1
|
Choi J, Joisher HNV, Gill HK, Lin L, Cepko C. Characterization of the development of the high-acuity area of the chick retina. Dev Biol 2024; 511:39-52. [PMID: 38548147 DOI: 10.1016/j.ydbio.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
The fovea is a small region within the central retina that is responsible for our high acuity daylight vision. Chickens also have a high acuity area (HAA), and are one of the few species that enables studies of the mechanisms of HAA development, due to accessible embryonic tissue and methods to readily perturb gene expression. To enable such studies, we characterized the development of the chick HAA using single molecule fluorescent in situ hybridization (smFISH), along with more classical methods. We found that Fgf8 provides a molecular marker for the HAA throughout development and into adult stages, allowing studies of the cellular composition of this area over time. The radial dimension of the ganglion cell layer (GCL) was seen to be the greatest at the HAA throughout development, beginning during the period of neurogenesis, suggesting that genesis, rather than cell death, creates a higher level of retinal ganglion cells (RGCs) in this area. In contrast, the HAA acquired its characteristic high density of cone photoreceptors post-hatching, which is well after the period of neurogenesis. We also confirmed that rod photoreceptors are not present in the HAA. Analyses of cell death in the developing photoreceptor layer, where rods would reside, did not show apoptotic cells, suggesting that lack of genesis, rather than death, created the "rod-free zone" (RFZ). Quantification of each cone photoreceptor subtype showed an ordered mosaic of most cone subtypes. The changes in cellular densities and cell subtypes between the developing and mature HAA provide some answers to the overarching strategy used by the retina to create this area and provide a framework for future studies of the mechanisms underlying its formation.
Collapse
Affiliation(s)
- Jiho Choi
- Department of Genetics, Blavatnik Institute, USA; Department of Ophthalmology, Harvard Medical School, USA; Howard Hughes Medical Institute, USA
| | - Heer N V Joisher
- Department of Genetics, Blavatnik Institute, USA; Department of Ophthalmology, Harvard Medical School, USA; Howard Hughes Medical Institute, USA
| | | | - Lucas Lin
- Department of Genetics, Blavatnik Institute, USA; Department of Ophthalmology, Harvard Medical School, USA; Howard Hughes Medical Institute, USA
| | - Constance Cepko
- Department of Genetics, Blavatnik Institute, USA; Department of Ophthalmology, Harvard Medical School, USA; Howard Hughes Medical Institute, USA.
| |
Collapse
|
2
|
Caves EM, Fernández-Juricic E, Kelley LA. Ecological and morphological correlates of visual acuity in birds. J Exp Biol 2024; 227:jeb246063. [PMID: 38126722 PMCID: PMC10906485 DOI: 10.1242/jeb.246063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Birds use their visual systems for important tasks, such as foraging and predator detection, that require them to resolve an image. However, visual acuity (the ability to perceive spatial detail) varies by two orders of magnitude across birds. Prior studies indicate that eye size and aspects of a species' ecology may drive variation in acuity, but these studies have been restricted to small numbers of species. We used a literature review to gather data on acuity measured either behaviorally or anatomically for 94 species from 38 families. We then examined how acuity varies in relation to (1) eye size, (2) habitat spatial complexity, (3) habitat light level, (4) diet composition, (5) prey mobility and (6) foraging mode. A phylogenetically controlled model including all of the above factors as predictors indicated that eye size and foraging mode are significant predictors of acuity. Examining each ecological variable in turn revealed that acuity is higher in species whose diet comprises vertebrates or scavenged food and whose foraging modes require resolving prey from farther away. Additionally, species that live in spatially complex, vegetative habitats have lower acuity than expected for their eye sizes. Together, our results suggest that the need to detect important objects from far away - such as predators for species that live in open habitats, and food items for species that forage on vertebrate and scavenged prey - has likely been a key driver of higher acuity in some species, helping us to elucidate how visual capabilities may be adapted to an animal's visual needs.
Collapse
Affiliation(s)
- Eleanor M. Caves
- University of California Santa Barbara, Department of Ecology, Evolution, and Marine Biology, Santa Barbara, CA 93106, USA
- University of Exeter, Centre for Ecology and Conservation, Penryn, Cornwall TR10 9FE, UK
| | | | - Laura A. Kelley
- University of Exeter, Centre for Ecology and Conservation, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
3
|
Duan H, Xu X. Create Machine Vision Inspired by Eagle Eye. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9891728. [PMID: 39301503 PMCID: PMC11412415 DOI: 10.34133/2022/9891728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/05/2022] [Indexed: 09/22/2024]
Abstract
Eagle, a representative species in the raptor world, has the sharpest visual acuity among all animals. The reputation of the "clairvoyance" is employed to describe an eagle. The excellent visual skills of eagles depend on their unique eye structures and special visual principles. The powerful vision perception mechanisms of the eagle bring abundant inspiration for traditional visual applications. Biological eagle eye vision technology provides a creative way to solve visual perception issues of "Knowing What is Where by Seeing." The theoretical research and practical works of eagle vision would contribute to the development of machine vision, or even artificial intelligence (AI) in the real world. Furthermore, eagle eye vision also provides feasible ideas for the popularization of new concepts in the virtual world in the future.
Collapse
Affiliation(s)
- Haibin Duan
- State Key Laboratory of Virtual Reality Technology and Systems, School of Automation Science and Electrical Engineering, Beihang University (BUAA), Beijing 100083, China
- Peng Cheng Laboratory, Shenzhen 518055, China
| | - Xiaobin Xu
- State Key Laboratory of Virtual Reality Technology and Systems, School of Automation Science and Electrical Engineering, Beihang University (BUAA), Beijing 100083, China
| |
Collapse
|
4
|
Ke Q, Gong L, Zhu X, Qi R, Zou M, Chen B, Liu W, Huang S, Liu Y, Li DWC. Multinucleated Retinal Pigment Epithelial Cells Adapt to Vision and Exhibit Increased DNA Damage Response. Cells 2022; 11:cells11091552. [PMID: 35563857 PMCID: PMC9103592 DOI: 10.3390/cells11091552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Multinucleated retinal pigment epithelium (RPE) cells have been reported in humans and other mammals. Rodents have an extremely high percentage of multinucleated cells (more than 80%). Both mouse and human multinucleated RPE cells exhibit specific regional distributions that are potentially correlated with photoreceptor density. However, detailed investigations of multinucleated RPE in different species and their behavior after DNA damage are missing. Here, we compared the composition of multinucleated RPE cells in nocturnal and diurnal animals that possess distinct rod and cone proportions. We further investigated the reactive oxygen species (ROS) production and DNA damage response in mouse mononucleated and multinucleated RPE cells and determined the effect of p53 dosage on the DNA damage response in these cells. Our results revealed an unrealized association between multinucleated RPE cells and nocturnal vision. In addition, we found multinucleated RPE cells exhibited increased ROS production and DNA damage after X-ray irradiation. Furthermore, haploinsufficiency of p53 led to increased DNA damage frequency after irradiation, and mononucleated RPE cells were more sensitive to a change in p53 dosage. In conclusion, this study provides novel information on in vivo PRE topography and the DNA damage response, which may reflect specific requirements for vision adaption and macular function.
Collapse
|
5
|
Kim S, Kang S, Susanti L, Seo K. Assessment of the pigeon ( Columba livia) retina with spectral domain optical coherence tomography. J Vet Sci 2021; 22:e65. [PMID: 34423602 PMCID: PMC8460456 DOI: 10.4142/jvs.2021.22.e65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND To assess the normal retina of the pigeon eye using spectral domain optical coherence tomography (SD-OCT) and establish a normative reference. METHODS Twelve eyes of six ophthalmologically normal pigeons (Columba livia) were included. SD-OCT images were taken with dilated pupils under sedation. Four meridians, including the fovea, optic disc, red field, and yellow field, were obtained in each eye. The layers, including full thickness (FT), ganglion cell complex (GCC), thickness from the retinal pigmented epithelium to the outer nuclear layer (RPE-ONL), and from the retinal pigmented epithelium to the inner nuclear layer (RPE-INL), were manually measured. RESULTS The average FT values were significantly different among the four meridians (p < 0.05), with the optic disc meridian being the thickest (294.0 ± 13.9 µm). The average GCC was thickest in the optic disc (105.3 ± 27.1 µm) and thinnest in the fovea meridian (42.8 ± 15.3 µm). The average RPE-INL of the fovea meridian (165.5 ± 18.3 µm) was significantly thicker than that of the other meridians (p < 0.05). The average RPE-ONL of the fovea, optic disc, yellow field, and red field were 91.2 ± 5.2 µm, 87.7 ± 5.3 µm, 87.6 ± 6.5 µm, and 91.4 ± 3.9 µm, respectively. RPE-INL and RPE-ONL thickness of the red field meridian did not change significantly with measurement location (p > 0.05). CONCLUSIONS Measured data could be used as normative references for diagnosing pigeon retinopathies and further research on avian fundus structure.
Collapse
Affiliation(s)
- Sunhyo Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Seonmi Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Lina Susanti
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Kangmoon Seo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
6
|
Echeverri SA, Miller AE, Chen J, McQueen EW, Plakke M, Spicer M, Hoke KL, Stoddard MC, Morehouse NI. How signaling geometry shapes the efficacy and evolution of animal communication systems. Integr Comp Biol 2021; 61:787-813. [PMID: 34021338 DOI: 10.1093/icb/icab090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Animal communication is inherently spatial. Both signal transmission and signal reception have spatial biases-involving direction, distance and position-that interact to determine signaling efficacy. Signals, be they visual, acoustic, or chemical, are often highly directional. Likewise, receivers may only be able to detect signals if they arrive from certain directions. Alignment between these directional biases is therefore critical for effective communication, with even slight misalignments disrupting perception of signaled information. In addition, signals often degrade as they travel from signaler to receiver, and environmental conditions that impact transmission can vary over even small spatiotemporal scales. Thus, how animals position themselves during communication is likely to be under strong selection. Despite this, our knowledge regarding the spatial arrangements of signalers and receivers during communication remains surprisingly coarse for most systems. We know even less about how signaler and receiver behaviors contribute to effective signaling alignment over time, or how signals themselves may have evolved to influence and/or respond to these aspects of animal communication. Here, we first describe why researchers should adopt a more explicitly geometric view of animal signaling, including issues of location, direction, and distance. We then describe how environmental and social influences introduce further complexities to the geometry of signaling. We discuss how multimodality offers new challenges and opportunities for signalers and receivers. We conclude with recommendations and future directions made visible by attention to the geometry of signaling.
Collapse
Affiliation(s)
| | - Audrey E Miller
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ
| | - Jason Chen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA.,Department of Biology, Emory University, Atlanta, GA
| | - Eden W McQueen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Melissa Plakke
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA.,Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS
| | - Michelle Spicer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA.,Biology Department, University of Puget Sound, Tacoma, WA
| | - Kim L Hoke
- Department of Biology, Colorado State University, Fort Collins, CO
| | | | - Nathan I Morehouse
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA.,Department of Biological Sciences, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
7
|
Haverkamp S, Albert L, Balaji V, Němec P, Dedek K. Expression of cell markers and transcription factors in the avian retina compared with that in the marmoset retina. J Comp Neurol 2021; 529:3171-3193. [PMID: 33834511 DOI: 10.1002/cne.25154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
In the vertebrate retina, amacrine and ganglion cells represent the most diverse cell classes. They can be classified into different cell types by several features, such as morphology, light responses, and gene expression profile. Although birds possess high visual acuity (similar to primates that we used here for comparison) and tetrachromatic color vision, data on the expression of transcription factors in retinal ganglion cells of birds are largely missing. In this study, we tested various transcription factors, known to label subpopulations of cells in mammalian retinae, in two avian species: the common buzzard (Buteo buteo), a raptor with exceptional acuity, and the domestic pigeon (Columba livia domestica), a good navigator and widely used model for visual cognition. Staining for the transcription factors Foxp2, Satb1 and Satb2 labeled most ganglion cells in the avian ganglion cell layer. CtBP2 was established as marker for displaced amacrine cells, which allowed us to reliably distinguish ganglion cells from displaced amacrine cells and assess their densities in buzzard and pigeon. When we additionally compared the temporal and central fovea of the buzzard with the fovea of primates, we found that the cellular organization in the pits was different in primates and raptors. In summary, we demonstrate that the expression of transcription factors is a defining feature of cell types not only in the retina of mammals but also in the retina of birds. The markers, which we have established, may provide useful tools for more detailed studies on the retinal circuitry of these highly visual animals.
Collapse
Affiliation(s)
- Silke Haverkamp
- Department of Computational Neuroethology, Center of Advanced European Studies and Research (caesar), Bonn, Germany
| | - László Albert
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Vaishnavi Balaji
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Pavel Němec
- Department of Zoology, Charles University, Prague, Czech Republic
| | - Karin Dedek
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
8
|
Foveal shape, ultrastructure and photoreceptor composition in yellow-legged gull, Larus michahellis (Naumann, 1840). ZOOMORPHOLOGY 2021. [DOI: 10.1007/s00435-020-00512-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Smith MA, Waugh DA, McBurney DL, George JC, Suydam RS, Thewissen JGM, Crish SD. A comparative analysis of cone photoreceptor morphology in bowhead and beluga whales. J Comp Neurol 2020; 529:2376-2390. [PMID: 33377221 DOI: 10.1002/cne.25101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022]
Abstract
The cetacean visual system is a product of selection pressures favoring underwater vision, yet relatively little is known about it across taxa. Previous studies report several mutations in the opsin genetic sequence in cetaceans, suggesting the evolutionary complete or partial loss of retinal cone photoreceptor function in mysticete and odontocete lineages, respectively. Despite this, limited anatomical evidence suggests cone structures are partially maintained but with absent outer and inner segments in the bowhead retina. The functional consequence and anatomical distributions associated with these unique cone morphologies remain unclear. The current study further investigates the morphology and distribution of cone photoreceptors in the bowhead whale and beluga retina and evaluates the potential functional capacity of these cells' alternative to photoreception. Refined histological and advanced microscopic techniques revealed two additional cone morphologies in the bowhead and beluga retina that have not been previously described. Two proteins involved in magnetosensation were present in these cone structures suggesting the possibility for an alternative functional role in responding to changes in geomagnetic fields. These findings highlight a revised understanding of the unique evolution of cone and gross retinal anatomy in cetaceans, and provide prefatory evidence of potential functional reassignment of these cells.
Collapse
Affiliation(s)
- Matthew A Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio, USA
| | - David A Waugh
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Denise L McBurney
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - John C George
- Department of Wildlife Management, North Slope Borough, Utqiagvik, Alaska, USA
| | - Robert S Suydam
- Department of Wildlife Management, North Slope Borough, Utqiagvik, Alaska, USA
| | - Johannes G M Thewissen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Samuel D Crish
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
10
|
Russell DF, Warnock TC, Zhang W, Rogers DE, Neiman LL. Large-Scale Convergence of Receptor Cell Arrays Onto Afferent Terminal Arbors in the Lorenzinian Electroreceptors of Polyodon. Front Neuroanat 2020; 14:50. [PMID: 33192338 PMCID: PMC7604333 DOI: 10.3389/fnana.2020.00050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022] Open
Abstract
Certain sensory receptors contain many transducers, converging onto few afferents. Convergence creates star-topology neural networks, of iterative parallel organization, that may yield special functional properties. We quantitated large-scale convergence in electroreceptors on the rostrum of preadult paddlefish, Polyodon spathula (Acipenseriforme vertebrates), and analyzed the afferent terminal branching underlying the convergence. From neurophysiological mapping, a recorded afferent innervated 23.3 ± 9.1 (range 6-45) ampullary organs, and innervated every ampullary organ within the receptive field's sharp boundary. Ampullary organs each contained ∼665 Lorenzinian receptor cells, from imaging and modeling. We imaged three serial types of afferent branching at electroreceptors, after immunofluorescent labeling for neurite filaments, glial sheaths, or nodal ion channels, or by DiI tracing. (i) Myelinated tree: Each of 3.08 ± 0.51 (2-4) parallel afferents from a cranial nerve (ALLn) entered a receptive field from deeper tissue, then branched into a laminar tree of large myelinated dendrites, parallel to the skin, that branched radially until ∼9 extremities with heminodes, which were candidate sites of spike encoders. (ii) Inline transition: Each myelinated extremity led distally into local unmyelinated arbors originating at inline branching structures covered by terminal (satellite) glia. The unmyelinated transition zones included globular afferent modules, 4-6 microns wide, from which erupted fine fascicles of parallel submicron neurites, a possibly novel type of neuronal branching. The neurite fascicles formed loose bundles projecting ∼105 microns distally to innervate local groups of ∼3 adjacent ampullary organs. (iii) Radial arbors: Receptor cells in an electrosensory neuroepithelium covering the basal pole of each ampullary organ were innervated by bouton endings of radial neurites, unmyelinated and submicron, forming a thin curviplanar lamina distal to the lectin+ basal lamina. The profuse radial neurites diverged from thicker (∼2 micron) basolateral trunks. Overall, an average Polyodon electroreceptor formed a star topology array of ∼9 sensor groups. Total convergence ratios were 15,495 ± 6,052 parallel receptor cells per afferent per mean receptive field, assuming 100% innervation. Large-scale convergence likely increases the signal-to-noise ratio (SNR) of stimulus encoding into spiking afferent output, increasing receiver sensitivity. Unmyelinated arbors may also regenerate and repair the afferent innervation of ampullary organs. LSID: urn:lsid:zoobank.org:act:09BCF04C-3C3C-4B6C-9DC9-A2BF43087369.
Collapse
Affiliation(s)
- David F Russell
- Department of Biological Sciences, Ohio University, Athens, OH, United States.,Department of Physics and Astronomy, Ohio University, Athens, OH, United States.,Neuroscience Program, Ohio University, Athens, OH, United States
| | - Thomas C Warnock
- Department of Physics and Astronomy, Ohio University, Athens, OH, United States
| | - Wenjuan Zhang
- Honors Tutorial College, Ohio University, Athens, OH, United States
| | - Desmon E Rogers
- Department of Physics and Astronomy, Ohio University, Athens, OH, United States
| | - Lilia L Neiman
- Department of Biological Sciences, Ohio University, Athens, OH, United States
| |
Collapse
|
11
|
A transient decrease in mitochondrial activity contributes to establish the ganglion cell fate in retina adapted for high acuity vision. Dev Biol 2020; 469:96-110. [PMID: 33141037 DOI: 10.1016/j.ydbio.2020.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022]
Abstract
Although the plan of the retina is well conserved in vertebrates, there are considerable variations in cell type diversity and number, as well as in the organization and properties of the tissue. The high ratios of retinal ganglion cells (RGCs) to cones in primate fovea and bird retinas favor neural circuits essential for high visual acuity and color vision. The role that cell metabolism could play in cell fate decision during embryonic development of the nervous system is still largely unknown. Here, we describe how subtle changes of mitochondrial activity along the pathway converting uncommitted progenitors into newborn RGCs increase the recruitment of RGC-fated progenitors. ATOH7, a proneural protein dedicated to the production of RGCs in vertebrates, activates transcription of the Hes5.3 gene in pre-committed progenitors. The HES5.3 protein, in turn, regulates a transient decrease in mitochondrial activity via the retinoic acid signaling pathway few hours before cell commitment. This metabolic shift lengthens the progression of the ultimate cell cycle and is a necessary step for upregulating Atoh7 and promoting RGC differentiation.
Collapse
|
12
|
Seifert M, Baden T, Osorio D. The retinal basis of vision in chicken. Semin Cell Dev Biol 2020; 106:106-115. [PMID: 32295724 DOI: 10.1016/j.semcdb.2020.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022]
Abstract
The Avian retina is far less known than that of mammals such as mouse and macaque, and detailed study is overdue. The chicken (Gallus gallus) has potential as a model, in part because research can build on developmental studies of the eye and nervous system. One can expect differences between bird and mammal retinas simply because whereas most mammals have three types of visual photoreceptor birds normally have six. Spectral pathways and colour vision are of particular interest, because filtering by oil droplets narrows cone spectral sensitivities and birds are probably tetrachromatic. The number of receptor inputs is reflected in the retinal circuitry. The chicken probably has four types of horizontal cell, there are at least 11 types of bipolar cell, often with bi- or tri-stratified axon terminals, and there is a high density of ganglion cells, which make complex connections in the inner plexiform layer. In addition, there is likely to be retinal specialisation, for example chicken photoreceptors and ganglion cells have separate peaks of cell density in the central and dorsal retina, which probably serve different types of behaviour.
Collapse
Affiliation(s)
- M Seifert
- Sussex Neuroscience, School of Life Sciences, University of Sussex, UK.
| | - T Baden
- Sussex Neuroscience, School of Life Sciences, University of Sussex, UK; Institute for Ophthalmic Research, University of Tuebingen, Germany
| | - D Osorio
- Sussex Neuroscience, School of Life Sciences, University of Sussex, UK
| |
Collapse
|
13
|
Damsgaard C, Lauridsen H, Harter TS, Kwan GT, Thomsen JS, Funder AM, Supuran CT, Tresguerres M, Matthews PG, Brauner CJ. A novel acidification mechanism for greatly enhanced oxygen supply to the fish retina. eLife 2020; 9:58995. [PMID: 32840208 PMCID: PMC7447425 DOI: 10.7554/elife.58995] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/29/2020] [Indexed: 11/19/2022] Open
Abstract
Previously, we showed that the evolution of high acuity vision in fishes was directly associated with their unique pH-sensitive hemoglobins that allow O2 to be delivered to the retina at PO2s more than ten-fold that of arterial blood (Damsgaard et al., 2019). Here, we show strong evidence that vacuolar-type H+-ATPase and plasma-accessible carbonic anhydrase in the vascular structure supplying the retina act together to acidify the red blood cell leading to O2 secretion. In vivo data indicate that this pathway primarily affects the oxygenation of the inner retina involved in signal processing and transduction, and that the evolution of this pathway was tightly associated with the morphological expansion of the inner retina. We conclude that this mechanism for retinal oxygenation played a vital role in the adaptive evolution of vision in teleost fishes.
Collapse
Affiliation(s)
| | - Henrik Lauridsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Till S Harter
- Scripps Institution of Oceanography, UC San Diego, La Jolla, United States
| | - Garfield T Kwan
- Scripps Institution of Oceanography, UC San Diego, La Jolla, United States
| | | | - Anette Md Funder
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Neurofarba Department, Sezione di Scienze Farmaceutiche, Florence, Italy
| | - Martin Tresguerres
- Scripps Institution of Oceanography, UC San Diego, La Jolla, United States
| | - Philip Gd Matthews
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
14
|
Ketter-Katz H, Lev-Ari T, Katzir G. Vision in chameleons-A model for non-mammalian vertebrates. Semin Cell Dev Biol 2020; 106:94-105. [PMID: 32576499 DOI: 10.1016/j.semcdb.2020.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 11/29/2022]
Abstract
Chameleons (Chamaeleonidae, Reptilia) are known for their extreme sensory and motor adaptations to arboreal life and insectivoury. They show most distinct sequences of visuo-motor patterns in threat avoidance and in predation with prey capture being performed by tongue strikes that are unparalleled in vertebrates. Optical adaptations result in retinal image enlargement and the unique capacity to determine target distance by accommodation cues. Ocular adaptations result in complex eye movements that are context dependent, not independent, as observed in threat avoidance and predation. In predation, evidence from the chameleons' capacity to track multiple targets support the view that their eyes are under individual controls. Eye movements and body movements are lateralised, with lateralisation being a function of many factors at the population, individual, and specific-situation levels. Chameleons are considered a potentially important model for vision in non-mammalian vertebrates. They provide exceptional behavioural tools for studying eye movements as well as information gathering and analysis. They open the field of lateralisation, decision making, and context dependence. Finally, chameleons allow a deeper examination of the relationships between their unique visuo-motor capacities and the central nervous system of reptiles and ectotherms, in general, as compared with mammals.
Collapse
Affiliation(s)
- Hadas Ketter-Katz
- Goldschleger Eye Institute, Sheba Medical Center, Tel-Hashomer, 52621, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Tidhar Lev-Ari
- Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Gadi Katzir
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, 3498838, Israel.
| |
Collapse
|
15
|
Canei J, Burtea C, Nonclercq D. Comparative study of the visual system of two psammophilic lizards (Scincus scincus &Eumeces schneideri). Vision Res 2020; 171:17-30. [PMID: 32360540 DOI: 10.1016/j.visres.2020.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 11/30/2022]
Abstract
Sand deserts are common biotopes on the earth's surface. Some specialized vertebrate species have colonized these ecological habitats by living buried in the sand. Among these so called psammophilic species are the Scincidae sand dune living species Scincus scincus and Eumeces schneideri. These two skinks share a relatively similar behavioral ecology by living buried in sand, almost all the time for S. scincus and at least for some part of the day for E. schneideri. The visual system of these two lizards was investigated by histological, immunohistochemical, Magnetic Resonance Imaging (MRI) and morphometric techniques. Both skink species exhibit a retina lacking fovea, composed predominantly of cones presenting two types of oil droplets (pale blue-green and colorless). Both species possess a subset of rod like-photoreceptors (about 1 rod for 30 cones) evidenced by anti-rhodopsin immunoreactivity. A ratio 1:1-1:2 between ganglion cells and photoreceptors points to a linear connection (photoreceptors/bipolar neurons/ganglion cells) in the retina and indicates that both skinks more likely possess good visual acuity, even in the peripheral retina. The MRI analysis revealed differences between the species concerning the eye structures, with a more spherical eye shape for S. scincus, as well as a more flattened lens. The relative lens diameter of both species seems to correspond to a rather photopic pattern. Beside the fact that S. scincus and E. schneideri have different lifestyles, their visual capacities seem similar, and, generally speaking, these two psammophilic species theoretically exhibit visual capacities not far away from non-fossorial species.
Collapse
Affiliation(s)
- Jérôme Canei
- Laboratory of Histology, Biosciences Institute, Faculty of Medicine and Pharmacy, University of Mons, 23, Place du Parc, B-7000 Mons, Belgium
| | - Carmen Burtea
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, B-7000 Mons, Belgium
| | - Denis Nonclercq
- Laboratory of Histology, Biosciences Institute, Faculty of Medicine and Pharmacy, University of Mons, 23, Place du Parc, B-7000 Mons, Belgium.
| |
Collapse
|
16
|
Abstract
The macula and fovea make human vision unique among mammals. An understanding of the genetic network underlying the development and maintenance of this highly specialized region is instrumental to address issues about human macula-related retinopathies. The pigeon retina, unlike currently available animal models, shares numerous key characteristics of the primate macula and represents a promising new model for the study of retinal development. We provide key elements to take advantage of this new model for the study of retina and brain development. This includes precise embryo staging, transfection of genetic material (reporter plasmid, expression vectors, siRNAs) using in ovo and ex vivo electroporation, live imaging, high-resolution confocal imaging, and data layout and instructions for data analysis.
Collapse
Affiliation(s)
- Tania Rodrigues
- Department of Molecular Biology, Sciences III, University of Geneva, Geneva, Switzerland
- Department of Biochemistry, Sciences II, University of Geneva, Geneva, Switzerland
| | - Laurent Brodier
- Department of Molecular Biology, Sciences III, University of Geneva, Geneva, Switzerland
- Department of Biochemistry, Sciences II, University of Geneva, Geneva, Switzerland
| | - Jean-Marc Matter
- Department of Molecular Biology, Sciences III, University of Geneva, Geneva, Switzerland.
- Department of Biochemistry, Sciences II, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
17
|
Damsgaard C, Lauridsen H, Funder AM, Thomsen JS, Desvignes T, Crossley DA, Møller PR, Huong DT, Phuong NT, Detrich HW, Brüel A, Wilkens H, Warrant E, Wang T, Nyengaard JR, Berenbrink M, Bayley M. Retinal oxygen supply shaped the functional evolution of the vertebrate eye. eLife 2019; 8:52153. [PMID: 31820735 PMCID: PMC6904217 DOI: 10.7554/elife.52153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/19/2019] [Indexed: 11/13/2022] Open
Abstract
The retina has a very high energy demand but lacks an internal blood supply in most vertebrates. Here we explore the hypothesis that oxygen diffusion limited the evolution of retinal morphology by reconstructing the evolution of retinal thickness and the various mechanisms for retinal oxygen supply, including capillarization and acid-induced haemoglobin oxygen unloading. We show that a common ancestor of bony fishes likely had a thin retina without additional retinal oxygen supply mechanisms and that three different types of retinal capillaries were gained and lost independently multiple times during the radiation of vertebrates, and that these were invariably associated with parallel changes in retinal thickness. Since retinal thickness confers multiple advantages to vision, we propose that insufficient retinal oxygen supply constrained the functional evolution of the eye in early vertebrates, and that recurrent origins of additional retinal oxygen supply mechanisms facilitated the phenotypic evolution of improved functional eye morphology.
Collapse
Affiliation(s)
- Christian Damsgaard
- Section for Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.,Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Henrik Lauridsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Meinig School of Biomedical Engineering, Cornell University, Ithaca, United States
| | - Anette Md Funder
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | | | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, United States
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, United States
| | - Peter R Møller
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Do Tt Huong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Viet Nam
| | - Nguyen T Phuong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Viet Nam
| | - H William Detrich
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, United States
| | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Horst Wilkens
- Zoological Institute and Zoological Museum, University of Hamburg, Hamburg, Germany
| | - Eric Warrant
- Department of Biology, Lund University, Lund, Sweden
| | - Tobias Wang
- Section for Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Jens R Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Centre for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michael Berenbrink
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Mark Bayley
- Section for Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Sheng W, Jin M, Pan G, Weng S, Sik A, Han L, Liu K. Cellular localization of melatonin receptor Mel1b in pigeon retina. Neuropeptides 2019; 78:101974. [PMID: 31645269 DOI: 10.1016/j.npep.2019.101974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/10/2019] [Accepted: 09/22/2019] [Indexed: 12/15/2022]
Abstract
Melatonin, an important neuromodulator involved in circadian rhythms, modulates a series of physiological processes via activating its specific receptors, namely Mel1a (MT1), Mel1b (MT2) and Mel1c receptors. In this work, the localization of Mel1b receptor was studied in pigeon retina using double immunohistochemistry staining and confocal scanning microscopy. Our results showed that Mel1b receptor widely existed in the outer segment of photoreceptors and in the somata of dopaminergic amacrine cells, cholinergic amacrine cells, glycinergic AII amacrine cells, conventional ganglion cells and intrinsically photosensitive retinal ganglion cells, while horizontal cells, bipolar cells and Müller glial cells seemed to lack immunoreactivity of Mel1b receptor. That multiple types of retinal cells expressing Mel1b receptor suggests melatonin may directly modulate the activities of retina via activating Mel1b receptor.
Collapse
Affiliation(s)
- Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ge Pan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shijun Weng
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, University of Pecs, Pecs, Hungary; Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, Hungary; Medical School, University of Birmingham, Birmingham, UK
| | - Liwen Han
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| |
Collapse
|
19
|
Bringmann A. Structure and function of the bird fovea. Anat Histol Embryol 2019; 48:177-200. [DOI: 10.1111/ahe.12432] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, Medical Faculty University of Leipzig Leipzig Germany
| |
Collapse
|
20
|
Iglesias TL, Dornburg A, Warren DL, Wainwright PC, Schmitz L, Economo EP. Eyes Wide Shut: the impact of dim-light vision on neural investment in marine teleosts. J Evol Biol 2018; 31:1082-1092. [DOI: 10.1111/jeb.13299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/13/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Teresa L. Iglesias
- Physics and Biology Unit; Okinawa Institute of Science and Technology Graduate University; Okinawa Japan
- Macquarie University; Sydney NSW Australia
| | - Alex Dornburg
- North Carolina Museum of Natural Sciences; Raleigh NC USA
| | - Dan L. Warren
- Macquarie University; Sydney NSW Australia
- Senckenberg Biodiversity and Climate Research Center (SBiK-F); Frankfurt am Main Germany
| | | | - Lars Schmitz
- W.M. Keck Science Department Claremont; Claremont McKenna, Scripps and Pitzer Colleges; Claremont CA USA
| | - Evan P. Economo
- Biodiversity and Biocomplexity Unit; Okinawa Institute of Science and Technology Graduate University; Okinawa Japan
| |
Collapse
|
21
|
da Silva S, Cepko CL. Fgf8 Expression and Degradation of Retinoic Acid Are Required for Patterning a High-Acuity Area in the Retina. Dev Cell 2017; 42:68-81.e6. [PMID: 28648799 PMCID: PMC5798461 DOI: 10.1016/j.devcel.2017.05.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/29/2017] [Accepted: 05/26/2017] [Indexed: 01/08/2023]
Abstract
Species that are highly reliant on their visual system have a specialized retinal area subserving high-acuity vision, e.g., the fovea in humans. Although of critical importance for our daily activities, little is known about the mechanisms driving the development of retinal high-acuity areas (HAAs). Using the chick as a model, we found a precise and dynamic expression pattern of fibroblast growth factor 8 (Fgf8) in the HAA anlage, which was regulated by enzymes that degrade retinoic acid (RA). Transient manipulation of RA signaling, or reduction of Fgf8 expression, disrupted several features of HAA patterning, including photoreceptor distribution, ganglion cell density, and organization of interneurons. Notably, patterned expression of RA signaling components was also found in humans, suggesting that RA also plays a role in setting up the human fovea.
Collapse
Affiliation(s)
- Susana da Silva
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Constance L Cepko
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Mitkus M, Olsson P, Toomey MB, Corbo JC, Kelber A. Specialized photoreceptor composition in the raptor fovea. J Comp Neurol 2017; 525:2152-2163. [PMID: 28199005 PMCID: PMC6235456 DOI: 10.1002/cne.24190] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/13/2017] [Accepted: 02/07/2017] [Indexed: 11/08/2022]
Abstract
The retinae of many bird species contain a depression with high photoreceptor density known as the fovea. Many species of raptors have two foveae, a deep central fovea and a shallower temporal fovea. Birds have six types of photoreceptors: rods, active in dim light, double cones that are thought to mediate achromatic discrimination, and four types of single cones mediating color vision. To maximize visual acuity, the fovea should only contain photoreceptors contributing to high-resolution vision. Interestingly, it has been suggested that raptors might lack double cones in the fovea. We used transmission electron microscopy and immunohistochemistry to evaluate this claim in five raptor species: the common buzzard (Buteo buteo), the honey buzzard (Pernis apivorus), the Eurasian sparrowhawk (Accipiter nisus), the red kite (Milvus milvus), and the peregrine falcon (Falco peregrinus). We found that all species, except the Eurasian sparrowhawk, lack double cones in the center of the central fovea. The size of the double cone-free zone differed between species. Only the common buzzard had a double cone-free zone in the temporal fovea. In three species, we examined opsin expression in the central fovea and found evidence that rod opsin positive cells were absent and violet-sensitive cone and green-sensitive cone opsin positive cells were present. We conclude that not only double cones, but also single cones may contribute to high-resolution vision in birds, and that raptors may in fact possess high-resolution tetrachromatic vision in the central fovea.
Collapse
Affiliation(s)
- Mindaugas Mitkus
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22364, Lund, Sweden
| | - Peter Olsson
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22364, Lund, Sweden
| | - Matthew B. Toomey
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Joseph C. Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Almut Kelber
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22364, Lund, Sweden
| |
Collapse
|
23
|
Rodrigues T, Krawczyk M, Skowronska-Krawczyk D, Matter-Sadzinski L, Matter JM. Delayed neurogenesis with respect to eye growth shapes the pigeon retina for high visual acuity. Development 2016; 143:4701-4712. [PMID: 27836962 DOI: 10.1242/dev.138719] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022]
Abstract
The macula and fovea located at the optical centre of the retina make primate visual perception unique among mammals. Our current understanding of retina ontogenesis is primarily based on animal models having no macula and no fovea. However, the pigeon retina and the human macula share a number of structural and functional properties that justify introducing the former as a new model system for retina development. Comparative transcriptome analysis of pigeon and chicken retinas at different embryonic stages reveals that the genetic programmes underlying cell differentiation are postponed in the pigeon until the end of the period of cell proliferation. We show that the late onset of neurogenesis has a profound effect on the developmental patterning of the pigeon retina, which is at odds with the current models of retina development. The uncoupling of tissue growth and neurogenesis is shown to result from the fact that the pigeon retinal epithelium is inhibitory to cell differentiation. The sum of these developmental features allows the pigeon to build a retina that displays the structural and functional traits typical of primate macula and fovea.
Collapse
Affiliation(s)
- Tania Rodrigues
- Department of Molecular Biology and Department of Biochemistry, Sciences III, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Michal Krawczyk
- Shiley Eye Institute, Department of Ophthalmology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dorota Skowronska-Krawczyk
- Department of Molecular Biology and Department of Biochemistry, Sciences III, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Lidia Matter-Sadzinski
- Department of Molecular Biology and Department of Biochemistry, Sciences III, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Jean-Marc Matter
- Department of Molecular Biology and Department of Biochemistry, Sciences III, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| |
Collapse
|
24
|
Pushchin II, Zyumchenko NE. Retinal ganglion cell topography and spatial resolving power in the oriental fire-bellied toad Bombina orientalis. J Integr Neurosci 2015; 14:1550028. [PMID: 26628265 DOI: 10.1142/s0219635215500284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
The vertebrate visual system is determined by two main factors, a species' lifestyle and phylogenetic legacy. Studying the visual system in outgroup lineages may shed some light on the balance of these factors within a certain radiation. We studied the topography of retinal ganglion cells (RGCs) in the retina of the oriental fire-bellied toad Bombina orientalis. These toads belong to the ancient superfamily Discoglossoidea, a sister group to all extant Anura except for two small families. RGCs were retrogradely labeled with tetramethylrhodamine- dextran amine (TMR-DA) and examined in retinal wholemounts. RGCs occurred all over the retina except for the far periphery. Their total number was [Formula: see text] ([Formula: see text], [Formula: see text]). They comprised 73-77% of all cells in the ganglion cell layer. The spatial density of GCs increased gradually from the dorsal and ventral retinal periphery toward the equator to form a weak visual streak and a moderately pronounced area centralis. The minimum density was [Formula: see text], and the maximum, [Formula: see text]. The maximum density gradient was [Formula: see text]. The spatial resolution was minimum in the dorsal and ventral periphery ([Formula: see text] and [Formula: see text] cycles per degree in water and air, respectively). Intermediate values of spatial resolving power were found within the visual streak ([Formula: see text] and [Formula: see text] cycles per degree) and reached a peak in area centralis ([Formula: see text] and [Formula: see text] cycles per degree). This is sufficient for efficient prey location and capture. The relatively high RGC density and the presence of specialized retinal regions in oriental fire-bellied toads are consistent with their highly visual behavior. A brief review comparing the phylogeny and ecology of this with other anuran species suggests that the main factor shaping the RGC distribution in Anura is phylogenetic legacy; the environmental pressure results mainly in adjusting the maximum spatial density of RGCs (and hence the visual acuity) to meet the species' needs.
Collapse
Affiliation(s)
- Igor I Pushchin
- 1 Laboratory of Physiology A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences Vladivostok, Russia
| | - Nataliya E Zyumchenko
- 2 Department of Cell Biology and Genetics School of Natural Sciences, Far Eastern Federal University Vladivostok, Russia
| |
Collapse
|
25
|
Lisney TJ, Wylie DR, Kolominsky J, Iwaniuk AN. Eye Morphology and Retinal Topography in Hummingbirds (Trochilidae: Aves). BRAIN, BEHAVIOR AND EVOLUTION 2015; 86:176-90. [DOI: 10.1159/000441834] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/15/2015] [Indexed: 11/19/2022]
Abstract
Hummingbirds are a group of small, highly specialized birds that display a range of adaptations to their nectarivorous lifestyle. Vision plays a key role in hummingbird feeding and hovering behaviours, yet very little is known about the visual systems of these birds. In this study, we measured eye morphology in 5 hummingbird species. For 2 of these species, we used stereology and retinal whole mounts to study the topographic distribution of neurons in the ganglion cell layer. Eye morphology (expressed as the ratio of corneal diameter to eye transverse diameter) was similar among all 5 species and was within the range previously documented for diurnal birds. Retinal topography was similar in Amazilia tzacatl and Calypte anna. Both species had 2 specialized retinal regions of high neuron density: a central region located slightly dorso-nasal to the superior pole of the pecten, where densities reached ∼45,000 cells·mm-2, and a temporal area with lower densities (38,000-39,000 cells·mm-2). A weak visual streak bridged the two high-density areas. A retina from Phaethornis superciliosus also had a central high-density area with a similar peak neuron density. Estimates of spatial resolving power for all 3 species were similar, at approximately 5-6 cycles·degree-1. Retinal cross sections confirmed that the central high-density region in C. anna contains a fovea, but not the temporal area. We found no evidence of a second, less well-developed fovea located close to the temporal retina margin. The central and temporal areas of high neuron density allow for increased spatial resolution in the lateral and frontal visual fields, respectively. Increased resolution in the frontal field in particular may be important for mediating feeding behaviors such as aerial docking with flowers and catching small insects.
Collapse
|
26
|
Ontogenic retinal changes in three ecologically distinct elopomorph fishes (Elopomorpha:Teleostei) correlate with light environment and behavior. Vis Neurosci 2015; 32:E005. [DOI: 10.1017/s0952523815000024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractUnlike the mammalian retina, the teleost fish retina undergoes persistent neurogenesis from intrinsic stem cells. In marine teleosts, most cone photoreceptor genesis occurs early in the embryonic and larval stages, and rods are added primarily during and after metamorphosis. This study demonstrates a developmental paradigm in elopomorph fishes in which retinas are rod-dominated in larvae, but undergo periods of later cone genesis. Retinal characteristics were compared at different developmental stages among three ecologically distinct elopomorph fishes—ladyfish (Elops saurus), bonefish (Albula vulpes), and speckled worm eel (Myrophis punctatus). The objectives were to improve our understanding of (1) the developmental strategy in the elopomorph retina, (2) the functional architecture of the retina as it relates to ecology, and (3) how the light environment influences photoreceptor genesis. Photoreceptor morphologies, distributions, and spectral absorption were studied at larval, juvenile, and adult stages. Premetamorphic retinas in all three species are rod-dominated, but the retinas of these species undergo dramatic change over the course of development, resulting in juvenile and adult retinal characteristics that correlate closely with ecology. Adult E. saurus has high rod densities, grouped photoreceptors, a reflective tapetum, and longer-wavelength photopigments, supporting vision in turbid, low-light conditions. Adult A. vulpes has high cone densities, low rod densities, and shorter-wavelength photopigments, supporting diurnal vision in shallow, clear water. M. punctatus loses cones during metamorphosis, develops new cones after settlement, and maintains high rod but low cone densities, supporting primarily nocturnal vision. M. punctatus secondary cone genesis occurs rapidly throughout the retina, suggesting a novel mechanism of vertebrate photoreceptor genesis. Finally, in postsettlement M. punctatus, the continuous presence or absence of visible light modulates rod distribution but does not affect secondary cone genesis, suggesting some degree of developmental plasticity influenced by the light environment.
Collapse
|
27
|
Coimbra JP, Collin SP, Hart NS. Variations in retinal photoreceptor topography and the organization of the rod-free zone reflect behavioral diversity in Australian passerines. J Comp Neurol 2015; 523:1073-94. [DOI: 10.1002/cne.23718] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/14/2014] [Accepted: 11/21/2014] [Indexed: 02/01/2023]
Affiliation(s)
- João Paulo Coimbra
- School of Animal Biology, University of Western Australia; Crawley WA 6009 Australia
- Oceans Institute, University of Western Australia; Crawley WA 6009 Australia
- School of Anatomical Sciences, University of the Witwatersrand; Parktown 2193 Johannesburg South Africa
| | - Shaun P. Collin
- School of Animal Biology, University of Western Australia; Crawley WA 6009 Australia
- Oceans Institute, University of Western Australia; Crawley WA 6009 Australia
| | - Nathan S. Hart
- School of Animal Biology, University of Western Australia; Crawley WA 6009 Australia
- Oceans Institute, University of Western Australia; Crawley WA 6009 Australia
| |
Collapse
|
28
|
Coimbra JP, Collin SP, Hart NS. Topographic specializations in the retinal ganglion cell layer correlate with lateralized visual behavior, ecology, and evolution in cockatoos. J Comp Neurol 2014; 522:3363-85. [DOI: 10.1002/cne.23637] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 11/10/2022]
Affiliation(s)
- João Paulo Coimbra
- School of Animal Biology, The University of Western Australia; Crawley Western Australia 6009 Australia
- The Oceans Institute, The University of Western Australia; Crawley Western Australia 6009 Australia
- School of Anatomical Sciences, The University of the Witwatersrand; Parktown 2193 Johannesburg South Africa
| | - Shaun P. Collin
- School of Animal Biology, The University of Western Australia; Crawley Western Australia 6009 Australia
- The Oceans Institute, The University of Western Australia; Crawley Western Australia 6009 Australia
| | - Nathan S. Hart
- School of Animal Biology, The University of Western Australia; Crawley Western Australia 6009 Australia
- The Oceans Institute, The University of Western Australia; Crawley Western Australia 6009 Australia
| |
Collapse
|
29
|
Coimbra JP, Collin SP, Hart NS. Topographic specializations in the retinal ganglion cell layer of Australian passerines. J Comp Neurol 2014; 522:3609-28. [DOI: 10.1002/cne.23624] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 11/08/2022]
Affiliation(s)
- João Paulo Coimbra
- School of Animal Biology, The University of Western Australia; Crawley Western Australia 6009 Australia
- The Oceans Institute, The University of Western Australia; Crawley Western Australia 6009 Australia
- School of Anatomical Sciences, The University of the Witwatersrand; Parktown 2193 Johannesburg South Africa
| | - Shaun P. Collin
- School of Animal Biology, The University of Western Australia; Crawley Western Australia 6009 Australia
- The Oceans Institute, The University of Western Australia; Crawley Western Australia 6009 Australia
| | - Nathan S. Hart
- School of Animal Biology, The University of Western Australia; Crawley Western Australia 6009 Australia
- The Oceans Institute, The University of Western Australia; Crawley Western Australia 6009 Australia
| |
Collapse
|
30
|
Retinal ganglion cell topography and spatial resolution of two parrot species: budgerigar (Melopsittacus undulatus) and Bourke's parrot (Neopsephotus bourkii). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:371-84. [PMID: 24677162 DOI: 10.1007/s00359-014-0894-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
Retinal ganglion cell (RGC) isodensity maps indicate important regions in an animal's visual field. These maps can also be combined with measures of focal length to estimate the theoretical visual acuity. Here we present the RGC isodensity maps and anatomical spatial resolving power in three budgerigars (Melopsittacus undulatus) and two Bourke's parrots (Neopsephotus bourkii). Because RGCs were stacked in several layers, we modified the Nissl staining procedure to assess the cell number in the whole-mounted and cross-sectioned tissue of the same retinal specimen. The retinal topography showed surprising variation; however, both parrot species had an area centralis without discernable fovea. Budgerigars also had a putative area nasalis never reported in birds before. The peak RGC density was 22,300-34,200 cells/mm(2) in budgerigars and 18,100-38,000 cells/mm(2) in Bourke's parrots. The maximum visual acuity based on RGCs and focal length was 6.9 cyc/deg in budgerigars and 9.2 cyc/deg in Bourke's parrots. These results are lower than earlier behavioural estimates. Our findings illustrate that retinal topography is not a very fixed trait and that theoretical visual acuity estimations based on RGC density can be lower than the behavioural performance of the bird.
Collapse
|
31
|
Baumhardt PE, Moore BA, Doppler M, Fernández-Juricic E. Do American goldfinches see their world like passive prey foragers? A study on visual fields, retinal topography, and sensitivity of photoreceptors. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:181-98. [PMID: 24663005 DOI: 10.1159/000357750] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/04/2013] [Indexed: 11/19/2022]
Abstract
Several species of the most diverse avian order, Passeriformes, specialize in foraging on passive prey, although relatively little is known about their visual systems. We tested whether some components of the visual system of the American goldfinch (Spinus tristis), a granivorous bird, followed the profile of species seeking passive food items (small eye size relative to body mass, narrow binocular fields and blind areas, centrally located retinal specialization projecting laterally, ultraviolet-sensitive vision). We measured eye size, visual field configuration, the degree of eye movement, variations in the density of ganglion cells and cone photoreceptors, and the sensitivity of photoreceptor visual pigments and oil droplets. Goldfinches had relatively large binocular (46°) and lateral (134°) visual fields with a high degree of eye movement (66° at the plane of the bill). They had a single centrotemporally located fovea that projects laterally, but can be moved closer to the edge of the binocular field by converging the eyes. Goldfinches could also increase their panoramic vision by diverging their eyes while handling food items in head-up positions. The distribution of photoreceptors indicated that the highest density of single and double cones was surrounding the fovea, making it the center of chromatic and achromatic vision and motion detection. Goldfinches possessed a tetrachromatic ultraviolet visual system with visual pigment peak sensitivities of 399 nm (ultraviolet-sensitive cone), 442 nm (short-wavelength-sensitive cone), 512 nm (medium-wavelength-sensitive cone), and 580 nm (long-wavelength-sensitive cone). Overall, the visual system of American goldfinches showed characteristics of passive as well as active prey foragers, with a single-fovea configuration and a large degree of eye movement that would enhance food searching and handling with their relatively wide binocular fields.
Collapse
Affiliation(s)
- Patrice E Baumhardt
- Department of Biological Sciences, Purdue University, West Lafayette, Ind., USA
| | | | | | | |
Collapse
|
32
|
Davidson GL, Butler S, Fernández-Juricic E, Thornton A, Clayton NS. Gaze sensitivity: function and mechanisms from sensory and cognitive perspectives. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2013.10.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Pearring JN, Salinas RY, Baker SA, Arshavsky VY. Protein sorting, targeting and trafficking in photoreceptor cells. Prog Retin Eye Res 2013; 36:24-51. [PMID: 23562855 DOI: 10.1016/j.preteyeres.2013.03.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 01/24/2023]
Abstract
Vision is the most fundamental of our senses initiated when photons are absorbed by the rod and cone photoreceptor neurons of the retina. At the distal end of each photoreceptor resides a light-sensing organelle, called the outer segment, which is a modified primary cilium highly enriched with proteins involved in visual signal transduction. At the proximal end, each photoreceptor has a synaptic terminal, which connects this cell to the downstream neurons for further processing of the visual information. Understanding the mechanisms involved in creating and maintaining functional compartmentalization of photoreceptor cells remains among the most fascinating topics in ocular cell biology. This review will discuss how photoreceptor compartmentalization is supported by protein sorting, targeting and trafficking, with an emphasis on the best-studied cases of outer segment-resident proteins.
Collapse
Affiliation(s)
- Jillian N Pearring
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
34
|
Moore BA, Baumhardt P, Doppler M, Randolet J, Blackwell BF, DeVault TL, Loew ER, Fernández-Juricic E. Oblique color vision in an open-habitat bird: spectral sensitivity, photoreceptor distribution and behavioral implications. J Exp Biol 2012; 215:3442-52. [PMID: 22956248 DOI: 10.1242/jeb.073957] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Color vision is not uniform across the retina because of differences in photoreceptor density and distribution. Retinal areas with a high density of cone photoreceptors may overlap with those with a high density of ganglion cells, increasing hue discrimination. However, there are some exceptions to this cell distribution pattern, particularly in species with horizontal visual streaks (bands of high ganglion cell density across the retina) that live in open habitats. We studied the spectral sensitivity and distribution of cone photoreceptors involved in chromatic and achromatic vision in the Canada goose (Branta canadiensis), which possesses an oblique rather than horizontal visual streak at the ganglion cell layer. Using microspectrophotometry, we found that the Canada goose has a violet-sensitive visual system with four visual pigments with absorbance peaks at 409, 458, 509 and 580 nm. The density of most cones involved in chromatic and achromatic vision peaked along a band across the retina that matched the oblique orientation of the visual streak. With the information on visual sensitivity, we calculated chromatic and achromatic contrasts of different goose plumage regions. The regions with the highest visual saliency (cheek, crown, neck and upper tail coverts) were the ones involved in visual displays to maintain flock cohesion. The Canada goose oblique visual streak is the retinal center for chromatic and achromatic vision, allowing individuals to sample the sky and the ground simultaneously or the horizon depending on head position. Overall, our results show that the Canada goose visual system has features that make it rather different from that of other vertebrates living in open habitats.
Collapse
Affiliation(s)
- Bret A. Moore
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Patrice Baumhardt
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Megan Doppler
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Jacquelyn Randolet
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Bradley F. Blackwell
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Ohio Field Station, Sandusky, OH 44870, USA
| | - Travis L. DeVault
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Ohio Field Station, Sandusky, OH 44870, USA
| | - Ellis R. Loew
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Esteban Fernández-Juricic
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| |
Collapse
|
35
|
Morphological and behavioral limit of visual resolution in temperate (Hippocampus abdominalis) and tropical (Hippocampus taeniopterus) seahorses. Vis Neurosci 2011; 28:351-60. [PMID: 21838936 DOI: 10.1017/s0952523811000149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Seahorses are visually guided feeders that prey upon small fast-moving crustaceans. Seahorse habitats range from clear tropical to turbid temperate waters. How are seahorse retinae specialized to mediate vision in these diverse environments? Most species of seahorse have a specialization in their retina associated with acute vision, the fovea. The purpose of this study was to characterize the fovea of temperate Hippocampus abdominalis and tropical H. taeniopterus seahorses and to investigate their theoretical and behavioral limits of visual resolution. Their foveae were identified and photoreceptor (PR) and ganglion cell (GC) densities determined throughout the retina and topographically mapped. The theoretical limit of visual resolution was calculated using formulas taking into account lens radius and either cone PR or GC densities. Visual resolution was determined behaviorally using reactive distance. Both species possess a rod-free convexiclivate fovea. PR and GC densities were highest along the foveal slope, with a density decrease within the foveal center. Outside the fovea, there was a gradual density decrease towards the periphery. The theoretically calculated visual resolution on the foveal slope was poorer for H. abdominalis (5.25 min of arc) compared with H. taeniopterus (4.63 min of arc) based on PR density. Using GC density, H. abdominalis (9.81 min of arc) had a lower resolution compared with H. taeniopterus (9.04 min of arc). Behaviorally, H. abdominalis had a resolution limit of 1090.64 min of arc, while H. taeniopterus was much smaller, 692.86 min of arc. Although both species possess a fovea and the distribution of PR and GC is similar, H. taeniopterus has higher PR and GC densities on the foveal slope and better theoretical and behaviorally measured visual resolution compared to H. abdominalis. These data indicate that seahorses have a well-developed acute visual system, and tropical seahorses have higher visual resolution compared to temperate seahorses.
Collapse
|
36
|
Fernández-Juricic E. Sensory basis of vigilance behavior in birds: synthesis and future prospects. Behav Processes 2011; 89:143-52. [PMID: 22101130 DOI: 10.1016/j.beproc.2011.10.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 10/10/2011] [Accepted: 10/10/2011] [Indexed: 01/27/2023]
Abstract
Birds gather visual information through scanning behavior to make decisions relevant for survival (e.g., detecting predators and finding food). The goal of this study was (a) to review some visual properties involved in scanning behavior (retinal specialization for visual resolution and motion detection, visual acuity, and size of the blind area), and (b) hypothesize how the inter-specific variability in these properties may lead to different scanning strategies. The avian visual system has a high degree of heterogeneity in visual performance across the visual field, with some sectors providing higher levels of visual resolution and motion detection (e.g., retinal specializations) than others (e.g., peripheral retina and blind area). Thus, information quality will vary in different parts of the visual field, which contradicts some theoretical assumptions on information gathering. Birds need to move their eyes and heads to align the retinal specializations to different sectors of visual space. The rates of eye and head movements can then be used as proxies for scanning strategies. I propose specific predictions as to how each of the visual properties studied can affect scanning strategies in the context of predator detection in different habitat types and with different levels of predation risk. Establishing the degree of association between sensory specializations and scanning strategies can enhance our understanding of the evolution of anti-predator behavior.
Collapse
Affiliation(s)
- Esteban Fernández-Juricic
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
37
|
Behavioural assessment of flicker fusion frequency in chicken Gallus gallus domesticus. Vision Res 2011; 51:1324-32. [PMID: 21527269 DOI: 10.1016/j.visres.2011.04.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/05/2011] [Accepted: 04/11/2011] [Indexed: 01/14/2023]
Abstract
To interact with its visual environment, an organism needs to perceive objects in both space and time. High temporal resolution is hence important to the fitness of diurnally active animals, not least highly active aerial species such as birds. However, temporal resolution, as assessed by flicker fusion frequency (FFF; the stimulus frequency at which a flickering light stimulus can no longer be resolved and appears continuous) or critical flicker fusion frequency (CFF; the highest flicker fusion frequency at any light intensity) has rarely been assessed in birds. In order to further our understanding of temporal resolution as a function of light intensity in birds we used behavioural experiments with domestic chickens (Gallus gallus domesticus) from an old game breed 'Gammalsvensk dvärghöna' (which is morphologically and behaviourally similar to the wildtype ancestor, the red jungle fowl, G. gallus), to generate an 'Intensity/FFF curve' (I/FFF curve) across full spectrum light intensities ranging from 0.2 to 2812 cd m⁻². The I/FFF curve is double-branched, resembling that of other chordates with a duplex retina of both rods and cones. Assuming that the branches represent rod and cone mediated responses respectively, the break point between them places the transition between scotopic and photopic vision at between 0.8 and 1.9 cd m⁻². Average FFF ranged from 19.8 Hz at the lowest light intensity to a CFF 87.0 Hz at 1375 cd m⁻². FFF dropped slightly at the highest light intensity. There was some individual variation with certain birds displaying CFFs of 90-100 Hz. The FFF values demonstrated by this non-selected breed appear to be considerably higher than other behaviourally derived FFF values for similar stimuli reported for white and brown commercial laying hens, indicating that the domestication process might have influenced temporal resolution in chicken.
Collapse
|
38
|
Fernández-Juricic E, Moore BA, Doppler M, Freeman J, Blackwell BF, Lima SL, DeVault TL. Testing the Terrain Hypothesis: Canada Geese See Their World Laterally and Obliquely. BRAIN, BEHAVIOR AND EVOLUTION 2011; 77:147-58. [DOI: 10.1159/000326053] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 02/14/2011] [Indexed: 11/19/2022]
|