1
|
González M, Maurelia F, Aguayo J, Amigo R, Arrué R, Gutiérrez JL, Torrejón M, Farkas C, Caprile T. Uncovering the role of the subcommissural organ in early brain development through transcriptomic analysis. Biol Res 2024; 57:49. [PMID: 39068496 PMCID: PMC11282827 DOI: 10.1186/s40659-024-00524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/01/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND The significant role of embryonic cerebrospinal fluid (eCSF) in the initial stages of brain development has been thoroughly studied. This fluid contains crucial molecules for proper brain development such as members of the Wnt and FGF families, apolipoproteins, and retinol binding protein. Nevertheless, the source of these molecules remains uncertain since they are present before the formation of the choroid plexus, which is conventionally known as the primary producer of cerebrospinal fluid. The subcommissural organ (SCO) is a highly conserved gland located in the diencephalon and is one of the earliest differentiating brain structures. The SCO secretes molecules into the eCSF, prior to the differentiation of the choroid plexus, playing a pivotal role in the homeostasis and dynamics of this fluid. One of the key molecules secreted by the SCO is SCO-spondin, a protein involved in maintenance of the normal ventricle size, straight spinal axis, neurogenesis, and axonal guidance. Furthermore, SCO secretes transthyretin and basic fibroblast growth factor 2, while other identified molecules in the eCSF could potentially be secreted by the SCO. Additionally, various transcription factors have been identified in the SCO. However, the precise mechanisms involved in the early SCO development are not fully understood. RESULTS To uncover key molecular players and signaling pathways involved in the role of the SCO during brain development, we conducted a transcriptomic analysis comparing the embryonic chick SCO at HH23 and HH30 stages (4 and 7 days respectively). Additionally, a public transcriptomic data from HH30 entire chick brain was used to compare expression levels between SCO and whole brain transcriptome. These analyses revealed that, at both stages, the SCO differentially expresses several members of bone morphogenic proteins, Wnt and fibroblast growth factors families, diverse proteins involved in axonal guidance, neurogenic and differentiative molecules, cell receptors and transcription factors. The secretory pathway is particularly upregulated at stage HH30 while the proliferative pathway is increased at stage HH23. CONCLUSION The results suggest that the SCO has the capacity to secrete several morphogenic molecules to the eCSF prior to the development of other structures, such as the choroid plexus.
Collapse
Affiliation(s)
- Maryori González
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Maurelia
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jaime Aguayo
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto Amigo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Rodrigo Arrué
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - José Leonardo Gutiérrez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Marcela Torrejón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carlos Farkas
- Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile.
| | - Teresa Caprile
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
2
|
Reiner A, Medina L, Abellan A, Deng Y, Toledo CA, Luksch H, Vega-Zuniga T, Riley NB, Hodos W, Karten HJ. Neurochemistry and circuit organization of the lateral spiriform nucleus of birds: A uniquely nonmammalian direct pathway component of the basal ganglia. J Comp Neurol 2024; 532:e25620. [PMID: 38733146 PMCID: PMC11090467 DOI: 10.1002/cne.25620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2023] [Revised: 03/24/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024]
Abstract
We used diverse methods to characterize the role of avian lateral spiriform nucleus (SpL) in basal ganglia motor function. Connectivity analysis showed that SpL receives input from globus pallidus (GP), and the intrapeduncular nucleus (INP) located ventromedial to GP, whose neurons express numerous striatal markers. SpL-projecting GP neurons were large and aspiny, while SpL-projecting INP neurons were medium sized and spiny. Connectivity analysis further showed that SpL receives inputs from subthalamic nucleus (STN) and substantia nigra pars reticulata (SNr), and that the SNr also receives inputs from GP, INP, and STN. Neurochemical analysis showed that SpL neurons express ENK, GAD, and a variety of pallidal neuron markers, and receive GABAergic terminals, some of which also contain DARPP32, consistent with GP pallidal and INP striatal inputs. Connectivity and neurochemical analysis showed that the SpL input to tectum prominently ends on GABAA receptor-enriched tectobulbar neurons. Behavioral studies showed that lesions of SpL impair visuomotor behaviors involving tracking and pecking moving targets. Our results suggest that SpL modulates brainstem-projecting tectobulbar neurons in a manner comparable to the demonstrated influence of GP internus on motor thalamus and of SNr on tectobulbar neurons in mammals. Given published data in amphibians and reptiles, it seems likely the SpL circuit represents a major direct pathway-type circuit by which the basal ganglia exerts its motor influence in nonmammalian tetrapods. The present studies also show that avian striatum is divided into three spatially segregated territories with differing connectivity, a medial striato-nigral territory, a dorsolateral striato-GP territory, and the ventrolateral INP motor territory.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163
| | - Loreta Medina
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida’s Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Antonio Abellan
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida’s Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Yunping Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163
| | - Claudio A.B. Toledo
- Neuroscience Research Nucleus, Universidade Cidade de Sao Paulo, Sao Paulo 65057-420, Brazil
| | - Harald Luksch
- School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Tomas Vega-Zuniga
- School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Nell B. Riley
- Department of Psychology, University of Maryland College Park 20742-4411
| | - William Hodos
- Department of Psychology, University of Maryland College Park 20742-4411
| | - Harvey J. Karten
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093-0608
| |
Collapse
|
3
|
Wullimann MF, Mokayes N, Shainer I, Kuehn E, Baier H. Genoarchitectonics of the larval zebrafish diencephalon. J Comp Neurol 2024; 532:e25549. [PMID: 37983970 DOI: 10.1002/cne.25549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2023] [Revised: 07/15/2023] [Accepted: 10/03/2023] [Indexed: 11/22/2023]
Abstract
The brain is spatially organized into subdivisions, nuclei and areas, which often correspond to functional and developmental units. A segmentation of brain regions in the form of a consensus atlas facilitates mechanistic studies and is a prerequisite for sharing information among neuroanatomists. Gene expression patterns objectively delineate boundaries between brain regions and provide information about their developmental and evolutionary histories. To generate a detailed molecular map of the larval zebrafish diencephalon, we took advantage of the Max Planck Zebrafish Brain (mapzebrain) atlas, which aligns hundreds of transcript and transgene expression patterns in a shared coordinate system. Inspection and co-visualization of close to 50 marker genes have allowed us to resolve the tripartite prosomeric scaffold of the diencephalon at unprecedented resolution. This approach clarified the genoarchitectonic partitioning of the alar diencephalon into pretectum (alar part of prosomere P1), thalamus (alar part of prosomere P2, with habenula and pineal complex), and prethalamus (alar part of prosomere P3). We further identified the region of the nucleus of the medial longitudinal fasciculus, as well as the posterior and anterior parts of the posterior tuberculum, as molecularly distinct basal parts of prosomeres 1, 2, and 3, respectively. Some of the markers examined allowed us to locate glutamatergic, GABAergic, dopaminergic, serotoninergic, and various neuropeptidergic domains in the larval zebrafish diencephalon. Our molecular neuroanatomical approach has thus (1) yielded an objective and internally consistent interpretation of the prosomere boundaries within the zebrafish forebrain; has (2) produced a list of markers, which in sparse combinations label the subdivisions of the diencephalon; and is (3) setting the stage for further functional and developmental studies in this vertebrate brain.
Collapse
Affiliation(s)
- Mario F Wullimann
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
- Department Biology II, Division of Neurobiology, Ludwig-Maximilians-University (LMU Munich), Martinsried, Germany
| | - Nouwar Mokayes
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| | - Inbal Shainer
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| | - Enrico Kuehn
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| | - Herwig Baier
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| |
Collapse
|
4
|
Kim CN, Shin D, Wang A, Nowakowski TJ. Spatiotemporal molecular dynamics of the developing human thalamus. Science 2023; 382:eadf9941. [PMID: 37824646 PMCID: PMC10758299 DOI: 10.1126/science.adf9941] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2022] [Accepted: 09/15/2023] [Indexed: 10/14/2023]
Abstract
The thalamus plays a central coordinating role in the brain. Thalamic neurons are organized into spatially distinct nuclei, but the molecular architecture of thalamic development is poorly understood, especially in humans. To begin to delineate the molecular trajectories of cell fate specification and organization in the developing human thalamus, we used single-cell and multiplexed spatial transcriptomics. We show that molecularly defined thalamic neurons differentiate in the second trimester of human development and that these neurons organize into spatially and molecularly distinct nuclei. We identified major subtypes of glutamatergic neuron subtypes that are differentially enriched in anatomically distinct nuclei and six subtypes of γ-aminobutyric acid-mediated (GABAergic) neurons that are shared and distinct across thalamic nuclei.
Collapse
Affiliation(s)
- Chang N Kim
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - David Shin
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Albert Wang
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Tomasz J Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
5
|
Kim CN, Shin D, Wang A, Nowakowski TJ. Spatiotemporal molecular dynamics of the developing human thalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554174. [PMID: 37662287 PMCID: PMC10473600 DOI: 10.1101/2023.08.21.554174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 09/05/2023]
Abstract
The thalamus plays a central coordinating role in the brain. Thalamic neurons are organized into spatially-distinct nuclei, but the molecular architecture of thalamic development is poorly understood, especially in humans. To begin to delineate the molecular trajectories of cell fate specification and organization in the developing human thalamus, we used single cell and multiplexed spatial transcriptomics. Here we show that molecularly-defined thalamic neurons differentiate in the second trimester of human development, and that these neurons organize into spatially and molecularly distinct nuclei. We identify major subtypes of glutamatergic neuron subtypes that are differentially enriched in anatomically distinct nuclei. In addition, we identify six subtypes of GABAergic neurons that are shared and distinct across thalamic nuclei. One-Sentence Summary Single cell and spatial profiling of the developing thalamus in the first and second trimester yields molecular mechanisms of thalamic nuclei development.
Collapse
|
6
|
Ferran JL, Irimia M, Puelles L. Is There a Prechordal Region and an Acroterminal Domain in Amphioxus? BRAIN, BEHAVIOR AND EVOLUTION 2022; 96:334-352. [PMID: 35034027 DOI: 10.1159/000521966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/08/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022]
Abstract
This essay re-examines the singular case of the supposedly unique rostrally elongated notochord described classically in amphioxus. We start from our previous observations in hpf 21 larvae [Albuixech-Crespo et al.: PLoS Biol. 2017;15(4):e2001573] indicating that the brain vesicle has rostrally a rather standard hypothalamic molecular configuration. This correlates with the notochord across a possible rostromedian acroterminal hypothalamic domain. The notochord shows some molecular differences that specifically characterize its pre-acroterminal extension beyond its normal rostral end under the mamillary region. We explored an alternative interpretation that the putative extension of this notochord actually represents a variant form of the prechordal plate in amphioxus, some of whose cells would adopt the notochordal typology, but would lack notochordal patterning properties, and might have some (but not all) prechordal ones instead. We survey in detail the classic and recent literature on gastrulation, prechordal plate, and notochord formation in amphioxus, compare the observed patterns with those of some other vertebrates of interest, and re-examine the literature on differential gene expression patterns in this rostralmost area of the head. We noted that previous literature failed to identify the amphioxus prechordal primordia at appropriate stages. Under this interpretation, a consistent picture can be drawn for cephalochordates, tunicates, and vertebrates. Moreover, there is little evidence for an intrinsic capacity of the early notochord to grow rostralwards (it normally elongates caudalwards). Altogether, we conclude that the hypothesis of a prechordal nature of the elongated amphioxus notochord is consistent with the evidence presented.
Collapse
Affiliation(s)
- José Luis Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
| |
Collapse
|
7
|
Brożko N, Baggio S, Lipiec MA, Jankowska M, Szewczyk ŁM, Gabriel MO, Chakraborty C, Ferran JL, Wiśniewska MB. Genoarchitecture of the Early Postmitotic Pretectum and the Role of Wnt Signaling in Shaping Pretectal Neurochemical Anatomy in Zebrafish. Front Neuroanat 2022; 16:838567. [PMID: 35356436 PMCID: PMC8959918 DOI: 10.3389/fnana.2022.838567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 01/10/2023] Open
Abstract
The pretectum has a distinct nuclear arrangement and complex neurochemical anatomy. While previous genoarchitectural studies have described rostrocaudal and dorsoventral progenitor domains and subdomains in different species, the relationship between these early partitions and its later derivatives in the mature anatomy is less understood. The signals and transcription factors that control the establishment of pretectal anatomy are practically unknown. We investigated the possibility that some aspects of the development of pretectal divisions are controlled by Wnt signaling, focusing on the transitional stage between neurogenesis and histogenesis in zebrafish. Using several molecular markers and following the prosomeric model, we identified derivatives from each rostrocaudal pretectal progenitor domain and described the localization of gad1b-positive GABAergic and vglut2.2-positive glutamatergic cell clusters. We also attempted to relate these clusters to pretectal nuclei in the mature brain. Then, we examined the influence of Wnt signaling on the size of neurochemically distinctive pretectal areas, using a chemical inhibitor of the Wnt pathway and the CRISPR/Cas9 approach to knock out genes that encode the Wnt pathway mediators, Lef1 and Tcf7l2. The downregulation of the Wnt pathway led to a decrease in two GABAergic clusters and an expansion of a glutamatergic subregion in the maturing pretectum. This revealed an instructive role of the Wnt signal in the development of the pretectum during neurogenesis. The molecular anatomy presented here improves our understanding of pretectal development during early postmitotic stages and support the hypothesis that Wnt signaling is involved in shaping the neurochemical organization of the pretectum.
Collapse
Affiliation(s)
- Nikola Brożko
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Suelen Baggio
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Marcin A. Lipiec
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Marta Jankowska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | | | | | | | - José L. Ferran
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and Institute of Biomedical Research of Murcia -Ű IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Marta B. Wiśniewska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- *Correspondence: Marta B. Wiśniewska,
| |
Collapse
|
8
|
Prosomeric classification of retinorecipient centers: a new causal scenario. Brain Struct Funct 2022; 227:1171-1193. [PMID: 35171343 DOI: 10.1007/s00429-022-02461-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2021] [Accepted: 12/17/2021] [Indexed: 12/31/2022]
Abstract
The retina is known to target many superficial areas in the brain. These have always been studied under the tenets of the classic columnar brain model, which was not designed to produce causal explanations, being functionally oriented. This has led over the years to a remarkable absence of understanding or even hypothetical thinking about why the optic tract takes its precise course, why there are so many retinal targets (some of them at surprising sites), what mechanism places each one of them exactly at its standard position, which processes specify spatial aspects of retinotopy and differential physiological properties within the visual system, and so on, including questions about conserved and changing evolutionary aspects of the visual structures. The author posits that the origin of the current causally uninformative state of the field is the columnar model, which worked as a subliminal or cryptic dogma that disregards the molecular developmental advances accruing during the last 40 years, and in general distracts the attention of neuroscientists from causal approaches. There is now an alternative brain model, known as the prosomeric model, that does not have these problems. The author aims to show that once the data on retinal projections are mapped and analyzed within the prosomeric model the scenario changes drastically and multiple opportunities for formulating hypotheses for causal explanation of any aspects about the visual projections become apparent (emphasis is made on mouse and rabbit data, but any set of data on retinal projections in vertebrates can be used, as shown in some examples).
Collapse
|
9
|
Medina L, Abellán A, Desfilis E. Evolving Views on the Pallium. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:181-199. [PMID: 34657034 DOI: 10.1159/000519260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/08/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
The pallium is the largest part of the telencephalon in amniotes, and comparison of its subdivisions across species has been extremely difficult and controversial due to its high divergence. Comparative embryonic genoarchitecture studies have greatly contributed to propose models of pallial fundamental divisions, which can be compared across species and be used to extract general organizing principles as well as to ask more focused and insightful research questions. The use of these models is crucial to discern between conservation, convergence or divergence in the neural populations and networks found in the pallium. Here we provide a critical review of the models proposed using this approach, including tetrapartite, hexapartite and double-ring models, and compare them to other models. While recognizing the power of these models for understanding brain architecture, development and evolution, we also highlight limitations and comment on aspects that require attention for improvement. We also discuss on the use of transcriptomic data for understanding pallial evolution and advise for better contextualization of these data by discerning between gene regulatory networks involved in the generation of specific units and cell populations versus genes expressed later, many of which are activity dependent and their expression is more likely subjected to convergent evolution.
Collapse
Affiliation(s)
- Loreta Medina
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| |
Collapse
|
10
|
López JM, Jiménez S, Morona R, Lozano D, Moreno N. Analysis of Islet-1, Nkx2.1, Pax6, and Orthopedia in the forebrain of the sturgeon Acipenser ruthenus identifies conserved prosomeric characteristics. J Comp Neurol 2021; 530:834-855. [PMID: 34547112 DOI: 10.1002/cne.25249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022]
Abstract
The distribution patterns of a set of conserved brain developmental regulatory transcription factors were analyzed in the forebrain of the basal actinopterygian fish Acipenser ruthenus, consistent with the prosomeric model. In the telencephalon, the pallium was characterized by ventricular expression of Pax6. In the subpallium, the combined expression of Nkx2.1/Islet-1 (Isl1) allowed to propose ventral and dorsal areas, as the septo-pallidal (Nkx2.1/Isl1+) and striatal derivatives (Isl1+), respectively, and a dorsal portion of the striatal derivatives, ventricularly rich in Pax6 and devoid of Isl1 expression. Dispersed Orthopedia (Otp) cells were found in the supracommissural and posterior nuclei of the ventral telencephalon, related to the medial portion of the amygdaloid complex. The preoptic area was identified by the Nkx2.1/Isl1 expression. In the alar hypothalamus, an Otp-expressing territory, lacking Nkx2.1/Isl1, was identified as the paraventricular domain. The adjacent subparaventricular domain (Spa) was subdivided in a rostral territory expressing Nkx2.1 and an Isl1+ caudal one. In the basal hypothalamus, the tuberal region was defined by the Nkx2.1/Isl1 expression and a rostral Otp-expressing domain was identified. Moreover, the Otp/Nkx2.1 combination showed an additional zone lacking Isl1, tentatively identified as the mamillary area. In the diencephalon, both Pax6 and Isl1 defined the prethalamic domain, and within the basal prosomere 3, scattered Pax6- and Isl1-expressing cells were observed in the posterior tubercle. Finally, a small group of Pax6 cells was observed in the pretectal area. These results improve the understanding of the forebrain evolution and demonstrate that its basic bauplan is present very early in the vertebrate lineage.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Sara Jiménez
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Daniel Lozano
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| |
Collapse
|
11
|
Exner CRT, Willsey HR. Xenopus leads the way: Frogs as a pioneering model to understand the human brain. Genesis 2021; 59:e23405. [PMID: 33369095 PMCID: PMC8130472 DOI: 10.1002/dvg.23405] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
From its long history in the field of embryology to its recent advances in genetics, Xenopus has been an indispensable model for understanding the human brain. Foundational studies that gave us our first insights into major embryonic patterning events serve as a crucial backdrop for newer avenues of investigation into organogenesis and organ function. The vast array of tools available in Xenopus laevis and Xenopus tropicalis allows interrogation of developmental phenomena at all levels, from the molecular to the behavioral, and the application of CRISPR technology has enabled the investigation of human disorder risk genes in a higher-throughput manner. As the only major tetrapod model in which all developmental stages are easily manipulated and observed, frogs provide the unique opportunity to study organ development from the earliest stages. All of these features make Xenopus a premier model for studying the development of the brain, a notoriously complex process that demands an understanding of all stages from fertilization to organogenesis and beyond. Importantly, core processes of brain development are conserved between Xenopus and human, underlining the advantages of this model. This review begins by summarizing discoveries made in amphibians that form the cornerstones of vertebrate neurodevelopmental biology and goes on to discuss recent advances that have catapulted our understanding of brain development in Xenopus and in relation to human development and disease. As we engage in a new era of patient-driven gene discovery, Xenopus offers exceptional potential to uncover conserved biology underlying human brain disorders and move towards rational drug design.
Collapse
Affiliation(s)
- Cameron R T Exner
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143, USA
| |
Collapse
|
12
|
Morona R, Bandín S, López JM, Moreno N, González A. Amphibian thalamic nuclear organization during larval development and in the adult frog Xenopus laevis: Genoarchitecture and hodological analysis. J Comp Neurol 2020; 528:2361-2403. [PMID: 32162311 DOI: 10.1002/cne.24899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
The early patterning of the thalamus during embryonic development defines rostral and caudal progenitor domains, which are conserved from fishes to mammals. However, the subsequent developmental mechanisms that lead to the adult thalamic configuration have only been investigated for mammals and other amniotes. In this study, we have analyzed in the anuran amphibian Xenopus laevis (an anamniote vertebrate), through larval and postmetamorphic development, the progressive regional expression of specific markers for the rostral (GABA, GAD67, Lhx1, and Nkx2.2) and caudal (Gbx2, VGlut2, Lhx2, Lhx9, and Sox2) domains. In addition, the regional distributions at different developmental stages of other markers such as calcium binding proteins and neuropeptides, helped the identification of thalamic nuclei. It was observed that the two embryonic domains were progressively specified and compartmentalized during premetamorphosis, and cell subpopulations characterized by particular gene expression combinations were located in periventricular, intermediate and superficial strata. During prometamorphosis, three dorsoventral tiers formed from the caudal domain and most pronuclei were defined, which were modified into the definitive nuclear configuration through the metamorphic climax. Mixed cell populations originated from the rostral and caudal domains constitute most of the final nuclei and allowed us to propose additional subdivisions in the adult thalamus, whose main afferent and efferent connections were assessed by tracing techniques under in vitro conditions. This study corroborates shared features of early gene expression patterns in the thalamus between Xenopus and mouse, however, the dynamic changes in gene expression observed at later stages in the amphibian support mechanisms different from those of mammals.
Collapse
Affiliation(s)
- Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Sandra Bandín
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
13
|
Lozano D, Morona R, González A, López JM. Comparative Analysis of the Organization of the Catecholaminergic Systems in the Brain of Holostean Fishes (Actinopterygii/Neopterygii). BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:206-235. [PMID: 31711060 DOI: 10.1159/000503769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/10/2019] [Accepted: 09/29/2019] [Indexed: 11/19/2022]
Abstract
Living holosteans, comprising 8 species of bowfins and gars, form a small monophyletic group of actinopterygian fishes, which are currently considered as the sister group to the enormously numerous teleosts and have largely been neglected in neuroanatomical studies. We have studied the catecholaminergic (CAergic) systems by means of antibodies against tyrosine hydroxylase (TH) and dopamine (DA) in the brain of representative species of the 3 genera included in the 2 orders of holostean fishes: Amia calva (Amiiformes) and Lepisosteus platyrhincus, Lepisosteus oculatus, and Atractosteus spatula (Lepisosteiformes). Different groups of TH/DA-immunoreactive (ir) cells were observed in the olfactory bulb, subpallium, and preoptic area of the telencephalon. Hypothalamic groups were labeled in the suprachiasmatic nucleus, tuberal (only in A. calva), retrotuberal, and retromamillary areas; specifically, the paraventricular organ showed only DA immunoreactivity. In the diencephalon, TH/DA-ir groups were detected in the prethalamus, posterior tubercle, and pretectum. In the caudal hindbrain, the solitary tract nucleus and area postrema presented TH/DA-ir cell groups, and also the spinal cord and the retina. Only in A. calva, particular CAergic cell groups were observed in the habenula, the mesencephalic tegmentum, and in the locus coeruleus. Following a neuromeric analysis, the comparison of these results with those obtained in other classes of fishes and tetrapods shows many common traits of CAergic systems shared by most vertebrates and in addition highlights unique features of actinopterygian fishes.
Collapse
Affiliation(s)
- Daniel Lozano
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain,
| |
Collapse
|
14
|
López JM, Morona R, Moreno N, Lozano D, Jiménez S, González A. Pax6 expression highlights regional organization in the adult brain of lungfishes, the closest living relatives of land vertebrates. J Comp Neurol 2019; 528:135-159. [PMID: 31299095 DOI: 10.1002/cne.24744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2019] [Revised: 06/27/2019] [Accepted: 07/05/2019] [Indexed: 12/15/2022]
Abstract
The Pax6 gene encodes a regulatory transcription factor that is key in brain development. The molecular structure of Pax6, the roles it plays and its patterns of expression in the brain have been highly conserved during vertebrate evolution. As neurodevelopment proceeds, the Pax6 expression changes from the mitotic germinal zone in the ventricular zone to become distributed in cell groups in the adult brain. Studies in various vertebrates, from fish to mammals, found that the Pax6 expression is maintained in adults in most regions that express it during development. Specifically, in amphibians, Pax6 is widely expressed in the adult brain and its distribution pattern serves to highlight regional organization of the brain. In the present study, we analyzed the detailed distribution of Pax6 cells in the adult central nervous system of lungfishes, the closest living relatives of all tetrapods. Immunohistochemistry performed using double labeling techniques with several neuronal markers of known distribution patterns served to evaluate the actual location of Pax6 cells. Our results show that the Pax6 expression is maintained in the adult brain of lungfishes, in distinct regions of the telencephalon (pallium and subpallium), diencephalon, mesencephalon, hindbrain, spinal cord, and retina. The pattern of Pax6 expression is largely shared with amphibians and helps to understand the primitive condition that would have characterized the common ancestors to all sarcopterygians (lobe-finned fishes and tetrapods), in which Pax6 would be needed to maintain specific entities of subpopulations of neurons.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Daniel Lozano
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Sara Jiménez
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
15
|
López JM, Lozano D, Morona R, González A. Organization of the catecholaminergic systems in two basal actinopterygian fishes, Polypterus senegalus
and Erpetoichthys calabaricus
(Actinopterygii: Cladistia). J Comp Neurol 2018; 527:437-461. [DOI: 10.1002/cne.24548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2018] [Revised: 09/04/2018] [Accepted: 09/23/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Jesús M. López
- Department of Cell Biology, Faculty of Biology; University Complutense of Madrid; Madrid Spain
| | - Daniel Lozano
- Department of Cell Biology, Faculty of Biology; University Complutense of Madrid; Madrid Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology; University Complutense of Madrid; Madrid Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology; University Complutense of Madrid; Madrid Spain
| |
Collapse
|
16
|
Morona R, López JM, Northcutt RG, González A. Regional chemoarchitecture of the brain of lungfishes based on calbindin D-28K and calretinin immunohistochemistry. J Comp Neurol 2018. [PMID: 29520817 DOI: 10.1002/cne.24422] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Abstract
Lungfishes are the closest living relatives of land vertebrates, and their neuroanatomical organization is particularly relevant for deducing the neural traits that have been conserved, modified, or lost with the transition from fishes to land vertebrates. The immunohistochemical localization of calbindin (CB) and calretinin (CR) provides a powerful method for discerning segregated neuronal populations, fiber tracts, and neuropils and is here applied to the brains of Neoceratodus and Protopterus, representing the two extant orders of lungfishes. The results showed abundant cells containing these proteins in pallial and subpallial telencephalic regions, with particular distinct distribution in the basal ganglia, amygdaloid complex, and septum. Similarly, the distribution of CB and CR containing cells supports the division of the hypothalamus of lungfishes into neuromeric regions, as in tetrapods. The dense concentrations of CB and CR positive cells and fibers highlight the extent of the thalamus. As in other vertebrates, the optic tectum is characterized by numerous CB positive cells and fibers and smaller numbers of CR cells. The so-called cerebellar nucleus contains abundant CB and CR cells with long ascending axons, which raises the possibility that it could be homologized to the secondary gustatory nucleus of other vertebrates. The corpus of the cerebellum is devoid of CB and CR and cells positive for both proteins are found in the cerebellar auricles and the octavolateralis nuclei. Comparison with other vertebrates reveals that lungfishes share most of their features of calcium binding protein distribution with amphibians, particularly with salamanders.
Collapse
Affiliation(s)
- Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Spain
| | - R Glenn Northcutt
- Laboratory of Comparative Neurobiology, Scripps Institution of Oceanography and Department of Neurosciences, School of Medicine, , University of California, San Diego, California, USA
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Spain
| |
Collapse
|
17
|
Ferran JL, Puelles L. Lessons from Amphioxus Bauplan About Origin of Cranial Nerves of Vertebrates That Innervates Extrinsic Eye Muscles. Anat Rec (Hoboken) 2018; 302:452-462. [PMID: 29659196 DOI: 10.1002/ar.23824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/04/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 12/23/2022]
Abstract
Amphioxus is the living chordate closest to the ancestral form of vertebrates, and in a key position to reveal essential aspects of the evolution of the brain Bauplan of vertebrates. The dorsal neural cord of this species at the larval stage is characterized by a small cerebral vesicle at its anterior end and a large posterior region. The latter is comparable in some aspects to the hindbrain and spinal cord regions of vertebrates. The rostral end of the cerebral vesicle contains a median pigment spot and associated rows of photoreceptor and other nerve cells; this complex is known as "the frontal eye." However, this is not a complete eye in the sense that it has neither eye muscles nor lens (only a primitive retina-like tissue). Cranial nerves III, IV, and VI take part in the motor control of eye muscles in all vertebrates. Using a recent model that postulates distinct molecularly characterized hypothalamo-prethalamic and mesodiencephalic domains in the early cerebral vesicle of amphioxus, we analyze here possible scenarios for the origin from the common ancestor of cephalochordates and vertebrates of the cranial nerves related with extrinsic eye muscle innervations. Anat Rec, 302:452-462, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- José Luis Ferran
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia - IMIB, Group of Brain Regionalization and genes of development; Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia - IMIB, Group of Brain Regionalization and genes of development; Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| |
Collapse
|
18
|
Yáñez J, Suárez T, Quelle A, Folgueira M, Anadón R. Neural connections of the pretectum in zebrafish (Danio rerio). J Comp Neurol 2018; 526:1017-1040. [PMID: 29292495 DOI: 10.1002/cne.24388] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/25/2023]
Abstract
The pretectum is a complex region of the caudal diencephalon which in adult zebrafish comprises both retinorecipient (parvocellular superficial, central, intercalated, paracommissural, and periventricular) and non-retinorecipient (magnocellular superficial, posterior, and accessory) pretectal nuclei distributed from periventricular to superficial regions. We conducted a comprehensive study of the connections of pretectal nuclei by using neuronal tracing with fluorescent carbocyanine dyes. This study reveals specialization of efferent connections of the various pretectal nuclei, with nuclei projecting to the optic tectum (paracommissural, central, and periventricular pretectal nuclei), the torus longitudinalis and the cerebellar corpus (paracommissural, central, and intercalated pretectal nuclei), the lateral hypothalamus (magnocellular superficial, posterior, and central pretectal nuclei), and the tegmental regions (accessory and superficial pretectal nuclei). With regard to major central afferents to the pretectum, we observed projections from the telencephalon to the paracommissural and central pretectal nuclei, from the optic tectum to the paracommissural, central, accessory and parvocellular superficial pretectal nuclei, from the cerebellum to the paracommissural and periventricular pretectal nuclei and from the nucleus isthmi to the parvocellular superficial and accessory pretectal nuclei. The parvocellular superficial pretectal nucleus sends conspicuous projections to the contralateral magnocellular superficial pretectal nucleus. The composite figure of results reveals large differences in connections of neighbor pretectal nuclei, indicating high degree of nuclear specialization. Our results will have important bearings in functional studies that analyze the relationship between specific circuits and behaviors in zebrafish. Comparison with results available in other species also reveals differences in the organization and connections of the pretectum in vertebrates.
Collapse
Affiliation(s)
- Julián Yáñez
- Department of Biology, Faculty of Sciences, University of A Coruña, Coruña, 15008-A, Spain.,Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, Coruña, 15008-A, Spain
| | - Tania Suárez
- Department of Biology, Faculty of Sciences, University of A Coruña, Coruña, 15008-A, Spain
| | - Ana Quelle
- Centro de Biomedicina Experimental (CEBEGA), Santiago de Compostela, 15782, Spain.,Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary Science, University of Santiago de Compostela, Lugo, 27002, Spain
| | - Mónica Folgueira
- Department of Biology, Faculty of Sciences, University of A Coruña, Coruña, 15008-A, Spain.,Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, Coruña, 15008-A, Spain
| | - Ramón Anadón
- Department of Functional Biology, Faculty of Biology, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
19
|
López JM, Morona R, González A. Immunohistochemical Localization of DARPP-32 in the Brain of Two Lungfishes: Further Assessment of Its Relationship with the Dopaminergic System. BRAIN, BEHAVIOR AND EVOLUTION 2017; 90:289-310. [PMID: 29161694 DOI: 10.1159/000481929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/23/2017] [Accepted: 10/03/2017] [Indexed: 01/23/2023]
Abstract
The distribution of DARPP-32 (a phosphoprotein related to the dopamine D1 receptor) has been widely used as a means to clarify the brain regions with dopaminoceptive cells, primarily in representative species of tetrapods. The relationship between dopaminergic and dopaminoceptive elements is frequently analyzed using the catecholamine marker tyrosine hydroxylase (TH). In the present study, by means of combined immunohistochemistry, we have analyzed these relationships in lungfishes, the only group of sarcopterygian fishes represented by 6 extant species that are the phylogenetically closest living relatives of tetrapods. We used the Australian lungfish Neoceratodus forsteri and the African lungfish Protopterus dolloi. The DARPP-32 antibody yields a distinct and consistent pattern of neuronal staining in brain areas that, in general, coincide with areas that are densely innervated by TH-immunoreactive fibers. The striatum, thalamus, optic tectum, and torus semicircularis contain intensely DARPP-32-immunoreactive cell bodies and fibers. Cells are also located in the olfactory bulbs, amygdaloid complex, lateral septum, pallidum, preoptic area, suprachiasmatic nucleus, tuberal hypothalamic region, rostral rhombencephalic reticular formation, superior raphe nucleus, octavolateral area, solitary tract nucleus, and spinal cord. Remarkably, DARPP-32-immunoreactive fibers originating in the striatum reach the region of the dopaminergic cells in the mesencephalic tegmentum and represent a well-established striatonigral pathway in lungfishes. Double immunolabeling reveals that DARPP-32 is present in neurons that most likely receive TH input, but it is absent from the catecholaminergic neurons themselves, with the only exception of a few cells in the suprachiasmatic nucleus of Neoceratodus and the solitary tract nucleus of Protopterus. In addition, some species differences exist in the localization of DARPP-32 cells in the pallium, lateral amygdala, thalamus, prethalamus, and octavolateral area. In general, the present study demonstrates that the distribution pattern of DARPP-32, and its relationship with TH, is largely comparable to those reported for tetrapods, highlighting a shared situation among all sarcopterygians.
Collapse
Affiliation(s)
- Jesús M López
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | | | | |
Collapse
|
20
|
López JM, González A. Organization of the catecholaminergic systems in the brain of lungfishes, the closest living relatives of terrestrial vertebrates. J Comp Neurol 2017. [DOI: 10.1002/cne.24266] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jesús M. López
- Department of Cell Biology; Faculty of Biology, University Complutense of Madrid; Madrid Spain
| | - Agustín González
- Department of Cell Biology; Faculty of Biology, University Complutense of Madrid; Madrid Spain
| |
Collapse
|
21
|
Albuixech-Crespo B, López-Blanch L, Burguera D, Maeso I, Sánchez-Arrones L, Moreno-Bravo JA, Somorjai I, Pascual-Anaya J, Puelles E, Bovolenta P, Garcia-Fernàndez J, Puelles L, Irimia M, Ferran JL. Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain. PLoS Biol 2017; 15:e2001573. [PMID: 28422959 PMCID: PMC5396861 DOI: 10.1371/journal.pbio.2001573] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/14/2016] [Accepted: 03/22/2017] [Indexed: 11/25/2022] Open
Abstract
All vertebrate brains develop following a common Bauplan defined by anteroposterior (AP) and dorsoventral (DV) subdivisions, characterized by largely conserved differential expression of gene markers. However, it is still unclear how this Bauplan originated during evolution. We studied the relative expression of 48 genes with key roles in vertebrate neural patterning in a representative amphioxus embryonic stage. Unlike nonchordates, amphioxus develops its central nervous system (CNS) from a neural plate that is homologous to that of vertebrates, allowing direct topological comparisons. The resulting genoarchitectonic model revealed that the amphioxus incipient neural tube is unexpectedly complex, consisting of several AP and DV molecular partitions. Strikingly, comparison with vertebrates indicates that the vertebrate thalamus, pretectum, and midbrain domains jointly correspond to a single amphioxus region, which we termed Di-Mesencephalic primordium (DiMes). This suggests that these domains have a common developmental and evolutionary origin, as supported by functional experiments manipulating secondary organizers in zebrafish and mice.
Collapse
Affiliation(s)
- Beatriz Albuixech-Crespo
- Department of Genetics, School of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Spain
| | - Laura López-Blanch
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Demian Burguera
- Department of Genetics, School of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), Sevilla, Spain
| | - Luisa Sánchez-Arrones
- Centro de Biología Molecular Severo Ochoa CSIC-UAM and CIBERER, ISCIII, Madrid, Spain
| | | | - Ildiko Somorjai
- The Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, Scotland, United Kingdom
- Biomedical Sciences Research Complex, University of St Andrews, Fife, Scotland, United Kingdom
| | | | - Eduardo Puelles
- Instituto de Neurociencias, UMH-CSIC, Campus de San Juan, Sant Joan d'Alacant, Alicante, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa CSIC-UAM and CIBERER, ISCIII, Madrid, Spain
| | - Jordi Garcia-Fernàndez
- Department of Genetics, School of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia (IMIB), Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia (IMIB), Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| |
Collapse
|
22
|
Affiliation(s)
- Ramón Anadón
- Department of Cell Biology and Ecology, Faculty of Biology; Center for Biological Research, University of Santiago de Compostela; Santiago de Compostela Spain
| |
Collapse
|
23
|
Morona R, Ferran JL, Puelles L, González A. Gene expression analysis of developing cell groups in the pretectal region ofXenopus laevis. J Comp Neurol 2016; 525:715-752. [DOI: 10.1002/cne.24099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2016] [Revised: 07/18/2016] [Accepted: 07/28/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Ruth Morona
- Department of Cell Biology, Faculty of Biology; University Complutense of Madrid; 28040 Madrid Spain
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology; University of Murcia and Murcian Institute of Biomedical Research (IMIB); E30071 Murcia Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology; University of Murcia and Murcian Institute of Biomedical Research (IMIB); E30071 Murcia Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology; University Complutense of Madrid; 28040 Madrid Spain
| |
Collapse
|
24
|
Wnt1 signal determines the patterning of the diencephalic dorso-ventral axis. Brain Struct Funct 2015; 221:3693-708. [PMID: 26452989 DOI: 10.1007/s00429-015-1126-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2015] [Accepted: 09/30/2015] [Indexed: 12/31/2022]
Abstract
The diencephalon is a complex brain area that derives from the caudal region of the prosencephalon. This structure is divided into four longitudinal neuroepithelial zones: roof, alar, basal and floor plates, which constitute its dorso-ventral (DV) columnar domains. Morphogenetic differences between alar and basal plates in the prosencephalon and mesencephalon contribute to the characteristic expansion of alar plate derivatives in the brain and the formation of the cephalic flexure. Although differential histogenesis among DV regions seems to be relevant in understanding structural and functional complexity of the brain, most of our knowledge about DV regionalization comes from the spinal cord development. Therefore, it seems of interest to study the molecular mechanisms that govern DV patterning in the diencephalon, the brain region where strong differences in size and complexity between alar and basal derivatives are evident in all vertebrates. Different morphogenetic signals, which induce specific progenitors fate to the neighboring epithelium, are involved in the spinal cord DV patterning. To study if Wnt1, one of these signaling molecules, has a role for the establishment of the diencephalic longitudinal domains, we carried out gain- and loss-of-function experiments, using mice and chick embryos. Our results demonstrated functional differences in the molecular mechanisms downstream of Wnt1 function in the diencephalon, in relation to the spinal cord. We further demonstrated that Bmp4 signal induces Wnt1 expression in the diencephalon, unraveling a new molecular regulatory code downstream of primary dorsalizing signals to control ventral regionalization in the diencephalon.
Collapse
|
25
|
Bandín S, Morona R, González A. Prepatterning and patterning of the thalamus along embryonic development of Xenopus laevis. Front Neuroanat 2015; 9:107. [PMID: 26321920 PMCID: PMC4530589 DOI: 10.3389/fnana.2015.00107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/28/2015] [Accepted: 07/24/2015] [Indexed: 01/18/2023] Open
Abstract
Previous developmental studies of the thalamus (alar part of the diencephalic prosomere p2) have defined the molecular basis for the acquisition of the thalamic competence (preparttening), the subsequent formation of the secondary organizer in the zona limitans intrathalamica, and the early specification of two anteroposterior domains (rostral and caudal progenitor domains) in response to inducing activities and that are shared in birds and mammals. In the present study we have analyzed the embryonic development of the thalamus in the anuran Xenopus laevis to determine conserved or specific features in the amphibian diencephalon. From early embryonic stages to the beginning of the larval period, the expression patterns of 22 markers were analyzed by means of combined In situ hybridization (ISH) and immunohistochemical techniques. The early genoarchitecture observed in the diencephalon allowed us to discern the boundaries of the thalamus with the prethalamus, pretectum, and epithalamus. Common molecular features were observed in the thalamic prepatterning among vertebrates in which Wnt3a, Fez, Pax6 and Xiro1 expression were of particular importance in Xenopus. The formation of the zona limitans intrathalamica was observed, as in other vertebrates, by the progressive expression of Shh. The largely conserved expressions of Nkx2.2 in the rostral thalamic domain vs. Gbx2 and Ngn2 (among others) in the caudal domain strongly suggest the role of Shh as morphogen in the amphibian thalamus. All these data showed that the molecular characteristics observed during preparttening and patterning in the thalamus of the anuran Xenopus (anamniote) share many features with those described during thalamic development in amniotes (common patterns in tetrapods) but also with zebrafish, strengthening the idea of a basic organization of this diencephalic region across vertebrates.
Collapse
Affiliation(s)
- Sandra Bandín
- Faculty of Biology, Department of Cell Biology, University Complutense Madrid, Spain
| | - Ruth Morona
- Faculty of Biology, Department of Cell Biology, University Complutense Madrid, Spain
| | - Agustín González
- Faculty of Biology, Department of Cell Biology, University Complutense Madrid, Spain
| |
Collapse
|
26
|
Karpinka JB, Fortriede JD, Burns KA, James-Zorn C, Ponferrada VG, Lee J, Karimi K, Zorn AM, Vize PD. Xenbase, the Xenopus model organism database; new virtualized system, data types and genomes. Nucleic Acids Res 2014; 43:D756-63. [PMID: 25313157 PMCID: PMC4384024 DOI: 10.1093/nar/gku956] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/16/2023] Open
Abstract
Xenbase (http://www.xenbase.org), the Xenopus frog model organism database, integrates a wide variety of data from this biomedical model genus. Two closely related species are represented: the allotetraploid Xenopus laevis that is widely used for microinjection and tissue explant-based protocols, and the diploid Xenopus tropicalis which is used for genetics and gene targeting. The two species are extremely similar and protocols, reagents and results from each species are often interchangeable. Xenbase imports, indexes, curates and manages data from both species; all of which are mapped via unique IDs and can be queried in either a species-specific or species agnostic manner. All our services have now migrated to a private cloud to achieve better performance and reliability. We have added new content, including providing full support for morpholino reagents, used to inhibit mRNA translation or splicing and binding to regulatory microRNAs. New genomes assembled by the JGI for both species and are displayed in Gbrowse and are also available for searches using BLAST. Researchers can easily navigate from genome content to gene page reports, literature, experimental reagents and many other features using hyperlinks. Xenbase has also greatly expanded image content for figures published in papers describing Xenopus research via PubMedCentral.
Collapse
Affiliation(s)
- J Brad Karpinka
- University of Calgary-Computer Science, Calgary, Alberta, Canada
| | - Joshua D Fortriede
- Cincinnati Children's Research Foundation-Division of Developmental Biology, Cincinnati, OH, USA
| | - Kevin A Burns
- Cincinnati Children's Research Foundation-Division of Developmental Biology, Cincinnati, OH, USA
| | - Christina James-Zorn
- Cincinnati Children's Research Foundation-Division of Developmental Biology, Cincinnati, OH, USA
| | - Virgilio G Ponferrada
- Cincinnati Children's Research Foundation-Division of Developmental Biology, Cincinnati, OH, USA
| | - Jacqueline Lee
- University of Calgary-Computer Science, Calgary, Alberta, Canada
| | - Kamran Karimi
- University of Calgary-Computer Science, Calgary, Alberta, Canada
| | - Aaron M Zorn
- Cincinnati Children's Research Foundation-Division of Developmental Biology, Cincinnati, OH, USA
| | - Peter D Vize
- University of Calgary-Computer Science, Calgary, Alberta, Canada University of Calgary-Biological Sciences, Calgary, Alberta, Canada
| |
Collapse
|
27
|
Domínguez L, González A, Moreno N. Characterization of the hypothalamus of Xenopus laevis during development. II. The basal regions. J Comp Neurol 2014; 522:1102-31. [PMID: 24122702 DOI: 10.1002/cne.23471] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2013] [Revised: 07/25/2013] [Accepted: 09/13/2013] [Indexed: 01/10/2023]
Abstract
The expression patterns of conserved developmental regulatory transcription factors and neuronal markers were analyzed in the basal hypothalamus of Xenopus laevis throughout development by means of combined immunohistochemical and in situ hybridization techniques. The connectivity of the main subdivisions was investigated by in vitro tracing techniques with dextran amines. The basal hypothalamic region is topologically rostral to the basal diencephalon and is composed of the tuberal (rostral) and mammillary (caudal) subdivisions, according to the prosomeric model. It is dorsally bounded by the optic chiasm and the alar hypothalamus, and caudally by the diencephalic prosomere p3. The tuberal hypothalamus is defined by the expression of Nkx2.1, xShh, and Isl1, and rostral and caudal portions can be distinguished by the distinct expression of Otp rostrally and Nkx2.2 caudally. In the mammillary region the xShh/Nkx2.1 combination defined the rostral mammillary area, expressing Nkx2.1, and the caudal retromammillary area, expressing xShh. The expression of xLhx1, xDll4, and Otp in the mammillary area and Isl1 in the tuberal region highlights the boundary between the two basal hypothalamic territories. Both regions are strongly connected with subpallial regions, especially those conveying olfactory/vomeronasal information, and also possess abundant intrahypothalamic connections. They show reciprocal connections with the diencephalon (mainly the thalamus), project to the midbrain tectum, and are bidirectionally related to the rhombencephalon. These results illustrate that the basal hypothalamus of anurans shares many features of specification, regionalization, and hodology with amniotes, reinforcing the idea of a basic bauplan in the organization of this prosencephalic region in all tetrapods.
Collapse
Affiliation(s)
- Laura Domínguez
- Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain
| | | | | |
Collapse
|
28
|
Moreno N, Joven A, Morona R, Bandín S, López JM, González A. Conserved localization of Pax6 and Pax7 transcripts in the brain of representatives of sarcopterygian vertebrates during development supports homologous brain regionalization. Front Neuroanat 2014; 8:75. [PMID: 25147506 PMCID: PMC4123791 DOI: 10.3389/fnana.2014.00075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2014] [Accepted: 07/21/2014] [Indexed: 11/20/2022] Open
Abstract
Many of the genes involved in brain patterning during development are highly conserved in vertebrates and similarities in their expression patterns help to recognize homologous cell types or brain regions. Among these genes, Pax6 and Pax7 are expressed in regionally restricted patterns in the brain and are essential for its development. In the present immunohistochemical study we analyzed the distribution of Pax6 and Pax7 cells in the brain of six representative species of tetrapods and lungfishes, the closest living relatives of tetrapods, at several developmental stages. The distribution patterns of these transcription factors were largely comparable across species. In all species only Pax6 was expressed in the telencephalon, including the olfactory bulbs, septum, striatum, and amygdaloid complex. In the diencephalon, Pax6 and Pax7 were distinct in the alar and basal parts, mainly in prosomeres 1 and 3. Pax7 specifically labeled cells in the optic tectum (superior colliculus) and Pax6, but not Pax7, cells were found in the tegmentum. Pax6 was found in most granule cells of the cerebellum and Pax7 labeling was detected in cells of the ventricular zone of the rostral alar plate and in migrated cells in the basal plate, including the griseum centrale and the interpeduncular nucleus. Caudally, Pax6 cells formed a column, whereas the ventricular zone of the alar plate expressed Pax7. Since the observed Pax6 and Pax7 expression patterns are largely conserved they can be used to identify subdivisions in the brain across vertebrates that are not clearly discernible with classical techniques.
Collapse
Affiliation(s)
- Nerea Moreno
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| | - Alberto Joven
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| | - Sandra Bandín
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| |
Collapse
|
29
|
Immunohistochemical analysis of Pax6 and Pax7 expression in the CNS of adult Xenopus laevis. J Chem Neuroanat 2014; 57-58:24-41. [DOI: 10.1016/j.jchemneu.2014.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 11/22/2022]
|
30
|
López JM, González A. Organization of the Serotonergic System in the Central Nervous System of Two Basal Actinopterygian Fishes: the CladistiansPolypterus senegalusandErpetoichthys calabaricus. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:54-76. [DOI: 10.1159/000358266] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/03/2013] [Accepted: 12/24/2013] [Indexed: 11/19/2022]
|
31
|
Bandín S, Morona R, Moreno N, González A. Regional expression of Pax7 in the brain of Xenopus laevis during embryonic and larval development. Front Neuroanat 2013; 7:48. [PMID: 24399938 PMCID: PMC3871710 DOI: 10.3389/fnana.2013.00048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/04/2013] [Accepted: 12/10/2013] [Indexed: 11/13/2022] Open
Abstract
Pax7 is a member of the highly conserved Pax gene family that is expressed in restricted zones of the central nervous system (CNS) during development, being involved in early brain regionalization and the maintenance of the regional identity. Using sensitive immunohistochemical techniques we have analyzed the spatiotemporal pattern of Pax7 expression in the brain of the anuran amphibian Xenopus laevis, during development. Pax7 expression was first detected in early embryos in the basal plate of prosomere 3, roof and alar plates of prosomere 1 and mesencephalon, and the alar plate of rhombomere 1. As development proceeded, Pax7 cells were observed in the hypothalamus close to the catecholaminergic population of the mammillary region. In the diencephalon, Pax7 was intensely expressed in a portion of the basal plate of prosomere 3, in the roof plate and in scattered cells of the thalamus in prosomere 2, throughout the roof of prosomere 1, and in the commissural and juxtacommissural domains of the pretectum. In the mesencephalon, Pax7 cells were localized in the optic tectum and, to a lesser extent, in the torus semicircularis. The rostral portion of the alar part of rhombomere 1, including the ventricular layer of the cerebellum, expressed Pax7 and, gradually, some of these dorsal cells were observed to populate ventrally the interpeduncular nucleus and the isthmus (rhombomere 0). Additionally, Pax7 positive cells were found in the ventricular zone of the ventral part of the alar plate along the rhombencephalon and the spinal cord. The findings show that the strongly conserved features of Pax7 expression through development shared by amniote vertebrates are also present in the anamniote amphibians as a common characteristic of the brain organization of tetrapods.
Collapse
Affiliation(s)
- Sandra Bandín
- Department of Cell Biology, Faculty of Biology, University Complutense Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense Madrid, Spain
| |
Collapse
|
32
|
Joven A, Morona R, González A, Moreno N. Expression patterns of Pax6 and Pax7 in the adult brain of a urodele amphibian, Pleurodeles waltl. J Comp Neurol 2013; 521:2088-124. [PMID: 23224769 DOI: 10.1002/cne.23276] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2012] [Revised: 11/21/2012] [Accepted: 11/27/2012] [Indexed: 01/04/2023]
Abstract
Expression patterns of Pax6, Pax7, and, to a lesser extent, Pax3 genes were analyzed by a combination of immunohistochemical techniques in the central nervous system of adult specimens of the urodele amphibian Pleurodeles waltl. Only Pax6 was found in the telencephalon, specifically the olfactory bulbs, striatum, septum, and lateral and central parts of the amygdala. In the diencephalon, Pax6 and Pax7 were distinct in the alar and basal parts, respectively, of prosomere 3. The distribution of Pax6, Pax7, and Pax3 cells correlated with the three pretectal domains. Pax7 specifically labeled cells in the dorsal mesencephalon, mainly in the optic tectum, and Pax6 cells were the only cells found in the tegmentum. Large populations of Pax7 cells occupied the rostral rhombencephalon, along with lower numbers of Pax6 and Pax3 cells. Pax6 was found in most granule cells of the cerebellum. Pax6 cells also formed a column of scattered neurons in the reticular formation and were found in the octavolateral area. The rhombencephalic ventricular zone of the alar plate expressed Pax7. Dorsal Pax7 cells and ventral Pax6 cells were found along the spinal cord. Our results show that the expression of Pax6 and Pax7 is widely maintained in the brains of adult urodeles, in contrast to the situation in other tetrapods. This discrepancy could be due to the generally pedomorphic features of urodele brains. Although the precise role of these transcription factors in adult brains remains to be determined, our findings support the idea that they may also function in adult urodeles.
Collapse
Affiliation(s)
- Alberto Joven
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
33
|
Nagalski A, Irimia M, Szewczyk L, Ferran JL, Misztal K, Kuznicki J, Wisniewska MB. Postnatal isoform switch and protein localization of LEF1 and TCF7L2 transcription factors in cortical, thalamic, and mesencephalic regions of the adult mouse brain. Brain Struct Funct 2013; 218:1531-49. [PMID: 23152144 PMCID: PMC3825142 DOI: 10.1007/s00429-012-0474-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2012] [Accepted: 10/25/2012] [Indexed: 02/06/2023]
Abstract
β-Catenin signaling, leading to the activation of lymphoid enhancer-binding factor 1/T cell factor (LEF1/TCF) transcription factors, plays a well-established role in transcription regulation during development and tissue homeostasis. In the adult organism, the activity of this pathway has been found in stem cell niches and postmitotic thalamic neurons. Recently, studies show that mutations in components of β-catenin signaling networks have been associated with several psychiatric disorders, indicating the involvement of β-catenin and LEF1/TCF proteins in the proper functioning of the brain. Here, we report a comprehensive analysis of LEF1/TCF protein localization and the expression profile of their isoforms in cortical, thalamic, and midbrain regions in mice. We detected LEF1 and TCF7L2 proteins in neurons of the thalamus and dorsal midbrain, i.e., subcortical regions specialized in the integration of diverse sources of sensory information. These neurons also exhibited nuclear localization of β-catenin, suggesting the involvement of β-catenin/LEF1/TCF7L2 in the regulation of gene expression in these regions. Analysis of alternative splicing and promoter usage identified brain-specific TCF7L2 isoforms and revealed a developmentally coordinated transition in the composition of LEF1 and TCF7L2 isoforms. In the case of TCF7L2, the typical brain isoforms lack the so-called C clamp; in addition, the dominant-negative isoforms are predominant in the embryonic thalamus but disappear postnatally. The present study provides a necessary framework to understand the role of LEF1/TCF factors in thalamic and midbrain development until adulthood and predicts that the regulatory role of these proteins in the adult brain is significantly different from their role in the embryonic brain or other non-neural tissues.
Collapse
Affiliation(s)
- A. Nagalski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | - M. Irimia
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - L. Szewczyk
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | - J. L. Ferran
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, E30071 Spain
| | - K. Misztal
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | - J. Kuznicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - M. B. Wisniewska
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| |
Collapse
|
34
|
Domínguez L, Morona R, González A, Moreno N. Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions. J Comp Neurol 2013; 521:725-59. [PMID: 22965483 DOI: 10.1002/cne.23222] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2012] [Revised: 06/19/2012] [Accepted: 08/21/2012] [Indexed: 12/19/2022]
Abstract
The patterns of expression of a set of conserved developmental regulatory transcription factors and neuronal markers were analyzed in the alar hypothalamus of Xenopus laevis throughout development. Combined immunohistochemical and in situ hybridization techniques were used for the identification of subdivisions and their boundaries. The alar hypothalamus was located rostral to the diencephalon in the secondary prosencephalon and represents the rostral continuation of the alar territories of the diencephalon and brainstem, according to the prosomeric model. It is composed of the supraoptoparaventricular (dorsal) and the suprachiasmatic (ventral) regions, and limits dorsally with the preoptic region, caudally with the prethalamic eminence and the prethalamus, and ventrally with the basal hypothalamus. The supraoptoparaventricular area is defined by the orthopedia (Otp) expression and is subdivided into rostral and caudal portions, on the basis of the Nkx2.2 expression only in the rostral portion. This region is the source of many neuroendocrine cells, primarily located in the rostral subdivision. The suprachiasmatic region is characterized by Dll4/Isl1 expression, and was also subdivided into rostral and caudal portions, based on the expression of Nkx2.1/Nkx2.2 and Lhx1/7 exclusively in the rostral portion. Both alar regions are mainly connected with subpallial areas strongly implicated in the limbic system and show robust intrahypothalamic connections. Caudally, both regions project to brainstem centers and spinal cord. All these data support that in terms of topology, molecular specification, and connectivity the subdivisions of the anuran alar hypothalamus possess many features shared with their counterparts in amniotes, likely controlling similar reflexes, responses, and behaviors.
Collapse
Affiliation(s)
- Laura Domínguez
- Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
35
|
Lauter G, Söll I, Hauptmann G. Molecular characterization of prosomeric and intraprosomeric subdivisions of the embryonic zebrafish diencephalon. J Comp Neurol 2013; 521:1093-118. [PMID: 22949352 DOI: 10.1002/cne.23221] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2011] [Revised: 03/04/2012] [Accepted: 08/14/2012] [Indexed: 02/05/2023]
Abstract
During development of the early neural tube, positional information provided by signaling gradients is translated into a grid of transverse and longitudinal transcription factor expression domains. Transcription factor specification codes defining distinct histogenetic domains within this grid are evolutionarily conserved across vertebrates and may reflect an underlying common vertebrate bauplan. When compared to the rich body of comparative gene expression studies of tetrapods, there is considerably less comparative data available for teleost fish. We used sensitive multicolor fluorescent in situ hybridization to generate a detailed map of regulatory gene expression domains in the embryonic zebrafish diencephalon. The high resolution of this technique allowed us to resolve abutting and overlapping gene expression of different transcripts. We found that the relative topography of gene expression patterns in zebrafish was highly similar to those of orthologous genes in tetrapods and consistent with a three-prosomere organization of the alar and basal diencephalon. Our analysis further demonstrated a conservation of intraprosomeric subdivisions within prosomeres 1, 2, and 3 (p1, p2, and p3). A tripartition of zebrafish p1 was identified reminiscent of precommissural (PcP), juxtacommissural (JcP), and commissural (CoP) pretectal domains of tetrapods. The constructed detailed diencephalic transcription factor gene expression map further identified molecularly distinct thalamic and prethalamic rostral and caudal domains and a prethalamic eminence histogenetic domain in zebrafish. Our comparative gene expression analysis conformed with the idea of a common bauplan for the diencephalon of anamniote and amniote vertebrates from fish to mammals.
Collapse
Affiliation(s)
- Gilbert Lauter
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | | | | |
Collapse
|
36
|
Morona R, González A. Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development. J Comp Neurol 2013; 521:79-108. [PMID: 22678695 DOI: 10.1002/cne.23163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/05/2012] [Revised: 05/07/2012] [Accepted: 06/01/2012] [Indexed: 11/09/2022]
Abstract
The present study represents a detailed spatiotemporal analysis of the localization of calbindin-D28k (CB) and calretinin (CR) immunoreactive structures in the brain of Xenopus laevis throughout development, conducted with the aim to correlate the onset of the immunoreactivity with the development of compartmentalization of distinct subdivisions recently identified in the brain of adult amphibians and primarily highlighted when analyzed within a segmental paradigm. CR and CB are expressed early in the brain and showed a progressively increasing expression throughout development, although transient expression in some neuronal subpopulations was also noted. Common and distinct characteristics in Xenopus, as compared with reported features during development in the brain of mammals, were observed. The development of specific regions in the forebrain such as the olfactory bulbs, the components of the basal ganglia and the amygdaloid complex, the alar and basal hypothalamic regions, and the distinct diencephalic neuromeres could be analyzed on the basis of the distinct expression of CB and CR in subregions. Similarly, the compartments of the mesencephalon and the main rhombencephalic regions, including the cerebellum, were differently highlighted by their specific content in CB and CR throughout development. Our results show the usefulness of the analysis of the distribution of these proteins as a tool in neuroanatomy to interpret developmental aspects of many brain regions.
Collapse
Affiliation(s)
- Ruth Morona
- Department of Cell Biology, University Complutense, 28040 Madrid, Spain
| | | |
Collapse
|
37
|
Moreno N, Domínguez L, Morona R, González A. Subdivisions of the turtle Pseudemys scripta hypothalamus based on the expression of regulatory genes and neuronal markers. J Comp Neurol 2012; 520:453-78. [PMID: 21935937 DOI: 10.1002/cne.22762] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023]
Abstract
The patterns of distribution of a set of conserved brain developmental regulatory transcription factors and neuronal markers were analyzed in the hypothalamus of the juvenile turtle, Pseudemys scripta. Combined immunohistochemical techniques were used for the identification of the main boundaries and subdivisions in the optic, paraventricular, tuberal, and mammillary hypothalamic regions. The combination of Tbr1 and Pax6 with Nkx2.1 allowed identification of the boundary between the telencephalic preoptic area, rich in Nkx2.1 expression, and the prethalamic eminence, rich in Tbr1 expression. In addition, at this level Nkx2.2 expression defined the boundary between the telencephalon and the hypothalamus. The dorsalmost hypothalamic domain was the supraoptoparaventricular region that was defined by the expression of Otp/Pax6 and the lack of Nkx2.1/Isl1. It is subdivided into rostral, rich in Otp and Nkx2.2, and caudal, only Otp-positive, portions. Ventrally, the suprachiasmatic area was identified by its catecholaminergic groups and the lack of Otp, and could be further divided into a rostral portion, rich in Nkx2.1 and Nkx2.2, and a caudal portion, rich in Isl1 and devoid of Nkx2.1 expression. The expressions of Nkx2.1 and Isl1 defined the tuberal hypothalamus, whereas only the rostral portion expressed Otp. Its caudal boundary was evident by the lack of Isl1 in the adjacent mammillary area, which expressed Nkx2.1 and Otp. All these results provide an important set of data on the interpretation of the hypothalamic organization in a reptile, and hence make a useful contribution to the understanding of hypothalamic evolution.
Collapse
Affiliation(s)
- Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, 28040, Madrid, Spain.
| | | | | | | |
Collapse
|
38
|
Joven A, Morona R, Moreno N, González A. Regional distribution of calretinin and calbindin-D28k expression in the brain of the urodele amphibian Pleurodeles waltl during embryonic and larval development. Brain Struct Funct 2012; 218:969-1003. [PMID: 22843286 DOI: 10.1007/s00429-012-0442-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2012] [Accepted: 07/07/2012] [Indexed: 11/28/2022]
Abstract
The sequence of appearance of calretinin and calbindin-D28k immunoreactive (CRir and CBir, respectively) cells and fibers has been studied in the brain of the urodele amphibian Pleurodeles waltl. Embryonic, larval and juvenile stages were studied. The early expression and the dynamics of the distribution of CBir and CRir structures have been used as markers for developmental aspects of distinct neuronal populations, highlighting the accurate extent of many regions in the developing brain, not observed on the basis of cytoarchitecture alone. CR and, to a lesser extent, CB are expressed early in the central nervous system and show a progressively increasing expression from the embryonic stages throughout the larval life and, in general, the labeled structures in the developing brain retain their ability to express these proteins in the adult brain. The onset of CRir cells primarily served to follow the development of the olfactory bulbs, subpallium, thalamus, alar hypothalamus, mesencephalic tegmentum, and distinct cell populations in the rhombencephalic reticular formation. CBir cells highlighted the development of, among others, the pallidum, hypothalamus, dorsal habenula, midbrain tegmentum, cerebellum, and central gray of the rostral rhombencephalon. However, it was the relative and mostly segregated distribution of both proteins in distinct cell populations which evidenced the developing regionalization of the brain. The results have shown the usefulness in neuroanatomy of the analysis during development of the onset of CBir and CRir structures, but the comparison with previous data has shown extensive variability across vertebrate classes. Therefore, one should be cautious when comparing possible homologue structures across species only on the basis of the expression of these proteins, due to the variation of the content of calcium-binding proteins observed in well-established homologous regions in the brain of different vertebrates.
Collapse
Affiliation(s)
- Alberto Joven
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
39
|
Morona R, López JM, González A. Localization of Calbindin-D28k and Calretinin in the Brain of Dermophis Mexicanus (Amphibia: Gymnophiona) and Its Bearing on the Interpretation of Newly Recognized Neuroanatomical Regions. BRAIN, BEHAVIOR AND EVOLUTION 2011; 77:231-69. [DOI: 10.1159/000329521] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/15/2011] [Accepted: 05/12/2011] [Indexed: 12/13/2022]
|
40
|
Merchán P, Bardet SM, Puelles L, Ferran JL. Comparison of Pretectal Genoarchitectonic Pattern between Quail and Chicken Embryos. Front Neuroanat 2011; 5:23. [PMID: 21503155 PMCID: PMC3074437 DOI: 10.3389/fnana.2011.00023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2010] [Accepted: 03/23/2011] [Indexed: 01/08/2023] Open
Abstract
Regionalization of the central nervous system is controlled by local networks of transcription factors that establish and maintain the identities of neuroepithelial progenitor areas and their neuronal derivatives. The conserved cerebral Bauplan of vertebrates must result essentially from conserved patterns of developmentally expressed transcription factors. We have previously produced detailed molecular maps for the alar plate of prosomere 1 (the pretectal region) in chicken (Ferran et al., 2007, 2008, 2009). Here we compare the early molecular signature of the pretectum of two closely related avian species of the family Phasianidae, Coturnix japonica (Japanese quail) and Gallus gallus (chicken), aiming to test conservation of the described pattern at a microevolutionary level. We studied the developmental pretectal expression of Bhlhb4, Dbx1, Ebf1, Gata3, Gbx2, Lim1, Meis1, Meis2, Pax3, Pax6, Six3, Tal2, and Tcf7l2 (Tcf4) mRNA, using in situ hybridization, and PAX7 immunohistochemistry. The genoarchitectonic profile of individual pretectal domains and strata was produced, using comparable section planes. Remarkable conservation of the combinatorial genoarchitectonic code was observed, fundamented in a tripartite anteroposterior subdivision. However, we found that at corresponding developmental stages the pretectal region of G. gallus was approximately 30% larger than that of C. japonica, but seemed relatively less mature. Altogether, our results on a conserved genoarchitectonic pattern highlight the importance of early developmental gene networks that causally underlie the production of homologous derivatives in these two evolutionarily closely related species. The shared patterns probably apply to sauropsids in general, as well as to more distantly related vertebrate species.
Collapse
Affiliation(s)
- Paloma Merchán
- Department of Human Anatomy and Psychobiology, Centre for Biomedical Research on Rare Diseases (CIBERER 736), School of Medicine, University of MurciaMurcia, Spain
| | - Sylvia M. Bardet
- Unité de Génétique Moléculaire Animale, INRA UMR 1061, University of LimogesLimoges, France
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, Centre for Biomedical Research on Rare Diseases (CIBERER 736), School of Medicine, University of MurciaMurcia, Spain
| | - José L. Ferran
- Department of Human Anatomy and Psychobiology, Centre for Biomedical Research on Rare Diseases (CIBERER 736), School of Medicine, University of MurciaMurcia, Spain
| |
Collapse
|
41
|
Domínguez L, González A, Moreno N. Ontogenetic distribution of the transcription factor nkx2.2 in the developing forebrain of Xenopus laevis. Front Neuroanat 2011; 5:11. [PMID: 21415915 PMCID: PMC3049246 DOI: 10.3389/fnana.2011.00011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2010] [Accepted: 02/16/2011] [Indexed: 11/20/2022] Open
Abstract
The expression of the Nkx2.2 gene is involved in the organization of the alar-basal boundary in the forebrain of vertebrates. Its expression in different diencephalic and telencephalic regions, helped to define distinct progenitor domains in mouse and chick. Here we investigated the pattern of Nkx2.2 protein distribution throughout the development of the forebrain of the anuran amphibian, Xenopus laevis. We used immunohistochemical and in situ hybridization techniques for its detection in combination with other essential territorial markers in the forebrain. No expression was observed in the telencephalon. In the alar hypothalamus, Nkx2.2 positive cells were scattered in the suprachiasmatic territory, but also in the supraopto-paraventricular area, as defined by the expression of the transcription factor Orthopedia (Otp) and the lack of xDll4. In the basal hypothalamus Nkx2.2 expressing cells were localized in the tuberal region, with the exception of the arcuate nucleus, rich in Otp expressing cells. In the diencephalon it was expressed in all three prosomeres (P1–P3) and not in the zona limitans intrathalamica. The presence of Nkx2.2 expressing cells in P3 was restricted to the alar portion, as well as in prosomere P2, whereas in P1 the Nkx2.2 expressing cells were located in the basal plate and identified the alar/basal boundary. These results showed that Nkx2.2 and Sonic hedgehog are expressed in parallel adjacent stripes along the anterior–posterior axis. The results of this study showed a conserved distribution pattern of Nkx2.2 among vertebrates, crucial to recognize subdivisions that are otherwise indistinct, and supported the relevance of this transcription factor in the organization of the forebrain, particularly in the delineation of the alar/basal boundary of the forebrain.
Collapse
Affiliation(s)
- Laura Domínguez
- Faculty of Biology, Department of Cell Biology, University Complutense of Madrid Madrid, Spain
| | | | | |
Collapse
|