dendrites and the mitochondria in Tm5c's presynaptic terminals. Serial electron microscopic reconstruction confirms that LT11 receives direct contacts from Tm5c. This method would be generally applicable to map the connections of large complex neurons in Drosophila and other animals.
Collapse
Affiliation(s)
- Tzu-Yang Lin
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 114, Taiwan
| | - Jiangnan Luo
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892
| | - Kazunori Shinomiya
- Depart of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Chun-Yuan Ting
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892
| | - Zhiyuan Lu
- Depart of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Ian A Meinertzhagen
- Depart of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Chi-Hon Lee
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892
| |
Collapse
|
28
|
Abstract
Many animals rely on visual figure-ground discrimination to aid in navigation, and to draw attention to salient features like conspecifics or predators. Even figures that are similar in pattern and luminance to the visual surroundings can be distinguished by the optical disparity generated by their relative motion against the ground, and yet the neural mechanisms underlying these visual discriminations are not well understood. We show in flies that a diverse array of figure-ground stimuli containing a motion-defined edge elicit statistically similar behavioral responses to one another, and statistically distinct behavioral responses from ground motion alone. From studies in larger flies and other insect species, we hypothesized that the circuitry of the lobula--one of the four, primary neuropiles of the fly optic lobe--performs this visual discrimination. Using calcium imaging of input dendrites, we then show that information encoded in cells projecting from the lobula to discrete optic glomeruli in the central brain group these sets of figure-ground stimuli in a homologous manner to the behavior; "figure-like" stimuli are coded similar to one another and "ground-like" stimuli are encoded differently. One cell class responds to the leading edge of a figure and is suppressed by ground motion. Two other classes cluster any figure-like stimuli, including a figure moving opposite the ground, distinctly from ground alone. This evidence demonstrates that lobula outputs provide a diverse basis set encoding visual features necessary for figure detection.
Collapse
|
29
|
Mendoza E, Colomb J, Rybak J, Pflüger HJ, Zars T, Scharff C, Brembs B. Drosophila FoxP mutants are deficient in operant self-learning. PLoS One 2014; 9:e100648. [PMID: 24964149 PMCID: PMC4070984 DOI: 10.1371/journal.pone.0100648] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/29/2014] [Indexed: 11/19/2022] Open
Abstract
Intact function of the Forkhead Box P2 (FOXP2) gene is necessary for normal development of speech and language. This important role has recently been extended, first to other forms of vocal learning in animals and then also to other forms of motor learning. The homology in structure and in function among the FoxP gene members raises the possibility that the ancestral FoxP gene may have evolved as a crucial component of the neural circuitry mediating motor learning. Here we report that genetic manipulations of the single Drosophila orthologue, dFoxP, disrupt operant self-learning, a form of motor learning sharing several conceptually analogous features with language acquisition. Structural alterations of the dFoxP locus uncovered the role of dFoxP in operant self-learning and habit formation, as well as the dispensability of dFoxP for operant world-learning, in which no motor learning occurs. These manipulations also led to subtle alterations in the brain anatomy, including a reduced volume of the optic glomeruli. RNAi-mediated interference with dFoxP expression levels copied the behavioral phenotype of the mutant flies, even in the absence of mRNA degradation. Our results provide evidence that motor learning and language acquisition share a common ancestral trait still present in extant invertebrates, manifest in operant self-learning. This 'deep' homology probably traces back to before the split between vertebrate and invertebrate animals.
Collapse
Affiliation(s)
- Ezequiel Mendoza
- Inst. Biol. – Behavioral Biology, Freie Universität Berlin, Berlin, Germany
| | - Julien Colomb
- Inst. Biol. – Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Rybak
- Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Troy Zars
- Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Constance Scharff
- Inst. Biol. – Behavioral Biology, Freie Universität Berlin, Berlin, Germany
| | - Björn Brembs
- Inst. Biol. – Neurobiology, Freie Universität Berlin, Berlin, Germany
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
30
|
Otsuna H, Shinomiya K, Ito K. Parallel neural pathways in higher visual centers of the Drosophila brain that mediate wavelength-specific behavior. Front Neural Circuits 2014; 8:8. [PMID: 24574974 PMCID: PMC3918591 DOI: 10.3389/fncir.2014.00008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 01/21/2014] [Indexed: 12/20/2022] Open
Abstract
Compared with connections between the retinae and primary visual centers, relatively less is known in both mammals and insects about the functional segregation of neural pathways connecting primary and higher centers of the visual processing cascade. Here, using the Drosophila visual system as a model, we demonstrate two levels of parallel computation in the pathways that connect primary visual centers of the optic lobe to computational circuits embedded within deeper centers in the central brain. We show that a seemingly simple achromatic behavior, namely phototaxis, is under the control of several independent pathways, each of which is responsible for navigation towards unique wavelengths. Silencing just one pathway is enough to disturb phototaxis towards one characteristic monochromatic source, whereas phototactic behavior towards white light is not affected. The response spectrum of each demonstrable pathway is different from that of individual photoreceptors, suggesting subtractive computations. A choice assay between two colors showed that these pathways are responsible for navigation towards, but not for the detection itself of, the monochromatic light. The present study provides novel insights about how visual information is separated and processed in parallel to achieve robust control of an innate behavior.
Collapse
Affiliation(s)
- Hideo Otsuna
- Institute of Molecular and Cellular Biosciences (IMCB), University of TokyoTokyo, Japan
- Department of Neurobiology and Anatomy, University of UtahSalt Lake City, UT, USA
| | - Kazunori Shinomiya
- Institute of Molecular and Cellular Biosciences (IMCB), University of TokyoTokyo, Japan
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie UniversityHalifax, NS, Canada
| | - Kei Ito
- Institute of Molecular and Cellular Biosciences (IMCB), University of TokyoTokyo, Japan
| |
Collapse
|
31
|
Heinze S, Florman J, Asokaraj S, El Jundi B, Reppert SM. Anatomical basis of sun compass navigation II: the neuronal composition of the central complex of the monarch butterfly. J Comp Neurol 2013; 521:267-98. [PMID: 22886450 DOI: 10.1002/cne.23214] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/01/2012] [Accepted: 08/03/2012] [Indexed: 12/25/2022]
Abstract
Each fall, eastern North American monarch butterflies in their northern range undergo a long-distance migration south to their overwintering grounds in Mexico. Migrants use a time-compensated sun compass to determine directionality during the migration. This compass system uses information extracted from sun-derived skylight cues that is compensated for time of day and ultimately transformed into the appropriate motor commands. The central complex (CX) is likely the site of the actual sun compass, because neurons in this brain region are tuned to specific skylight cues. To help illuminate the neural basis of sun compass navigation, we examined the neuronal composition of the CX and its associated brain regions. We generated a standardized version of the sun compass neuropils, providing reference volumes, as well as a common frame of reference for the registration of neuron morphologies. Volumetric comparisons between migratory and nonmigratory monarchs substantiated the proposed involvement of the CX and related brain areas in migratory behavior. Through registration of more than 55 neurons of 34 cell types, we were able to delineate the major input pathways to the CX, output pathways, and intrinsic neurons. Comparison of these neural elements with those of other species, especially the desert locust, revealed a surprising degree of conservation. From these interspecies data, we have established key components of a conserved core network of the CX, likely complemented by species-specific neurons, which together may comprise the neural substrates underlying the computations performed by the CX.
Collapse
Affiliation(s)
- Stanley Heinze
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | | | | | | | |
Collapse
|
32
|
Phillips-Portillo J, Strausfeld NJ. Representation of the brain's superior protocerebrum of the flesh fly, Neobellieria bullata, in the central body. J Comp Neurol 2012; 520:3070-87. [PMID: 22434505 PMCID: PMC4876858 DOI: 10.1002/cne.23094] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The central complex of the insect brain is a system of midline neuropils involved in transforming sensory information into behavioral outputs. Genetic studies focusing on nerve cells supplying the central complex from the protocerebrum propose that such neurons play key roles in circuits involved in learning the distinction of visual cues during operant conditioning. To better identify the possible sites of such circuits we used Bodian and anti-synapsin staining to resolve divisions of the superior protocerebrum into discrete neuropils. Here we show that in the fly Neobellieria bullata, the superior protocerebrum is composed of at least five clearly defined regions that correspond to those identified in Drosophila melanogaster. Intracellular dye fills and Golgi impregnations resolve "tangential neurons" that have intricate systems of branches in two of these regions. The branches are elaborate, decorated with specializations indicative of pre- and postsynaptic sites. The tangentially arranged terminals of these neurons extend across characteristic levels of the central complex's fan-shaped body. In this and another blowfly species, we identify an asymmetric pair of neuropils situated deep in the fan-shaped body, called the asymmetric bodies because of their likely homology with similar elements in Drosophila. One of the pair of bodies receives collaterals from symmetric arrangements of tangential neuron terminals. Cobalt injections reveal that the superior protocerebrum is richly supplied with local interneurons that are likely participants in microcircuitry associated with the distal processes of tangential neurons. Understanding the morphologies and arrangements of these and other neurons is essential for correctly interpreting functional attributes of the central complex.
Collapse
Affiliation(s)
| | - Nicholas J. Strausfeld
- Department of Neuroscience, University of Arizona, Tucson, Arizona 85721
- Center for Insect Science University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
33
|
Phillips-Portillo J. The central complex of the flesh fly, Neobellieria bullata: recordings and morphologies of protocerebral inputs and small-field neurons. J Comp Neurol 2012; 520:3088-104. [PMID: 22528883 PMCID: PMC4074547 DOI: 10.1002/cne.23134] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The central complex in the brains of insects is a series of midline neuropils involved in motor control, sensory integration, and associative learning. To understand better the role of this center and its supply of sensory information, intracellular recordings and dye fills were made of central complex neurons in the fly, Neobellieria bullata. Recordings were obtained from 24 neurons associated with the ellipsoid body, fan-shaped body, and protocerebral bridge, all of which receive both visual and mechanosensory information from protocerebral centers. One neuron with dendrites in an area of the lateral protocerebrum associated with motion-sensitive outputs from the optic lobes invades the entire protocerebral bridge and was driven by visual motion. Inputs to the fan-shaped body and ellipsoid body responded both to visual stimuli and to air puffs directed at the head and abdomen. Intrinsic neurons in both of these structures respond to changes in illumination. A putative output neuron connecting the protocerebral bridge, the fan-shaped body, and one of the lateral accessory lobes showed opponent responses to moving visual stimuli. These recordings identify neurons with response properties previously known only from extracellular recordings in other species. Dye injections into neurons connecting the central complex with areas of the protocerebrum suggest that some classes of inputs into the central complex are electrically coupled.
Collapse
|
34
|
Optic glomeruli and their inputs in Drosophila share an organizational ground pattern with the antennal lobes. J Neurosci 2012; 32:6061-71. [PMID: 22553013 DOI: 10.1523/jneurosci.0221-12.2012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studying the insect visual system provides important data on the basic neural mechanisms underlying visual processing. As in vertebrates, the first step in visual processing in insects is through a series of retinotopic neurons. Recent studies on flies have found that these converge onto assemblies of columnar neurons in the lobula, the axons of which segregate to project to discrete optic glomeruli in the lateral protocerebrum. This arrangement is much like the fly's olfactory system, in which afferents target uniquely identifiable olfactory glomeruli. Here, whole-cell patch recordings show that even though visual primitives are unreliably encoded by single lobula output neurons because of high synaptic noise, they are reliably encoded by the ensemble of outputs. At a glomerulus, local interneurons reliably code visual primitives, as do projection neurons conveying information centrally from the glomerulus. These observations demonstrate that in Drosophila, as in other dipterans, optic glomeruli are involved in further reconstructing the fly's visual world. Optic glomeruli and antennal lobe glomeruli share the same ancestral anatomical and functional ground pattern, enabling reliable responses to be extracted from converging sensory inputs.
Collapse
|
35
|
Pfeiffer K, Kinoshita M. Segregation of visual inputs from different regions of the compound eye in two parallel pathways through the anterior optic tubercle of the bumblebee (Bombus ignitus). J Comp Neurol 2012; 520:212-29. [PMID: 21953619 DOI: 10.1002/cne.22776] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Visually guided behaviors require the brain to extract features of the visual world and to integrate them in a context-specific manner. Hymenopteran insects have been prime models for ethological research into visual behaviors for decades but knowledge about the underlying central processing is very limited. This is particularly the case for sky-compass navigation. To learn more about central processing of visual information in general and specifically to reveal a possible polarization vision pathway in the bee brain, we used tracer injections to investigate the pathways through the anterior optic tubercle, a prominent output target of the insect optic lobe, in the bumblebee Bombus ignitus. The anterior optic tubercle of the bumblebee is a small neuropil of 200 μm width and is located dorsolateral to the antennal lobe at the anterior surface of the brain. It is divided into a larger upper and a smaller lower subunit, both of which receive input from the optic lobe and connect to the lateral accessory lobe, and the contralateral tubercle, via two parallel pathways. The lower subunit receives input from the dorsal rim area (DRA) of the compound eye. The bumblebee DRA shares structural similarities with polarization-sensitive DRAs of other insects and looks similar to that of honeybees. We identified several neurons within this pathway that could be homologous to identified polarization-sensitive neurons in the locust brain. We therefore conclude that the pathway through the lower subunit of the anterior optic tubercle could carry polarization information from the periphery to the central brain.
Collapse
Affiliation(s)
- Keram Pfeiffer
- Graduate University for Advanced Studies (Sokendai), Department of Evolutionary Studies of Biosystems, Shonan Village, Hayama, Kanagawa, Japan
| | | |
Collapse
|
36
|
Duistermars BJ, Care RA, Frye MA. Binocular interactions underlying the classic optomotor responses of flying flies. Front Behav Neurosci 2012; 6:6. [PMID: 22375108 PMCID: PMC3284692 DOI: 10.3389/fnbeh.2012.00006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 02/08/2012] [Indexed: 11/25/2022] Open
Abstract
In response to imposed course deviations, the optomotor reactions of animals reduce motion blur and facilitate the maintenance of stable body posture. In flies, many anatomical and electrophysiological studies suggest that disparate motion cues stimulating the left and right eyes are not processed in isolation but rather are integrated in the brain to produce a cohesive panoramic percept. To investigate the strength of such inter-ocular interactions and their role in compensatory sensory–motor transformations, we utilize a virtual reality flight simulator to record wing and head optomotor reactions by tethered flying flies in response to imposed binocular rotation and monocular front-to-back and back-to-front motion. Within a narrow range of stimulus parameters that generates large contrast insensitive optomotor responses to binocular rotation, we find that responses to monocular front-to-back motion are larger than those to panoramic rotation, but are contrast sensitive. Conversely, responses to monocular back-to-front motion are slower than those to rotation and peak at the lowest tested contrast. Together our results suggest that optomotor responses to binocular rotation result from the influence of non-additive contralateral inhibitory as well as excitatory circuit interactions that serve to confer contrast insensitivity to flight behaviors influenced by rotatory optic flow.
Collapse
Affiliation(s)
- Brian J Duistermars
- Department of Physiological Science, Howard Hughes Medical Institute, University of California Los Angeles Los Angeles, CA, USA
| | | | | |
Collapse
|
37
|
Mota T, Yamagata N, Giurfa M, Gronenberg W, Sandoz JC. Neural organization and visual processing in the anterior optic tubercle of the honeybee brain. J Neurosci 2011; 31:11443-56. [PMID: 21832175 PMCID: PMC6623125 DOI: 10.1523/jneurosci.0995-11.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/01/2011] [Accepted: 06/03/2011] [Indexed: 11/21/2022] Open
Abstract
The honeybee Apis mellifera represents a valuable model for studying the neural segregation and integration of visual information. Vision in honeybees has been extensively studied at the behavioral level and, to a lesser degree, at the physiological level using intracellular electrophysiological recordings of single neurons. However, our knowledge of visual processing in honeybees is still limited by the lack of functional studies of visual processing at the circuit level. Here we contribute to filling this gap by providing a neuroanatomical and neurophysiological characterization at the circuit level of a practically unstudied visual area of the bee brain, the anterior optic tubercle (AOTu). First, we analyzed the internal organization and neuronal connections of the AOTu. Second, we established a novel protocol for performing optophysiological recordings of visual circuit activity in the honeybee brain and studied the responses of AOTu interneurons during stimulation of distinct eye regions. Our neuroanatomical data show an intricate compartmentalization and connectivity of the AOTu, revealing a dorsoventral segregation of the visual input to the AOTu. Light stimuli presented in different parts of the visual field (dorsal, lateral, or ventral) induce distinct patterns of activation in AOTu output interneurons, retaining to some extent the dorsoventral input segregation revealed by our neuroanatomical data. In particular, activity patterns evoked by dorsal and ventral eye stimulation are clearly segregated into distinct AOTu subunits. Our results therefore suggest an involvement of the AOTu in the processing of dorsoventrally segregated visual information in the honeybee brain.
Collapse
Affiliation(s)
- Theo Mota
- Centre de Recherches sur la Cognition Animale, Université de Toulouse, Université Paul Sabatier and
- Centre National de la Recherche Scientifique (CNRS), F-31062 Toulouse, France
| | - Nobuhiro Yamagata
- Centre de Recherches sur la Cognition Animale, Université de Toulouse, Université Paul Sabatier and
- Centre National de la Recherche Scientifique (CNRS), F-31062 Toulouse, France
| | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale, Université de Toulouse, Université Paul Sabatier and
- Centre National de la Recherche Scientifique (CNRS), F-31062 Toulouse, France
| | - Wulfila Gronenberg
- Department of Neuroscience, University of Arizona, Tucson, Arizona 85721, and
| | - Jean-Christophe Sandoz
- Centre de Recherches sur la Cognition Animale, Université de Toulouse, Université Paul Sabatier and
- Centre National de la Recherche Scientifique (CNRS), F-31062 Toulouse, France
- Laboratoire Evolution, Génomes et Spéciation, CNRS, 91198 Gif-sur-Yvette, France
| |
Collapse
|
38
|
Sanes JR, Zipursky SL. Design principles of insect and vertebrate visual systems. Neuron 2010; 66:15-36. [PMID: 20399726 DOI: 10.1016/j.neuron.2010.01.018] [Citation(s) in RCA: 391] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2010] [Indexed: 01/26/2023]
Abstract
A century ago, Cajal noted striking similarities between the neural circuits that underlie vision in vertebrates and flies. Over the past few decades, structural and functional studies have provided strong support for Cajal's view. In parallel, genetic studies have revealed some common molecular mechanisms controlling development of vertebrate and fly visual systems and suggested that they share a common evolutionary origin. Here, we review these shared features, focusing on the first several layers-retina, optic tectum (superior colliculus), and lateral geniculate nucleus in vertebrates; and retina, lamina, and medulla in fly. We argue that vertebrate and fly visual circuits utilize common design principles and that taking advantage of this phylogenetic conservation will speed progress in elucidating both functional strategies and developmental mechanisms, as has already occurred in other areas of neurobiology ranging from electrical signaling and synaptic plasticity to neurogenesis and axon guidance.
Collapse
Affiliation(s)
- Joshua R Sanes
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
39
|
Theobald JC, Ringach DL, Frye MA. Dynamics of optomotor responses in Drosophila to perturbations in optic flow. J Exp Biol 2010; 213:1366-75. [PMID: 20348349 PMCID: PMC2846167 DOI: 10.1242/jeb.037945] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2009] [Indexed: 11/20/2022]
Abstract
For a small flying insect, correcting unplanned course perturbations is essential for navigating through the world. Visual course control relies on estimating optic flow patterns which, in flies, are encoded by interneurons of the third optic ganglion. However, the rules that translate optic flow into flight motor commands remain poorly understood. Here, we measured the temporal dynamics of optomotor responses in tethered flies to optic flow fields about three cardinal axes. For each condition, we used white noise analysis to determine the optimal linear filters linking optic flow to the sum and difference of left and right wing beat amplitudes. The estimated filters indicate that flies react very quickly to perturbations of the motion field, with pure delays in the order of approximately 20 ms and time-to-peak of approximately 100 ms. By convolution the filters also predict responses to arbitrary stimulus sequences, accounting for over half the variance in 5 of our 6 stimulus types, demonstrating the approximate linearity of the system with respect to optic flow variables. In the remaining case of yaw optic flow we improved predictability by measuring individual flies, which also allowed us to analyze the variability of optomotor responses within a population. Finally, the linear filters at least partly explain the optomotor responses to superimposed and decomposed compound flow fields.
Collapse
Affiliation(s)
- Jamie C Theobald
- Howard Hughes Medical Institute, The Department of Integrative Biology and Physiology, University of California-Los Angeles, 621 Charles Young Drive South, Los Angeles, CA 90095-1606, USA.
| | | | | |
Collapse
|
40
|
Abstract
Visual scenes comprise enormous amounts of information from which nervous systems extract behaviorally relevant cues. In most model systems, little is known about the transformation of visual information as it occurs along visual pathways. We examined how visual information is transformed physiologically as it is communicated from the eye to higher-order brain centers using bumblebees, which are known for their visual capabilities. We recorded intracellularly in vivo from 30 neurons in the central bumblebee brain (the lateral protocerebrum) and compared these neurons to 132 neurons from more distal areas along the visual pathway, namely the medulla and the lobula. In these three brain regions (medulla, lobula, and central brain), we examined correlations between the neurons' branching patterns and their responses primarily to color, but also to motion stimuli. Visual neurons projecting to the anterior central brain were generally color sensitive, while neurons projecting to the posterior central brain were predominantly motion sensitive. The temporal response properties differed significantly between these areas, with an increase in spike time precision across trials and a decrease in average reliable spiking as visual information processing progressed from the periphery to the central brain. These data suggest that neurons along the visual pathway to the central brain not only are segregated with regard to the physical features of the stimuli (e.g., color and motion), but also differ in the way they encode stimuli, possibly to allow for efficient parallel processing to occur.
Collapse
|
41
|
Abstract
The optic lobes comprise approximately half of the fly's brain. In four major synaptic ganglia, or neuropils, the visual input from the compound eyes is received and processed for higher order visual functions like motion detection and color vision. A common characteristic of vertebrate and invertebrate visual systems is the point-to-point mapping of the visual world to synaptic layers in the brain, referred to as visuotopy. Vision requires the parallel extraction of numerous parameters in a visuotopic manner. Consequently, the optic neuropils are arranged in columns and perpendicularly oriented synaptic layers that allow for the selective establishment of synapses between columnar neurons. How this exquisite synaptic specificity is established during approximately 100 hours of brain development is still poorly understood. However, the optic lobe contains one of the best characterized brain structures in any organism-both anatomically and developmentally. Moreover, numerous molecules and their function illuminate some of the basic mechanisms involved in brain wiring. The emerging picture is that the development of the visual system of Drosophila is (epi-)genetically hard-wired; it supplies the emerging fly with vision without requiring neuronal activity for fine tuning of neuronal connectivity. Elucidating the genetic and cellular principles by which gene activity directs the assembly of the optic lobe is therefore a fascinating task and the focus of this chapter.
Collapse
|
42
|
The processing of color, motion, and stimulus timing are anatomically segregated in the bumblebee brain. J Neurosci 2008; 28:6319-32. [PMID: 18562602 DOI: 10.1523/jneurosci.1196-08.2008] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Animals use vision to perform such diverse behaviors as finding food, interacting socially with other animals, choosing a mate, and avoiding predators. These behaviors are complex and the visual system must process color, motion, and pattern cues efficiently so that animals can respond to relevant stimuli. The visual system achieves this by dividing visual information into separate pathways, but to what extent are these parallel streams separated in the brain? To answer this question, we recorded intracellularly in vivo from 105 morphologically identified neurons in the lobula, a major visual processing structure of bumblebees (Bombus impatiens). We found that these cells have anatomically segregated dendritic inputs confined to one or two of six lobula layers. Lobula neurons exhibit physiological characteristics common to their respective input layer. Cells with arborizations in layers 1-4 are generally indifferent to color but sensitive to motion, whereas layer 5-6 neurons often respond to both color and motion cues. Furthermore, the temporal characteristics of these responses differ systematically with dendritic branching pattern. Some layers are more temporally precise, whereas others are less precise but more reliable across trials. Because different layers send projections to different regions of the central brain, we hypothesize that the anatomical layers of the lobula are the structural basis for the segregation of visual information into color, motion, and stimulus timing.
Collapse
|
43
|
Strausfeld NJ, Sinakevitch I, Okamura JY. Organization of local interneurons in optic glomeruli of the dipterous visual system and comparisons with the antennal lobes. Dev Neurobiol 2007; 67:1267-88. [PMID: 17638381 DOI: 10.1002/dneu.20396] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The lateral protocerebrum of the fly's brain is composed of a system of optic glomeruli, the organization of which compares to that of antennal lobe glomeruli. Each optic glomerulus receives converging axon terminals from a unique ensemble of optic lobe output neurons. Glomeruli are interconnected by systems of spiking and nonspiking local interneurons that are morphologically similar to diffuse and polarized local interneurons in the antennal lobes. GABA-like immunoreactive processes richly supply optic glomeruli, which are also invaded by processes originating from the midbrain and subesophageal ganglia. These arrangements support the suggestion that circuits amongst optic glomeruli refine and elaborate visual information carried by optic lobe outputs, relaying data to long-axoned neurons that extend to other parts of the central nervous system including thoracic ganglia. The representation in optic glomeruli of other modalities suggests that gating of visual information by other sensory inputs, a phenomenon documented from the recordings of descending neurons, could occur before the descending neuron dendrites. The present results demonstrate that future studies must consider the roles of other senses in visual processing.
Collapse
Affiliation(s)
- Nicholas J Strausfeld
- Division of Neurobiology, Arizona Research Laboratories, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
44
|
Okamura JY, Strausfeld NJ. Visual system of calliphorid flies: motion- and orientation-sensitive visual interneurons supplying dorsal optic glomeruli. J Comp Neurol 2007; 500:189-208. [PMID: 17099892 DOI: 10.1002/cne.21195] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intracellular recordings accompanied by dye fills were made from neurons associated with optic glomeruli in the lateral protocerebrum of the brain of the blowfly Phaenicia sericata. The present account describes the morphology of these cells and their electrophysiological responses to oriented bar motion. The most dorsal glomeruli are each supplied by retinotopic efferent neurons that have restricted dendritic fields in the lobula and lobula plate of the optic lobes. Each of these lobula complex cells represents a morphologically identified type of neuron arranged as an ensemble that subtends the entire monocular visual field. Of the four recorded and filled efferent types, three were broadly tuned to the orientation of bar stimuli. At the level of optic glomeruli a relay neuron extending centrally from optic foci and a local interneuron that arborizes among glomeruli showed narrow tuning to oriented bar motion. The present results are discussed with respect to the behavioral significance of oriented motion discrimination by flies and other insects, and with respect to neuroanatomical data demonstrating the organization of deep visual neuropils.
Collapse
Affiliation(s)
- Jun-Ya Okamura
- Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson, Arizona, 85721, USA
| | | |
Collapse
|