1
|
Tsai NY, Nimkar K, Zhao M, Lum MR, Yi Y, Garrett TR, Wang Y, Toma K, Caval-Holme F, Reddy N, Ehrlich AT, Kriegstein AR, Do MTH, Sivyer B, Shekhar K, Duan X. Molecular and spatial analysis of ganglion cells on retinal flatmounts: diversity, topography, and perivascularity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.15.628587. [PMID: 39763751 PMCID: PMC11702564 DOI: 10.1101/2024.12.15.628587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Diverse retinal ganglion cells (RGCs) transmit distinct visual features from the eye to the brain. Recent studies have categorized RGCs into 45 types in mice based on transcriptomic profiles, showing strong alignment with morphological and electrophysiological properties. However, little is known about how these types are spatially arranged on the two-dimensional retinal surface-an organization that influences visual encoding-and how their local microenvironments impact development and neurodegenerative responses. To address this gap, we optimized a workflow combining imaging-based spatial transcriptomics (MERFISH) and immunohistochemical co-staining on thin flatmount retinal sections. We used computational methods to register en face somata distributions of all molecularly defined RGC types. More than 75% (34/45) of types exhibited non-uniform distributions, likely reflecting adaptations of the retina's anatomy to the animal's visual environment. By analyzing the local neighborhoods of each cell, we identified perivascular RGCs located near blood vessels. Seven RGC types are enriched in the perivascular niche, including members of intrinsically photosensitive RGC (ipRGC) and direction-selective RGC (DSGC) subclasses. Orthologous human RGC counterparts of perivascular types - Melanopsin-enriched ipRGCs and ON DSGCs - were also proximal to blood vessels, suggesting their perivascularity may be evolutionarily conserved. Following optic nerve crush in mice, the perivascular M1-ipRGCs and ON DSGCs showed preferential survival, suggesting that proximity to blood vessels may render cell-extrinsic neuroprotection to RGCs through an mTOR-independent mechanism. Overall, our work offers a resource characterizing the spatial profiles of RGC types, enabling future studies of retinal development, physiology, and neurodegeneration at individual neuron type resolution across the two-dimensional space.
Collapse
Affiliation(s)
- Nicole Y Tsai
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
| | - Kushal Nimkar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- These authors contributed equally
| | - Mengya Zhao
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Matthew R Lum
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Yujuan Yi
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tavita R Garrett
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Yixiao Wang
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kenichi Toma
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Franklin Caval-Holme
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School. Boston, MA, USA
| | - Nikhil Reddy
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Aliza T Ehrlich
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Arnold R Kriegstein
- Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Michael Tri H Do
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School. Boston, MA, USA
| | - Benjamin Sivyer
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; Center for Computational Biology; Biophysics Graduate Group, University of California, Berkeley, CA, USA
- These authors contributed equally
| | - Xin Duan
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Physiology and Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
- Lead contact
| |
Collapse
|
2
|
Kozlowski C, Hadyniak SE, Kay JN. Retinal neurons establish mosaic patterning by excluding homotypic somata from their dendritic territories. Cell Rep 2024; 43:114615. [PMID: 39133615 PMCID: PMC11440617 DOI: 10.1016/j.celrep.2024.114615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/01/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
In vertebrate retina, individual neurons of the same type are distributed regularly across the tissue in a pattern known as a mosaic. Establishment of mosaics during development requires cell-cell repulsion among homotypic neurons, but the mechanisms underlying this repulsion remain unknown. Here, we show that two mouse retinal cell types, OFF and ON starburst amacrine cells, establish mosaic spacing by using their dendritic arbors to repel neighboring homotypic somata. Using transgenic tools and single-cell labeling, we identify a developmental period when starburst somata are contacted by neighboring starburst dendrites; these serve to exclude somata from settling within the neighbor's dendritic territory. Dendrite-soma exclusion is mediated by MEGF10, a cell-surface molecule required for starburst mosaic patterning. Our results implicate dendrite-soma exclusion as a key mechanism underlying starburst mosaic spacing and raise the possibility that this could be a general mechanism for mosaic patterning across many cell types and species.
Collapse
Affiliation(s)
- Christopher Kozlowski
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sarah E Hadyniak
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jeremy N Kay
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Touahri Y, Hanna J, Tachibana N, Okawa S, Liu H, David LA, Olender T, Vasan L, Pak A, Mehta DN, Chinchalongporn V, Balakrishnan A, Cantrup R, Dixit R, Mattar P, Saleh F, Ilnytskyy Y, Murshed M, Mains PE, Kovalchuk I, Lefebvre JL, Leong HS, Cayouette M, Wang C, Del Sol A, Brand M, Reese BE, Schuurmans C. Pten regulates endocytic trafficking of cell adhesion and Wnt signaling molecules to pattern the retina. Cell Rep 2024; 43:114005. [PMID: 38551961 PMCID: PMC11290456 DOI: 10.1016/j.celrep.2024.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
The retina is exquisitely patterned, with neuronal somata positioned at regular intervals to completely sample the visual field. Here, we show that phosphatase and tensin homolog (Pten) controls starburst amacrine cell spacing by modulating vesicular trafficking of cell adhesion molecules and Wnt proteins. Single-cell transcriptomics and double-mutant analyses revealed that Pten and Down syndrome cell adhesion molecule Dscam) are co-expressed and function additively to pattern starburst amacrine cell mosaics. Mechanistically, Pten loss accelerates the endocytic trafficking of DSCAM, FAT3, and MEGF10 off the cell membrane and into endocytic vesicles in amacrine cells. Accordingly, the vesicular proteome, a molecular signature of the cell of origin, is enriched in exocytosis, vesicle-mediated transport, and receptor internalization proteins in Pten conditional knockout (PtencKO) retinas. Wnt signaling molecules are also enriched in PtencKO retinal vesicles, and the genetic or pharmacological disruption of Wnt signaling phenocopies amacrine cell patterning defects. Pten thus controls vesicular trafficking of cell adhesion and signaling molecules to establish retinal amacrine cell mosaics.
Collapse
Affiliation(s)
- Yacine Touahri
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Joseph Hanna
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nobuhiko Tachibana
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Satoshi Okawa
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hedy Liu
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Luke Ajay David
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Thomas Olender
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Lakshmy Vasan
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alissa Pak
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dhruv Nimesh Mehta
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Vorapin Chinchalongporn
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Robert Cantrup
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Rajiv Dixit
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Fermisk Saleh
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Monzur Murshed
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3G 1A6, Canada
| | - Paul E Mains
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Julie L Lefebvre
- Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada; Program for Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hon S Leong
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Chao Wang
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Immunology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Benjamin E Reese
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-5060, USA
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
4
|
Kozlowski C, Hadyniak SE, Kay JN. Retinal neurons establish mosaic patterning by excluding homotypic somata from their dendritic territory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567616. [PMID: 38014021 PMCID: PMC10680827 DOI: 10.1101/2023.11.17.567616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
In vertebrate retina, individual neurons of the same type are distributed regularly across the tissue in a pattern known as a mosaic. Establishment of mosaics during development requires cell-cell repulsion among homotypic neurons, but the mechanisms underlying this repulsion remain unknown. Here we show that two mouse retinal cell types, OFF and ON starburst amacrine cells, establish mosaic spacing by using their dendritic arbors to repel neighboring homotypic somata. Using newly-generated transgenic tools and single cell labeling, we identify a transient developmental period when starburst somata receive extensive contacts from neighboring starburst dendrites; these serve to exclude somata from settling within the neighbor's dendritic territory. Dendrite-soma exclusion is mediated by MEGF10, a cell-surface molecule required for starburst mosaic patterning. Our results implicate dendrite-soma exclusion as a key mechanism underlying starburst mosaic spacing, and suggest that this could be a general mechanism for mosaic patterning across many cell types and species.
Collapse
Affiliation(s)
- Christopher Kozlowski
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Durham, NC 27710 USA
| | - Sarah E Hadyniak
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Durham, NC 27710 USA
| | - Jeremy N Kay
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Durham, NC 27710 USA
| |
Collapse
|
5
|
Mu S, Turner NL, Silversmith WM, Jordan CS, Kemnitz N, Sorek M, David C, Jones DL, Bland D, Moore M, Sterling AR, Seung HS. Special nuclear layer contacts between starburst amacrine cells in the mouse retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1129463. [PMID: 38983098 PMCID: PMC11182129 DOI: 10.3389/fopht.2023.1129463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/07/2023] [Indexed: 07/11/2024]
Abstract
Starburst amacrine cells are a prominent neuron type in the mammalian retina that has been well-studied for its role in direction-selective information processing. One specific property of these cells is that their dendrites tightly stratify at specific depths within the inner plexiform layer (IPL), which, together with their unique expression of choline acetyltransferase (ChAT), has made them the most common depth marker for studying other retinal neurons in the IPL. This stratifying property makes it unexpected that they could routinely have dendrites reaching into the nuclear layer or that they could have somatic contact specializations, which is exactly what we have found in this study. Specifically, an electron microscopic image volume of sufficient size from a mouse retina provided us with the opportunity to anatomically observe both microscopic details and collective patterns, and our detailed cell reconstructions revealed interesting cell-cell contacts between starburst amacrine neurons. The contact characteristics differ between the respective On and Off starburst amacrine subpopulations, but both occur within the soma layers, as opposed to their regular contact laminae within the inner plexiform layer.
Collapse
Affiliation(s)
- Shang Mu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Nicholas L. Turner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
- Computer Science Department, Princeton University, Princeton, NJ, United States
| | | | - Chris S. Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Marissa Sorek
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Celia David
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Devon L. Jones
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Doug Bland
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Merlin Moore
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Amy Robinson Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - H. Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
- Computer Science Department, Princeton University, Princeton, NJ, United States
| |
Collapse
|
6
|
Loss of Retinogeniculate Synaptic Function in the DBA/2J Mouse Model of Glaucoma. eNeuro 2022; 9:ENEURO.0421-22.2022. [PMID: 36526366 PMCID: PMC9794376 DOI: 10.1523/eneuro.0421-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Retinal ganglion cell (RGC) axons comprise the optic nerve and carry information to the dorsolateral geniculate nucleus (dLGN), which is then relayed to the cortex for conscious vision. Glaucoma is a blinding neurodegenerative disease that commonly results from intraocular pressure (IOP)-associated injury leading to RGC axonal pathology, disruption of RGC outputs to the brain, and eventual apoptotic loss of RGC somata. The consequences of elevated IOP and glaucomatous pathology on RGC signaling to the dLGN are largely unknown yet are likely to contribute to vision loss. Here, we used anatomic and physiological approaches to study the structure and function of retinogeniculate (RG) synapses in male and female DBA/2J (D2) mice with inherited glaucoma before and after IOP elevation. D2 mice showed progressive loss of anterograde optic tract transport to the dLGN and vGlut2 labeling of RGC axon terminals while patch-clamp measurements of RG synaptic function showed that synaptic transmission was reduced in 9-month and 12-month D2 mice because of the loss of individual RGC axon inputs. TC neuron dendrites had reduced Sholl complexity at 12 months, suggestive of delayed reorganization following reduced synaptic input. There was no detectable change in RGC density in 11- to 12-month D2 retinas, quantified as the number of ganglion cell layer-residing somata immuno-positive for NeuN and immuno-negative for the amacrine marker choline acetyltransferase (ChAT). Thus, observed synaptic defects appear to precede RGC somatic loss. These findings identify glaucoma-associated and IOP-associated deficits in an important subcortical RGC projection target, shedding light on processes linking IOP to vision loss.
Collapse
|
7
|
Endogenous opioid signaling in the retina modulates sleep/wake activity in mice. Neurobiol Sleep Circadian Rhythms 2022; 13:100078. [PMID: 35800978 PMCID: PMC9254600 DOI: 10.1016/j.nbscr.2022.100078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 12/26/2022] Open
|
8
|
Sundberg CA, Lakk M, Paul S, Figueroa KP, Scoles DR, Pulst SM, Križaj D. The RNA-binding protein and stress granule component ATAXIN-2 is expressed in mouse and human tissues associated with glaucoma pathogenesis. J Comp Neurol 2022; 530:537-552. [PMID: 34350994 PMCID: PMC8716417 DOI: 10.1002/cne.25228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/06/2021] [Indexed: 02/03/2023]
Abstract
Polyglutamine repeat expansions in the Ataxin-2 (ATXN2) gene were first implicated in Spinocerebellar Ataxia Type 2, a disease associated with degeneration of motor neurons and Purkinje cells. Recent studies linked single nucleotide polymorphisms in the gene to elevated intraocular pressure in primary open angle glaucoma (POAG); yet, the localization of ATXN2 across glaucoma-relevant tissues of the vertebrate eye has not been thoroughly examined. This study characterizes ATXN2 expression in the mouse and human retina, and anterior eye, using an antibody validated in ATXN2-/- retinas. ATXN2-ir was localized to cytosolic sub compartments in retinal ganglion cell (RGC) somata and proximal dendrites in addition to GABAergic, glycinergic, and cholinergic amacrine cells in the inner plexiform layer (IPL) and displaced amacrine cells. Human, but not mouse retinas showed modest immunolabeling of bipolar cells. ATXN2 immunofluorescence was prominent in the trabecular meshwork and pigmented and nonpigmented cells of the ciliary body, with analyses of primary human trabecular meshwork cells confirming the finding. The expression of ATXN2 in key POAG-relevant ocular tissues supports the potential role in autophagy and stress granule formation in response to ocular hypertension.
Collapse
Affiliation(s)
- Chad A. Sundberg
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Karla P. Figueroa
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Daniel R. Scoles
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Stefan M. Pulst
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
9
|
Kalloniatis M, Loh CS, Acosta ML, Tomisich G, Zhu Y, Nivison‐smith L, Fletcher EL, Chua J, Sun D, Arunthavasothy N. Retinal amino acid neurochemistry in health and disease. Clin Exp Optom 2021; 96:310-32. [DOI: 10.1111/cxo.12015] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 07/01/2012] [Accepted: 07/17/2012] [Indexed: 12/25/2022] Open
Affiliation(s)
- Michael Kalloniatis
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia,
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia,
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Chee Seang Loh
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Monica L Acosta
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Guido Tomisich
- Department of Optometry and Vision Science, The University of Melbourne, Parkville, Victoria, Australia,
| | - Yuan Zhu
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
| | - Lisa Nivison‐smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
| | - Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia,
| | - Jacqueline Chua
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Daniel Sun
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Niru Arunthavasothy
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| |
Collapse
|
10
|
Interrelationships between Cellular Density, Mosaic Patterning, and Dendritic Coverage of VGluT3 Amacrine Cells. J Neurosci 2021; 41:103-117. [PMID: 33208470 DOI: 10.1523/jneurosci.1027-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 01/15/2023] Open
Abstract
Amacrine cells of the retina are conspicuously variable in their morphologies, their population demographics, and their ensuing functions. Vesicular glutamate transporter 3 (VGluT3) amacrine cells are a recently characterized type of amacrine cell exhibiting local dendritic autonomy. The present analysis has examined three features of this VGluT3 population, including their density, local distribution, and dendritic spread, to discern the extent to which these are interrelated, using male and female mice. We first demonstrate that Bax-mediated cell death transforms the mosaic of VGluT3 cells from a random distribution into a regular mosaic. We subsequently examine the relationship between cell density and mosaic regularity across recombinant inbred strains of mice, finding that, although both traits vary across the strains, they exhibit minimal covariation. Other genetic determinants must therefore contribute independently to final cell number and to mosaic order. Using a conditional KO approach, we further demonstrate that Bax acts via the bipolar cell population, rather than cell-intrinsically, to control VGluT3 cell number. Finally, we consider the relationship between the dendritic arbors of single VGluT3 cells and the distribution of their homotypic neighbors. Dendritic field area was found to be independent of Voronoi domain area, while dendritic coverage of single cells was not conserved, simply increasing with the size of the dendritic field. Bax-KO retinas exhibited a threefold increase in dendritic coverage. Each cell, however, contributed less dendrites at each depth within the plexus, intermingling their processes with those of neighboring cells to approximate a constant volumetric density, yielding a uniformity in process coverage across the population.SIGNIFICANCE STATEMENT Different types of retinal neuron spread their processes across the surface of the retina to achieve a degree of dendritic coverage that is characteristic of each type. Many of these types achieve a constant coverage by varying their dendritic field area inversely with the local density of like-type neighbors. Here we report a population of retinal amacrine cells that do not develop dendritic arbors in relation to the spatial positioning of such homotypic neighbors; rather, this cell type modulates the extent of its dendritic branching when faced with a variable number of overlapping dendritic fields to approximate a uniformity in dendritic density across the retina.
Collapse
|
11
|
Yan RS, Yang XL, Zhong YM, Zhang DQ. Spontaneous Depolarization-Induced Action Potentials of ON-Starburst Amacrine Cells during Cholinergic and Glutamatergic Retinal Waves. Cells 2020; 9:cells9122574. [PMID: 33271919 PMCID: PMC7759856 DOI: 10.3390/cells9122574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 11/16/2022] Open
Abstract
Correlated spontaneous activity in the developing retina (termed “retinal waves”) plays an instructive role in refining neural circuits of the visual system. Depolarizing (ON) and hyperpolarizing (OFF) starburst amacrine cells (SACs) initiate and propagate cholinergic retinal waves. Where cholinergic retinal waves stop, SACs are thought to be driven by glutamatergic retinal waves initiated by ON-bipolar cells. However, the properties and function of cholinergic and glutamatergic waves in ON- and OFF-SACs still remain poorly understood. In the present work, we performed whole-cell patch-clamp recordings and Ca2+ imaging from genetically labeled ON- and OFF-SACs in mouse flat-mount retinas. We found that both SAC subtypes exhibited spontaneous rhythmic depolarization during cholinergic and glutamatergic waves. Interestingly, ON-SACs had wave-induced action potentials (APs) in an age-dependent manner, but OFF-SACs did not. Simultaneous Ca2+ imaging and patch-clamp recordings demonstrated that, during a cholinergic wave, APs of an ON-SAC appeared to promote the dendritic release of acetylcholine onto neighboring ON- and OFF-SACs, which enhances their Ca2+ transients. These results advance the understanding of the cellular mechanisms underlying correlated spontaneous activity in the developing retina.
Collapse
Affiliation(s)
- Rong-Shan Yan
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; (R.-S.Y.); (X.-L.Y.)
- Eye Research Institute, Oakland University, Rochester, MI 48309-4479, USA
| | - Xiong-Li Yang
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; (R.-S.Y.); (X.-L.Y.)
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yong-Mei Zhong
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; (R.-S.Y.); (X.-L.Y.)
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
- Correspondence: (Y.-M.Z.); (D.-Q.Z.); Tel.: +86-21-5423-7736 (Y.-M.Z.); +1-248-3702399 (D.-Q.Z.)
| | - Dao-Qi Zhang
- Eye Research Institute, Oakland University, Rochester, MI 48309-4479, USA
- Correspondence: (Y.-M.Z.); (D.-Q.Z.); Tel.: +86-21-5423-7736 (Y.-M.Z.); +1-248-3702399 (D.-Q.Z.)
| |
Collapse
|
12
|
Jiang D, Burger CA, Casasent A, Albrecht NE, Li F, Samuel MA. Spatiotemporal gene expression patterns reveal molecular relatedness between retinal laminae. J Comp Neurol 2020; 528:729-755. [PMID: 31609468 PMCID: PMC7147688 DOI: 10.1002/cne.24784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/28/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022]
Abstract
In several areas of the central nervous system, neurons are regionally organized into groups or layers that carry out specific activities. In this form of patterning, neurons of distinct types localize their cell bodies to just one or a few of the layers within a structure. However, little is known about whether diverse neuron types within a lamina share molecular features that coordinate their organization. To begin to identify such candidates, we used the laminated murine retina to screen 92 lacZ reporter lines available through the Knockout Mouse Project. Thirty-two of these displayed reporter expression in restricted subsets of inner retina neurons. We then identified the spatiotemporal expression patterns of these genes at key developmental stages. This uncovered several that were heavily enriched in development but reduced in adulthood, including the transcriptional regulator Hmga1. An additional set of genes displayed maturation associated laminar enrichment. Among these, we identified Bbox1 as a novel gene that specifically labels all neurons in the ganglion cell layer but is largely excluded from otherwise molecularly similar neurons in the inner retina. Finally, we established Dbn1 as a new marker enriched in amacrines and Fmnl3 as a marker for subsets of αRGCs. Together, these data provide a spatiotemporal map for laminae-specific molecules and suggest that diverse neuron types within a lamina share coordinating molecular features that may inform their fate or function.
Collapse
Affiliation(s)
- Danye Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Courtney A. Burger
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Anna Casasent
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Nicholas E. Albrecht
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Fenge Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Melanie A. Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
13
|
Keeley PW, Eglen SJ, Reese BE. From random to regular: Variation in the patterning of retinal mosaics. J Comp Neurol 2020; 528:2135-2160. [PMID: 32026463 DOI: 10.1002/cne.24880] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/07/2020] [Accepted: 01/31/2020] [Indexed: 12/23/2022]
Abstract
The various types of retinal neurons are each positioned at their respective depths within the retina where they are believed to be assembled as orderly mosaics, in which like-type neurons minimize proximity to one another. Two common statistical analyses for assessing the spatial properties of retinal mosaics include the nearest neighbor analysis, from which an index of their "regularity" is commonly calculated, and the density recovery profile derived from autocorrelation analysis, revealing the presence of an exclusion zone indicative of anti-clustering. While each of the spatial statistics derived from these analyses, the regularity index and the effective radius, can be useful in characterizing such properties of orderly retinal mosaics, they are rarely sufficient for conveying the natural variation in the self-spacing behavior of different types of retinal neurons and the extent to which that behavior generates uniform intercellular spacing across the mosaic. We consider the strengths and limitations of these and other spatial statistical analyses for assessing the patterning in retinal mosaics, highlighting a number of misconceptions and their frequent misuse. Rather than being diagnostic criteria for determining simply whether a population is "regular," they should be treated as descriptive statistics that convey variation in the factors that influence neuronal positioning. We subsequently apply multiple spatial statistics to the analysis of eight different mosaics in the mouse retina, demonstrating conspicuous variability in the degree of patterning present, from essentially random to notably regular. This variability in patterning has both a developmental as well as a functional significance, reflecting the rules governing the positioning of different types of neurons as the architecture of the retina is assembled, and the distinct mechanisms by which they regulate dendritic growth to generate their characteristic coverage and connectivity.
Collapse
Affiliation(s)
- Patrick W Keeley
- Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, California
| | - Stephen J Eglen
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Benjamin E Reese
- Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, California.,Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| |
Collapse
|
14
|
Digital Museum of Retinal Ganglion Cells with Dense Anatomy and Physiology. Cell 2019; 173:1293-1306.e19. [PMID: 29775596 DOI: 10.1016/j.cell.2018.04.040] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/09/2018] [Accepted: 04/27/2018] [Indexed: 11/23/2022]
Abstract
When 3D electron microscopy and calcium imaging are used to investigate the structure and function of neural circuits, the resulting datasets pose new challenges of visualization and interpretation. Here, we present a new kind of digital resource that encompasses almost 400 ganglion cells from a single patch of mouse retina. An online "museum" provides a 3D interactive view of each cell's anatomy, as well as graphs of its visual responses. The resource reveals two aspects of the retina's inner plexiform layer: an arbor segregation principle governing structure along the light axis and a density conservation principle governing structure in the tangential plane. Structure is related to visual function; ganglion cells with arbors near the layer of ganglion cell somas are more sustained in their visual responses on average. Our methods are potentially applicable to dense maps of neuronal anatomy and physiology in other parts of the nervous system.
Collapse
|
15
|
Hicks EA, Zaveri M, Deschamps PA, Noseworthy MD, Ball A, Williams T, West-Mays JA. Conditional Deletion of AP-2α and AP-2β in the Developing Murine Retina Leads to Altered Amacrine Cell Mosaics and Disrupted Visual Function. Invest Ophthalmol Vis Sci 2019; 59:2229-2239. [PMID: 29715367 PMCID: PMC5931233 DOI: 10.1167/iovs.17-23283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The combined action of the activating protein-2 (AP-2) transcription factors, AP-2α and AP-2β, is important in early retinal development, specifically in the formation of horizontal cells. However, in previous studies, it was not possible to analyze postnatal development and function of additional retinal subtypes. Methods We used a double conditional deletion of AP-2α and AP-2β from the retina to further examine the combinatory role of these genes in retinal cell patterning and function in postnatal adult mice as measured by Voronoi domain area and nearest-neighbor distance spatial analyses and ERGs, respectively. Results Conditional deletion of both AP-2α and AP-2β from the retina resulted in a variety of abnormalities, including the absence of horizontal cells, defects in the photoreceptor ribbons in which synapses failed to form, along with evidence of aberrant amacrine cell arrangement. Although no significant changes in amacrine cell population numbers were observed in the double mutants, significant irregularities in the mosaic patterning of amacrine cells was observed as demonstrated by both Voronoi domain areas and nearest-neighbor distances analyses. These changes were further accompanied by an alteration in the retinal response to light as recorded by ERGs. In particular, in the double-mutant mice lacking AP-2α and AP-2β, the b-wave amplitude, representative of interneuron signal processing, was significantly reduced compared with control littermates. Conclusions Together these findings demonstrate the requirement for both AP-2α and AP-2β in proper amacrine mosaic patterning and a normal functional light response in the retina.
Collapse
Affiliation(s)
- Emily Anne Hicks
- McMaster School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Mizna Zaveri
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Paula A Deschamps
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael D Noseworthy
- McMaster School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada.,Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada.,Department of Radiology, McMaster University, Hamilton, Ontario, Canada
| | - Alexander Ball
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Trevor Williams
- Department of Craniofacial Biology and Department of Cell and Developmental Biology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States
| | - Judith A West-Mays
- McMaster School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
Ghinia MG, Novelli E, Sajgo S, Badea TC, Strettoi E. Brn3a and Brn3b knockout mice display unvaried retinal fine structure despite major morphological and numerical alterations of ganglion cells. J Comp Neurol 2019; 527:187-211. [PMID: 27391320 PMCID: PMC5219957 DOI: 10.1002/cne.24072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/07/2016] [Accepted: 06/30/2016] [Indexed: 01/21/2023]
Abstract
Ganglion cells (GCs), the retinal output neurons, receive synaptic inputs from bipolar and amacrine cells in the inner plexiform layer (IPL) and send information to the brain nuclei via the optic nerve. Although GCs constitute less than 1% of the total retinal cells, they occur in numerous types and are the first neurons formed during retinal development. Using Brn3a and Brn3b mutant mice in which the alkaline phosphatase gene was knocked-in (Badea et al. [Neuron] 2009;61:852-864; Badea and Nathans [Vision Res] 2011;51:269-279), we studied the general effects after gene removal on the retinal neuropil together with the consequences of lack of development of large numbers of GCs onto the remaining retinal neurons of the same class. We analyzed the morphology, number, and general architecture of various neuronal types presynaptic to GCs, searching for changes secondary to the decrement in the number of their postsynaptic partners, as well as the morphology and distribution of retinal astrocytes, for their strong topographical relation to GCs. We found that, despite GC losses, retinal organization in Brn3 null mice is remarkably similar to that of wild-type controls. J. Comp. Neurol. 527:187-211, 2019. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Miruna Georgiana Ghinia
- Neuroscience Institute of the Italian National Research Council, Pisa Research Campus, 56124 Pisa, Italy
- Retinal CIrcuit Development & Genetics Unit, Neurobiology–Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
- Babeş Bolyai University, 400084 Cluj Napoca, Romania
| | - Elena Novelli
- Neuroscience Institute of the Italian National Research Council, Pisa Research Campus, 56124 Pisa, Italy
| | - Szilard Sajgo
- Retinal CIrcuit Development & Genetics Unit, Neurobiology–Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Tudor Constantin Badea
- Retinal CIrcuit Development & Genetics Unit, Neurobiology–Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Enrica Strettoi
- Neuroscience Institute of the Italian National Research Council, Pisa Research Campus, 56124 Pisa, Italy
| |
Collapse
|
17
|
The somal patterning of the AII amacrine cell mosaic in the mouse retina is indistinguishable from random simulations matched for density and constrained by soma size. Vis Neurosci 2018; 35:E003. [PMID: 29905123 DOI: 10.1017/s0952523817000347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The orderly spacing of retinal neurons is commonly regarded as a characteristic feature of retinal nerve cell populations. Exemplars of this property include the horizontal cells and the cholinergic amacrine cells, where individual cells minimize the proximity to like-type neighbors, yielding regularity in the patterning of their somata. Recently, two types of retinal bipolar cells in the mouse retina were shown to exhibit an order in their somal patterning no different from density-matched simulations constrained by soma size but being otherwise randomly distributed. The present study has now extended this finding to a type of retinal amacrine cell, the AII amacrine cell. Voronoi domain analysis revealed the patterning in the population of AII amacrine somata to be no different from density-matched and soma-size-constrained random simulations, while analysis of the density recovery profile showed AII amacrine cells to exhibit a minimal intercellular spacing identical to that for those random simulations: AII amacrine somata were positioned side-by-side as often as chance would predict. Regularity indexes and packing factors (PF) were far lower than those achieved by either the horizontal cells or cholinergic amacrine cells, with PFs also being comparable to those derived from the constrained random simulations. These results extend recent findings that call into question the widespread assumption that all types of retinal neurons are assembled as regular somal arrays, and have implications for the way in which AII amacrine cells must distribute their processes to ensure a uniform coverage of the retinal surface.
Collapse
|
18
|
Zhang C, Yu WQ, Hoshino A, Huang J, Rieke F, Reh TA, Wong ROL. Development of ON and OFF cholinergic amacrine cells in the human fetal retina. J Comp Neurol 2018; 527:174-186. [PMID: 29405294 DOI: 10.1002/cne.24405] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
Abstract
Choline acetyltransferase (ChAT) expressing retinal amacrine cells are present across vertebrates. These interneurons play important roles in the development of retinal projections to the brain and in motion detection, specifically in generating direction-selective responses to moving stimuli. ChAT amacrine cells typically comprise two spatially segregated populations that form circuits in the 'ON' or 'OFF' synaptic layers of the inner retina. This stereotypic arrangement is also found across the adult human retina, with the notable exception that ChAT expression is evident in the ON but not OFF layer of the fovea, a region specialized for high-acuity vision. We thus investigated whether the human fovea exhibits a developmental path for ON and OFF ChAT cells that is retinal location-specific. Our analysis shows that at each retinal location, human ON and OFF ChAT cells differentiate, form their separate synaptic layers, and establish non-random mosaics at about the same time. However, unlike in the adult fovea, ChAT immunostaining is initially robust in both ON and OFF populations, up until at least mid-gestation. ChAT expression in the OFF layer in the fovea is therefore significantly reduced after mid-gestation. OFF ChAT cells in the human fovea and in the retinal periphery thus follow distinct maturational paths.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Akina Hoshino
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Jing Huang
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, Washington
| |
Collapse
|
19
|
Abstract
Retinal bipolar cells spread their dendritic arbors to tile the retinal surface, extending them to the tips of the dendritic fields of their homotypic neighbors, minimizing dendritic overlap. Such uniform nonredundant dendritic coverage of these populations would suggest a degree of spatial order in the properties of their somal distributions, yet few studies have examined the patterning in retinal bipolar cell mosaics. The present study examined the organization of two types of cone bipolar cells in the mouse retina, the Type 2 cells and the Type 4 cells, and compared their spatial statistical properties with those of the horizontal cells and the cholinergic amacrine cells, as well as to random simulations of cells matched in density and constrained by soma size. The Delauney tessellation of each field was computed, from which nearest neighbor distances and Voronoi domain areas were extracted, permitting a calculation of their respective regularity indexes (RIs). The spatial autocorrelation of the field was also computed, from which the effective radius and packing factor (PF) were determined. Both cone bipolar cell types were found to be less regular and less efficiently packed than either the horizontal cells or cholinergic amacrine cells. Furthermore, while the latter two cell types had RIs and PFs in excess of those for their matched random simulations, the two types of cone bipolar cells had spatial statistical properties comparable to random distributions. An analysis of single labeled cone bipolar cells revealed dendritic arbors frequently skewed to one side of the soma, as would be expected from a randomly distributed population of cells with dendrites that tile. Taken together, these results suggest that, unlike the horizontal cells or cholinergic amacrine cells which minimize proximity to one another, cone bipolar cell types are constrained only by their physical size.
Collapse
|
20
|
Pérez de Sevilla Müller L, Solomon A, Sheets K, Hapukino H, Rodriguez AR, Brecha NC. Multiple cell types form the VIP amacrine cell population. J Comp Neurol 2017; 527:133-158. [PMID: 28472856 DOI: 10.1002/cne.24234] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 04/21/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
Amacrine cells are a heterogeneous group of interneurons that form microcircuits with bipolar, amacrine and ganglion cells to process visual information in the inner retina. This study has characterized the morphology, neurochemistry and major cell types of a VIP-ires-Cre amacrine cell population. VIP-tdTomato and -Confetti (Brainbow2.1) mouse lines were generated by crossing a VIP-ires-Cre line with either a Cre-dependent tdTomato or Brainbow2.1 reporter line. Retinal sections and whole-mounts were evaluated by quantitative, immunohistochemical, and intracellular labeling approaches. The majority of tdTomato and Confetti fluorescent cell bodies were in the inner nuclear layer (INL) and a few cell bodies were in the ganglion cell layer (GCL). Fluorescent processes ramified in strata 1, 3, 4, and 5 of the inner plexiform layer (IPL). All tdTomato fluorescent cells expressed syntaxin 1A and GABA-immunoreactivity indicating they were amacrine cells. The average VIP-tdTomato fluorescent cell density in the INL and GCL was 535 and 24 cells/mm2 , respectively. TdTomato fluorescent cells in the INL and GCL contained VIP-immunoreactivity. The VIP-ires-Cre amacrine cell types were identified in VIP-Brainbow2.1 retinas or by intracellular labeling in VIP-tdTomato retinas. VIP-1 amacrine cells are bistratified, wide-field cells that ramify in strata 1, 4, and 5, VIP-2A and 2B amacrine cells are medium-field cells that mainly ramify in strata 3 and 4, and VIP-3 displaced amacrine cells are medium-field cells that ramify in strata 4 and 5 of the IPL. VIP-ires-Cre amacrine cells form a neuropeptide-expressing cell population with multiple cell types, which are likely to have distinct roles in visual processing.
Collapse
Affiliation(s)
- Luis Pérez de Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Alexander Solomon
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Kristopher Sheets
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Hinekura Hapukino
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Allen R Rodriguez
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Nicholas C Brecha
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,Department of Medicine, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,Department of Ophthalmology and the Stein Eye Institute, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,CURE Digestive Diseases Research Center, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,Veterans Administration Greater Los Angeles Health System, Los Angeles, California, 90073
| |
Collapse
|
21
|
Pérez de Sevilla Müller L, Azar SS, de Los Santos J, Brecha NC. Prox1 Is a Marker for AII Amacrine Cells in the Mouse Retina. Front Neuroanat 2017; 11:39. [PMID: 28529477 PMCID: PMC5418924 DOI: 10.3389/fnana.2017.00039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022] Open
Abstract
The transcription factor Prox1 is expressed in multiple cells in the retina during eye development. This study has focused on neuronal Prox1 expression in the inner nuclear layer (INL) of the adult mouse retina. Prox1 immunostaining was evaluated in vertical retinal sections and whole mount preparations using a specific antibody directed to the C-terminus of Prox1. Strong immunostaining was observed in numerous amacrine cell bodies and in all horizontal cell bodies in the proximal and distal INL, respectively. Some bipolar cells were also weakly immunostained. Prox1-immunoreactive amacrine cells expressed glycine, and they formed 35 ± 3% of all glycinergic amacrine cells. Intracellular Neurobiotin injections into AII amacrine cells showed that all gap junction-coupled AII amacrine cells express Prox1, and no other Prox1-immunostained amacrine cells were in the immediate area surrounding the injected AII amacrine cell. Prox1-immunoreactive amacrine cell bodies were distributed across the retina, with their highest density (3887 ± 160 cells/mm2) in the central retina, 0.5 mm from the optic nerve head, and their lowest density (3133 ± 350 cells/mm2) in the mid-peripheral retina, 2 mm from the optic nerve head. Prox1-immunoreactive amacrine cell bodies comprised ~9.8% of the total amacrine cell population, and they formed a non-random mosaic with a regularity index (RI) of 3.4, similar to AII amacrine cells in the retinas of other mammals. Together, these findings indicate that AII amacrine cells are the predominant and likely only amacrine cell type strongly expressing Prox1 in the adult mouse retina, and establish Prox1 as a marker of AII amacrine cells.
Collapse
Affiliation(s)
- Luis Pérez de Sevilla Müller
- Departments of Neurobiology, Medicine and Ophthalmology, David Geffen School of Medicine at Los Angeles, University of California, Los AngelesLos Angeles, CA, USA
| | - Shaghauyegh S Azar
- Departments of Neurobiology, Medicine and Ophthalmology, David Geffen School of Medicine at Los Angeles, University of California, Los AngelesLos Angeles, CA, USA
| | - Janira de Los Santos
- Departments of Neurobiology, Medicine and Ophthalmology, David Geffen School of Medicine at Los Angeles, University of California, Los AngelesLos Angeles, CA, USA
| | - Nicholas C Brecha
- Departments of Neurobiology, Medicine and Ophthalmology, David Geffen School of Medicine at Los Angeles, University of California, Los AngelesLos Angeles, CA, USA.,Stein Eye Institute, David Geffen School of Medicine at Los Angeles, University of California, Los AngelesLos Angeles, CA, USA.,CURE Digestive Diseases Research Center, David Geffen School of Medicine at Los Angeles, University of California, Los AngelesLos Angeles, CA, USA.,Veterans Administration Greater Los Angeles Health SystemLos Angeles, CA, USA
| |
Collapse
|
22
|
Chen YP, Bai GS, Wu MF, Chiao CC, Huang YS. Loss of CPEB3 Upregulates MEGF10 to Impair Mosaic Development of ON Starburst Amacrine Cells. Front Mol Neurosci 2016; 9:105. [PMID: 27822178 PMCID: PMC5075539 DOI: 10.3389/fnmol.2016.00105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/04/2016] [Indexed: 01/20/2023] Open
Abstract
Cytoplasmic polyadenylation element binding protein 3 (CPEB3) regulates target RNA translation in neurons. Here, we examined CPEB3 distribution and function in the mouse retina. CPEB3 is expressed in retinal neurons, including those located in the inner nuclear layer (INL) and ganglion cell layer (GCL) but not in cone and rod photoreceptors in the outer nuclear layer (ONL). A previous study found CPEB3 expressed in cholinergic starburst amacrine cells (SACs). We first examined these cells and observed aberrant SAC mosaicism in CPEB3-knockout (KO) retinas. Retinal neurons showed orderly spatial arrangements. Many individual subtypes are organized non-randomly in patterns called mosaics. Despite CPEB3 being expressed in both populations of SACs, OFF SACs in the INL and ON SACs in the GCL, aberrant mosaic regularity was observed in only ON SACs of CPEB3-KO retinas. Molecular characterization revealed that translation of multiple epidermal growth factor 10 (Megf10) RNA is suppressed by CPEB3 during the first week of postnatal development, when MEGF10 is primarily expressed in SACs and mediates homotypic repulsive interactions to define intercellular spacing of SACs. Thus, elevated MEGF10 expression in the absence of the translational repressor CPEB3 may account for the defective spatial organization of ON SACs. Our findings uncover for the first time that translational control plays a role in shaping retinal mosaic arrangement.
Collapse
Affiliation(s)
- Yin-Peng Chen
- Institute of Biomedical Sciences, Academia Sinica Taipei, Taiwan
| | - Geng-Shuo Bai
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan; Institute of Neuroscience, National Yang-Ming UniversityTaipei, Taiwan
| | - Meng-Fang Wu
- Institute of Biomedical Sciences, Academia Sinica Taipei, Taiwan
| | - Chuan-Chin Chiao
- Institute of Systems Neuroscience and Department of Life Science, National Tsing-Hua University Hsinchu, Taiwan
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan; Institute of Neuroscience, National Yang-Ming UniversityTaipei, Taiwan
| |
Collapse
|
23
|
Reese BE, Keeley PW. Genomic control of neuronal demographics in the retina. Prog Retin Eye Res 2016; 55:246-259. [PMID: 27492954 DOI: 10.1016/j.preteyeres.2016.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/21/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022]
Abstract
The mature retinal architecture is composed of various types of neuron, each population differing in size and constrained to particular layers, wherein the cells achieve a characteristic patterning in their local organization. These demographic features of retinal nerve cell populations are each complex traits controlled by multiple genes affecting different processes during development, and their genetic determinants can be dissected by correlating variation in these traits with their genomic architecture across recombinant-inbred mouse strains. Using such a resource, we consider how the variation in the numbers of twelve different types of retinal neuron are independent of one another, including those sharing transcriptional regulation as well as those that are synaptically-connected, each mapping to distinct genomic loci. Using the populations of two retinal interneurons, the horizontal cells and the cholinergic amacrine cells, we present in further detail examples where the variation in neuronal number, as well as the variation in mosaic patterning or in laminar positioning, each maps to discrete genomic loci where allelic variants modulating these features must be present. At those loci, we identify candidate genes which, when rendered non-functional, alter those very demographic properties, and in turn, we identify candidate coding or regulatory variants that alter protein structure or gene expression, respectively, being prospective contributors to the variation in phenotype. This forward-genetic approach provides an alternative means for dissecting the molecular genetic control of neuronal population dynamics, with each genomic locus serving as a causal anchor from which we may ultimately understand the developmental principles responsible for the control of those traits.
Collapse
Affiliation(s)
- Benjamin E Reese
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, USA; Departments of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106-9660, USA.
| | - Patrick W Keeley
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, USA; Departments of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA 93106-9625, USA
| |
Collapse
|
24
|
Pomilio C, Pavia P, Gorojod RM, Vinuesa A, Alaimo A, Galvan V, Kotler ML, Beauquis J, Saravia F. Glial alterations from early to late stages in a model of Alzheimer's disease: Evidence of autophagy involvement in Aβ internalization. Hippocampus 2016; 26:194-210. [PMID: 26235241 PMCID: PMC5467976 DOI: 10.1002/hipo.22503] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2015] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease without effective therapy. Brain amyloid deposits are classical histopathological hallmarks that generate an inflammatory reaction affecting neuronal and glial function. The identification of early cell responses and of brain areas involved could help to design new successful treatments. Hence, we studied early alterations of hippocampal glia and their progression during the neuropathology in PDAPP-J20 transgenic mice, AD model, at 3, 9, and 15 months (m) of age. At 3 m, before deposits formation, microglial Iba1+ cells from transgenic mice already exhibited signs of activation and larger soma size in the hilus, alterations appearing later on stratum radiatum. Iba1 immunohistochemistry revealed increased cell density and immunoreactive area in PDAPP mice from 9 m onward selectively in the hilus, in coincidence with prominent amyloid Congo red + deposition. At pre-plaque stages, GFAP+ astroglia showed density alterations while, at an advanced age, the presence of deposits was associated with important glial volume changes and apparently being intimately involved in amyloid degradation. Astrocytes around plaques were strongly labeled for LC3 until 15 m in Tg mice, suggestive of increased autophagic flux. Moreover, β-Amyloid fibrils internalization by astrocytes in in vitro conditions was dependent on autophagy. Co-localization of Iba1 with ubiquitin or p62 was exclusively found in microglia contacting deposits from 9 m onward, suggesting torpid autophagy. Our work characterizes glial changes at early stages of the disease in PDAPP-J20 mice, focusing on the hilus as an especially susceptible hippocampal subfield, and provides evidence that glial autophagy could play a role in amyloid processing at advanced stages.
Collapse
Affiliation(s)
- Carlos Pomilio
- Departamento De Quimica Biologica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, Instituto De Biologia Y Medicina Experimental Conicet, Buenos Aires, Argentina
| | - Patricio Pavia
- Departamento De Quimica Biologica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, Instituto De Biologia Y Medicina Experimental Conicet, Buenos Aires, Argentina
| | - Roxana Mayra Gorojod
- Departamento De Quimica Biologica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, IQUIBICEN-Conicet, Buenos Aires, Argentina
| | - Angeles Vinuesa
- Departamento De Quimica Biologica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, Instituto De Biologia Y Medicina Experimental Conicet, Buenos Aires, Argentina
| | - Agustina Alaimo
- Departamento De Quimica Biologica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, IQUIBICEN-Conicet, Buenos Aires, Argentina
| | - Veronica Galvan
- Department of Physiology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas
| | - Monica Lidia Kotler
- Departamento De Quimica Biologica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, IQUIBICEN-Conicet, Buenos Aires, Argentina
| | - Juan Beauquis
- Departamento De Quimica Biologica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, Instituto De Biologia Y Medicina Experimental Conicet, Buenos Aires, Argentina
| | - Flavia Saravia
- Departamento De Quimica Biologica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, Instituto De Biologia Y Medicina Experimental Conicet, Buenos Aires, Argentina
| |
Collapse
|
25
|
Reese BE, Keeley PW, Lee SCS, Whitney IE. Developmental plasticity of dendritic morphology and the establishment of coverage and connectivity in the outer retina. Dev Neurobiol 2015; 71:1273-85. [PMID: 21557509 DOI: 10.1002/dneu.20903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Developing retinal neurons differentiate their distinctive dendritic morphologies through cell-intrinsic instructions and cellular interactions within the local environment. This review examines the contributions of interactions with afferents and with homotypic neighbors upon the dendritic morphogenesis of retinal bipolar cells in four different mouse models that modulate the frequency of these interactions. Comparisons with horizontal cell differentiation are discussed, and differences between the dendritic plasticity within the outer versus inner plexiform layers are highlighted. Finally, the developmental plasticity of the bipolar and horizontal cells is considered in light of the natural variation in afferent and target cell number, ensuring a uniformity of coverage and connectivity across the retinal surface.
Collapse
Affiliation(s)
- Benjamin E Reese
- Neuroscience Research Institute and Departments of Psychology and Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106-5060.
| | | | | | | |
Collapse
|
26
|
Jammalamadaka A, Suwannatat P, Fisher SK, Manjunath BS, Höllerer T, Luna G. Characterizing spatial distributions of astrocytes in the mammalian retina. Bioinformatics 2015; 31:2024-31. [PMID: 25686636 DOI: 10.1093/bioinformatics/btv097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 01/31/2015] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION In addition to being involved in retinal vascular growth, astrocytes play an important role in diseases and injuries, such as glaucomatous neuro-degeneration and retinal detachment. Studying astrocytes, their morphological cell characteristics and their spatial relationships to the surrounding vasculature in the retina may elucidate their role in these conditions. RESULTS Our results show that in normal healthy retinas, the distribution of observed astrocyte cells does not follow a uniform distribution. The cells are significantly more densely packed around the blood vessels than a uniform distribution would predict. We also show that compared with the distribution of all cells, large cells are more dense in the vicinity of veins and toward the optic nerve head whereas smaller cells are often more dense in the vicinity of arteries. We hypothesize that since veinal astrocytes are known to transport toxic metabolic waste away from neurons they may be more critical than arterial astrocytes and therefore require larger cell bodies to process waste more efficiently. AVAILABILITY AND IMPLEMENTATION A 1/8th size down-sampled version of the seven retinal image mosaics described in this article can be found on BISQUE (Kvilekval et al., 2010) at http://bisque.ece.ucsb.edu/client_service/view?resource=http://bisque.ece.ucsb.edu/data_service/dataset/6566968.
Collapse
Affiliation(s)
- Aruna Jammalamadaka
- Department of Electrical and Computer Engineering, Department of Computer Science, Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Panuakdet Suwannatat
- Department of Electrical and Computer Engineering, Department of Computer Science, Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Steven K Fisher
- Department of Electrical and Computer Engineering, Department of Computer Science, Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA Department of Electrical and Computer Engineering, Department of Computer Science, Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - B S Manjunath
- Department of Electrical and Computer Engineering, Department of Computer Science, Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Tobias Höllerer
- Department of Electrical and Computer Engineering, Department of Computer Science, Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Gabriel Luna
- Department of Electrical and Computer Engineering, Department of Computer Science, Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
27
|
Lansdell B, Ford K, Kutz JN. A reaction-diffusion model of cholinergic retinal waves. PLoS Comput Biol 2014; 10:e1003953. [PMID: 25474327 PMCID: PMC4256014 DOI: 10.1371/journal.pcbi.1003953] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 10/01/2014] [Indexed: 01/21/2023] Open
Abstract
Prior to receiving visual stimuli, spontaneous, correlated activity in the retina, called retinal waves, drives activity-dependent developmental programs. Early-stage waves mediated by acetylcholine (ACh) manifest as slow, spreading bursts of action potentials. They are believed to be initiated by the spontaneous firing of Starburst Amacrine Cells (SACs), whose dense, recurrent connectivity then propagates this activity laterally. Their inter-wave interval and shifting wave boundaries are the result of the slow after-hyperpolarization of the SACs creating an evolving mosaic of recruitable and refractory cells, which can and cannot participate in waves, respectively. Recent evidence suggests that cholinergic waves may be modulated by the extracellular concentration of ACh. Here, we construct a simplified, biophysically consistent, reaction-diffusion model of cholinergic retinal waves capable of recapitulating wave dynamics observed in mice retina recordings. The dense, recurrent connectivity of SACs is modeled through local, excitatory coupling occurring via the volume release and diffusion of ACh. In addition to simulation, we are thus able to use non-linear wave theory to connect wave features to underlying physiological parameters, making the model useful in determining appropriate pharmacological manipulations to experimentally produce waves of a prescribed spatiotemporal character. The model is used to determine how ACh mediated connectivity may modulate wave activity, and how parameters such as the spontaneous activation rate and sAHP refractory period contribute to critical wave size variability.
Collapse
Affiliation(s)
- Benjamin Lansdell
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
| | - Kevin Ford
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - J. Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
28
|
Sox2 regulates cholinergic amacrine cell positioning and dendritic stratification in the retina. J Neurosci 2014; 34:10109-21. [PMID: 25057212 DOI: 10.1523/jneurosci.0415-14.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The retina contains two populations of cholinergic amacrine cells, one positioned in the ganglion cell layer (GCL) and the other in the inner nuclear layer (INL), that together comprise ∼1/2 of a percent of all retinal neurons. The present study examined the genetic control of cholinergic amacrine cell number and distribution between these two layers. The total number of cholinergic amacrine cells was quantified in the C57BL/6J and A/J inbred mouse strains, and in 25 recombinant inbred strains derived from them, and variations in their number and ratio (GCL/INL) across these strains were mapped to genomic loci. The total cholinergic amacrine cell number was found to vary across the strains, from 27,000 to 40,000 cells, despite little variation within individual strains. The number of cells was always lower within the GCL relative to the INL, and the sizes of the two populations were strongly correlated, yet there was variation in their ratio between the strains. Approximately 1/3 of that variation in cell ratio was mapped to a locus on chromosome 3, where Sex determining region Y box 2 (Sox2) was identified as a candidate gene due to the presence of a 6-nucleotide insertion in the protein-coding sequence in C57BL/6J and because of robust and selective expression in cholinergic amacrine cells. Conditionally deleting Sox2 from the population of nascent cholinergic amacrine cells perturbed the normal ratio of cells situated in the GCL versus the INL and induced a bistratifying morphology, with dendrites distributed to both ON and OFF strata within the inner plexiform layer.
Collapse
|
29
|
Keeley PW, Madsen NR, St John AJ, Reese BE. Programmed cell death of retinal cone bipolar cells is independent of afferent or target control. Dev Biol 2014; 394:191-6. [PMID: 25169191 DOI: 10.1016/j.ydbio.2014.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/08/2014] [Accepted: 08/18/2014] [Indexed: 11/25/2022]
Abstract
Programmed cell death contributes to the histogenesis of the nervous system, and is believed to be modulated through the sustaining effects of afferents and targets during the period of synaptogenesis. Cone bipolar cells undergo programmed cell death during development, and we confirm that the numbers of three different types are increased when the pro-apoptotic Bax gene is knocked out. When their cone afferents are selectively eliminated, or when the population of retinal ganglion cells is increased, however, cone bipolar cell number remains unchanged. Programmed cell death of the cone bipolar cell populations, therefore, may be modulated cell-intrinsically rather than via interactions with these synaptic partners.
Collapse
Affiliation(s)
- Patrick W Keeley
- Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, USA
| | - Nils R Madsen
- Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, USA
| | - Ace J St John
- Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, USA
| | - Benjamin E Reese
- Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, USA; Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA 93106-9660, USA.
| |
Collapse
|
30
|
Reese BE, Keeley PW. Design principles and developmental mechanisms underlying retinal mosaics. Biol Rev Camb Philos Soc 2014; 90:854-76. [PMID: 25109780 DOI: 10.1111/brv.12139] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/24/2014] [Accepted: 07/15/2014] [Indexed: 01/26/2023]
Abstract
Most structures within the central nervous system (CNS) are composed of different types of neuron that vary in both number and morphology, but relatively little is known about the interplay between these two features, i.e. about the population dynamics of a given cell type. How such arrays of neurons are distributed within a structure, and how they differentiate their dendrites relative to each other, are issues that have recently drawn attention in the invertebrate nervous system, where the genetic and molecular underpinnings of these organizing principles are being revealed in exquisite detail. The retina is one of the few locations where these principles have been extensively studied in the vertebrate CNS, indeed, where the design principles of 'mosaic regularity' and 'uniformity of coverage' were first explicitly defined, quantified, and related to each other. Recent studies have revealed a number of genes that influence the formation of these histotypical features in the retina, including homologues of those invertebrate genes, although close inspection reveals that they do not always mediate comparable developmental processes nor elucidate fundamental design principles. The present review considers just how pervasive these features of 'mosaic regularity' and 'uniform dendritic coverage' are within the mammalian retina, discussing the means by which such features can be assessed in the mature and developing nervous system and examining the limitations associated with those assessments. We then address the extent to which these two design principles co-exist within different populations of neurons, and how they are achieved during development. Finally, we consider the neural phenotypes obtained in mutant nervous systems, to address whether a prospective gene of interest underlies those very design principles.
Collapse
Affiliation(s)
- Benjamin E Reese
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, U.S.A.,Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106-9660, U.S.A
| | - Patrick W Keeley
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, U.S.A.,Department of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA 93106-9625, U.S.A
| |
Collapse
|
31
|
Pituitary tumor-transforming gene 1 regulates the patterning of retinal mosaics. Proc Natl Acad Sci U S A 2014; 111:9295-300. [PMID: 24927528 DOI: 10.1073/pnas.1323543111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Neurons are commonly organized as regular arrays within a structure, and their patterning is achieved by minimizing the proximity between like-type cells, but molecular mechanisms regulating this process have, until recently, been unexplored. We performed a forward genetic screen using recombinant inbred (RI) strains derived from two parental A/J and C57BL/6J mouse strains to identify genomic loci controlling spacing of cholinergic amacrine cells, which is a subclass of retinal interneuron. We found conspicuous variation in mosaic regularity across these strains and mapped a sizeable proportion of that variation to a locus on chromosome 11 that was subsequently validated with a chromosome substitution strain. Using a bioinformatics approach to narrow the list of potential candidate genes, we identified pituitary tumor-transforming gene 1 (Pttg1) as the most promising. Expression of Pttg1 was significantly different between the two parental strains and correlated with mosaic regularity across the RI strains. We identified a seven-nucleotide deletion in the Pttg1 promoter in the C57BL/6J mouse strain and confirmed a direct role for this motif in modulating Pttg1 expression. Analysis of Pttg1 KO mice revealed a reduction in the mosaic regularity of cholinergic amacrine cells, as well as horizontal cells, but not in two other retinal cell types. Together, these results implicate Pttg1 in the regulation of homotypic spacing between specific types of retinal neurons. The genetic variant identified creates a binding motif for the transcriptional activator protein 1 complex, which may be instrumental in driving differential expression of downstream processes that participate in neuronal spacing.
Collapse
|
32
|
Nivison-Smith L, Chua J, Tan SS, Kalloniatis M. Amino acid signatures in the developing mouse retina. Int J Dev Neurosci 2013; 33:62-80. [PMID: 24368173 DOI: 10.1016/j.ijdevneu.2013.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/13/2013] [Indexed: 11/29/2022] Open
Abstract
This study characterizes the developmental patterns of seven key amino acids: glutamate, γ-amino-butyric acid (GABA), glycine, glutamine, aspartate, alanine and taurine in the mouse retina. We analyze amino acids in specific bipolar, amacrine and ganglion cell sub-populations (i.e. GABAergic vs. glycinergic amacrine cells) and anatomically distinct regions of photoreceptors and Müller cells (i.e. cell bodies vs. endfeet) by extracting data from previously described pattern recognition analysis. Pattern recognition statistically classifies all cells in the retina based on their neurochemical profile and surpasses the previous limitations of anatomical and morphological identification of cells in the immature retina. We found that the GABA and glycine cellular content reached adult-like levels in most neurons before glutamate. The metabolic amino acids glutamine, aspartate and alanine also reached maturity in most retinal cells before eye opening. When the overall amino acid profiles were considered for each cell group, ganglion cells and GABAergic amacrine cells matured first, followed by glycinergic amacrine cells and finally bipolar cells. Photoreceptor cell bodies reached adult-like amino acid profiles at P7 whilst Müller cells acquired typical amino acid profiles in their cell bodies at P7 and in their endfeet by P14. We further compared the amino acid profiles of the C57Bl/6J mouse with the transgenic X-inactivation mouse carrying the lacZ gene on the X chromosome and validated this animal model for the study of normal retinal development. This study provides valuable insight into normal retinal neurochemical maturation and metabolism and benchmark amino acid values for comparison with retinal disease, particularly those which occur during development.
Collapse
Affiliation(s)
- Lisa Nivison-Smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia
| | - Jacqueline Chua
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - Seong-Seng Tan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Michael Kalloniatis
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia; Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; Centre for Eye Health, Sydney, Australia.
| |
Collapse
|
33
|
Ruttenberg BE, Luna G, Lewis GP, Fisher SK, Singh AK. Quantifying spatial relationships from whole retinal images. Bioinformatics 2013; 29:940-6. [DOI: 10.1093/bioinformatics/btt052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
34
|
Lefebvre JL, Kostadinov D, Chen WV, Maniatis T, Sanes JR. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature 2012; 488:517-21. [PMID: 22842903 PMCID: PMC3427422 DOI: 10.1038/nature11305] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 06/07/2012] [Indexed: 12/24/2022]
Abstract
Dendritic arbors of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other1-7. By minimizing gaps and overlaps within the arbor, self-avoidance facilitates complete coverage of a neuron’s territory by its neurites1-3. Remarkably, some neurons that display self-avoidance interact freely with other neurons of the same subtype, implying that they discriminate self from non-self. Here, we demonstrate roles for the clustered protocadherins (Pcdhs) in dendritic self-avoidance and self/non-self discrimination. The Pcdh locus encodes ~60 related cadherin-like transmembrane proteins, at least some of which exhibit isoform-specific homophilic adhesion in heterologous cells and are expressed stochastically and combinatorially in single neurons7-11. Deletion of all 22 Pcdhs in the mouse gamma subcluster (Pcdhgs) disrupts self-avoidance of dendrites in retinal starburst amacrine cells (SACs) and cerebellar Purkinje cells. Further genetic analysis of SACs showed that Pcdhgs act cell-autonomously during development, and that replacement of the 22 Pcdhgs with a single isoform restores self-avoidance. Moreover, expression of the same single isoform in all SACs decreases interactions among dendrites of neighboring SACs (heteroneuronal interactions). These results suggest that homophilic Pcdhg interactions between sibling neurites (isoneuronal interactions) generate a repulsive signal that leads to self-avoidance. In this model, heteroneuronal interactions are normally permitted because dendrites seldom encounter a matched set of Pcdhgs unless they emanate from the same soma. In many respects, our results mirror those reported for Dscam1 in Drosophila: this complex gene encodes thousands of recognition molecules that exhibit stochastic expression and isoform-specific interactions, and mediate both self-avoidance and self/non-self discrimination4-7,12-15. Thus, although insect Dscams and vertebrate Pcdhs share no sequence homology, they appear to underlie similar strategies for endowing neurons with distinct molecular identities and patterning their arbors.
Collapse
Affiliation(s)
- Julie L Lefebvre
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|
35
|
Keeley PW, Sliff BJ, Lee SCS, Fuerst PG, Burgess RW, Eglen SJ, Reese BE. Neuronal clustering and fasciculation phenotype in Dscam- and Bax-deficient mouse retinas. J Comp Neurol 2012; 520:1349-64. [PMID: 22396220 DOI: 10.1002/cne.23033] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Individual types of retinal neurons are distributed to minimize proximity to neighboring cells. Many of these same cell types extend dendrites to provide coverage of the retinal surface. These two cardinal features of retinal mosaics are disrupted, for certain cell types, in mice deficient for the Down syndrome cell adhesion molecule, Dscam, exhibiting an aberrant clustering of somata and fasciculation of dendrites. The Dscam mutant mouse retina also exhibits excess numbers of these same cell types. The present study compared these two features in Dscam mutant retinas with the Bax knockout retina, in which excess numbers of two of these cell types, the melanopsin-positive retinal ganglion cells (MRGCs) and the dopaminergic amacrine cells (DACs), are also present. Whole retinas were immunolabeled for both populations, and every labeled soma was plotted. For the MRGCs, we found a gene dosage effect for Dscam, with the Dscam+/- retinas showing smaller increases in cell number, clustering, and fasciculation. Curiously, Bax-/- retinas, showing numbers of MRGCs intermediate to those found in the Dscam-/- and Dscam+/- retinas, also had clustering and fasciculation phenotypes that were intermediate to retinas with those genotypes. DACs, by comparison, showed changes in both the Dscam-/- and the Bax-/- retinas that did not correlate with their increases in DAC number. The fasciculation phenotype in the Dscam-/- retina was particularly prominent despite only modest clustering. These results demonstrate that the somal clustering and fasciculation observed in the Dscam mutant retina are not unique to Dscam deficiency and are manifested distinctively by different retinal cell types.
Collapse
Affiliation(s)
- Patrick W Keeley
- Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
MEGF10 and MEGF11 mediate homotypic interactions required for mosaic spacing of retinal neurons. Nature 2012; 483:465-9. [PMID: 22407321 PMCID: PMC3310952 DOI: 10.1038/nature10877] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 01/17/2012] [Indexed: 02/01/2023]
Abstract
In many parts of the nervous system, neuronal somata display orderly spatial arrangements1. In the retina, neurons of numerous individual subtypes form regular arrays called mosaics: they are less likely to be near neighbors of the same subtype than would occur by chance, resulting in “exclusion zones” that separate them1-4. Mosaic arrangements provide a mechanism to distribute each cell type evenly across the retina, ensuring that all parts of the visual field have access to a full set of processing elements2. Remarkably, mosaics are independent of each other: while a neuron of one subtype is unlikely to be adjacent to another of the same subtype, there is no restriction on its spatial relationship to neighboring neurons of other subtypes5. This independence has led to the hypothesis that molecular cues expressed by specific subtypes pattern mosaics by mediating homotypic (within-subtype) short-range repulsive interactions1,4-9. To date, however, no molecules have been identified that show such activity, so this hypothesis remains untested. Here, we demonstrate that two related transmembrane proteins, MEGF10 and MEGF11, play critical roles in formation of mosaics by two retinal interneuron subtypes, starburst amacrine cells (SACs) and horizontal cells (HCs). MEGF10/11 and their invertebrate relatives C. elegans CED-1 and Drosophila Draper, have hitherto been studied primarily as receptors necessary for engulfment of debris following apoptosis or axonal injury10-14. Our results demonstrate that members of this gene family can also serve as subtype-specific ligands that pattern neuronal arrays.
Collapse
|
37
|
Abstract
The establishment of neuronal circuitry during development relies upon the action of cell-intrinsic mechanisms that specify neuronal form as well as plastic processes that require the transmission of neural activity between afferents and their targets. Here, we examine the role of interactions between neighboring like-type cells within the mouse retina upon neuronal differentiation and circuit formation. Two different genetically modified mouse models were used to modulate the density of homotypic neighbors, the Type 7 cone bipolar cells, without affecting the density of their afferents, the cone photoreceptors. We demonstrate a corresponding plasticity in dendritic field area when the density of Type 7 cone bipolar cells is elevated or reduced. In accord with this variation in dendritic field area across an invariant population of afferents, individual Type 7 cone bipolar cells are also shown to modulate the number of cone pedicles contacted without varying the number of contacts at each cone pedicle. Analysis of developing Type 7 cone bipolar cells reveals that the dendritic tiling present in maturity is achieved secondarily, after an initial stage of dendritic overlap, when the dendritic terminals are stratified at the level of the cone pedicles but are not localized to them. These results demonstrate a conspicuous developmental plasticity in neural circuit formation independent of neural activity, requiring homotypic interactions between neighboring cells that ultimately regulate connectivity within the retina.
Collapse
|
38
|
Schmidt TM, Kofuji P. Structure and function of bistratified intrinsically photosensitive retinal ganglion cells in the mouse. J Comp Neurol 2011; 519:1492-504. [PMID: 21452206 PMCID: PMC3714856 DOI: 10.1002/cne.22579] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A subpopulation of retinal ganglion cells (RGCs) expresses the photopigment melanopsin, rendering these cells intrinsically photosensitive (ipRGCs). These cells are critical for competent circadian entrainment, pupillary light reflex, and other non-imaging-forming photic responses. Research has now demonstrated the presence of multiple subpopulations of ipRGC based on the dendritic stratification in the inner plexiform layer (IPL), those monostratified in the Off sublamina (M1), those monostratified in the On sublamina (M2,4,5), and those bistratified in both the On and the Off sublaminae (M3). Despite evidence that M1 and M2 cells are distinct subpopulations of ipRGC based on distinct morphological and physiological properties, the inclusion of M3 cells as a distinct subtype has remained controversial. Aside from the identification of M3 cells as a morphological subpopulation of ipRGC, to date there have been no functional descriptions of M3 cell physiology or synaptic inputs. Our data provide the first in-depth description of M3 cell structural and functional properties. We report that M3 cells form a morphologically heterogeneous population but one that is physiologically homogeneous with properties similar to those of M2 cells.
Collapse
Affiliation(s)
- Tiffany M Schmidt
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
39
|
Whitney IE, Raven MA, Lu L, Williams RW, Reese BE. A QTL on chromosome 10 modulates cone photoreceptor number in the mouse retina. Invest Ophthalmol Vis Sci 2011; 52:3228-36. [PMID: 21330668 DOI: 10.1167/iovs.10-6693] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
PURPOSE This investigation examines the genetic sources of marked variation in cone photoreceptor number among inbred lines of mice, identifying candidate genes that may control the proliferation, differentiation, or survival of this neuronal population. METHODS Cone photoreceptor populations were counted in C57BL/6J (B6/J) and A/J strains, and 26 recombinant inbred (RI) strains derived from them. Eyes from RI strains were also collected for microarray analysis. Quantitative trait locus (QTL) analysis was carried out by simple and composite interval mapping and validated using a consomic line. Candidate genes were evaluated based on genetic variance between the parental strains and analysis of gene expression. Expression data, deposited in GeneNetwork (www.GeneNetwork.org), were used to generate a coexpression network of established cone photoreceptor genes as a reference standard. RESULTS B6/J has 70% more cone photoreceptors than A/J. A significant QTL was mapped to chromosome 10 (Chr 10) and confirmed using B6.A<10> mice. Of 19 positional candidate genes, one-the myeloblastosis oncogene (Myb)-stood out. Myb has a potentially damaging missense mutation, high retinal expression, and a known role in cell proliferation. The ectonucleotide pyrophosphatase/phosphodiesterase 1 gene (Enpp1) was a second strong candidate, with an expression pattern that covaried with cone photoreceptors and that was differentially expressed between the parental strains. Enpp1 and several other candidate genes covaried with multiple genes within the cone photoreceptor gene network. CONCLUSIONS The mouse retina shows marked variation in cone photoreceptor number, some of which must be controlled by polymorphisms in a gene or genes on Chr 10.
Collapse
Affiliation(s)
- Irene E Whitney
- Neuroscience Research Institute and Department of Molecular, Cell, and Developmental Biology, University of California, Santa Barbara, California 93106-5060, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
Neuronal populations display conspicuous variability in their size among individuals, but the genetic sources of this variation are largely undefined. We demonstrate a large and highly heritable variation in neuron number within the mouse retina, affecting a critical population of interneurons, the horizontal cells. Variation in the size of this population maps to the distal end of chromosome (Chr) 13, a region homologous to human Chr 5q11.1-11.2. This region contains two genes known to modulate retinal cell number. Using conditional knock-out mice, we demonstrate that one of these genes, the LIM homeodomain gene Islet-1 (Isl1), plays a role in regulating horizontal cell number. Genetic differences in Isl1 expression are high during the period of horizontal cell production, and cis-regulation of Isl1 expression within the retina is demonstrated directly. We identify a single nucleotide polymorphism in the 5' UTR of Isl1 that creates an E-box sequence as a candidate causal variant contributing to this variation in horizontal cell number.
Collapse
|
41
|
Gallagher SK, Witkovsky P, Roux MJ, Low MJ, Otero-Corchon V, Hentges ST, Vigh J. beta-Endorphin expression in the mouse retina. J Comp Neurol 2010; 518:3130-48. [PMID: 20533364 PMCID: PMC3095846 DOI: 10.1002/cne.22387] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Evidence showing expression of endogenous opioids in the mammalian retina is sparse. In the present study we examined a transgenic mouse line expressing an obligate dimerized form of Discosoma red fluorescent protein (DsRed) under the control of the pro-opiomelanocortin promoter and distal upstream regulatory elements to assess whether pro-opiomelanocortin peptide (POMC), and its opioid cleavage product, beta-endorphin, are expressed in the mouse retina. Using double label immunohistochemistry we found that DsRed fluorescence was restricted to a subset of GAD-67-positive cholinergic amacrine cells of both orthotopic and displaced subtypes. About 50% of cholinergic amacrine cells colocalized DsRed and a large fraction of DsRed-expressing amacrine cells was positive for beta-endorphin immunostaining, whereas beta-endorphin-immunoreactive neurons were absent in retinas of POMC null mice. Our findings contribute to a growing body of evidence demonstrating that opioid peptides are an integral component of vertebrate retinas, including those of mammals.
Collapse
Affiliation(s)
- Shannon K. Gallagher
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Paul Witkovsky
- Department of Ophthalmology, New York University School of Medicine, New York, NY 10016, USA
| | - Michel J. Roux
- Department of Neurobiology and Genetics, IGBMC, CNRS UMR 7104, Inserm U 964, Université de Strasbourg, F-67404 Illkirch, France
| | - Malcolm J. Low
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Veronica Otero-Corchon
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shane T. Hentges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jozsef Vigh
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
42
|
Reese BE. Development of the retina and optic pathway. Vision Res 2010; 51:613-32. [PMID: 20647017 DOI: 10.1016/j.visres.2010.07.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 07/04/2010] [Accepted: 07/13/2010] [Indexed: 12/30/2022]
Abstract
Our understanding of the development of the retina and visual pathways has seen enormous advances during the past 25years. New imaging technologies, coupled with advances in molecular biology, have permitted a fuller appreciation of the histotypical events associated with proliferation, fate determination, migration, differentiation, pathway navigation, target innervation, synaptogenesis and cell death, and in many instances, in understanding the genetic, molecular, cellular and activity-dependent mechanisms underlying those developmental changes. The present review considers those advances associated with the lineal relationships between retinal nerve cells, the production of retinal nerve cell diversity, the migration, patterning and differentiation of different types of retinal nerve cells, the determinants of the decussation pattern at the optic chiasm, the formation of the retinotopic map, and the establishment of ocular domains within the thalamus.
Collapse
Affiliation(s)
- Benjamin E Reese
- Neuroscience Research Institute and Department of Psychology, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, USA.
| |
Collapse
|
43
|
Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE. Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci 2009; 10:90. [PMID: 19643015 PMCID: PMC2727955 DOI: 10.1186/1471-2202-10-90] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 07/30/2009] [Indexed: 01/02/2023] Open
Abstract
Background Retinal ganglion cell (RGC) death is the final consequence of many blinding diseases, where there is considerable variation in the time course and severity of RGC loss. Indeed, this process appears to be influenced by a wide variety of genetic and environmental factors. In this study we explored the genetic basis for differences in ganglion cell death in two inbred strains of mice. Results We found that RGCs are more susceptible to death following optic nerve crush in C57BL/6J mice (54% survival) than in DBA/2J mice (62% survival). Using the Illumina Mouse-6 microarray, we identified 1,580 genes with significant change in expression following optic nerve crush in these two strains of mice. Our analysis of the changes occurring after optic nerve crush demonstrated that the greatest amount of change (44% of the variance) was due to the injury itself. This included changes associated with ganglion cell death, reactive gliosis, and abortive regeneration. The second pattern of gene changes (23% of the variance) was primarily related to differences in gene expressions observed between the C57BL/6J and DBA/2J mouse strains. The remaining changes in gene expression represent interactions between the effects of optic nerve crush and the genetic background of the mouse. We extracted one genetic network from this dataset that appears to be related to tissue remodeling. One of the most intriguing sets of changes included members of the crystallin family of genes, which may represent a signature of pathways modulating the susceptibility of cells to death. Conclusion Differential responses to optic nerve crush between two widely used strains of mice were used to define molecular networks associated with ganglion cell death and reactive gliosis. These results form the basis for our continuing interest in the modifiers of retinal injury.
Collapse
Affiliation(s)
- Justin P Templeton
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis TN, 38163, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Haverkamp S, Inta D, Monyer H, Wässle H. Expression analysis of green fluorescent protein in retinal neurons of four transgenic mouse lines. Neuroscience 2009; 160:126-39. [PMID: 19232378 DOI: 10.1016/j.neuroscience.2009.01.081] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 01/14/2009] [Accepted: 01/22/2009] [Indexed: 11/30/2022]
Abstract
Transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of a cell-specific promoter have been used with great success to identify and label specific cell types of the retina. We studied the expression of EGFP in the retina of mice making use of four transgenic mouse lines. Expression of EGFP driven by the calretinin promoter was found in amacrine, displaced amacrine and ganglion cells. Comparison of the EGFP expression and calretinin immunolabeling showed that many but not all cells appear to be double labeled. Expression of EGFP under the control of the choline acetyltransferase promoter was found in amacrine cells; however, the cells did not correspond to the well known cholinergic (starburst) cells of the mouse retina. The expression of EGFP under the control of the parvalbumin promoter was restricted to amacrine cells of the inner nuclear layer and to cells of the ganglion cell layer (displaced amacrine cells and ganglion cells). Most of the cells were also immunoreactive for parvalbumin, however, differences in labeling intensity were observed. The expression of EGFP driven by the promoter for the 5-HT3 A receptor (5-HTR3A) was restricted to type 5 bipolar cells. In contrast, immunostaining for 5-HTR3A was found in synaptic hot spots in sublamina 1 of the inner plexiform layer and was not related to type 5 bipolar cells. The results show that these transgenic mice are very useful for future electrophysiological studies of specific types of amacrine and bipolar cells that express EGFP and thus permit directed microelectrode targeting under microscopic control.
Collapse
Affiliation(s)
- S Haverkamp
- Department of Neuroanatomy, Max Planck Institute for Brain Research, Deutschordenstr. 46, D-60528 Frankfurt/Main, Germany.
| | | | | | | |
Collapse
|
45
|
Wässle H, Puller C, Müller F, Haverkamp S. Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. J Neurosci 2009; 29:106-17. [PMID: 19129389 PMCID: PMC6664901 DOI: 10.1523/jneurosci.4442-08.2009] [Citation(s) in RCA: 317] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 11/13/2008] [Accepted: 11/26/2008] [Indexed: 11/21/2022] Open
Abstract
We report a quantitative analysis of the different bipolar cell types of the mouse retina. They were identified in wild-type mice by specific antibodies or in transgenic mouse lines by specific expression of green fluorescent protein or Clomeleon. The bipolar cell densities, their cone contacts, their dendritic coverage, and their axonal tiling were measured in retinal whole mounts. The results show that each and all cones are contacted by at least one member of any given type of bipolar cell (not considering genuine blue cones). Consequently, each cone feeds its light signals into a minimum of 10 different bipolar cells. Parallel processing of an image projected onto the retina, therefore, starts at the first synapse of the retina, the cone pedicle. The quantitative analysis suggests that our proposed catalog of 11 cone bipolar cells and one rod bipolar cell is complete, and all major bipolar cell types of the mouse retina appear to have been discovered.
Collapse
Affiliation(s)
- Heinz Wässle
- Department of Neuroanatomy, Max Planck Institute for Brain Research, D-60528 Frankfurt, Germany.
| | | | | | | |
Collapse
|
46
|
Perez SE, Lumayag S, Kovacs B, Mufson EJ, Xu S. Beta-amyloid deposition and functional impairment in the retina of the APPswe/PS1DeltaE9 transgenic mouse model of Alzheimer's disease. Invest Ophthalmol Vis Sci 2008; 50:793-800. [PMID: 18791173 DOI: 10.1167/iovs.08-2384] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To determine whether beta-amyloid (Abeta) deposition affects the structure and function of the retina of the APPswe/PS1DeltaE9 transgenic (tg) mouse model of Alzheimer's disease. METHODS Retinas from 12- to 19-month old APPswe/PS1DeltaE9 tg and age-matched non-transgenic (ntg) littermates were single or double stained with thioflavine-S and antibodies against Abeta, glial fibrillar acidic protein (GFAP), microglial marker F4/80, choline acetyltransferase (ChAT), and syntaxin 1. Quantification of thioflavine-S positive plaques and retinal layer thickness was analyzed semi-quantitatively, whereas microglial cell size and levels of F4/80 immunoreactivity were evaluated using a densitometry program. Scotopic electroretinogram (ERG) recording was used to investigate retinal physiology in these mice. RESULTS Thioflavine-S positive plaques appeared at 12 months in the retinas of APPswe/PS1DeltaE9 tg mice with the majority of plaques in the outer and inner plexiform layers. Plaques were embedded in the inner plexiform layer strata displaying syntaxin 1 and ChAT. The number and size of the plaques in the retina increased with age. Plaques appeared earlier and in greater numbers in females than in male tg littermate mice. Microglial activity was significantly increased in the retinas of APPswe/PS1DeltaE9 tg mice. Although we did not detect neuronal degeneration in the retina, ERG recordings revealed a significant reduction in the amplitudes of a- and b-waves in aged APPswe/PS1DeltaE9 tg compared to ntg littermates. CONCLUSIONS The present findings suggest that Abeta deposition disrupts retinal structure and may contribute to the visual deficits seen in aged APPswe/PS1DeltaE9 tg mice. Whether Abeta is involved in other forms of age-related retinal dysfunction is unclear.
Collapse
Affiliation(s)
- Sylvia E Perez
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|