1
|
Ricca A, Cascino F, Gritti A. Isolation and Culture of Neural Stem/Progenitor Cells from the Postnatal Periventricular Region. Methods Mol Biol 2022; 2389:11-31. [PMID: 34557998 DOI: 10.1007/978-1-0716-1783-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to the complexity of the neural stem cell (NSC) niche organization, the lack of specific NSC markers, and the difficulty of long-term tracking these cells and their progeny in vivo, the functional properties of the endogenous NSCs remain largely unexplored. These limitations have led to the development of methodologies to efficiently isolate, expand, and differentiate NSCs ex vivo. We describe here the peculiarities of the neurosphere assay (NSA) as a methodology that allows to efficiently isolate, expand, and differentiate somatic NSCs derived from the postnatal and adult forebrain periventricular region while preserving proliferation, self-renewal, and multipotency, the main attributes that provide their functional identification.
Collapse
Affiliation(s)
- Alessandra Ricca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Cascino
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
2
|
Ricca A, Cascino F, Morena F, Martino S, Gritti A. In vitro Validation of Chimeric β-Galactosylceramidase Enzymes With Improved Enzymatic Activity and Increased Secretion. Front Mol Biosci 2020; 7:167. [PMID: 32850960 PMCID: PMC7396597 DOI: 10.3389/fmolb.2020.00167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/01/2020] [Indexed: 12/27/2022] Open
Abstract
Globoid Cell Leukodystrophy (GLD) is a lysosomal storage disease (LSD) caused by inherited defects of the β-galactosylceramidase (GALC) gene. The infantile forms display a rapid and aggressive central and peripheral nervous system (CNS and PNS) dysfunction. No treatments are available for GLD patients. Effective gene therapy (GT) strategies for GLD require a safe and widespread delivery of the functional GALC enzyme to all affected tissues/organs, and particularly to the CNS. The use of chimeric lysosomal enzymes with increased secretion and enhanced transport across the blood-brain barrier (BBB) that boost the efficacy of GT approaches in pre-clinical models of similar neurodegenerative LSDs may benefit GLD as well. Here, we tested the safety and biological efficacy of chimeric GALC enzymes engineered to express an alternative signal peptide (iduronate-2-sulfatase - IDSsp) and the low-density lipoprotein receptor (LDLr)-binding domain from the Apolipoprotein E II (ApoE II) in GLD murine neural and hematopoietic stem/progenitor cells and progeny, which are relevant cells types in the context of in vivo and ex vivo GT platforms. We show that the lentiviral vector-mediated expression of the chimeric GALC enzymes is safe and leads to supranormal enzymatic activity in both neural and hematopoietic cells. The IDSsp.GALC shows enhanced expression and secretion in comparison to the unmodified GALC. The chimeric GALC enzymes produced by LV-transduced cells reduce intracellular galactosylceramide (GalCer) storage and effectively cross-correct GLD murine neurons and glial cells, indicating that the transgenic enzymes are delivered to lysosomes, efficiently secreted, and functional. Of note, the expression of LDLr and LDLr-related proteins in GLD neurons and glial cells supports the exploitation of this system to enhance the GALC supply in affected CNS cells and tissues. These in vitro studies support the use of chimeric GALC enzymes to develop novel and more effective GT approaches for GLD.
Collapse
Affiliation(s)
- Alessandra Ricca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Cascino
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
3
|
Novel bicistronic lentiviral vectors correct β-Hexosaminidase deficiency in neural and hematopoietic stem cells and progeny: implications for in vivo and ex vivo gene therapy of GM2 gangliosidosis. Neurobiol Dis 2019; 134:104667. [PMID: 31682993 DOI: 10.1016/j.nbd.2019.104667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 01/03/2023] Open
Abstract
The favorable outcome of in vivo and ex vivo gene therapy approaches in several Lysosomal Storage Diseases suggests that these treatment strategies might equally benefit GM2 gangliosidosis. Tay-Sachs and Sandhoff disease (the main forms of GM2 gangliosidosis) result from mutations in either the HEXA or HEXB genes encoding, respectively, the α- or β-subunits of the lysosomal β-Hexosaminidase enzyme. In physiological conditions, α- and β-subunits combine to generate β-Hexosaminidase A (HexA, αβ) and β-Hexosaminidase B (HexB, ββ). A major impairment to establishing in vivo or ex vivo gene therapy for GM2 gangliosidosis is the need to synthesize the α- and β-subunits at high levels and with the correct stoichiometric ratio, and to safely deliver the therapeutic products to all affected tissues/organs. Here, we report the generation and in vitro validation of novel bicistronic lentiviral vectors (LVs) encoding for both the murine and human codon optimized Hexa and Hexb genes. We show that these LVs drive the safe and coordinate expression of the α- and β-subunits, leading to supranormal levels of β-Hexosaminidase activity with prevalent formation of a functional HexA in SD murine neurons and glia, murine bone marrow-derived hematopoietic stem/progenitor cells (HSPCs), and human SD fibroblasts. The restoration/overexpression of β-Hexosaminidase leads to the reduction of intracellular GM2 ganglioside storage in transduced and in cross-corrected SD murine neural progeny, indicating that the transgenic enzyme is secreted and functional. Importantly, bicistronic LVs safely and efficiently transduce human neurons/glia and CD34+ HSPCs, which are target and effector cells, respectively, in prospective in vivo and ex vivo GT approaches. We anticipate that these bicistronic LVs may overcome the current requirement of two vectors co-delivering the α- or β-subunits genes. Careful assessment of the safety and therapeutic potential of these bicistronic LVs in the SD murine model will pave the way to the clinical development of LV-based gene therapy for GM2 gangliosidosis.
Collapse
|
4
|
Integrated Computational Analysis Highlights unique miRNA Signatures in the Subventricular Zone and Striatum of GM2 Gangliosidosis Animal Models. Int J Mol Sci 2019; 20:ijms20133179. [PMID: 31261761 PMCID: PMC6651736 DOI: 10.3390/ijms20133179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
This work explores for the first time the potential contribution of microRNAs (miRNAs) to the pathophysiology of the GM2 gangliosidosis, a group of Lysosomal Storage Diseases. In spite of the genetic origin of GM2 gangliosidosis, the cascade of events leading from the gene/protein defects to the cell dysfunction and death is not fully elucidated. At present, there is no cure for patients. Taking advantage of the animal models of two forms of GM2 gangliosidosis, Tay-Sachs (TSD) and Sandhoff (SD) diseases, we performed a microRNA screening in the brain subventricular zone (SVZ) and striatum (STR), which feature the neurogenesis and neurodegeneration states, respectively, in adult mutant mice. We found abnormal expression of a panel of miRNAs involved in lipid metabolism, CNS development and homeostasis, and neuropathological processes, highlighting region- and disease-specific profiles of miRNA expression. Moreover, by using a computational analysis approach, we identified a unique disease- (SD or TSD) and brain region-specific (SVZ vs. STR) miRNAs signatures of predicted networks potentially related to the pathogenesis of the diseases. These results may contribute to the understanding of GM2 gangliosidosis pathophysiology, with the aim of developing effective treatments.
Collapse
|
5
|
Nadadhur AG, Leferink PS, Holmes D, Hinz L, Cornelissen-Steijger P, Gasparotto L, Heine VM. Patterning factors during neural progenitor induction determine regional identity and differentiation potential in vitro. Stem Cell Res 2018; 32:25-34. [PMID: 30172094 DOI: 10.1016/j.scr.2018.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 08/13/2018] [Accepted: 08/22/2018] [Indexed: 12/20/2022] Open
Abstract
The neural tube consists of neural progenitors (NPs) that acquire different characteristics during gestation due to patterning factors. However, the influence of such patterning factors on human pluripotent stem cells (hPSCs) during in vitro neural differentiation is often unclear. This study compared neural induction protocols involving in vitro patterning with single SMAD inhibition (SSI), retinoic acid (RA) administration and dual SMAD inhibition (DSI). While the derived NP cells expressed known NP markers, they differed in their NP expression profile and differentiation potential. Cortical neuronal cells generated from 1) SSI NPs exhibited less mature neuronal phenotypes, 2) RA NPs exhibited an increased GABAergic phenotype, and 3) DSI NPs exhibited greater expression of glutamatergic lineage markers. Further, although all NPs generated astrocytes, astrocytes derived from the RA-induced NPs had the highest GFAP expression. Differences between NP populations included differential expression of regional identity markers HOXB4, LBX1, OTX1 and GSX2, which persisted into mature neural cell stages. This study suggests that patterning factors regulate how potential NPs may differentiate into specific neuronal and glial cell types in vitro. This challenges the utility of generic neural induction procedures, while highlighting the importance of carefully selecting specific NP protocols.
Collapse
Affiliation(s)
- Aishwarya G Nadadhur
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands
| | - Prisca S Leferink
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands
| | - Dwayne Holmes
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands
| | - Lisa Hinz
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands
| | - Paulien Cornelissen-Steijger
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands
| | - Lisa Gasparotto
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands
| | - Vivi M Heine
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Sathe S, Chan XQ, Jin J, Bernitt E, Döbereiner HG, Yim EKF. Correlation and Comparison of Cortical and Hippocampal Neural Progenitor Morphology and Differentiation through the Use of Micro- and Nano-Topographies. J Funct Biomater 2017; 8:jfb8030035. [PMID: 28805664 PMCID: PMC5618286 DOI: 10.3390/jfb8030035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 01/09/2023] Open
Abstract
Neuronal morphology and differentiation have been extensively studied on topography. The differentiation potential of neural progenitors has been shown to be influenced by brain region, developmental stage, and time in culture. However, the neurogenecity and morphology of different neural progenitors in response to topography have not been quantitatively compared. In this study, the correlation between the morphology and differentiation of hippocampal and cortical neural progenitor cells was explored. The morphology of differentiated neural progenitors was quantified on an array of topographies. In spite of topographical contact guidance, cell morphology was observed to be under the influence of regional priming, even after differentiation. This influence of regional priming was further reflected in the correlations between the morphological properties and the differentiation efficiency of the cells. For example, neuronal differentiation efficiency of cortical neural progenitors showed a negative correlation with the number of neurites per neuron, but hippocampal neural progenitors showed a positive correlation. Correlations of morphological parameters and differentiation were further enhanced on gratings, which are known to promote neuronal differentiation. Thus, the neurogenecity and morphology of neural progenitors is highly responsive to certain topographies and is committed early on in development.
Collapse
Affiliation(s)
- Sharvari Sathe
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411.
| | - Xiang Quan Chan
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583.
| | - Jing Jin
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583.
| | - Erik Bernitt
- Institut für Biophysik, Universität Bremen, Otto-Hahn-Allee 1, Bremen 28359, Germany.
| | - Hans-Günther Döbereiner
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411.
- Institut für Biophysik, Universität Bremen, Otto-Hahn-Allee 1, Bremen 28359, Germany.
| | - Evelyn K F Yim
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411.
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583.
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 8, 1E Kent Ridge Road, Singapore 119228.
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
7
|
Lattanzi W, Parolisi R, Barba M, Bonfanti L. Osteogenic and Neurogenic Stem Cells in Their Own Place: Unraveling Differences and Similarities Between Niches. Front Cell Neurosci 2015; 9:455. [PMID: 26635534 PMCID: PMC4656862 DOI: 10.3389/fncel.2015.00455] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/06/2015] [Indexed: 02/06/2023] Open
Abstract
Although therapeutic use of stem cells (SCs) is already available in some tissues (cornea, blood, and skin), in most organs we are far from reaching the translational goal of regenerative medicine. In the nervous system, due to intrinsic features which make it refractory to regeneration/repair, it is very hard to obtain functionally integrated regenerative outcomes, even starting from its own SCs (the neural stem cells; NSCs). Besides NSCs, mesenchymal stem cells (MSCs) have also been proposed for therapeutic purposes in neurological diseases. Yet, direct (regenerative) and indirect (bystander) effects are often confused, as are MSCs and bone marrow-derived (stromal, osteogenic) stem cells (BMSCs), whose plasticity is actually overestimated (i.e., trans-differentiation along non-mesodermal lineages, including neural fates). In order to better understand failure in the "regenerative" use of SCs for neurological disorders, it could be helpful to understand how NSCs and BMSCs have adapted to their respective organ niches. In this perspective, here the adult osteogenic and neurogenic niches are considered and compared within their in vivo environment.
Collapse
Affiliation(s)
- Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore , Rome , Italy ; Latium Musculoskeletal Tissue Bank , Rome , Italy
| | - Roberta Parolisi
- Neuroscience Institute Cavalieri Ottolenghi (NICO) , Orbassano , Italy ; Department of Veterinary Sciences, University of Turin , Turin , Italy
| | - Marta Barba
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore , Rome , Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO) , Orbassano , Italy ; Department of Veterinary Sciences, University of Turin , Turin , Italy
| |
Collapse
|
8
|
Ricca A, Rufo N, Ungari S, Morena F, Martino S, Kulik W, Alberizzi V, Bolino A, Bianchi F, Del Carro U, Biffi A, Gritti A. Combined gene/cell therapies provide long-term and pervasive rescue of multiple pathological symptoms in a murine model of globoid cell leukodystrophy. Hum Mol Genet 2015; 24:3372-89. [PMID: 25749991 PMCID: PMC4498152 DOI: 10.1093/hmg/ddv086] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/04/2015] [Indexed: 01/11/2023] Open
Abstract
Globoid cell leukodystrophy (GLD) is a lysosomal storage disease caused by deficient activity of β-galactocerebrosidase (GALC). The infantile forms manifest with rapid and progressive central and peripheral demyelination, which represent a major hurdle for any treatment approach. We demonstrate here that neonatal lentiviral vector-mediated intracerebral gene therapy (IC GT) or transplantation of GALC-overexpressing neural stem cells (NSC) synergize with bone marrow transplant (BMT) providing dramatic extension of lifespan and global clinical–pathological rescue in a relevant GLD murine model. We show that timely and long-lasting delivery of functional GALC in affected tissues ensured by the exclusive complementary mode of action of the treatments underlies the outstanding benefit. In particular, the contribution of neural stem cell transplantation and IC GT during the early asymptomatic stage of the disease is instrumental to enhance long-term advantage upon BMT. We clarify the input of central nervous system, peripheral nervous system and periphery to the disease, and the relative contribution of treatments to the final therapeutic outcome, with important implications for treatment strategies to be tried in human patients. This study gives proof-of-concept of efficacy, tolerability and clinical relevance of the combined gene/cell therapies proposed here, which may constitute a feasible and effective therapeutic opportunity for children affected by GLD.
Collapse
Affiliation(s)
- Alessandra Ricca
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy
| | - Nicole Rufo
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy
| | - Silvia Ungari
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, via del Giochetto, Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, via del Giochetto, Perugia, Italy
| | - Wilem Kulik
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands and
| | - Valeria Alberizzi
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, Milano, Italy
| | - Alessandra Bolino
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, Milano, Italy
| | - Francesca Bianchi
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, Milano, Italy
| | - Ubaldo Del Carro
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, Milano, Italy
| | - Alessandra Biffi
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy
| | - Angela Gritti
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy,
| |
Collapse
|
9
|
Capilla-Gonzalez V, Cebrian-Silla A, Guerrero-Cazares H, Garcia-Verdugo JM, Quiñones-Hinojosa A. Age-related changes in astrocytic and ependymal cells of the subventricular zone. Glia 2014; 62:790-803. [PMID: 24677590 DOI: 10.1002/glia.22642] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/10/2014] [Accepted: 01/16/2014] [Indexed: 01/06/2023]
Abstract
Neurogenesis persists in the adult subventricular zone (SVZ) of the mammalian brain. During aging, the SVZ neurogenic capacity undergoes a progressive decline, which is attributed to a decrease in the population of neural stem cells (NSCs). However, the behavior of the NSCs that remain in the aged brain is not fully understood. Here we performed a comparative ultrastructural study of the SVZ niche of 2-month-old and 24-month-old male C57BL/6 mice, focusing on the NSC population. Using thymidine-labeling, we showed that residual NSCs in the aged SVZ divide less frequently than those in young mice. We also provided evidence that ependymal cells are not newly generated during senescence, as others studies suggest. Remarkably, both astrocytes and ependymal cells accumulated a high number of intermediate filaments and dense bodies during aging, resembling reactive cells. A better understanding of the changes occurring in the neurogenic niche during aging will allow us to develop new strategies for fighting neurological disorders linked to senescence.
Collapse
|
10
|
Wei F, Li M, Cheng SY, Wen L, Liu MH, Shuai J. Cloning, expression, and functional characterization of the rat Pax6 5a orthologous splicing variant. Gene 2014; 547:169-74. [PMID: 24952136 DOI: 10.1016/j.gene.2014.06.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 05/23/2014] [Accepted: 06/17/2014] [Indexed: 02/07/2023]
Abstract
Pax6 functions as a pleiotropic regulator in eye development and neurogenesis. Its splice variant Pax6 5a has been cloned in many vertebrate species including human and mouse, but never in rat. This study focused on the cloning and characterization of the Pax6 5a orthologous splicing variant in rat. It was cloned from Sprague-Dawley rats 10 days post coitum (E10) by RT-PCR and was sequenced for comparison with Pax6 sequences in the GenBank by BLAST. The rat Pax6 5a was revealed to contain an additional 42 bp insertion at the paired domain. At the nucleotide level, the rat Pax6 5a coding sequence (1,311 bp) had a higher degree of homology to the mouse (96% identical) than to the human (93% identical) sequence. At the amino acid (aa) level, rat PAX6 5a shares 99.8% identity with the mouse sequence and 99.5% with the human sequence. The splice variant is preferentially expressed in the rat E10 embryonic headfolds and not in the trunk of neurula. Its effects on the proliferation of rat mesenchymal stem cells (rMSCs) were preliminarily evaluated by the MTT assay. Both pLEGFP-Pax6 5a-transfected cells and pLEGFP-Pax6-transfected cells exhibited a similar growth curve (P>0.05), suggesting that the Pax6 5a has a similar effect on the proliferation of rMSCs as Pax6.
Collapse
Affiliation(s)
- Fei Wei
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Min Li
- Reproductive Center & Gynecology Department of Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Sai-Yu Cheng
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Liang Wen
- Trauma Center & Emergency Room of Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ming-Hua Liu
- Trauma Center & Emergency Room of Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jie Shuai
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
11
|
Cave JW, Wang M, Baker H. Adult subventricular zone neural stem cells as a potential source of dopaminergic replacement neurons. Front Neurosci 2014; 8:16. [PMID: 24574954 PMCID: PMC3918650 DOI: 10.3389/fnins.2014.00016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/22/2014] [Indexed: 01/20/2023] Open
Abstract
Clinical trials engrafting human fetal ventral mesencephalic tissue have demonstrated, in principle, that cell replacement therapy provides substantial long-lasting improvement of motor impairments generated by Parkinson's Disease (PD). The use of fetal tissue is not practical for widespread clinical implementation of this therapy, but stem cells are a promising alternative source for obtaining replacement cells. The ideal stem cell source has yet to be established and, in this review, we discuss the potential of neural stem cells in the adult subventricular zone (SVZ) as an autologous source of replacement cells. We identify three key challenges for further developing this potential source of replacement cells: (1) improving survival of transplanted cells, (2) suppressing glial progenitor proliferation and survival, and (3) developing methods to efficiently produce dopaminergic neurons. Subventricular neural stem cells naturally produce a dopaminergic interneuron phenotype that has an apparent lack of vulnerability to PD-mediated degeneration. We also discuss whether olfactory bulb dopaminergic neurons derived from adult SVZ neural stem cells are a suitable source for cell replacement strategies.
Collapse
Affiliation(s)
- John W Cave
- Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA ; Burke Medical Research Institute White Plains, NY, USA
| | - Meng Wang
- Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA ; Burke Medical Research Institute White Plains, NY, USA
| | - Harriet Baker
- Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA ; Burke Medical Research Institute White Plains, NY, USA
| |
Collapse
|
12
|
Isolate and culture precursor cells from the adult periventricular area. Methods Mol Biol 2013; 1059:25-40. [PMID: 23934831 DOI: 10.1007/978-1-62703-574-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Due to the complexity of the NSC niche organization, the lack of specific NSC markers and the difficulty of long-term tracking these cells and their progeny in vivo the functional properties of the endogenous NSCs remain largely unexplored. These limitations have led to the development of methodologies to efficiently isolate, expand, and differentiate NSCs ex vivo. We describe here the peculiarities of the neurosphere assay (NSA) as a methodology that allows to efficiently isolate, expand, and differentiate somatic NSCs derived from the adult forebrain periventricular region while preserving proliferation, self-renewal, and multipotency, the main attributes that provide their functional identification.
Collapse
|
13
|
Region- and age-dependent alterations of glial-neuronal metabolic interactions correlate with CNS pathology in a mouse model of globoid cell leukodystrophy. J Cereb Blood Flow Metab 2013; 33:1127-37. [PMID: 23611871 PMCID: PMC3705444 DOI: 10.1038/jcbfm.2013.64] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/27/2013] [Accepted: 03/27/2013] [Indexed: 01/20/2023]
Abstract
Globoid cell leukodystrophy (GLD) or Krabbe disease is a lysosomal storage disorder caused by genetic defects in the expression and activity of galactosylceramidase, a key enzyme in the catabolism of myelin-enriched sphingolipids. While there are several histologic, biochemical, and functional studies on GLD, correlations between morphologic and biochemical alterations in central nervous system (CNS) tissues during disease progression are lacking. Here, we combined immunohistochemistry and metabolic analysis using (1)H and (13)C magnetic resonance (MR) spectra of spinal cord, cerebellum, and forebrain to investigate glial-neuronal metabolic interactions and dysfunction in a GLD murine model that recapitulates the human pathology. In order to assess the temporal- and region-dependent disease progression and the potential metabolic correlates, we investigated CNS tissues at mildly symptomatic and fully symptomatic stages of the disease. When compared with age-matched controls, GLD mice showed glucose hypometabolism, alterations in neurotransmitter content, N-acetylaspartate, N-acetylaspartylglutamate, and osmolytes levels. Notably, age- and region-dependent patterns of metabolic disturbances were in close agreement with the progression of astrogliosis, microglia activation, apoptosis, and neurodegeneration. We suggest that MR spectroscopy could be used in vivo to monitor disease progression, as well as ex vivo and in vivo to provide criteria for the outcome of experimental therapies.
Collapse
|
14
|
Dynamic Activity of miR-125b and miR-93 during Murine Neural Stem Cell Differentiation In Vitro and in the Subventricular Zone Neurogenic Niche. PLoS One 2013; 8:e67411. [PMID: 23826292 PMCID: PMC3694868 DOI: 10.1371/journal.pone.0067411] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/18/2013] [Indexed: 01/02/2023] Open
Abstract
Several microRNAs (miRNAs) that are either specifically enriched or highly expressed in neurons and glia have been described, but the identification of miRNAs modulating neural stem cell (NSC) biology remains elusive. In this study, we exploited high throughput miRNA expression profiling to identify candidate miRNAs enriched in NSC/early progenitors derived from the murine subventricular zone (SVZ). Then, we used lentiviral miRNA sensor vectors (LV.miRT) to monitor the activity of shortlisted miRNAs with cellular and temporal resolution during NSC differentiation, taking advantage of in vitro and in vivo models that recapitulate physiological neurogenesis and gliogenesis and using known neuronal- and glial-specific miRNAs as reference. The LV.miRT platform allowed us monitoring endogenous miRNA activity in low represented cell populations within a bulk culture or within the complexity of CNS tissue, with high sensitivity and specificity. In this way we validated and extended previous results on the neuronal-specific miR-124 and the astroglial-specific miR-23a. Importantly, we describe for the first time a cell type- and differentiation stage-specific modulation of miR-93 and miR-125b in SVZ-derived NSC cultures and in the SVZ neurogenic niche in vivo, suggesting key roles of these miRNAs in regulating NSC function.
Collapse
|
15
|
Perez-Asensio FJ, Perpiñá U, Planas AM, Pozas E. Interleukin-10 regulates progenitor differentiation and modulates neurogenesis on adult brain. J Cell Sci 2013; 126:4208-19. [DOI: 10.1242/jcs.127803] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adult subventricular zone (SVZ) is the main neurogenic niche in normal adult brain of mice and rats. The adult SVZ contains neural stem cells (NSCs) that mainly differentiate into committed neuroblasts. The new generated neuroblasts accumulate in dorsal SVZ where they further differentiate and initiate a long migration pathway to their final destination the olfactory bulb (OB).
In here we report a new role for Interleukin 10 (IL-10) different from its well known anti-inflammatory properties. We reveal that IL-10 receptor is expressed in Nestin+ progenitors restricted to the dorsal SVZ in adult brain. Through IL-10 gain models we observed that IL-10 maintains neural progenitors in an undifferentiated stage by keeping progenitors in active cycle and up-regulating the presence of pro-neural genes markers (Nestin, Sox genes, Musashi, Mash1) in detriment of neuronal gene expression (Numb, DCX, TUBB3). On top, IL-10 reduces neuronal differentiation and finally impairs endogenous neurogenesis. Consistently, in the absence of IL-10 in vivo neuronal differentiation among SVZ progenitors is enhanced and the incorporation of new neurons in the adult OB is increased.
Thus, our results provide the first evidence that IL-10 acts as a growth factor on SVZ progenitors and regulates adult neurogenesis in adult normal brain.
Collapse
|
16
|
Geis HRA, Borst JGG. Large GABAergic neurons form a distinct subclass within the mouse dorsal cortex of the inferior colliculus with respect to intrinsic properties, synaptic inputs, sound responses, and projections. J Comp Neurol 2012; 521:189-202. [DOI: 10.1002/cne.23170] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/18/2012] [Accepted: 06/07/2012] [Indexed: 11/10/2022]
|
17
|
Postnatal development, maturation and aging in the mouse cochlea and their effects on hair cell regeneration. Hear Res 2012; 297:68-83. [PMID: 23164734 DOI: 10.1016/j.heares.2012.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/22/2012] [Accepted: 11/07/2012] [Indexed: 12/23/2022]
Abstract
The organ of Corti in the mammalian inner ear is comprised of mechanosensory hair cells (HCs) and nonsensory supporting cells (SCs), both of which are believed to be terminally post-mitotic beyond late embryonic ages. Consequently, regeneration of HCs and SCs does not occur naturally in the adult mammalian cochlea, though recent evidence suggests that these cells may not be completely or irreversibly quiescent at earlier postnatal ages. Furthermore, regenerative processes can be induced by genetic and pharmacological manipulations, but, more and more reports suggest that regenerative potential declines as the organ of Corti continues to age. In numerous mammalian systems, such effects of aging on regenerative potential are well established. However, in the cochlea, the problem of regeneration has not been traditionally viewed as one of aging. This is an important consideration as current models are unable to elicit widespread regeneration or full recovery of function at adult ages yet regenerative therapies will need to be developed specifically for adult populations. Still, the advent of gene targeting and other genetic manipulations has established mice as critically important models for the study of cochlear development and HC regeneration and suggests that auditory HC regeneration in adult mammals may indeed be possible. Thus, this review will focus on the pursuit of regeneration in the postnatal and adult mouse cochlea and highlight processes that occur during postnatal development, maturation, and aging that could contribute to an age-related decline in regenerative potential. Second, we will draw upon the wealth of knowledge pertaining to age related senescence in tissues outside of the ear to synthesize new insights and potentially guide future research aimed at promoting HC regeneration in the adult cochlea.
Collapse
|
18
|
Santambrogio S, Ricca A, Maderna C, Ieraci A, Aureli M, Sonnino S, Kulik W, Aimar P, Bonfanti L, Martino S, Gritti A. The galactocerebrosidase enzyme contributes to maintain a functional neurogenic niche during early post-natal CNS development. Hum Mol Genet 2012; 21:4732-50. [PMID: 22859505 DOI: 10.1093/hmg/dds313] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report a novel role for the lysosomal galactosylceramidase (GALC), which is defective in globoid cell leukodystrophy (GLD), in maintaining a functional post-natal subventricular zone (SVZ) neurogenic niche. We show that proliferation/self-renewal of neural stem cells (NSCs) and survival of their neuronal and oligodendroglial progeny are impaired in GALC-deficient mice. Using drugs to modulate inflammation and gene transfer to rescue GALC expression and activity, we show that lipid accumulation resulting from GALC deficiency acts as a cell-autonomous pathogenic stimulus in enzyme-deficient NSCs and progeny before upregulation of inflammatory markers, which later sustain a non-cell-autonomous dysfunction. Importantly, we provide evidence that supply of functional GALC provided by neonatal intracerebral transplantation of NSCs ameliorates the functional impairment in endogenous SVZ cells. Insights into the mechanism/s underlying GALC-mediated regulation of early post-natal neurogenic niches improve our understanding of the multi-component pathology of GLD. The occurrence of a restricted period of SVZ neurogenesis in infancy supports the implications of our study for the development of therapeutic strategies to treat this severe pediatric neurodegenerative disorder.
Collapse
Affiliation(s)
- Sara Santambrogio
- San Raffaele Scientific Institute, Telethon Institute for Gene Therapy, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zong H, Verhaak RGW, Canoll P. The cellular origin for malignant glioma and prospects for clinical advancements. Expert Rev Mol Diagn 2012; 12:383-94. [PMID: 22616703 PMCID: PMC3368274 DOI: 10.1586/erm.12.30] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glioma remains incurable despite great advancements in medicine. Targeting the cell of origin for gliomas could bring great hope for patients. However, as a collection of diverse diseases, each subtype of glioma could derive from a distinct cell of origin. To resolve such a complex problem, one must use multiple research approaches to gain deep insights. Here we review current evidence regarding the cell of origin from clinical observations, whole-genome molecular pathology and glioma animal models. We conclude that neural stem cells, glial progenitors (including oligodendrocyte progenitor cells) and astrocytes could all serve as cells of origin for gliomas, and that cells incurring initial mutations (cells of mutation) might not transform, while their progeny cells could instead transform and act as cells of origin. Further studies with multidisciplinary approaches are needed to link each subtype to a particular cell of origin, and to develop effective therapies that target the signaling network within these cells.
Collapse
Affiliation(s)
- Hui Zong
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| | | | | |
Collapse
|
20
|
Laux A, Delalande F, Mouheiche J, Stuber D, Van Dorsselaer A, Bianchi E, Bezard E, Poisbeau P, Goumon Y. Localization of endogenous morphine-like compounds in the mouse spinal cord. J Comp Neurol 2012; 520:1547-61. [DOI: 10.1002/cne.22811] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Aureli M, Gritti A, Bassi R, Loberto N, Ricca A, Chigorno V, Prinetti A, Sonnino S. Plasma membrane-associated glycohydrolases along differentiation of murine neural stem cells. Neurochem Res 2012; 37:1344-54. [PMID: 22350518 DOI: 10.1007/s11064-012-0719-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/17/2012] [Accepted: 01/28/2012] [Indexed: 12/12/2022]
Abstract
The activities of plasma membrane associated sialidase Neu3, total β-glucosidase, CBE-sensitive β-glucosidase, non-lysosomal β-glucosyl ceramidase GBA2, β-galactosidase, β-hexosaminidase and sphingomyelinase were determined at three different stages of differentiation of murine neural stem cell cultures, corresponding to precursors, commited progenitors, and differentiated cells. Cell immunostaining for specific markers of the differentiation process, performed after 7 days in culture in presence of differentiating agents, clearly showed the presence of oligodendrocytes, astrocytes and neurons. Glial cells were the most abundant. Sialidase Neu3 after a decrease from progenitors to precursors, showed an increase parallel to the differentiation process. All the other glycosidases increased their activity along differentiation. The activity of CBE-sensitive β-glucosidase and GBA2 were very similar at the precursor stage, but CBE-sensitive β-glucosidase increased 7 times while GBA2 only two in the differentiated cells. In addition, we analysed also sphingomyelinase as enzyme specifically associated to sphingolipids. The activity of this enzyme increased from precursors to differentiated cells.
Collapse
Affiliation(s)
- Massimo Aureli
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, Via Fratelli Cervi 93, 20090 Segrate, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Neri M, Ricca A, di Girolamo I, Alcala'-Franco B, Cavazzin C, Orlacchio A, Martino S, Naldini L, Gritti A. Neural stem cell gene therapy ameliorates pathology and function in a mouse model of globoid cell leukodystrophy. Stem Cells 2012; 29:1559-71. [PMID: 21809420 PMCID: PMC3229988 DOI: 10.1002/stem.701] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Murine neural stem cells (mNSCs), either naive or genetically modified to express supranormal levels of β-galactocerebrosidase (GALC), were transplanted into the brain of Twitcher mice, a murine model of globoid cell leukodystrophy, a severe sphingolipidosis. Cells engrafted long-term into the host cytoarchitecture, producing functional GALC. Levels of enzyme activity in brain and spinal cord tissues were enhanced when GALC-overexpressing NSC were used. Enzymatic correction correlated with reduced tissue storage, decreased activation of astroglia and microglia, delayed onset of symptoms, and longer lifespan. Mechanisms underlying the therapeutic effect of mNSC included widespread enzyme distribution, cross-correction of host cells, anti-inflammatory activity, and neuroprotection. Similar cell engraftment and metabolic correction were reproduced using human NSC. Thus, NSC gene therapy rapidly reconstitutes sustained and long-lasting enzyme activity in central nervous system tissues. Combining this approach with treatments targeting the systemic disease associated with leukodystrophies may provide significant therapeutic benefit. Stem Cells 2011;29:1559–1571
Collapse
Affiliation(s)
- Margherita Neri
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Telethon Institute for Gene Therapy (HSR-TIGET), Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kato S, Kuramochi M, Takasumi K, Kobayashi K, Inoue KI, Takahara D, Hitoshi S, Ikenaka K, Shimada T, Takada M, Kobayashi K. Neuron-specific gene transfer through retrograde transport of lentiviral vector pseudotyped with a novel type of fusion envelope glycoprotein. Hum Gene Ther 2011; 22:1511-23. [PMID: 21806473 DOI: 10.1089/hum.2011.111] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The lentiviral vector system is used extensively in gene therapy trials for various neurological and neurodegenerative disorders. The vector system permits efficient and sustained gene expression in many cell types through integration of the transgene into the host cell genome. However, there is a significant issue concerning the therapeutic use of lentiviral vectors, that transgene insertion may lead to tumorigenesis by altering the expression of proto-oncogenes adjacent to the integration sites. One useful approach for improving safety is to restrict vector transduction to neuronal cells. We have reported the use of human immunodeficiency virus type 1 (HIV-1)-based vectors for efficient retrograde transport by pseudotyping with rabies virus glycoprotein (RV-G) or fusion glycoprotein B type, in which the cytoplasmic domain of RV-G was substituted with the counterpart of vesicular stomatitis virus glycoprotein (VSV-G). Here we developed a novel vector system for neuron-specific retrograde gene transfer (termed NeuRet) by pseudotyping the HIV-1 vector with fusion glycoprotein C type (FuG-C), in which a short C-terminal segment of the extracellular domain and the transmembrane/cytoplasmic domains of RV-G were replaced with the corresponding regions of VSV-G. FuG-C pseudotyping caused efficient gene transfer, mainly through retrograde transport, into neuronal cells in diverse brain regions, whereas the pseudotyping resulted in less efficiency for the transduction of glial and neural stem/progenitor cells. Our NeuRet vector system achieves efficient retrograde gene delivery for therapeutic trials and improves their safety by greatly reducing the risk of gene transduction of dividing cells in the brain.
Collapse
Affiliation(s)
- Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Armentano M, Canalia N, Crociara P, Bonfanti L. Culturing conditions remarkably affect viability and organization of mouse subventricular zone in ex vivo cultured forebrain slices. J Neurosci Methods 2011; 197:65-81. [DOI: 10.1016/j.jneumeth.2011.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/29/2010] [Accepted: 01/29/2011] [Indexed: 10/18/2022]
|
25
|
Chen X, Tolkovsky AM, Herbert J. Cell origin and culture history determine successful integration of neural precursor transplants into the dentate gyrus of the adult rat. PLoS One 2011; 6:e17072. [PMID: 21359219 PMCID: PMC3040198 DOI: 10.1371/journal.pone.0017072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/17/2011] [Indexed: 11/18/2022] Open
Abstract
The success of transplants of neural tissue into the adult dentate gyrus in generating mature neurons is highly variable. Here we address the roles of the origin of the tissue and its pre-implantation preparation, and show that both are critical. We transplanted neonatal cultured or primary rat cells from either the ventral subventricular zone (vSVZ) or the dentate gyrus (DG) into the adult rat DG. Only primary DG cells robustly generated DG neurons (80% NeuN and Prox1-positive cells at 6 weeks), substantially repaired the damaged DG, and formed glutamatergic projections to the target CA3 region. Cultured DG cells expanded for 7 days showed limited neuronal differentiation after transplantation (10% NeuN and Prox1-positive cells) whereas cultured or primary vSVZ cells failed to make any Prox1-positive DG granular neurons. We found that a specific population of postmitotic young neurons (triple doublecortin/NeuN/Prox1-positive) were particularly abundant in primary DG cells, but were markedly reduced in the cultured DG cells and were absent in the cultured and primary vSVZ cells. Labelling of primary DG cells with the mitotic marker BrdU suggested that postmitotic young neurons are the source of the transplanted mature neurons in-vivo. We conclude that both the origin and pre-transplantation history of donor cells are key factors that determine the outcome of transplantation. These findings may be of therapeutic interest for cell replacement therapy in treating the damaged hippocampus.
Collapse
Affiliation(s)
- Xia Chen
- Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Aviva M. Tolkovsky
- Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Joe Herbert
- Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Isolation and characterization of neural stem cells from the neonatal rat cochlear nucleus. Cell Tissue Res 2011; 343:499-508. [PMID: 21258945 DOI: 10.1007/s00441-010-1118-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 12/15/2010] [Indexed: 02/01/2023]
Abstract
Neural stem cells have been identified in multiple parts of the postnatal mammalian brain, as well as in the inner ear. No investigation of potential neural stem cells in the cochlear nucleus has yet been performed. The aim of this study was to investigate potential neural stem cells from the cochlear nucleus by neurosphere assay and in histological sections to prove their capacity for self-renewal and for differentiation into progenitor cells and cells of the neuronal lineage. For this purpose, cells of the cochlear nucleus of postnatal day 6 rats were isolated and cultured for generation of primary neurospheres. Spheres were dissociated and cells analyzed for capacity for mitosis and differentiation. Cell division was detected by cell-counting assay and BrdU incorporation. Differentiated neural progenitor cells showed distinct labeling for Nestin and for Atoh1. Positive staining of ß-III Tubulin, glial fibrillary acid protein (GFAP) and myelin basic protein (MBP) showed differentiation into neurons, astrocytes and oligodendrocytes. Furthermore, Nestin- and BrdU-labeled cells could also be detected in histological sections. In conclusion, the isolated cells from the cochlear nucleus presented all the features of neural stem cells: cell division, presence of progenitor cells and differentiation into different cells of the neuronal lineage. The existence of neural stem cells may add to the understanding of developmental features in the cochlear nucleus.
Collapse
|
27
|
Age-related increase in the number of oligodendrocytes is dysregulated in schizophrenia and mood disorders. SCHIZOPHRENIA RESEARCH AND TREATMENT 2011; 2011:174689. [PMID: 22937261 PMCID: PMC3420648 DOI: 10.1155/2011/174689] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 04/01/2011] [Indexed: 12/15/2022]
Abstract
The postnatal maturation of the human prefrontal cortex is associated with substantial increase of number of oligodendrocytes. Previously, we reported decreased numerical density of oligodendrocytes in the prefrontal cortex in schizophrenia and mood disorders. To gain further understanding of the role oligodendrocytes in pathogenesis of schizophrenia and mood disorders, we examined the effect of the age on the number of oligodendrocytes in the prefrontal cortex in schizophrenia, bipolar disorder, and major depressive disorder. We revealed the age-related increase in numerical density of oligodendrocytes in layer VI and adjacent white matter of BA10 and BA 9 in normal controls but not in schizophrenia, bipolar disorder, and major depressive disorder. The absence of normal increase in the number of oligodendrocytes in gray and white matter with age in schizophrenia and mood disorders suggests that age-related process of oligodendrocyte increase is dysregulated in schizophrenia and mood disorders.
Collapse
|
28
|
Lan SY, Yu T, Xia ZS, Yuan YH, Shi L, Lin Y, Huang KH, Chen QK. Musashi 1-positive cells derived from mouse embryonic stem cells can differentiate into neural and intestinal epithelial-like cells in vivo. Cell Biol Int 2010; 34:1171-1180. [PMID: 20670215 DOI: 10.1042/cbi20100108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Msi1 (Musashi 1) is regarded as a marker for neural and intestinal epithelial stem cells. However, it is still unclear whether Msi1-positive cells derived from mouse embryonic stem cells have the ability to differentiate into neural or intestinal epithelial cells. A pMsi1-GFP (green fluorescent protein) reporter plasmid was constructed in order to sort Msi1-positive cells out of the differentiated cell population. The GFP-positive cells (i.e. Msi1-positive cells) were sorted by FACS and were hypodermically engrafted into the backs of NOD/SCID (non-obese diabetic/severe combined immunodeficient) mice. The presence of neural and intestinal epithelial cells in the grafts was detected. Msi1 was highly expressed in the GFP-positive cells, but not in the GFP-negative cells. The markers for neural cells (Nestin and Tubulin β III) and intestinal epithelial cells [FABP2 (fatty acid binding protein 2), Lyz (lysozyme) and ChA (chromogranin A)] were more highly expressed in the grafts from Msi1-positive cells than those from Msi1-negative cells (P<0.05). The grafts from the Msi1-negative cells contained more mesodermal-like tissues than those from the Msi1-positive cells. The pMsi1-GFP vector can be used to sort Msi1-positive cells from a cell population derived from mouse embryonic stem cells. The Msi1-positive cells can differentiate into neural and intestinal epithelial-like cells in vivo.
Collapse
Affiliation(s)
- Shao-Yang Lan
- Department of Gastroenterology, the Second Affiliated Hospital, Sun YatSen University, Guangzhou, Guangdong, Peoples Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Neri M, Maderna C, Ferrari D, Cavazzin C, Vescovi AL, Gritti A. Robust generation of oligodendrocyte progenitors from human neural stem cells and engraftment in experimental demyelination models in mice. PLoS One 2010; 5:e10145. [PMID: 20405042 PMCID: PMC2853578 DOI: 10.1371/journal.pone.0010145] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/16/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Cell-based therapy holds great promises for demyelinating diseases. Human-derived fetal and adult oligodendrocyte progenitors (OPC) gave encouraging results in experimental models of dysmyelination but their limited proliferation in vitro and their potential immunogenicity might restrict their use in clinical applications. Virtually unlimited numbers of oligodendroglial cells could be generated from long-term self-renewing human (h)-derived neural stem cells (hNSC). However, robust oligodendrocyte production from hNSC has not been reported so far, indicating the need for improved understanding of the molecular and environmental signals controlling hNSC progression through the oligodendroglial lineage. The aim of this work was to obtain enriched and renewable cultures of hNSC-derived oligodendroglial cells by means of epigenetic manipulation. METHODOLOGY/PRINCIPAL FINDINGS We report here the generation of large numbers of hNSC-derived oligodendroglial cells by concurrent/sequential in vitro exposure to combinations of growth factors (FGF2, PDGF-AA), neurotrophins (NT3) and hormones (T3). In particular, the combination FGF2+NT3+PDGF-AA resulted in the maintenance and enrichment of an oligodendroglial cell population displaying immature phenotype (i.e., proliferation capacity and expression of PDGFRalpha, Olig1 and Sox10), limited self-renewal and increased migratory activity in vitro. These cells generate large numbers of oligodendroglial progeny at the early stages of maturation, both in vitro and after transplantation in models of CNS demyelination. CONCLUSIONS/SIGNIFICANCE We describe a reliable method to generate large numbers of oligodendrocytes from a renewable source of somatic, non-immortalized NSC from the human foetal brain. We also provide insights on the mechanisms underlying the pro-oligodendrogenic effect of the treatments in vitro and discuss potential issues responsible for the limited myelinating capacity shown by hNSC-derived oligodendrocytes in vivo.
Collapse
Affiliation(s)
- Margherita Neri
- San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Claudio Maderna
- San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milano, Italy
| | - Daniela Ferrari
- Bioscience and Biotechnology Department, University of Milano-Bicocca, Milano, Italy
| | - Chiara Cavazzin
- San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milano, Italy
| | - Angelo L. Vescovi
- Bioscience and Biotechnology Department, University of Milano-Bicocca, Milano, Italy
| | - Angela Gritti
- San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milano, Italy
| |
Collapse
|
30
|
Lattanzi A, Neri M, Maderna C, di Girolamo I, Martino S, Orlacchio A, Amendola M, Naldini L, Gritti A. Widespread enzymatic correction of CNS tissues by a single intracerebral injection of therapeutic lentiviral vector in leukodystrophy mouse models. Hum Mol Genet 2010; 19:2208-27. [PMID: 20203170 DOI: 10.1093/hmg/ddq099] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Leukodystrophies are rare diseases caused by defects in the genes coding for lysosomal enzymes that degrade several glycosphingolipids. Gene therapy for leukodystrophies requires efficient distribution of the missing enzymes in CNS tissues to prevent demyelination and neurodegeneration. In this work, we targeted the external capsule (EC), a white matter region enriched in neuronal projections, with the aim of obtaining maximal protein distribution from a single injection site. We used bidirectional (bd) lentiviral vectors (LV) (bdLV) to ensure coordinate expression of a therapeutic gene (beta-galactocerebrosidase, GALC; arylsulfatase A, ARSA) and of a reporter gene, thus monitoring simultaneously transgene distribution and enzyme reconstitution. A single EC injection of bdLV.GALC in early symptomatic twitcher mice (a murine model of globoid cell leukodystrophy) resulted in rapid and robust expression of a functional GALC protein in the telencephalon, cerebellum, brainstem and spinal cord. This led to global rescue of enzymatic activity, significant reduction of tissue storage and decrease of activated astroglia and microglia. Widespread protein distribution and complete metabolic correction were also observed after EC injection of bdLV.ARSA in a mouse model of metachromatic leukodystrophy. Our data indicated axonal transport, distribution through cerebrospinal fluid flow and cross-correction as the mechanisms contributing to widespread bioavailability of GALC and ARSA proteins in CNS tissues. LV-mediated gene delivery of lysosomal enzymes by targeting highly interconnected CNS regions is a potentially effective strategy that, combined with a treatment able to target the PNS and peripheral organs, may provide significant therapeutic benefit to patients affected by leukodystrophies.
Collapse
Affiliation(s)
- Annalisa Lattanzi
- San Raffaele Scientific Institute, Telethon Institute for Gene Therapy (HSR-TIGET), Via Olgettina 58, 20132 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|