1
|
Romano EJ, Zhang DQ. Dopaminergic amacrine cells express HCN channels in the developing and adult mouse retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.20.604440. [PMID: 39091772 PMCID: PMC11291019 DOI: 10.1101/2024.07.20.604440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Purpose To determine the molecular and functional expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in developing and mature dopaminergic amacrine cells (DACs), the sole source of ocular dopamine that plays a vital role in visual function and eye development. Methods HCN channels are encoded by isoforms 1-4. HCN1, HCN2, and HCN4 were immunostained in retinal slices obtained from mice at postnatal day 4 (P4), P8, and P12 as well as in adults. Each HCN channel isoform was also immunostained with tyrosine hydroxylase, a marker for DACs, at P12 and adult retinas. Genetically-marked DACs were recorded in flat-mount retina preparation using a whole-cell current-clamp technique. Results HCN1 was expressed in rods/cones, amacrine cells, and retinal ganglion cells (RGCs) at P4, along with bipolar cells by P12. Different from HCN1, HCN2 and HCN4 were each expressed in amacrine cells and RGCs at P4, along with bipolar cells by P8, and in rods/cones by P12. Double immunostaining shows that each of the three isoforms was expressed in approximately half of DACs at P12 but in almost all DACs in adults. Electrophysiology results demonstrate that HCN channel isoforms form functional HCN channels, and the pharmacological blockade of HCN channels reduced the spontaneous firing frequency in most DACs. Conclusions Each class of retinal neurons may use different isoforms of HCN channels to function during development. HCN1, HCN2, and HCN4 form functional HCN channels in DACs, which appears to modulate their spontaneous firing activity.
Collapse
Affiliation(s)
- Emilio J Romano
- Eye Research Institute, Oakland University, Rochester, Michigan
| | - Dao-Qi Zhang
- Eye Research Institute, Oakland University, Rochester, Michigan
- Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, Michigan
| |
Collapse
|
2
|
Kim D, Roh H, Lee HM, Kim SJ, Im M. Localization of hyperpolarization-activated cyclic nucleotide-gated channels in the vertebrate retinas across species and their physiological roles. Front Neuroanat 2024; 18:1385932. [PMID: 38562955 PMCID: PMC10982330 DOI: 10.3389/fnana.2024.1385932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Transmembrane proteins known as hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control the movement of Na+ and K+ ions across cellular membranes. HCN channels are known to be involved in crucial physiological functions in regulating neuronal excitability and rhythmicity, and pacemaker activity in the heart. Although HCN channels have been relatively well investigated in the brain, their distribution and function in the retina have received less attention, remaining their physiological roles to be comprehensively understood. Also, because recent studies reported HCN channels have been somewhat linked with the dysfunction of photoreceptors which are affected by retinal diseases, investigating HCN channels in the retina may offer valuable insights into disease mechanisms and potentially contribute to identifying novel therapeutic targets for retinal degenerative disorders. This paper endeavors to summarize the existing literature on the distribution and function of HCN channels reported in the vertebrate retinas of various species and discuss the potential implications for the treatment of retinal diseases. Then, we recapitulate current knowledge regarding the function and regulation of HCN channels, as well as their relevance to various neurological disorders.
Collapse
Affiliation(s)
- Daniel Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University (SNU), Seoul, Republic of Korea
| | - Hyeonhee Roh
- School of Electrical Engineering, College of Engineering, Korea University, Seoul, Republic of Korea
| | - Hyung-Min Lee
- School of Electrical Engineering, College of Engineering, Korea University, Seoul, Republic of Korea
| | - Sang Jeong Kim
- Department of Biomedical Sciences, College of Medicine, Seoul National University (SNU), Seoul, Republic of Korea
| | - Maesoon Im
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science & Technology (UST), Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Popova E, Kupenova P. Effects of HCN channel blockade on the intensity-response function of electroretinographic ON and OFF responses in dark adapted frogs. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Van Hook MJ, Nawy S, Thoreson WB. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retin Eye Res 2019; 72:100760. [PMID: 31078724 PMCID: PMC6739185 DOI: 10.1016/j.preteyeres.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
In this review, we summarize studies investigating the types and distribution of voltage- and calcium-gated ion channels in the different classes of retinal neurons: rods, cones, horizontal cells, bipolar cells, amacrine cells, interplexiform cells, and ganglion cells. We discuss differences among cell subtypes within these major cell classes, as well as differences among species, and consider how different ion channels shape the responses of different neurons. For example, even though second-order bipolar and horizontal cells do not typically generate fast sodium-dependent action potentials, many of these cells nevertheless possess fast sodium currents that can enhance their kinetic response capabilities. Ca2+ channel activity can also shape response kinetics as well as regulating synaptic release. The L-type Ca2+ channel subtype, CaV1.4, expressed in photoreceptor cells exhibits specific properties matching the particular needs of these cells such as limited inactivation which allows sustained channel activity and maintained synaptic release in darkness. The particular properties of K+ and Cl- channels in different retinal neurons shape resting membrane potentials, response kinetics and spiking behavior. A remaining challenge is to characterize the specific distributions of ion channels in the more than 100 individual cell types that have been identified in the retina and to describe how these particular ion channels sculpt neuronal responses to assist in the processing of visual information by the retina.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott Nawy
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
5
|
Restoration of patterned vision with an engineered photoactivatable G protein-coupled receptor. Nat Commun 2017; 8:1862. [PMID: 29192252 PMCID: PMC5709376 DOI: 10.1038/s41467-017-01990-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022] Open
Abstract
Retinitis pigmentosa results in blindness due to degeneration of photoreceptors, but spares other retinal cells, leading to the hope that expression of light-activated signaling proteins in the surviving cells could restore vision. We used a retinal G protein-coupled receptor, mGluR2, which we chemically engineered to respond to light. In retinal ganglion cells (RGCs) of blind rd1 mice, photoswitch-charged mGluR2 (“SNAG-mGluR2”) evoked robust OFF responses to light, but not in wild-type retinas, revealing selectivity for RGCs that have lost photoreceptor input. SNAG-mGluR2 enabled animals to discriminate parallel from perpendicular lines and parallel lines at varying spacing. Simultaneous viral delivery of the inhibitory SNAG-mGluR2 and excitatory light-activated ionotropic glutamate receptor LiGluR yielded a distribution of expression ratios, restoration of ON, OFF and ON-OFF light responses and improved visual acuity. Thus, SNAG-mGluR2 restores patterned vision and combinatorial light response diversity provides a new logic for enhanced-acuity retinal prosthetics. To restore sight after retinal degeneration, one approach is to express light-sensitive proteins in remaining cells. Here the authors combine a light-sensitive engineered G protein-coupled receptor and ion channels to restore ON and OFF responses as well as superior visual pattern discrimination.
Collapse
|
6
|
Fasoli A, Dang J, Johnson JS, Gouw AH, Fogli Iseppe A, Ishida AT. Somatic and neuritic spines on tyrosine hydroxylase-immunopositive cells of rat retina. J Comp Neurol 2017; 525:1707-1730. [PMID: 28035673 DOI: 10.1002/cne.24166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/13/2016] [Accepted: 12/27/2016] [Indexed: 12/27/2022]
Abstract
Dopamine- and tyrosine hydroxylase-immunopositive cells (TH cells) modulate visually driven signals as they flow through retinal photoreceptor, bipolar, and ganglion cells. Previous studies suggested that TH cells release dopamine from varicose axons arborizing in the inner and outer plexiform layers after glutamatergic synapses depolarize TH cell dendrites in the inner plexiform layer and these depolarizations propagate to the varicosities. Although it has been proposed that these excitatory synapses are formed onto appendages resembling dendritic spines, spines have not been found on TH cells of most species examined to date or on TH cell somata that release dopamine when exposed to glutamate receptor agonists. By use of protocols that preserve proximal retinal neuron morphology, we have examined the shape, distribution, and synapse-related immunoreactivity of adult rat TH cells. We report here that TH cell somata, tapering and varicose inner plexiform layer neurites, and varicose outer plexiform layer neurites all bear spines, that some of these spines are immunopositive for glutamate receptor and postsynaptic density proteins (viz., GluR1, GluR4, NR1, PSD-95, and PSD-93), that TH cell somata and tapering neurites are also immunopositive for a γ-aminobutyric acid (GABA) receptor subunit (GABAA Rα1 ), and that a synaptic ribbon-specific protein (RIBEYE) is found adjacent to some colocalizations of GluR1 and TH in the inner plexiform layer. These results identify previously undescribed sites at which glutamatergic and GABAergic inputs may stimulate and inhibit dopamine release, especially at somata and along varicose neurites that emerge from these somata and arborize in various levels of the retina. J. Comp. Neurol. 525:1707-1730, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Fasoli
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - James Dang
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Jeffrey S Johnson
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Aaron H Gouw
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Alex Fogli Iseppe
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Andrew T Ishida
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California.,Department of Ophthalmology and Vision Science, University of California, Sacramento, California
| |
Collapse
|
7
|
How Azobenzene Photoswitches Restore Visual Responses to the Blind Retina. Neuron 2016; 92:100-113. [PMID: 27667006 DOI: 10.1016/j.neuron.2016.08.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 07/02/2016] [Accepted: 08/25/2016] [Indexed: 01/13/2023]
Abstract
Azobenzene photoswitches confer light sensitivity onto retinal ganglion cells (RGCs) in blind mice, making these compounds promising candidates as vision-restoring drugs in humans with degenerative blindness. Remarkably, photosensitization manifests only in animals with photoreceptor degeneration and is absent from those with intact rods and cones. Here we show that P2X receptors mediate the entry of photoswitches into RGCs, where they associate with voltage-gated ion channels, enabling light to control action-potential firing. All charged photoswitch compounds require permeation through P2X receptors, whose gene expression is upregulated in the blind retina. Photoswitches and membrane-impermeant fluorescent dyes likewise penetrate through P2X receptors to label a subset of RGCs in the degenerated retina. Electrophysiological recordings and mapping of fluorescently labeled RGC dendritic projections together indicate that photosensitization is highly selective for OFF-RGCs. Hence, P2X receptors are a natural conduit allowing cell-type-selective and degeneration-specific delivery of photoswitches to restore visual function in blinding disease.
Collapse
|
8
|
Smith FL, Davis RL. Organ of Corti explants direct tonotopically graded morphology of spiral ganglion neurons in vitro. J Comp Neurol 2016; 524:2182-207. [PMID: 26663318 DOI: 10.1002/cne.23940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 11/12/2015] [Accepted: 11/30/2015] [Indexed: 01/25/2023]
Abstract
The spiral ganglion is a compelling model system to examine how morphological form contributes to sensory function. While the ganglion is composed mainly of a single class of type I neurons that make simple one-to-one connections with inner hair cell sensory receptors, it has an elaborate overall morphological design. Specific features, such as soma size and axon outgrowth, are graded along the spiral contour of the cochlea. To begin to understand the interplay between different regulators of neuronal morphology, we cocultured neuron explants with peripheral target tissues removed from distinct cochlear locations. Interestingly, these "hair cell microisolates" were capable of both increasing and decreasing neuronal somata size, without adversely affecting survival. Moreover, axon characteristics elaborated de novo by the primary afferents in culture were systematically regulated by the sensory endorgan. Apparent peripheral nervous system (PNS)-like and central nervous system (CNS)-like axonal profiles were established in our cocultures allowing an analysis of putative PNS/CNS axon length ratios. As predicted from the in vivo organization, PNS-like axon bundles elaborated by apical cocultures were longer than their basal counterparts and this phenotype was methodically altered when neuron explants were cocultured with microisolates from disparate cochlear regions. Thus, location-dependent signals within the organ of Corti may set the "address" of neurons within the spiral ganglion, allowing them to elaborate the appropriate tonotopically associated morphological features in order to carry out their signaling function. J. Comp. Neurol. 524:2182-2207, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Felicia L Smith
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Robin L Davis
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
9
|
Li Q, Cui P, Miao Y, Gao F, Li XY, Qian WJ, Jiang SX, Wu N, Sun XH, Wang Z. Activation of group I metabotropic glutamate receptors regulates the excitability of rat retinal ganglion cells by suppressing Kir and I h. Brain Struct Funct 2016; 222:813-830. [PMID: 27306787 DOI: 10.1007/s00429-016-1248-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/05/2016] [Indexed: 10/21/2022]
Abstract
Group I metabotropic glutamate receptor (mGluR I) activation exerts a slow postsynaptic excitatory effect in the CNS. Here, the issues of whether and how this receptor is involved in regulating retinal ganglion cell (RGC) excitability were investigated in retinal slices using patch-clamp techniques. Under physiological conditions, RGCs displayed spontaneous firing. Extracellular application of LY367385 (10 µM)/MPEP (10 µM), selective mGluR1 and mGluR5 antagonists, respectively, significantly reduced the firing frequency, suggesting that glutamate endogenously released from bipolar cells constantly modulates RGC firing. DHPG (10 µM), an mGluR I agonist, significantly increased the firing and caused depolarization of the cells, which were reversed by LY367385, but not by MPEP, suggesting the involvement of the mGluR1 subtype. Intracellular Ca2+-dependent PI-PLC/PKC and calcium/calmodulin-dependent protein kinase II (CaMKII) signaling pathways mediated the DHPG-induced effects. In the presence of cocktail synaptic blockers (CNQX, D-AP5, bicuculline, and strychnine), which terminated the spontaneous firing in both ON and OFF RGCs, DHPG still induced depolarization and triggered the cells to fire. The DHPG-induced depolarization could not be blocked by TTX. In contrast, Ba2+, an inwardly rectifying potassium channel (Kir) blocker, and Cs+ and ZD7288, hyperpolarization-activated cation channel (I h) blockers, mimicked the effect of DHPG. Furthermore, in the presence of Ba2+/ZD7288, DHPG did not show further effects. Moreover, Kir and I h currents could be recorded in RGCs, and extracellular application of DHPG indeed suppressed these currents. Our results suggest that activation of mGluR I regulates the excitability of rat RGCs by inhibiting Kir and I h.
Collapse
Affiliation(s)
- Qian Li
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Peng Cui
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yanying Miao
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Feng Gao
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xue-Yan Li
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Wen-Jing Qian
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Shu-Xia Jiang
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Na Wu
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xing-Huai Sun
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China. .,Eye & ENT Hospital, Fudan University, Shanghai, 200031, China. .,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China. .,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| | - Zhongfeng Wang
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China. .,Eye & ENT Hospital, Fudan University, Shanghai, 200031, China. .,Institute of Neurobiology, Fudan University, Shanghai, 200032, China. .,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China. .,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Stradleigh TW, Ishida AT. Fixation strategies for retinal immunohistochemistry. Prog Retin Eye Res 2015; 48:181-202. [PMID: 25892361 PMCID: PMC4543575 DOI: 10.1016/j.preteyeres.2015.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/06/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
Immunohistochemical and ex vivo anatomical studies have provided many glimpses of the variety, distribution, and signaling components of vertebrate retinal neurons. The beauty of numerous images published to date, and the qualitative and quantitative information they provide, indicate that these approaches are fundamentally useful. However, obtaining these images entailed tissue handling and exposure to chemical solutions that differ from normal extracellular fluid in composition, temperature, and osmolarity. Because the differences are large enough to alter intercellular and intracellular signaling in neurons, and because retinae are susceptible to crush, shear, and fray, it is natural to wonder if immunohistochemical and anatomical methods disturb or damage the cells they are designed to examine. Tissue fixation is typically incorporated to guard against this damage and is therefore critically important to the quality and significance of the harvested data. Here, we describe mechanisms of fixation; advantages and disadvantages of using formaldehyde and glutaraldehyde as fixatives during immunohistochemistry; and modifications of widely used protocols that have recently been found to improve cell shape preservation and immunostaining patterns, especially in proximal retinal neurons.
Collapse
Affiliation(s)
- Tyler W Stradleigh
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA
| | - Andrew T Ishida
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA; Department of Ophthalmology and Vision Science, University of California, Sacramento, CA 95817, USA.
| |
Collapse
|
11
|
Stradleigh TW, Greenberg KP, Partida GJ, Pham A, Ishida AT. Moniliform deformation of retinal ganglion cells by formaldehyde-based fixatives. J Comp Neurol 2014; 523:545-64. [PMID: 25283775 DOI: 10.1002/cne.23689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/27/2014] [Accepted: 09/29/2014] [Indexed: 12/12/2022]
Abstract
Protocols for characterizing cellular phenotypes commonly use chemical fixatives to preserve anatomical features, mechanically stabilize tissue, and stop physiological responses. Formaldehyde, diluted in either phosphate-buffered saline or phosphate buffer, has been widely used in studies of neurons, especially in conjunction with dyes and antibodies. However, previous studies have found that these fixatives induce the formation of bead-like varicosities in the dendrites and axons of brain and spinal cord neurons. We report here that these formaldehyde formulations can induce bead formation in the dendrites and axons of adult rat and rabbit retinal ganglion cells, and that retinal ganglion cells differ from hippocampal, cortical, cerebellar, and spinal cord neurons in that bead formation is not blocked by glutamate receptor antagonists, a voltage-gated Na(+) channel toxin, extracellular Ca(2+) ion exclusion, or temperature shifts. Moreover, we describe a modification of formaldehyde-based fixatives that prevents bead formation in retinal ganglion cells visualized by green fluorescent protein expression and by immunohistochemistry.
Collapse
Affiliation(s)
- Tyler W Stradleigh
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, 95616
| | | | | | | | | |
Collapse
|
12
|
Liu Q, Manis PB, Davis RL. I h and HCN channels in murine spiral ganglion neurons: tonotopic variation, local heterogeneity, and kinetic model. J Assoc Res Otolaryngol 2014; 15:585-99. [PMID: 24558054 DOI: 10.1007/s10162-014-0446-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/23/2014] [Indexed: 01/01/2023] Open
Abstract
One of the major contributors to the response profile of neurons in the auditory pathways is the I h current. Its properties such as magnitude, activation, and kinetics not only vary among different types of neurons (Banks et al., J Neurophysiol 70:1420-1432, 1993; Fu et al., J Neurophysiol 78:2235-2245, 1997; Bal and Oertel, J Neurophysiol 84:806-817, 2000; Cao and Oertel, J Neurophysiol 94:821-832, 2005; Rodrigues and Oertel, J Neurophysiol 95:76-87, 2006; Yi et al., J Neurophysiol 103:2532-2543, 2010), but they also display notable diversity in a single population of spiral ganglion neurons (Mo and Davis, J Neurophysiol 78:3019-3027, 1997), the first neural element in the auditory periphery. In this study, we found from somatic recordings that part of the heterogeneity can be attributed to variation along the tonotopic axis because I h in the apical neurons have more positive half-activation voltage levels than basal neurons. Even within a single cochlear region, however, I h current properties are not uniform. To account for this heterogeneity, we provide immunocytochemical evidence for variance in the intracellular density of the hyperpolarization-activated cyclic nucleotide-gated channel α-subunit 1 (HCN1), which mediates I h current. We also observed different combinations of HCN1 and HCN4 α-subunits from cell to cell. Lastly, based on the physiological data, we performed kinetic analysis for the I h current and generated a mathematical model to better understand varied I h on spiral ganglion function. Regardless of whether I h currents are recorded at the nerve terminals (Yi et al., J Neurophysiol 103:2532-2543, 2010) or at the somata of spiral ganglion neurons, they have comparable mean half-activation voltage and induce similar resting membrane potential changes, and thus our model may also provide insights into the impact of I h on synaptic physiology.
Collapse
Affiliation(s)
- Qing Liu
- Unit on Neural Circuits and Adaptive Behaviors in Genes, Cognition and Psychosis Program, National Institute of Mental Health/NIH, Bethesda, MD, 20892, USA
| | | | | |
Collapse
|
13
|
Tochitsky I, Polosukhina A, Degtyar VE, Gallerani N, Smith CM, Friedman A, Van Gelder RN, Trauner D, Kaufer D, Kramer RH. Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells. Neuron 2014; 81:800-13. [PMID: 24559673 PMCID: PMC3933823 DOI: 10.1016/j.neuron.2014.01.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
Abstract
Retinitis pigmentosa (RP) and age-related macular degeneration (AMD) are blinding diseases caused by the degeneration of rods and cones, leaving the remainder of the visual system unable to respond to light. Here, we report a chemical photoswitch named DENAQ that restores retinal responses to white light of intensity similar to ordinary daylight. A single intraocular injection of DENAQ photosensitizes the blind retina for days, restoring electrophysiological and behavioral responses with no toxicity. Experiments on mouse strains with functional, nonfunctional, or degenerated rods and cones show that DENAQ is effective only in retinas with degenerated photoreceptors. DENAQ confers light sensitivity on a hyperpolarization-activated inward current that is enhanced in degenerated retina, enabling optical control of retinal ganglion cell firing. The acceptable light sensitivity, favorable spectral sensitivity, and selective targeting to diseased tissue make DENAQ a prime drug candidate for vision restoration in patients with end-stage RP and AMD.
Collapse
Affiliation(s)
- Ivan Tochitsky
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Aleksandra Polosukhina
- Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vadim E Degtyar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas Gallerani
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Caleb M Smith
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Aaron Friedman
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Russell N Van Gelder
- Departments of Ophthalmology, Pathology, and Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Dirk Trauner
- Department of Chemistry and Biochemistry, University of Munich, 81377 Munich, Germany
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neurosciences Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Richard H Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neurosciences Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
14
|
Pan Y, Bhattarai S, Modestou M, Drack AV, Chetkovich DM, Baker SA. TRIP8b is required for maximal expression of HCN1 in the mouse retina. PLoS One 2014; 9:e85850. [PMID: 24409334 PMCID: PMC3883711 DOI: 10.1371/journal.pone.0085850] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/31/2013] [Indexed: 01/04/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are cation-selective channels present in retina, brain and heart. The activity of HCN channels contributes to signal integration, cell excitability and pacemaker activity. HCN1 channels expressed in photoreceptors participate in keeping light responses transient and are required for normal mesopic vision. The subcellular localization of HCN1 varies among cell types. In photoreceptors HCN1 is concentrated in the inner segments while in other retinal neurons, HCN1 is evenly distributed though the cell. This is in contrast to hippocampal neurons where HCN1 is concentrated in a subset of dendrites. A key regulator of HCN1 trafficking and activity is tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b). Multiple splice isoforms of TRIP8b are expressed throughout the brain and can differentially regulate the surface expression and activity of HCN1. The purpose of the present study was to determine which isoforms of TRIP8b are expressed in the retina and to test if loss of TRIP8b alters HCN1 expression or trafficking. We found that TRIP8b colocalizes with HCN1 in multiple retina neurons and all major splice isoforms of TRIP8b are expressed in the retina. Photoreceptors express three different isoforms. In TRIP8b knockout mice, the ability of HCN1 to traffic to the surface of retinal neurons is unaffected. However, there is a large decrease in the total amount of HCN1. We conclude that TRIP8b in the retina is needed to achieve maximal expression of HCN1.
Collapse
Affiliation(s)
- Yuan Pan
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Sajag Bhattarai
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Modestos Modestou
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Arlene V. Drack
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Dane M. Chetkovich
- The Ken & Ruth Davee Department of Neurology and Clinical Neurosciences and Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Sheila A. Baker
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
15
|
He C, Chen F, Li B, Hu Z. Neurophysiology of HCN channels: From cellular functions to multiple regulations. Prog Neurobiol 2014; 112:1-23. [DOI: 10.1016/j.pneurobio.2013.10.001] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 10/01/2013] [Accepted: 10/07/2013] [Indexed: 12/18/2022]
|
16
|
Hwang CK, Chaurasia SS, Jackson CR, Chan GCK, Storm DR, Iuvone PM. Circadian rhythm of contrast sensitivity is regulated by a dopamine-neuronal PAS-domain protein 2-adenylyl cyclase 1 signaling pathway in retinal ganglion cells. J Neurosci 2013; 33:14989-97. [PMID: 24048828 PMCID: PMC3776053 DOI: 10.1523/jneurosci.2039-13.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/16/2013] [Accepted: 08/06/2013] [Indexed: 12/25/2022] Open
Abstract
Spatial variation in light intensity, called spatial contrast, comprises much of the visual information perceived by mammals, and the relative ability to detect contrast is referred to as contrast sensitivity (Purves et al., 2012). Recently, retinal dopamine D4 receptors (D4Rs) have been implicated in modulating contrast sensitivity (Jackson et al., 2012); however, the cellular and molecular mechanisms have not been elucidated. Our study demonstrates a circadian rhythm of contrast sensitivity that peaks during the daytime, and that its regulation involves interactions of D4Rs, the clock gene Npas2, and the clock-controlled gene adenylyl cyclase 1 (Adcy1) in a subset of retinal ganglion cells (RGCs). Targeted disruption of the gene encoding D4Rs reduces the amplitude of the contrast sensitivity rhythm by reducing daytime sensitivity and abolishes the rhythmic expression of Npas2 and Adcy1 mRNA in the ganglion cell layer (GCL) of the retina. Npas2(-/-) and Adcy1(-/-) mice show strikingly similar reductions in the contrast sensitivity rhythm to that in mice lacking D4Rs. Moreover, Adcy1 transcript rhythms were abolished in the GCL of Npas2(-/-) mice. Luciferase reporter assays demonstrated that the Adcy1 promoter is selectively activated by neuronal PAS-domain protein 2 (NPAS2)/BMAL1. Our results indicate that the contrast sensitivity rhythm is modulated by D4Rs via a signaling pathway that involves NPAS2-mediated circadian regulation of Adcy1. Hence, we have identified a circadian clock mechanism in a subset of RGCs that modulates an important aspect of retinal physiology and visual processing.
Collapse
Affiliation(s)
- Christopher K. Hwang
- Departments of Ophthalmology and Pharmacology, and
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Shyam S. Chaurasia
- Departments of Ophthalmology and Pharmacology, and
- Translational Clinical Research Laboratory, Singapore Eye Research Institute, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorder, and
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 169712
| | - Chad R. Jackson
- Departments of Ophthalmology and Pharmacology, and
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, and
| | - Guy C.-K. Chan
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Daniel R. Storm
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | | |
Collapse
|
17
|
Ogata G, Stradleigh TW, Partida GJ, Ishida AT. Dopamine and full-field illumination activate D1 and D2-D5-type receptors in adult rat retinal ganglion cells. J Comp Neurol 2013; 520:4032-49. [PMID: 22678972 DOI: 10.1002/cne.23159] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dopamine can regulate signal generation and transmission by activating multiple receptors and signaling cascades, especially in striatum, hippocampus, and cerebral cortex. Dopamine modulates an even larger variety of cellular properties in retina, yet has been reported to do so by only D1 receptor-driven cyclic adenosine monophosphate (cAMP) increases or D2 receptor-driven cAMP decreases. Here, we test the possibility that dopamine operates differently on retinal ganglion cells, because the ganglion cell layer binds D1 and D2 receptor ligands, and displays changes in signaling components other than cAMP under illumination that should release dopamine. In adult rat retinal ganglion cells, based on patch-clamp recordings, Ca(2+) imaging, and immunohistochemistry, we find that 1) spike firing is inhibited by dopamine and SKF 83959 (an agonist that does not activate homomeric D1 receptors or alter cAMP levels in other systems); 2) D1 and D2 receptor antagonists (SCH 23390, eticlopride, raclopride) counteract these effects; 3) these antagonists also block light-induced rises in cAMP, light-induced activation of Ca(2+) /calmodulin-dependent protein kinase II, and dopamine-induced Ca(2+) influx; and 4) the Ca(2+) rise is markedly reduced by removing extracellular Ca(2+) and by an IP3 receptor antagonist (2-APB). These results provide the first evidence that dopamine activates a receptor in adult mammalian retinal neurons that is distinct from classical D1 and D2 receptors, and that dopamine can activate mechanisms in addition to cAMP and cAMP-dependent protein kinase to modulate retinal ganglion cell excitability.
Collapse
Affiliation(s)
- Genki Ogata
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
18
|
Bonin RP, Zurek AA, Yu J, Bayliss DA, Orser BA. Hyperpolarization-activated current (In) is reduced in hippocampal neurons from Gabra5-/- mice. PLoS One 2013; 8:e58679. [PMID: 23516534 PMCID: PMC3597723 DOI: 10.1371/journal.pone.0058679] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/05/2013] [Indexed: 01/06/2023] Open
Abstract
Changes in the expression of γ-aminobutyric acid type A (GABAA) receptors can either drive or mediate homeostatic alterations in neuronal excitability. A homeostatic relationship between α5 subunit-containing GABAA (α5GABAA) receptors that generate a tonic inhibitory conductance, and HCN channels that generate a hyperpolarization-activated cation current (Ih) was recently described for cortical neurons, where a reduction in Ih was accompanied by a reciprocal increase in the expression of α5GABAA receptors resulting in the preservation of dendritosomatic synaptic function. Here, we report that in mice that lack the α5 subunit gene (Gabra5−/−), cultured embryonic hippocampal pyramidal neurons and ex vivo CA1 hippocampal neurons unexpectedly exhibited a decrease in Ih current density (by 40% and 28%, respectively), compared with neurons from wild-type (WT) mice. The resting membrane potential and membrane hyperpolarization induced by blockade of Ih with ZD-7288 were similar in cultured WT and Gabra5−/− neurons. In contrast, membrane hyperpolarization measured after a train of action potentials was lower in Gabra5−/− neurons than in WT neurons. Also, membrane impedance measured in response to low frequency stimulation was greater in cultured Gabra5−/− neurons. Finally, the expression of HCN1 protein that generates Ih was reduced by 41% in the hippocampus of Gabra5−/− mice. These data indicate that loss of a tonic GABAergic inhibitory conductance was followed by a compensatory reduction in Ih. The results further suggest that the maintenance of resting membrane potential is preferentially maintained in mature and immature hippocampal neurons through the homeostatic co-regulation of structurally and biophysically distinct cation and anion channels.
Collapse
Affiliation(s)
- Robert P. Bonin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Agnieszka A. Zurek
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jieying Yu
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Douglas A. Bayliss
- Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Beverley A. Orser
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
19
|
Abbas SY, Hamade KC, Yang EJ, Nawy S, Smith RG, Pettit DL. Directional summation in non-direction selective retinal ganglion cells. PLoS Comput Biol 2013; 9:e1002969. [PMID: 23516351 PMCID: PMC3597528 DOI: 10.1371/journal.pcbi.1002969] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 01/21/2013] [Indexed: 01/03/2023] Open
Abstract
Retinal ganglion cells receive inputs from multiple bipolar cells which must be integrated before a decision to fire is made. Theoretical studies have provided clues about how this integration is accomplished but have not directly determined the rules regulating summation of closely timed inputs along single or multiple dendrites. Here we have examined dendritic summation of multiple inputs along On ganglion cell dendrites in whole mount rat retina. We activated inputs at targeted locations by uncaging glutamate sequentially to generate apparent motion along On ganglion cell dendrites in whole mount retina. Summation was directional and dependent13 on input sequence. Input moving away from the soma (centrifugal) resulted in supralinear summation, while activation sequences moving toward the soma (centripetal) were linear. Enhanced summation for centrifugal activation was robust as it was also observed in cultured retinal ganglion cells. This directional summation was dependent on hyperpolarization activated cyclic nucleotide-gated (HCN) channels as blockade with ZD7288 eliminated directionality. A computational model confirms that activation of HCN channels can override a preference for centripetal summation expected from cell anatomy. This type of direction selectivity could play a role in coding movement similar to the axial selectivity seen in locust ganglion cells which detect looming stimuli. More generally, these results suggest that non-directional retinal ganglion cells can discriminate between input sequences independent of the retina network. Visual information is coded by the output of retinal ganglion cells. Through evolution retinal ganglion cells acquired unique properties that allowed them to transmit to the brain such signals as direction of movement. The quest for the cellular mechanism of the detection of movement by retinal ganglion cells has been the holy grail of research on direction selectivity. In this study we have found a mechanism that allows individual non-direction selective On retinal ganglion cells to code sequences of excitatory inputs moving either away or toward the soma. We observed that inputs moving away from the soma resulted in enhanced, supralinear EPSP summation. Evidence from computational modeling suggests that expression of a specific set of voltage-dependent channels in dendrites introduces nonlinearities that could give a ganglion cell the ability to code looming motion. We predict that in a retinal network, such a directional tuning mechanism, together with asymmetric presynaptic inhibition, could be the building block for the development of more complex detection of visual motion.
Collapse
Affiliation(s)
- Syed Y. Abbas
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Khaldoun C. Hamade
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ellen J. Yang
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Scott Nawy
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Robert G. Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Diana L. Pettit
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
He P, Deng J, Zhong X, Zhou Z, Song B, Li L. Identification of a hyperpolarization-activated cyclic nucleotide-gated channel and its subtypes in the urinary bladder of the rat. Urology 2012; 79:1411.e7-13. [PMID: 22446339 DOI: 10.1016/j.urology.2012.01.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 12/23/2011] [Accepted: 01/23/2012] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To investigate the distribution and effects of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel and its isoforms in bladder, especially in bladder interstitial cells of Cajal (ICC). METHODS Four HCN isoforms were detected in bladder tissue from rats using reverse transcription-polymerase chain reaction and Western blotting. The HCN1 subtype was observed in bladder ICCs by double-labeled fluorescence. The effect of the HCN blocker, ZD7288, was investigated using the bladder smooth muscle strip test. RESULTS HCN1-4 isoforms were all identified in bladder ICCs using reverse transcription-polymerase chain reaction and Western blotting. Based on our semiquantitative analysis, HCN1 was found to be the most prominent isoform. The expression of HCN1 was confirmed in bladder ICCs by double-labeled fluorescence through colabeling of HCN1 and kit (CD117). ZD7288 significantly decreased the bladder excitation. CONCLUSION All 4 HCN channel isoforms exist in the bladder, and they affect the bladder excitation, presumably via bladder ICCs.
Collapse
Affiliation(s)
- Peng He
- Institute of Urology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | |
Collapse
|
21
|
Partida GJ, Stradleigh TW, Ogata G, Godzdanker I, Ishida AT. Thy1 associates with the cation channel subunit HCN4 in adult rat retina. Invest Ophthalmol Vis Sci 2012; 53:1696-703. [PMID: 22281825 PMCID: PMC3339924 DOI: 10.1167/iovs.11-9307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/15/2012] [Indexed: 01/23/2023] Open
Abstract
PURPOSE The membrane expression and gene promoter of the glycosylphosphatidylinositol (GPI)-anchored protein Thy1 have been widely used to examine the morphology and distribution of retinal ganglion cells in normal eyes and disease models. However, it is not known how adult mammalian retinal neurons use Thy1. Because Thy1 is not a membrane-spanning protein and, instead, complexes with structural and signaling proteins in other tissues, the aim of this study was to find protein partners of retinal Thy1. METHODS Coimmunoprecipitation, immunohistochemistry, confocal imaging, and patch-clamp recording were used to test for association of Thy1 and HCN4, a cation channel subunit, in adult rat retina. RESULTS Hyperpolarization of cells immunopanned by an anti-Thy1 antibody activated HCN channels. Confocal imaging showed that individual somata in the ganglion cell layer bound antibodies against Thy1 and HCN4, that the majority of these bindings colocalized, and that some of the immunopositive cells also bound antibody against a ganglion cell marker (Brn3a). Consistent with these results, Thy1 and HCN4 were coimmunoprecipitated by magnetic beads coated with either anti-Thy1 antibody or anti-HCN4 antibody. In control experiments, beads coated with these antibodies did not immunoprecipitate a photoreceptor rim protein (ABCR) and uncoated beads did not immunoprecipitate either Thy1 or HCN4. CONCLUSIONS This is the first report that Thy1 colocalizes and coimmunoprecipitates with a membrane-spanning protein in retina, that Thy1 complexes with an ion channel protein in any tissue, and that a GPI-anchored protein associates with an HCN channel subunit protein.
Collapse
Affiliation(s)
| | | | - Genki Ogata
- From the Section of Neurobiology, Physiology, and Behavior and
| | - Iv Godzdanker
- From the Section of Neurobiology, Physiology, and Behavior and
| | - Andrew T. Ishida
- From the Section of Neurobiology, Physiology, and Behavior and
- the Department of Ophthalmology and Vision Science, University of California, Davis, California
| |
Collapse
|