1
|
Ma K, Huang S, Ng KK, Lake NJ, Joseph S, Xu J, Lek A, Ge L, Woodman KG, Koczwara KE, Cohen J, Ho V, O'Connor CL, Brindley MA, Campbell KP, Lek M. Saturation mutagenesis-reinforced functional assays for disease-related genes. Cell 2024:S0092-8674(24)00976-0. [PMID: 39326416 DOI: 10.1016/j.cell.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024]
Abstract
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods are obstacles for achieving genome-wide resolution of variants in disease-related genes. Our framework, saturation mutagenesis-reinforced functional assays (SMuRF), offers simple and cost-effective saturation mutagenesis paired with streamlined functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single-nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Overall, our approach enables variant-to-function insights for disease genes in a cost-effective manner that can be broadly implemented by standard research laboratories.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Kenneth K Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Nicole J Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jenny Xu
- Yale University, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Muscular Dystrophy Association, Chicago, IL, USA
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Keryn G Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melinda A Brindley
- Department of Infectious Diseases, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Jahncke JN, Schnell E, Wright KM. Distinct functional domains of Dystroglycan regulate inhibitory synapse formation and maintenance in cerebellar Purkinje cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610348. [PMID: 39257744 PMCID: PMC11383678 DOI: 10.1101/2024.08.29.610348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Dystroglycan is a cell adhesion molecule that localizes to synapses throughout the nervous system. While Dystroglycan is required to maintain inhibitory synapses from cerebellar molecular layer interneurons (MLIs) onto Purkinje cells (PCs) whether initial synaptogenesis during development is dependent on Dystroglycan has not been examined. We show that conditional deletion of Dystroglycan from Purkinje cells prior to synaptogenesis results in impaired MLI:PC synapse formation and function due to reduced presynaptic inputs and abnormal postsynaptic GABAA receptor clustering. Using genetic manipulations that disrupt glycosylation of Dystroglycan or truncate its cytoplasmic domain, we show that Dystroglycan's role in synapse function requires both extracellular and intracellular interactions, whereas synapse formation requires only extracellular interactions. Together, these findings provide molecular insight into the mechanism of inhibitory synapse formation and maintenance in cerebellar cortex.
Collapse
Affiliation(s)
- Jennifer N. Jahncke
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Eric Schnell
- Operative Care Division, Portland VA Health Care System
- Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kevin M. Wright
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
3
|
Ma K, Huang S, Ng KK, Lake NJ, Joseph S, Xu J, Lek A, Ge L, Woodman KG, Koczwara KE, Cohen J, Ho V, O’Connor CL, Brindley MA, Campbell KP, Lek M. Deep Mutational Scanning in Disease-related Genes with Saturation Mutagenesis-Reinforced Functional Assays (SMuRF). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.12.548370. [PMID: 37873263 PMCID: PMC10592615 DOI: 10.1101/2023.07.12.548370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods hamper crowd-sourcing approaches toward genome-wide resolution of variants in disease-related genes. Our framework, Saturation Mutagenesis-Reinforced Functional assays (SMuRF), addresses these issues by offering simple and cost-effective saturation mutagenesis, as well as streamlining functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Our approach opens new directions for enabling variant-to-function insights for disease genes in a manner that is broadly useful for crowd-sourcing implementation across standard research laboratories.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Kenneth K. Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Nicole J. Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jenny Xu
- Yale University, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Muscular Dystrophy Association, Chicago, IL, USA
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Keryn G. Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melinda A. Brindley
- Department of Infectious Diseases, Department of Population Health, University of Georgia, Athens, GA, USA
- Senior Authors
| | - Kevin P. Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
- Senior Authors
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Senior Authors
- Lead Contact
| |
Collapse
|
4
|
Jahncke JN, Miller DS, Krush M, Schnell E, Wright KM. Inhibitory CCK+ basket synapse defects in mouse models of dystroglycanopathy. eLife 2024; 12:RP87965. [PMID: 38179984 PMCID: PMC10942650 DOI: 10.7554/elife.87965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Dystroglycan (Dag1) is a transmembrane glycoprotein that links the extracellular matrix to the actin cytoskeleton. Mutations in Dag1 or the genes required for its glycosylation result in dystroglycanopathy, a type of congenital muscular dystrophy characterized by a wide range of phenotypes including muscle weakness, brain defects, and cognitive impairment. We investigated interneuron (IN) development, synaptic function, and associated seizure susceptibility in multiple mouse models that reflect the wide phenotypic range of dystroglycanopathy neuropathology. Mice that model severe dystroglycanopathy due to forebrain deletion of Dag1 or Pomt2, which is required for Dystroglycan glycosylation, show significant impairment of CCK+/CB1R+ IN development. CCK+/CB1R+ IN axons failed to properly target the somatodendritic compartment of pyramidal neurons in the hippocampus, resulting in synaptic defects and increased seizure susceptibility. Mice lacking the intracellular domain of Dystroglycan have milder defects in CCK+/CB1R+ IN axon targeting, but exhibit dramatic changes in inhibitory synaptic function, indicating a critical postsynaptic role of this domain. In contrast, CCK+/CB1R+ IN synaptic function and seizure susceptibility was normal in mice that model mild dystroglycanopathy due to partially reduced Dystroglycan glycosylation. Collectively, these data show that inhibitory synaptic defects and elevated seizure susceptibility are hallmarks of severe dystroglycanopathy, and show that Dystroglycan plays an important role in organizing functional inhibitory synapse assembly.
Collapse
Affiliation(s)
- Jennifer N Jahncke
- Neuroscience Graduate Program, Oregon Health & Science UniversityPortlandUnited States
| | - Daniel S Miller
- Neuroscience Graduate Program, Oregon Health & Science UniversityPortlandUnited States
| | - Milana Krush
- Neuroscience Graduate Program, Oregon Health & Science UniversityPortlandUnited States
| | - Eric Schnell
- Operative Care Division, Portland VA Health Care SystemPortlandUnited States
- Anesthesiology and Perioperative Medicine, Oregon Health & Science UniversityPortlandUnited States
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
5
|
Koff M, Monagas-Valentin P, Novikov B, Chandel I, Panin V. Protein O-mannosylation: one sugar, several pathways, many functions. Glycobiology 2023; 33:911-926. [PMID: 37565810 PMCID: PMC10859634 DOI: 10.1093/glycob/cwad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Recent research has unveiled numerous important functions of protein glycosylation in development, homeostasis, and diseases. A type of glycosylation taking the center stage is protein O-mannosylation, a posttranslational modification conserved in a wide range of organisms, from yeast to humans. In animals, protein O-mannosylation plays a crucial role in the nervous system, whereas protein O-mannosylation defects cause severe neurological abnormalities and congenital muscular dystrophies. However, the molecular and cellular mechanisms underlying protein O-mannosylation functions and biosynthesis remain not well understood. This review outlines recent studies on protein O-mannosylation while focusing on the functions in the nervous system, summarizes the current knowledge about protein O-mannosylation biosynthesis, and discusses the pathologies associated with protein O-mannosylation defects. The evolutionary perspective revealed by studies in the Drosophila model system are also highlighted. Finally, the review touches upon important knowledge gaps in the field and discusses critical questions for future research on the molecular and cellular mechanisms associated with protein O-mannosylation functions.
Collapse
Affiliation(s)
- Melissa Koff
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Pedro Monagas-Valentin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Boris Novikov
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Ishita Chandel
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Vladislav Panin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| |
Collapse
|
6
|
Jahncke JN, Wright KM. The many roles of dystroglycan in nervous system development and function: Dystroglycan and neural circuit development: Dystroglycan and neural circuit development. Dev Dyn 2023; 252:61-80. [PMID: 35770940 DOI: 10.1002/dvdy.516] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/04/2023] Open
Abstract
The glycoprotein dystroglycan was first identified in muscle, where it functions as part of the dystrophin glycoprotein complex to connect the extracellular matrix to the actin cytoskeleton. Mutations in genes involved in the glycosylation of dystroglycan cause a form of congenital muscular dystrophy termed dystroglycanopathy. In addition to its well-defined role in regulating muscle integrity, dystroglycan is essential for proper central and peripheral nervous system development. Patients with dystroglycanopathy can present with a wide range of neurological perturbations, but unraveling the complex role of Dag1 in the nervous system has proven to be a challenge. Over the past two decades, animal models of dystroglycanopathy have been an invaluable resource that has allowed researchers to elucidate dystroglycan's many roles in neural circuit development. In this review, we summarize the pathways involved in dystroglycan's glycosylation and its known interacting proteins, and discuss how it regulates neuronal migration, axon guidance, synapse formation, and its role in non-neuronal cells.
Collapse
Affiliation(s)
- Jennifer N Jahncke
- Neuroscience Graduate Program, Oregan Health & Science University, Portland, Oregon, USA
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
7
|
Matsuo I, Kimura-Yoshida C, Ueda Y. Developmental and mechanical roles of Reichert's membrane in mouse embryos. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210257. [PMID: 36252218 PMCID: PMC9574627 DOI: 10.1098/rstb.2021.0257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/24/2022] [Indexed: 12/23/2022] Open
Abstract
Embryonic development and growth in placental mammals proceeds in utero with the support of exchanges of gases, nutrients and waste products between maternal tissues and offspring. Murine embryos are surrounded by several extraembryonic membranes, parietal and visceral yolk sacs, and amnion in the uterus. Notably, the parietal yolk sac is the most outer membrane, consists of three layers, trophoblasts and parietal endoderm (PaE) cells, and is separated by a thick basal lamina termed Reichert's membrane (RM). RM is composed of extracellular matrix (ECM) initially formed as the basement membrane of the trophectoderm of pre-implanted embryos and followed by the heavy deposition of ECM mainly produced in PaE cells of post-implanted embryos. In addition to the physiological roles of RM, such as gas and nutrient exchange, it also plays a crucial role in cushioning and dispersing intrauterine pressures exerted on embryos for normal egg-cylinder morphogenesis. Mechanistically, such intrauterine pressures generated by uterine smooth muscle contractions appear to be involved in the elongation of the egg-cylinder shape, along with primary axis formation, as an important biomechanical element in utero. This review focuses on our current views of the roles of RM in properly buffering intrauterine mechanical forces for mouse egg-cylinder morphogenesis. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Grants
- Takeda Science Foundation
- a grant-in-aid for challenging Research(Exploratory)from the Ministry of Education, Culture, Sports, Science, and Technology, Japan
- from the Ministry a grant-in-aid for Scientific Research (C) of Education, Culture, Sports, Science, and Technology, Japan
- a grant-in-aid for Transformative Research Areas (A)from the Ministry of Education, Culture, Sports, Science, and Technology, Japan
Collapse
Affiliation(s)
- Isao Matsuo
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Chiharu Kimura-Yoshida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Yoko Ueda
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| |
Collapse
|
8
|
Kanagawa M. Dystroglycanopathy: From Elucidation of Molecular and Pathological Mechanisms to Development of Treatment Methods. Int J Mol Sci 2021; 22:ijms222313162. [PMID: 34884967 PMCID: PMC8658603 DOI: 10.3390/ijms222313162] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/13/2023] Open
Abstract
Dystroglycanopathy is a collective term referring to muscular dystrophies with abnormal glycosylation of dystroglycan. At least 18 causative genes of dystroglycanopathy have been identified, and its clinical symptoms are diverse, ranging from severe congenital to adult-onset limb-girdle types. Moreover, some cases are associated with symptoms involving the central nervous system. In the 2010s, the structure of sugar chains involved in the onset of dystroglycanopathy and the functions of its causative gene products began to be identified as if they were filling the missing pieces of a jigsaw puzzle. In parallel with these discoveries, various dystroglycanopathy model mice had been created, which led to the elucidation of its pathological mechanisms. Then, treatment strategies based on the molecular basis of glycosylation began to be proposed after the latter half of the 2010s. This review briefly explains the sugar chain structure of dystroglycan and the functions of the causative gene products of dystroglycanopathy, followed by introducing the pathological mechanisms involved as revealed from analyses of dystroglycanopathy model mice. Finally, potential therapeutic approaches based on the pathological mechanisms involved are discussed.
Collapse
Affiliation(s)
- Motoi Kanagawa
- Department of Cell Biology and Molecular Medicine, Graduate School of Medicine, Ehime University, 454 Shitsukawa, Toon 791-0295, Ehime, Japan
| |
Collapse
|
9
|
Mohamadian M, Rastegar M, Pasamanesh N, Ghadiri A, Ghandil P, Naseri M. Clinical and Molecular Spectrum of Muscular Dystrophies (MDs) with Intellectual Disability (ID): a Comprehensive Overview. J Mol Neurosci 2021; 72:9-23. [PMID: 34727324 DOI: 10.1007/s12031-021-01933-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022]
Abstract
Muscular dystrophies encompass a wide and heterogeneous subset of hereditary myopathies that manifest by the structural or functional abnormalities in the skeletal muscle. Some pathogenic mutations induce a dysfunction or loss of proteins that are critical for the stability of muscle cells, leading to progressive muscle degradation and weakening. Several studies have well-established cognitive deficits in muscular dystrophies which are mainly due to the disruption of brain-specific expression of affected muscle proteins. We provide a comprehensive overview of the types of muscular dystrophies that are accompanied by intellectual disability by detailed consulting of the main libraries. The current paper focuses on the clinical and molecular evidence about Duchenne, congenital, limb-girdle, and facioscapulohumeral muscular dystrophies as well as myotonic dystrophies. Because these syndromes impose a heavy burden of psychological and financial problems on patients, their families, and the health care community, a thorough examination is necessary to perform timely psychological and medical interventions and thus improve the quality of life.
Collapse
Affiliation(s)
- Malihe Mohamadian
- Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, 616476515.
| | - Mandana Rastegar
- Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Pasamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ata Ghadiri
- Department of Immunology, Medical School, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pegah Ghandil
- Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
10
|
Ferent J, Zaidi D, Francis F. Extracellular Control of Radial Glia Proliferation and Scaffolding During Cortical Development and Pathology. Front Cell Dev Biol 2020; 8:578341. [PMID: 33178693 PMCID: PMC7596222 DOI: 10.3389/fcell.2020.578341] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/08/2020] [Indexed: 01/14/2023] Open
Abstract
During the development of the cortex, newly generated neurons migrate long-distances in the expanding tissue to reach their final positions. Pyramidal neurons are produced from dorsal progenitors, e.g., radial glia (RGs) in the ventricular zone, and then migrate along RG processes basally toward the cortex. These neurons are hence dependent upon RG extensions to support their migration from apical to basal regions. Several studies have investigated how intracellular determinants are required for RG polarity and subsequent formation and maintenance of their processes. Fewer studies have identified the influence of the extracellular environment on this architecture. This review will focus on extracellular factors which influence RG morphology and pyramidal neuronal migration during normal development and their perturbations in pathology. During cortical development, RGs are present in different strategic positions: apical RGs (aRGs) have their cell bodies located in the ventricular zone with an apical process contacting the ventricle, while they also have a basal process extending radially to reach the pial surface of the cortex. This particular conformation allows aRGs to be exposed to long range and short range signaling cues, whereas basal RGs (bRGs, also known as outer RGs, oRGs) have their cell bodies located throughout the cortical wall, limiting their access to ventricular factors. Long range signals impacting aRGs include secreted molecules present in the embryonic cerebrospinal fluid (e.g., Neuregulin, EGF, FGF, Wnt, BMP). Secreted molecules also contribute to the extracellular matrix (fibronectin, laminin, reelin). Classical short range factors include cell to cell signaling, adhesion molecules and mechano-transduction mechanisms (e.g., TAG1, Notch, cadherins, mechanical tension). Changes in one or several of these components influencing the RG extracellular environment can disrupt the development or maintenance of RG architecture on which neuronal migration relies, leading to a range of cortical malformations. First, we will detail the known long range signaling cues impacting RG. Then, we will review how short range cell contacts are also important to instruct the RG framework. Understanding how RG processes are structured by their environment to maintain and support radial migration is a critical part of the investigation of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Julien Ferent
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| | - Donia Zaidi
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| | - Fiona Francis
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| |
Collapse
|
11
|
Liu Y, Yu M, Shang X, Nguyen MHH, Balakrishnan S, Sager R, Hu H. Eyes shut homolog (EYS) interacts with matriglycan of O-mannosyl glycans whose deficiency results in EYS mislocalization and degeneration of photoreceptors. Sci Rep 2020; 10:7795. [PMID: 32385361 PMCID: PMC7210881 DOI: 10.1038/s41598-020-64752-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in eyes shut homolog (EYS), a secreted extracellular matrix protein containing multiple laminin globular (LG) domains, and in protein O-mannose β1, 2-N-acetylglucosaminyl transferase 1 (POMGnT1), an enzyme involved in O-mannosyl glycosylation, cause retinitis pigmentosa (RP), RP25 and RP76, respectively. How EYS and POMGnT1 regulate photoreceptor survival is poorly understood. Since some LG domain-containing proteins function by binding to the matriglycan moiety of O-mannosyl glycans, we hypothesized that EYS interacted with matriglycans as well. To test this hypothesis, we performed EYS Far-Western blotting assay and generated pomgnt1 mutant zebrafish. The results showed that EYS bound to matriglycans. Pomgnt1 mutation in zebrafish resulted in a loss of matriglycan, retention of synaptotagmin-1-positive EYS secretory vesicles within the outer nuclear layer, and diminished EYS protein near the connecting cilia. Photoreceptor density in 2-month old pomgnt1 mutant retina was similar to the wild-type animals but was significantly reduced at 6-months. These results indicate that EYS protein localization to the connecting cilia requires interaction with the matriglycan and that O-mannosyl glycosylation is required for photoreceptor survival in zebrafish. This study identified a novel interaction between EYS and matriglycan demonstrating that RP25 and RP76 are mechanistically linked in that O-mannosyl glycosylation controls targeting of EYS protein.
Collapse
Affiliation(s)
- Yu Liu
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Miao Yu
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Xuanze Shang
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, 13210, USA
| | - My Hong Hoai Nguyen
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biological Sciences, State University of New York at Plattsburgh, 101 Broad St., Plattsburgh, New York, 12901, USA
| | - Shanmuganathan Balakrishnan
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Rachel Sager
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Huaiyu Hu
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
12
|
Sudo A, Kanagawa M, Kondo M, Ito C, Kobayashi K, Endo M, Minami Y, Aiba A, Toda T. Temporal requirement of dystroglycan glycosylation during brain development and rescue of severe cortical dysplasia via gene delivery in the fetal stage. Hum Mol Genet 2019; 27:1174-1185. [PMID: 29360985 PMCID: PMC6159531 DOI: 10.1093/hmg/ddy032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 11/13/2022] Open
Abstract
Congenital muscular dystrophies (CMDs) are characterized by progressive weakness and degeneration of skeletal muscle. In several forms of CMD, abnormal glycosylation of α-dystroglycan (α-DG) results in conditions collectively known as dystroglycanopathies, which are associated with central nervous system involvement. We recently demonstrated that fukutin, the gene responsible for Fukuyama congenital muscular dystrophy, encodes the ribitol-phosphate transferase essential for dystroglycan function. Brain pathology in patients with dystroglycanopathy typically includes cobblestone lissencephaly, mental retardation, and refractory epilepsy; however, some patients exhibit average intelligence, with few or almost no structural defects. Currently, there is no effective treatment for dystroglycanopathy, and the mechanisms underlying the generation of this broad clinical spectrum remain unknown. Here, we analysed four distinct mouse models of dystroglycanopathy: two brain-selective fukutin conditional knockout strains (neuronal stem cell-selective Nestin-fukutin-cKO and forebrain-selective Emx1-fukutin-cKO), a FukutinHp strain with the founder retrotransposal insertion in the fukutin gene, and a spontaneous Large-mutant Largemyd strain. These models exhibit variations in the severity of brain pathology, replicating the clinical heterogeneity of dystroglycanopathy. Immunofluorescence analysis of the developing cortex suggested that residual glycosylation of α-DG at embryonic day 13.5 (E13.5), when cortical dysplasia is not yet apparent, may contribute to subsequent phenotypic heterogeneity. Surprisingly, delivery of fukutin or Large into the brains of mice at E12.5 prevented severe brain malformation in Emx1-fukutin-cKO and Largemyd/myd mice, respectively. These findings indicate that spatiotemporal persistence of functionally glycosylated α-DG may be crucial for brain development and modulation of glycosylation during the fetal stage could be a potential therapeutic strategy for dystroglycanopathy.
Collapse
Affiliation(s)
- Atsushi Sudo
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Motoi Kanagawa
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Mai Kondo
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Chiyomi Ito
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kazuhiro Kobayashi
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Mitsuharu Endo
- Division of Cell Physiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tatsushi Toda
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.,Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Nickolls AR, Bönnemann CG. The roles of dystroglycan in the nervous system: insights from animal models of muscular dystrophy. Dis Model Mech 2018; 11:11/12/dmm035931. [PMID: 30578246 PMCID: PMC6307911 DOI: 10.1242/dmm.035931] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dystroglycan is a cell membrane protein that binds to the extracellular matrix in a variety of mammalian tissues. The α-subunit of dystroglycan (αDG) is heavily glycosylated, including a special O-mannosyl glycoepitope, relying upon this unique glycosylation to bind its matrix ligands. A distinct group of muscular dystrophies results from specific hypoglycosylation of αDG, and they are frequently associated with central nervous system involvement, ranging from profound brain malformation to intellectual disability without evident morphological defects. There is an expanding literature addressing the function of αDG in the nervous system, with recent reports demonstrating important roles in brain development and in the maintenance of neuronal synapses. Much of these data are derived from an increasingly rich array of experimental animal models. This Review aims to synthesize the information from such diverse models, formulating an up-to-date understanding about the various functions of αDG in neurons and glia of the central and peripheral nervous systems. Where possible, we integrate these data with our knowledge of the human disorders to promote translation from basic mechanistic findings to clinical therapies that take the neural phenotypes into account. Summary: Dystroglycan is a ubiquitous matrix receptor linked to brain and muscle disease. Unraveling the functions of this protein will inform basic and translational research on neural development and muscular dystrophies.
Collapse
Affiliation(s)
- Alec R Nickolls
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Dragatsis I, Dietrich P, Ren H, Deng YP, Del Mar N, Wang HB, Johnson IM, Jones KR, Reiner A. Effect of early embryonic deletion of huntingtin from pyramidal neurons on the development and long-term survival of neurons in cerebral cortex and striatum. Neurobiol Dis 2017; 111:102-117. [PMID: 29274742 PMCID: PMC5821111 DOI: 10.1016/j.nbd.2017.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/07/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
We evaluated the impact of early embryonic deletion of huntingtin (htt) from pyramidal neurons on cortical development, cortical neuron survival and motor behavior, using a cre-loxP strategy to inactivate the mouse htt gene (Hdh) in emx1-expressing cell lineages. Western blot confirmed substantial htt reduction in cerebral cortex of these Emx-httKO mice, with residual cortical htt in all likelihood restricted to cortical interneurons of the subpallial lineage and/or vascular endothelial cells. Despite the loss of htt early in development, cortical lamination was normal, as revealed by layer-specific markers. Cortical volume and neuron abundance were, however, significantly less than normal, and cortical neurons showed reduced brain-derived neurotrophic factor (BDNF) expression and reduced activation of BDNF signaling pathways. Nonetheless, cortical volume and neuron abundance did not show progressive age-related decline in Emx-httKO mice out to 24 months. Although striatal neurochemistry was normal, reductions in striatal volume and neuron abundance were seen in Emx-httKO mice, which were again not progressive. Weight maintenance was normal in Emx-httKO mice, but a slight rotarod deficit and persistent hyperactivity were observed throughout the lifespan. Our results show that embryonic deletion of htt from developing pallium does not substantially alter migration of cortical neurons to their correct laminar destinations, but does yield reduced cortical and striatal size and neuron numbers. The Emx-httKO mice were persistently hyperactive, possibly due to defects in corticostriatal development. Importantly, deletion of htt from cortical pyramidal neurons did not yield age-related progressive cortical or striatal pathology.
Collapse
Affiliation(s)
- I Dragatsis
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - P Dietrich
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - H Ren
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Y P Deng
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - N Del Mar
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - H B Wang
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - I M Johnson
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - K R Jones
- Department of Molecular, Cellular, & Developmental Biology, 347 UCB, University of Colorado, Boulder, CO 80309, United States
| | - A Reiner
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
15
|
Protein O-Mannosyltransferases Affect Sensory Axon Wiring and Dynamic Chirality of Body Posture in the Drosophila Embryo. J Neurosci 2017; 38:1850-1865. [PMID: 29167399 DOI: 10.1523/jneurosci.0346-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023] Open
Abstract
Genetic defects in protein O-mannosyltransferase 1 (POMT1) and POMT2 underlie severe muscular dystrophies. POMT genes are evolutionarily conserved in metazoan organisms. In Drosophila, both male and female POMT mutants show a clockwise rotation of adult abdominal segments, suggesting a chirality of underlying pathogenic mechanisms. Here we described and analyzed a similar phenotype in POMT mutant embryos that shows left-handed body torsion. Our experiments demonstrated that coordinated muscle contraction waves are associated with asymmetric embryo rolling, unveiling a new chirality marker in Drosophila development. Using genetic and live-imaging approaches, we revealed that the torsion phenotype results from differential rolling and aberrant patterning of peristaltic waves of muscle contractions. Our results demonstrated that peripheral sensory neurons are required for normal contractions that prevent the accumulation of torsion. We found that POMT mutants show abnormal axonal connections of sensory neurons. POMT transgenic expression limited to sensory neurons significantly rescued the torsion phenotype, axonal connectivity defects, and abnormal contractions in POMT mutant embryos. Together, our data suggested that protein O-mannosylation is required for normal sensory feedback to control coordinated muscle contractions and body posture. This mechanism may shed light on analogous functions of POMT genes in mammals and help to elucidate the etiology of neurological defects in muscular dystrophies.SIGNIFICANCE STATEMENT Protein O-mannosyltransferases (POMTs) are evolutionarily conserved in metazoans. Mutations in POMTs cause severe muscular dystrophies associated with pronounced neurological defects. However, neurological functions of POMTs remain poorly understood. We demonstrated that POMT mutations in Drosophila result in abnormal muscle contractions and cause embryo torsion. Our experiments uncovered a chirality of embryo movements and a unique POMT-dependent mechanism that maintains symmetry of a developing system affected by chiral forces. Furthermore, POMTs were found to be required for proper axon connectivity of sensory neurons, suggesting that O-mannosylation regulates the sensory feedback controlling muscle contractions. This novel POMT function in the peripheral nervous system may shed light on analogous functions in mammals and help to elucidate pathomechanisms of neurological abnormalities in muscular dystrophies.
Collapse
|
16
|
Booler HS, Pagalday-Vergara V, Williams JL, Hopkinson M, Brown SC. Evidence of early defects in Cajal-Retzius cell localization during brain development in a mouse model of dystroglycanopathy. Neuropathol Appl Neurobiol 2017; 43:330-345. [PMID: 28039900 DOI: 10.1111/nan.12376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 08/10/2016] [Accepted: 12/31/2016] [Indexed: 01/21/2023]
Abstract
AIMS The secondary dystroglycanopathies represent a heterogeneous group of congenital muscular dystrophies characterized by the defective glycosylation of alpha dystroglycan. These disorders are associated with mutations in at least 17 genes, including Fukutin-related protein (FKRP). At the severe end of the clinical spectrum there is substantial brain involvement, and cobblestone lissencephaly is highly suggestive of these disorders. The precise pathogenesis of this phenotype has, however, remained unclear with most attention focused on the disruption to the radial glial scaffold. Here, we set out to investigate whether lesions are apparent prior to the differentiation of the radial glia. METHODS A detailed investigation of the structural brain defects from embryonic day 10.5 (E10.5) up until the time of birth (P0) was undertaken in the Fkrp-deficient mice (FKRPKD ). Reelin, and downstream PI3K/Akt signalling pathways were analysed using Western blot. RESULTS We show that early basement membrane defects and neuroglial ectopia precede radial glial cell differentiation. Furthermore, we identify mislocalization of Cajal-Retzius cells which nonetheless is not associated with any apparent disruption to the reelin, and downstream PI3K/Akt signalling pathways. CONCLUSIONS These observations identify Cajal-Retzius cell mislocalization as an early event during the development of cortical defects thereby identifying an earlier onset and more complex pathogenesis than originally reported for the secondary dystroglycanopathies. Overall this study provides new insight into central nervous system involvement in this group of diseases.
Collapse
Affiliation(s)
- H S Booler
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - V Pagalday-Vergara
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - J L Williams
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - M Hopkinson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - S C Brown
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
17
|
Postnatal Gene Therapy Improves Spatial Learning Despite the Presence of Neuronal Ectopia in a Model of Neuronal Migration Disorder. Genes (Basel) 2016; 7:genes7120105. [PMID: 27916859 PMCID: PMC5192481 DOI: 10.3390/genes7120105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 11/25/2022] Open
Abstract
Patients with type II lissencephaly, a neuronal migration disorder with ectopic neurons, suffer from severe mental retardation, including learning deficits. There is no effective therapy to prevent or correct the formation of neuronal ectopia, which is presumed to cause cognitive deficits. We hypothesized that learning deficits were not solely caused by neuronal ectopia and that postnatal gene therapy could improve learning without correcting the neuronal ectopia formed during fetal development. To test this hypothesis, we evaluated spatial learning of cerebral cortex-specific protein O-mannosyltransferase 2 (POMT2, an enzyme required for O-mannosyl glycosylation) knockout mice and compared to the knockout mice that were injected with an adeno-associated viral vector (AAV) encoding POMT2 into the postnatal brains with Barnes maze. The data showed that the knockout mice exhibited reduced glycosylation in the cerebral cortex, reduced dendritic spine density on CA1 neurons, and increased latency to the target hole in the Barnes maze, indicating learning deficits. Postnatal gene therapy restored functional glycosylation, rescued dendritic spine defects, and improved performance on the Barnes maze by the knockout mice even though neuronal ectopia was not corrected. These results indicate that postnatal gene therapy improves spatial learning despite the presence of neuronal ectopia.
Collapse
|
18
|
Protein O-Mannosylation in the Murine Brain: Occurrence of Mono-O-Mannosyl Glycans and Identification of New Substrates. PLoS One 2016; 11:e0166119. [PMID: 27812179 PMCID: PMC5094735 DOI: 10.1371/journal.pone.0166119] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 10/24/2016] [Indexed: 12/25/2022] Open
Abstract
Protein O-mannosylation is a post-translational modification essential for correct development of mammals. In humans, deficient O-mannosylation results in severe congenital muscular dystrophies often associated with impaired brain and eye development. Although various O-mannosylated proteins have been identified in the recent years, the distribution of O-mannosyl glycans in the mammalian brain and target proteins are still not well defined. In the present study, rabbit monoclonal antibodies directed against the O-mannosylated peptide YAT(α1-Man)AV were generated. Detailed characterization of clone RKU-1-3-5 revealed that this monoclonal antibody recognizes O-linked mannose also in different peptide and protein contexts. Using this tool, we observed that mono-O-mannosyl glycans occur ubiquitously throughout the murine brain but are especially enriched at inhibitory GABAergic neurons and at the perineural nets. Using a mass spectrometry-based approach, we further identified glycoproteins from the murine brain that bear single O-mannose residues. Among the candidates identified are members of the cadherin and plexin superfamilies and the perineural net protein neurocan. In addition, we identified neurexin 3, a cell adhesion protein involved in synaptic plasticity, and inter-alpha-trypsin inhibitor 5, a protease inhibitor important in stabilizing the extracellular matrix, as new O-mannosylated glycoproteins.
Collapse
|
19
|
Izquierdo-Lahuerta A, de Luis O, Gómez-Esquer F, Cruces J, Coloma A. Gallus gallus orthologous to human alpha-dystroglycanopathies candidate genes: Gene expression and characterization during chicken embryogenesis. Biochem Biophys Res Commun 2016; 478:1043-8. [PMID: 27553274 DOI: 10.1016/j.bbrc.2016.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
Alpha-dystroglycanopathies are a heterogenic group of human rare diseases that have in common defects of α-dystroglycan O-glycosylation. These congenital disorders share common features as muscular dystrophy, malformations on central nervous system and more rarely altered ocular development, as well as mutations on a set of candidate genes involved on those syndromes. Severity of the syndromes is variable, appearing Walker-Warburg as the most severe where mutations at protein O-mannosyl transferases POMT1 and POMT2 genes are frequently described. When studying the lack of MmPomt1 in mouse embryonic development, as a murine model of Walker-Warburg syndrome, MmPomt1 null phenotype was lethal because Reitchert's membrane fails during embryonic development. Here, we report gene expression from Gallus gallus orthologous genes to human candidates on alpha-dystroglycanopathies POMT1, POMT2, POMGnT1, FKTN, FKRP and LARGE, making special emphasis in expression and localization of GgPomt1. Results obtained by quantitative RT-PCR, western-blot and immunochemistry revealed close gene expression patterns among human and chicken at key tissues affected during development when suffering an alpha-dystroglycanopathy, leading us to stand chicken as a useful animal model for molecular characterization of glycosyltransferases involved in the O-glycosylation of α-Dystroglycan and its role in embryonic development.
Collapse
Affiliation(s)
- Adriana Izquierdo-Lahuerta
- Departamento de Ciencias Básicas de la Salud, Área de Bioquímica, y Biología Molecular, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n. 28922, Alcorcón, Madrid, Spain.
| | - Oscar de Luis
- Departamento de Ciencias Básicas de la Salud, Área de Bioquímica, y Biología Molecular, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Francisco Gómez-Esquer
- Departamento de Ciencias Básicas de la Salud, Area de Anatomía Humana y Embriología, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, 28922, Alcorcón, Madrid, Spain
| | - Jesús Cruces
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Antonio Coloma
- Departamento de Ciencias Básicas de la Salud, Área de Bioquímica, y Biología Molecular, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n. 28922, Alcorcón, Madrid, Spain
| |
Collapse
|
20
|
Stanley P. What Have We Learned from Glycosyltransferase Knockouts in Mice? J Mol Biol 2016; 428:3166-3182. [PMID: 27040397 DOI: 10.1016/j.jmb.2016.03.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/16/2022]
Abstract
There are five major classes of glycan including N- and O-glycans, glycosaminoglycans, glycosphingolipids, and glycophosphatidylinositol anchors, all expressed at the molecular frontier of each mammalian cell. Numerous biological consequences of altering the expression of mammalian glycans are understood at a mechanistic level, but many more remain to be characterized. Mouse mutants with deleted, defective, or misexpressed genes that encode activities necessary for glycosylation have led the way to identifying key functions of glycans in biology. However, with the advent of exome sequencing, humans with mutations in genes involved in glycosylation are also revealing specific requirements for glycans in mammalian development. The aim of this review is to summarize glycosylation genes that are necessary for mouse embryonic development, pathway-specific glycosylation genes whose deletion leads to postnatal morbidity, and glycosylation genes for which effects are mild, but perturbation of the organism may reveal functional consequences. General strategies for generating and interpreting the phenotype of mice with glycosylation defects are discussed in relation to human congenital disorders of glycosylation (CDG).
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA.
| |
Collapse
|
21
|
Where do we stand in trial readiness for autosomal recessive limb girdle muscular dystrophies? Neuromuscul Disord 2015; 26:111-25. [PMID: 26810373 DOI: 10.1016/j.nmd.2015.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/27/2015] [Accepted: 11/29/2015] [Indexed: 12/20/2022]
Abstract
Autosomal recessive limb girdle muscular dystrophies (LGMD2) are a group of genetically heterogeneous diseases that are typically characterised by progressive weakness and wasting of the shoulder and pelvic girdle muscles. Many of the more than 20 different conditions show overlapping clinical features with other forms of muscular dystrophy, congenital, myofibrillar or even distal myopathies and also with acquired muscle diseases. Although individually extremely rare, all types of LGMD2 together form an important differential diagnostic group among neuromuscular diseases. Despite improved diagnostics and pathomechanistic insight, a curative therapy is currently lacking for any of these diseases. Medical care consists of the symptomatic treatment of complications, aiming to improve life expectancy and quality of life. Besides well characterised pre-clinical tools like animal models and cell culture assays, the determinants of successful drug development programmes for rare diseases include a good understanding of the phenotype and natural history of the disease, the existence of clinically relevant outcome measures, guidance on care standards, up to date patient registries, and, ideally, biomarkers that can help assess disease severity or drug response. Strong patient organisations driving research and successful partnerships between academia, advocacy, industry and regulatory authorities can also help accelerate the elaboration of clinical trials. All these determinants constitute aspects of translational research efforts and influence patient access to therapies. Here we review the current status of determinants of successful drug development programmes for LGMD2, and the challenges of translating promising therapeutic strategies into effective and accessible treatments for patients.
Collapse
|
22
|
Stouffer MA, Golden JA, Francis F. Neuronal migration disorders: Focus on the cytoskeleton and epilepsy. Neurobiol Dis 2015; 92:18-45. [PMID: 26299390 DOI: 10.1016/j.nbd.2015.08.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/05/2015] [Accepted: 08/12/2015] [Indexed: 01/28/2023] Open
Abstract
A wide spectrum of focal, regional, or diffuse structural brain abnormalities, collectively known as malformations of cortical development (MCDs), frequently manifest with intellectual disability (ID), epilepsy, and/or autistic spectrum disorder (ASD). As the acronym suggests, MCDs are perturbations of the normal architecture of the cerebral cortex and hippocampus. The pathogenesis of these disorders remains incompletely understood; however, one area that has provided important insights has been the study of neuronal migration. The amalgamation of human genetics and experimental studies in animal models has led to the recognition that common genetic causes of neurodevelopmental disorders, including many severe epilepsy syndromes, are due to mutations in genes regulating the migration of newly born post-mitotic neurons. Neuronal migration genes often, though not exclusively, code for proteins involved in the function of the cytoskeleton. Other cellular processes, such as cell division and axon/dendrite formation, which similarly depend on cytoskeletal functions, may also be affected. We focus here on how the susceptibility of the highly organized neocortex and hippocampus may be due to their laminar organization, which involves the tight regulation, both temporally and spatially, of gene expression, specialized progenitor cells, the migration of neurons over large distances and a birthdate-specific layering of neurons. Perturbations in neuronal migration result in abnormal lamination, neuronal differentiation defects, abnormal cellular morphology and circuit formation. Ultimately this results in disorganized excitatory and inhibitory activity leading to the symptoms observed in individuals with these disorders.
Collapse
Affiliation(s)
- Melissa A Stouffer
- INSERM UMRS 839, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Jeffrey A Golden
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Fiona Francis
- INSERM UMRS 839, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
23
|
Whitmore C, Morgan J. What do mouse models of muscular dystrophy tell us about the DAPC and its components? Int J Exp Pathol 2014; 95:365-77. [PMID: 25270874 PMCID: PMC4285463 DOI: 10.1111/iep.12095] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/16/2014] [Indexed: 12/17/2022] Open
Abstract
There are over 30 mouse models with mutations or inactivations in the dystrophin-associated protein complex. This complex is thought to play a crucial role in the functioning of muscle, as both a shock absorber and signalling centre, although its role in the pathogenesis of muscular dystrophy is not fully understood. The first mouse model of muscular dystrophy to be identified with a mutation in a component of the dystrophin-associated complex (dystrophin) was the mdx mouse in 1984. Here, we evaluate the key characteristics of the mdx in comparison with other mouse mutants with inactivations in DAPC components, along with key modifiers of the disease phenotype. By discussing the differences between the individual phenotypes, we show that the functioning of the DAPC and consequently its role in the pathogenesis is more complicated than perhaps currently appreciated.
Collapse
Affiliation(s)
- Charlotte Whitmore
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, Institute of Child Health, University College LondonLondon, UK
| | - Jennifer Morgan
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, Institute of Child Health, University College LondonLondon, UK
| |
Collapse
|
24
|
Praissman JL, Wells L. Mammalian O-mannosylation pathway: glycan structures, enzymes, and protein substrates. Biochemistry 2014; 53:3066-78. [PMID: 24786756 PMCID: PMC4033628 DOI: 10.1021/bi500153y] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
mammalian O-mannosylation pathway for protein post-translational
modification is intricately involved in modulating cell–matrix
interactions in the musculature and nervous system. Defects in enzymes
of this biosynthetic pathway are causative for multiple forms of congenital
muscular dystophy. The application of advanced genetic and biochemical
technologies has resulted in remarkable progress in this field over
the past few years, culminating with the publication of three landmark
papers in 2013 alone. In this review, we will highlight recent progress
focusing on the dramatic expansion of the set of genes known to be
involved in O-mannosylation and disease processes, the concurrent
acceleration of the rate of O-mannosylation pathway protein functional
assignments, the tremendous increase in the number of proteins now
known to be modified by O-mannosylation, and the recent progress in
protein O-mannose glycan quantification and site assignment. Also,
we attempt to highlight key outstanding questions raised by this abundance
of new information.
Collapse
Affiliation(s)
- Jeremy L Praissman
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, The University of Georgia , Athens, Georgia 30602, United States
| | | |
Collapse
|
25
|
Protein O-mannosylation is crucial for E-cadherin-mediated cell adhesion. Proc Natl Acad Sci U S A 2013; 110:21024-9. [PMID: 24297939 DOI: 10.1073/pnas.1316753110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In recent years protein O-mannosylation has become a focus of attention as a pathomechanism underlying severe congenital muscular dystrophies associated with neuronal migration defects. A key feature of these disorders is the lack of O-mannosyl glycans on α-dystroglycan, resulting in abnormal basement membrane formation. Additional functions of O-mannosylation are still largely unknown. Here, we identify the essential cell-cell adhesion glycoprotein epithelial (E)-cadherin as an O-mannosylated protein and establish a functional link between O-mannosyl glycans and cadherin-mediated cell-cell adhesion. By genetically and pharmacologically blocking protein O-mannosyltransferases, we found that this posttranslational modification is essential for preimplantation development of the mouse embryo. O-mannosylation-deficient embryos failed to proceed from the morula to the blastocyst stage because of defects in the molecular architecture of cell-cell contact sites, including the adherens and tight junctions. Using mass spectrometry, we demonstrate that O-mannosyl glycans are present on E-cadherin, the major cell-adhesion molecule of blastomeres, and present evidence that this modification is generally conserved in cadherins. Further, the use of newly raised antibodies specific for an O-mannosyl-conjugated epitope revealed that these glycans are present on early mouse embryos. Finally, our cell-aggregation assays demonstrated that O-mannosyl glycans are crucial for cadherin-based cell adhesion. Our results redefine the significance of O-mannosylation in humans and other mammals, showing the immense impact of cadherins on normal as well as pathogenic cell behavior.
Collapse
|
26
|
Evsyukova I, Plestant C, Anton ES. Integrative mechanisms of oriented neuronal migration in the developing brain. Annu Rev Cell Dev Biol 2013; 29:299-353. [PMID: 23937349 DOI: 10.1146/annurev-cellbio-101512-122400] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emergence of functional neuronal connectivity in the developing cerebral cortex depends on neuronal migration. This process enables appropriate positioning of neurons and the emergence of neuronal identity so that the correct patterns of functional synaptic connectivity between the right types and numbers of neurons can emerge. Delineating the complexities of neuronal migration is critical to our understanding of normal cerebral cortical formation and neurodevelopmental disorders resulting from neuronal migration defects. For the most part, the integrated cell biological basis of the complex behavior of oriented neuronal migration within the developing mammalian cerebral cortex remains an enigma. This review aims to analyze the integrative mechanisms that enable neurons to sense environmental guidance cues and translate them into oriented patterns of migration toward defined areas of the cerebral cortex. We discuss how signals emanating from different domains of neurons get integrated to control distinct aspects of migratory behavior and how different types of cortical neurons coordinate their migratory activities within the developing cerebral cortex to produce functionally critical laminar organization.
Collapse
Affiliation(s)
- Irina Evsyukova
- Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599;
| | | | | |
Collapse
|
27
|
Yi JH, Katagiri Y, Susarla B, Figge D, Symes AJ, Geller HM. Alterations in sulfated chondroitin glycosaminoglycans following controlled cortical impact injury in mice. J Comp Neurol 2013; 520:3295-313. [PMID: 22628090 DOI: 10.1002/cne.23156] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) play a pivotal role in many neuronal growth mechanisms including axon guidance and the modulation of repair processes following injury to the spinal cord or brain. Many actions of CSPGs in the central nervous system (CNS) are governed by the specific sulfation pattern on the glycosaminoglycan (GAG) chains attached to CSPG core proteins. To elucidate the role of CSPGs and sulfated GAG chains following traumatic brain injury (TBI), controlled cortical impact injury of mild to moderate severity was performed over the left sensory motor cortex in mice. Using immunoblotting and immunostaining, we found that TBI resulted in an increase in the CSPGs neurocan and NG2 expression in a tight band surrounding the injury core, which overlapped with the presence of 4-sulfated CS GAGs but not with 6-sulfated GAGs. This increase was observed as early as 7 days post injury (dpi), and persisted for up to 28 dpi. Labeling with markers against microglia/macrophages, NG2+ cells, fibroblasts, and astrocytes showed that these cells were all localized in the area, suggesting multiple origins of chondroitin-4-sulfate increase. TBI also caused a decrease in the expression of aggrecan and phosphacan in the pericontusional cortex with a concomitant reduction in the number of perineuronal nets. In summary, we describe a dual response in CSPGs whereby they may be actively involved in complex repair processes following TBI.
Collapse
Affiliation(s)
- Jae-Hyuk Yi
- Developmental Neurobiology Section, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
28
|
Shrivastava K, Gonzalez P, Acarin L. The immune inhibitory complex CD200/CD200R is developmentally regulated in the mouse brain. J Comp Neurol 2013; 520:2657-75. [PMID: 22323214 DOI: 10.1002/cne.23062] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The CD200/CD200R inhibitory immune ligand-receptor system regulates microglial activation/quiescence in adult brain. Here, we investigated CD200/CD200R at different stages of postnatal development, when microglial maturation takes place. We characterized the spatiotemporal, cellular, and quantitative expression pattern of CD200 and CD200R in the developing and adult C57/BL6 mice brain by immunofluorescent labeling and Western blotting. CD200 expression increased from postnatal day 1 (P1) to P5-P7, when maximum levels were found, and decreased to adulthood. CD200 was located surrounding neuronal bodies, and very prominently in cortical layer I, where CD200(+) structures included glial fibrillary acidic protein (GFAP)(+) astrocytes until P7. In the hippocampus, CD200 was mainly observed in the hippocampal fissure, where GFAP(+) /CD200(+) astrocytes were also found until P7. CD200(+) endothelium was seen in the hippocampal fissure and cortical blood vessels, notably from P14, showing maximum vascular CD200 in adults. CD200R(+) cells were a population of ameboid/pseudopodic Iba1(+) microglia/macrophages observed at all ages, but significantly decreasing with increasing age. CD200R(+) /Iba1(+) macrophages were prominent in the pial meninges and ventricle lining, mainly at P1-P5. CD200R(+) /Iba1(+) perivascular macrophages were observed in cortical and hippocampal fissure blood vessels, showing maximum density at P7, but being prominent until adulthood. CD200R(+) /Iba1(+) ameboid microglia in the cingulum at P1-P5 were the only CD200R(+) cells in the nervous tissue. In conclusion, the main sites of CD200/CD200R interaction seem to include the molecular layer and pial surface in neonates and blood vessels from P7 until adulthood, highlighting the possible role of the CD200/CD200R system in microglial development and renewal.
Collapse
Affiliation(s)
- Kalpana Shrivastava
- Medical Histology, Institute of Neuroscience, Department of Cell Biology, Physiology, and Immunology, Universitat Autonoma Barcelona, Bellaterra 08193, Barcelona, Spain.
| | | | | |
Collapse
|
29
|
Zhang P, Yang Y, Candiello J, Thorn TL, Gray N, Halfter WM, Hu H. Biochemical and biophysical changes underlie the mechanisms of basement membrane disruptions in a mouse model of dystroglycanopathy. Matrix Biol 2013; 32:196-207. [PMID: 23454088 DOI: 10.1016/j.matbio.2013.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 01/24/2013] [Accepted: 02/11/2013] [Indexed: 01/11/2023]
Abstract
Mutations in glycosyltransferases, such as protein O-mannose N-acetylglucosaminyltransferase 1 (POMGnT1), causes disruptions of basement membranes (BMs) that results in neuronal ectopias and muscular dystrophy. While the mutations diminish dystroglycan-mediated cell-ECM interactions, the cause and mechanism of BM disruptions remain unclear. In this study, we established an in vitro model to measure BM assembly on the surface of neural stem cells. Compared to control cells, the rate of BM assembly on POMGnT1 knockout neural stem cells was significantly reduced. Further, immunofluorescence staining and quantitative proteomic analysis of the inner limiting membrane (ILM), a BM of the retina, revealed that laminin-111 and nidogen-1 were reduced in POMGnT1 knockout mice. Finally, atomic force microscopy showed that the ILM from POMGnT1 knockout mice was thinner with an altered surface topography. The results combined demonstrate that reduced levels of key BM components cause physical changes that weaken the BM in POMGnT1 knockout mice. These changes are caused by a reduced rate of BM assembly during the developmental expansion of the neural tissue.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Exome sequencing and functional validation in zebrafish identify GTDC2 mutations as a cause of Walker-Warburg syndrome. Am J Hum Genet 2012; 91:541-7. [PMID: 22958903 DOI: 10.1016/j.ajhg.2012.07.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/16/2012] [Accepted: 07/11/2012] [Indexed: 01/19/2023] Open
Abstract
Whole-exome sequencing (WES), which analyzes the coding sequence of most annotated genes in the human genome, is an ideal approach to studying fully penetrant autosomal-recessive diseases, and it has been very powerful in identifying disease-causing mutations even when enrollment of affected individuals is limited by reduced survival. In this study, we combined WES with homozygosity analysis of consanguineous pedigrees, which are informative even when a single affected individual is available, to identify genetic mutations responsible for Walker-Warburg syndrome (WWS), a genetically heterogeneous autosomal-recessive disorder that severely affects the development of the brain, eyes, and muscle. Mutations in seven genes are known to cause WWS and explain 50%-60% of cases, but multiple additional genes are expected to be mutated because unexplained cases show suggestive linkage to diverse loci. Using WES in consanguineous WWS-affected families, we found multiple deleterious mutations in GTDC2 (also known as AGO61). GTDC2's predicted role as an uncharacterized glycosyltransferase is consistent with the function of other genes that are known to be mutated in WWS and that are involved in the glycosylation of the transmembrane receptor dystroglycan. Therefore, to explore the role of GTDC2 loss of function during development, we used morpholino-mediated knockdown of its zebrafish ortholog, gtdc2. We found that gtdc2 knockdown in zebrafish replicates all WWS features (hydrocephalus, ocular defects, and muscular dystrophy), strongly suggesting that GTDC2 mutations cause WWS.
Collapse
|
31
|
Barone R, Sturiale L, Palmigiano A, Zappia M, Garozzo D. Glycomics of pediatric and adulthood diseases of the central nervous system. J Proteomics 2012; 75:5123-39. [DOI: 10.1016/j.jprot.2012.07.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/05/2012] [Accepted: 07/04/2012] [Indexed: 12/14/2022]
|
32
|
Beedle AM, Turner AJ, Saito Y, Lueck JD, Foltz SJ, Fortunato MJ, Nienaber PM, Campbell KP. Mouse fukutin deletion impairs dystroglycan processing and recapitulates muscular dystrophy. J Clin Invest 2012; 122:3330-42. [PMID: 22922256 DOI: 10.1172/jci63004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 06/21/2012] [Indexed: 11/17/2022] Open
Abstract
Dystroglycan is a transmembrane glycoprotein that links the extracellular basement membrane to cytoplasmic dystrophin. Disruption of the extensive carbohydrate structure normally present on α-dystroglycan causes an array of congenital and limb girdle muscular dystrophies known as dystroglycanopathies. The essential role of dystroglycan in development has hampered elucidation of the mechanisms underlying dystroglycanopathies. Here, we developed a dystroglycanopathy mouse model using inducible or muscle-specific promoters to conditionally disrupt fukutin (Fktn), a gene required for dystroglycan processing. In conditional Fktn-KO mice, we observed a near absence of functionally glycosylated dystroglycan within 18 days of gene deletion. Twenty-week-old KO mice showed clear dystrophic histopathology and a defect in glycosylation near the dystroglycan O-mannose phosphate, whether onset of Fktn excision driven by muscle-specific promoters occurred at E8 or E17. However, the earlier gene deletion resulted in more severe phenotypes, with a faster onset of damage and weakness, reduced weight and viability, and regenerating fibers of smaller size. The dependence of phenotype severity on the developmental timing of muscle Fktn deletion supports a role for dystroglycan in muscle development or differentiation. Moreover, given that this conditional Fktn-KO mouse allows the generation of tissue- and timing-specific defects in dystroglycan glycosylation, avoids embryonic lethality, and produces a phenotype resembling patient pathology, it is a promising new model for the study of secondary dystroglycanopathy.
Collapse
Affiliation(s)
- Aaron M Beedle
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
The dystrophin–glycoprotein complex in brain development and disease. Trends Neurosci 2012; 35:487-96. [DOI: 10.1016/j.tins.2012.04.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 04/03/2012] [Accepted: 04/15/2012] [Indexed: 11/23/2022]
|
34
|
Lee JK, Matthews RT, Lim JM, Swanier K, Wells L, Pierce JM. Developmental expression of the neuron-specific N-acetylglucosaminyltransferase Vb (GnT-Vb/IX) and identification of its in vivo glycan products in comparison with those of its paralog, GnT-V. J Biol Chem 2012; 287:28526-36. [PMID: 22715095 DOI: 10.1074/jbc.m112.367565] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The severe phenotypic effects of altered glycosylation in the congenital muscular dystrophies, including Walker-Warburg syndrome, muscle-eye-brain disease, Fukuyama congenital muscular dystrophy, and congenital muscular dystrophy 1D, are caused by mutations resulting in altered glycans linked to proteins through O-linked mannose. A glycosyltransferase that branches O-Man, N-acetylglucosaminyltransferase Vb (GnT-Vb), is highly expressed in neural tissues. To understand the expression and function of GnT-Vb, we studied its expression during neuromorphogenesis and generated GnT-Vb null mice. A paralog of GnT-Vb, N-acetylglucosaminyltransferase (GnT-V), is expressed in many tissues and brain, synthesizing N-linked, β1,6-branched glycans, but its ability to synthesize O-mannosyl-branched glycans is unknown; conversely, although GnT-Vb can synthesize N-linked glycans in vitro, its contribution to their synthesis in vivo is unknown. Our results showed that deleting both GnT-V and GnT-Vb results in the total loss of both N-linked and O-Man-linked β1,6-branched glycans. GnT-V null brains lacked N-linked, β1,6-glycans but had normal levels of O-Man β1,6-branched structures, showing that GnT-Vb could not compensate for the loss of GnT-V. By contrast, GnT-Vb null brains contained normal levels of N-linked β1,6-glycans but low levels of some O-Man β1,6-branched glycans. Therefore, GnT-V could partially compensate for GnT-Vb activity in vivo. We found no apparent change in α-dystroglycan binding of glycan-specific antibody IIH6C4 or binding to laminin in GnT-Vb null mice. These results demonstrate that GnT-V is involved in synthesizing branched O-mannosyl glycans in brain, but the function of these branched O-mannosyl structures is unresolved using mice that lack these glycosyltransferases.
Collapse
Affiliation(s)
- Jin Kyu Lee
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30605, USA
| | | | | | | | | | | |
Collapse
|
35
|
Muscular dystrophies due to glycosylation defects: diagnosis and therapeutic strategies. Curr Opin Neurol 2012; 24:437-42. [PMID: 21825985 DOI: 10.1097/wco.0b013e32834a95e3] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Dystroglycanopathies are a common group of diseases characterized by a reduction in α-dystroglycan glycosylation. This review discusses the recent novel discovery of additional dystroglycanopathy variants and progress in dystroglycanopathy animal models. RECENT FINDINGS Several novel glycosyltransferase genes have been found to be responsible for a dystroglycanopathy phenotype, and in addition recessive mutations in DAG1 have been identified for the first time in a primary dystroglycanopathy. Studies in dystroglycanopathy mouse models have clarified some aspects of the structural defects observed in the central nervous system and in the eye, whereas a study in zebrafish implicates unfolded protein response in the pathogenesis of two of the secondary dystroglycanopathies. SUMMARY Improved understanding of the molecular bases of dystroglycanopathies will lead to more precise diagnosis and genetic counseling; therapeutic strategies are being developed and tested in the preclinical models and it is hoped that these observations will pave the way to therapeutic interventions in humans.
Collapse
|
36
|
Slomianka L, Amrein I, Knuesel I, Sørensen JC, Wolfer DP. Hippocampal pyramidal cells: the reemergence of cortical lamination. Brain Struct Funct 2011; 216:301-17. [PMID: 21597968 PMCID: PMC3197924 DOI: 10.1007/s00429-011-0322-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/26/2011] [Indexed: 12/16/2022]
Abstract
The increasing resolution of tract-tracing studies has led to the definition of segments along the transverse axis of the hippocampal pyramidal cell layer, which may represent functionally defined elements. This review will summarize evidence for a morphological and functional differentiation of pyramidal cells along the radial (deep to superficial) axis of the cell layer. In many species, deep and superficial sublayers can be identified histologically throughout large parts of the septotemporal extent of the hippocampus. Neurons in these sublayers are generated during different periods of development. During development, deep and superficial cells express genes (Sox5, SatB2) that also specify the phenotypes of superficial and deep cells in the neocortex. Deep and superficial cells differ neurochemically (e.g. calbindin and zinc) and in their adult gene expression patterns. These markers also distinguish sublayers in the septal hippocampus, where they are not readily apparent histologically in rat or mouse. Deep and superficial pyramidal cells differ in septal, striatal, and neocortical efferent connections. Distributions of deep and superficial pyramidal cell dendrites and studies in reeler or sparsely GFP-expressing mice indicate that this also applies to afferent pathways. Histological, neurochemical, and connective differences between deep and superficial neurons may correlate with (patho-) physiological phenomena specific to pyramidal cells at different radial locations. We feel that an appreciation of radial subdivisions in the pyramidal cell layer reminiscent of lamination in other cortical areas may be critical in the interpretation of studies of hippocampal anatomy and function.
Collapse
Affiliation(s)
- Lutz Slomianka
- Institute of Anatomy, University of Zürich, 8057 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
37
|
Li J, Yu M, Feng G, Hu H, Li X. Breaches of the pial basement membrane are associated with defective dentate gyrus development in mouse models of congenital muscular dystrophies. Neurosci Lett 2011; 505:19-24. [PMID: 21970971 DOI: 10.1016/j.neulet.2011.09.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/11/2011] [Accepted: 09/21/2011] [Indexed: 11/29/2022]
Abstract
A subset of congenital muscular dystrophies (CMDs) has central nervous system manifestations. There are good mouse models for these CMDs that include POMGnT1 knockout, POMT2 knockout and Large(myd) mice with all exhibiting defects in dentate gyrus. It is not known how the abnormal dentate gyrus is formed during the development. In this study, we conducted a detailed morphological examination of the dentate gyrus in adult and newborn POMGnT1 knockout, POMT2 knockout, and Large(myd) mice by immunofluorescence staining and electron microscopic analyses. We observed that the pial basement membrane overlying the dentate gyrus was disrupted and there was ectopia of granule cell precursors through the breached pial basement membrane. Besides these, the knockout dentate gyrus exhibited reactive gliosis in these mouse models. Thus, breaches in the pial basement membrane are associated with defective dentate gyrus development in mouse models of congenital muscular dystrophies.
Collapse
Affiliation(s)
- Jing Li
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
38
|
Zhang P, Hu H. Differential glycosylation of α-dystroglycan and proteins other than α-dystroglycan by like-glycosyltransferase. Glycobiology 2011; 22:235-47. [PMID: 21930648 DOI: 10.1093/glycob/cwr131] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genetic defects in like-glycosyltransferase (LARGE) cause congenital muscular dystrophy with central nervous system manifestations. The underlying molecular pathomechanism is the hypoglycosylation of α-dystroglycan (α-DG), which is evidenced by diminished immunoreactivity to IIH6C4 and VIA4-1, antibodies that recognize carbohydrate epitopes. Previous studies indicate that LARGE participates in the formation of a phosphoryl glycan branch on O-linked mannose or it modifies complex N- and mucin O-glycans. In this study, we overexpressed LARGE in neural stem cells deficient in protein O-mannosyltransferase 2 (POMT2), an enzyme required for O-mannosyl glycosylation. The results showed that overexpressing LARGE did not lead to hyperglycosylation of α-DG in POMT2 knockout (KO) cells but did generate IIH6C4 and VIA4-1 immunoreactivity and laminin-binding activity. Additionally, overexpressing LARGE in cells deficient in both POMT2 and α-DG generated laminin-binding IIH6C4 immunoreactivity. These results indicate that LARGE expression resulted in the glycosylation of proteins other than α-DG in the absence of O-mannosyl glycosylation. The IIH6C4 immunoreactivity generated in double-KO cells was largely removed by treatment either with peptide N-glycosidase F or with cold aqueous hydrofluoric acid, suggesting that LARGE expression caused phosphoryl glycosylation of N-glycans. However, the glycosylation of α-DG by LARGE is dependent on POMT2, indicating that LARGE expression only modifies O-linked mannosyl glycans of α-DG. Thus, LARGE expression mediates the phosphoryl glycosylation of not only O-mannosyl glycans including those on α-DG but also N-glycans on proteins other than α-DG.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | | |
Collapse
|