1
|
Stephenson EL, Jain RW, Ghorbani S, Gorter RP, D’Mello C, Yong VW. Uncovering Novel Extracellular Matrix Transcriptome Alterations in Lesions of Multiple Sclerosis. Int J Mol Sci 2024; 25:1240. [PMID: 38279239 PMCID: PMC10816920 DOI: 10.3390/ijms25021240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
The extracellular matrix (ECM) of the central nervous system (CNS) is an interconnected network of proteins and sugars with critical roles in both homeostasis and disease. In neurological diseases, excessive ECM deposition and remodeling impact both injury and repair. CNS lesions of multiple sclerosis (MS), a chronic inflammatory and degenerative disease, cause prominent alterations of the ECM. However, there are a lack of data investigating how the multitude of ECM members change in relation to each other and how this affects the MS disease course. Here, we evaluated ECM changes in MS lesions compared to a control brain using databases generated in-house through spatial mRNA-sequencing and through a public resource of single-nucleus RNA sequencing previously published by Absinta and colleagues. These results underline the importance of publicly available datasets to find new targets of interest, such as the ECM. Both spatial and public datasets demonstrated widespread changes in ECM molecules and their interacting proteins, including alterations to proteoglycans and glycoproteins within MS lesions. Some of the altered ECM members have been described in MS, but other highly upregulated members, including the SPARC family of proteins, have not previously been highlighted. SPARC family members are upregulated in other conditions by reactive astrocytes and may influence immune cell activation and MS disease course. The profound changes to the ECM in MS lesions deserve more scrutiny as they impact neuroinflammation, injury, and repair.
Collapse
Affiliation(s)
- Erin Laurel Stephenson
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada;
| | - Rajiv William Jain
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.W.J.); (S.G.); (R.P.G.); (C.D.)
| | - Samira Ghorbani
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.W.J.); (S.G.); (R.P.G.); (C.D.)
| | - Rianne Petra Gorter
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.W.J.); (S.G.); (R.P.G.); (C.D.)
| | - Charlotte D’Mello
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.W.J.); (S.G.); (R.P.G.); (C.D.)
| | - Voon Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.W.J.); (S.G.); (R.P.G.); (C.D.)
| |
Collapse
|
2
|
Wu L, de Perrot M. Omics Overview of the SPARC Gene in Mesothelioma. Biomolecules 2023; 13:1103. [PMID: 37509139 PMCID: PMC10377476 DOI: 10.3390/biom13071103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The SPARC gene plays multiple roles in extracellular matrix synthesis and cell shaping, associated with tumor cell migration, invasion, and metastasis. The SPARC gene is also involved in the epithelial-mesenchymal transition (EMT) process, which is a critical phenomenon leading to a more aggressive cancer cell phenotype. SPARC gene overexpression has shown to be associated with poor survival in the mesothelioma (MESO) cohort from the TCGA database, indicating that this gene may be a powerful prognostic factor in MESO. Its overexpression is correlated with the immunosuppressive tumor microenvironment. Here, we summarize the omics advances of the SPARC gene, including the summary of SPARC gene expression associated with prognosis in pancancer and MESO, the immunosuppressive microenvironment, and cancer cell stemness. In addition, SPARC might be targeted by microRNAs. Notably, despite the controversial functions on angiogenesis, SPARC may directly or indirectly contribute to tumor angiogenesis in MESO. In conclusion, SPARC is involved in tumor invasion, metastasis, immunosuppression, cancer cell stemness, and tumor angiogenesis, eventually impacting patient survival. Strategies targeting this gene may provide novel therapeutic approaches to the treatment of MESO.
Collapse
Affiliation(s)
- Licun Wu
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, Toronto General Hospital Research Institute, University Health Network (UHN), 9N-961, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada;
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, Toronto General Hospital Research Institute, University Health Network (UHN), 9N-961, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada;
- Division of Thoracic Surgery, Princess Margaret Hospital, University Health Network (UHN), Toronto, ON M5G 1L7, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
3
|
Chen X, Wolfe DA, Bindu DS, Zhang M, Taskin N, Goertsen D, Shay TF, Sullivan EE, Huang SF, Ravindra Kumar S, Arokiaraj CM, Plattner VM, Campos LJ, Mich JK, Monet D, Ngo V, Ding X, Omstead V, Weed N, Bishaw Y, Gore BB, Lein ES, Akrami A, Miller C, Levi BP, Keller A, Ting JT, Fox AS, Eroglu C, Gradinaru V. Functional gene delivery to and across brain vasculature of systemic AAVs with endothelial-specific tropism in rodents and broad tropism in primates. Nat Commun 2023; 14:3345. [PMID: 37291094 PMCID: PMC10250345 DOI: 10.1038/s41467-023-38582-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds, and in rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and in ex vivo human brain slices, although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial-specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. We apply this approach to Hevin knockout mice, where AAV-X1-mediated ectopic expression of the synaptogenic protein Sparcl1/Hevin in brain endothelial cells rescued synaptic deficits.
Collapse
Grants
- P51 OD010425 NIH HHS
- P51 OD011107 NIH HHS
- Howard Hughes Medical Institute
- UG3 MH120095 NIMH NIH HHS
- DP1 NS111369 NINDS NIH HHS
- OT2 OD024899 NIH HHS
- DP1 MH104069 NIMH NIH HHS
- UF1 MH128336 NIMH NIH HHS
- DP1 EB016986 NIBIB NIH HHS
- DP1 OD000616 NIH HHS
- DP2 NS087949 NINDS NIH HHS
- NIH Director’s New Innovator DP2NS087949 and PECASE, NIH BRAIN Armamentarium 1UF1MH128336-01, NIH Pioneer 5DP1NS111369-04 and SPARC 1OT2OD024899. Additional funding includes the Vallee Foundation, the Moore Foundation, the CZI Neurodegeneration Challenge Network, and the NSF NeuroNex Technology Hub grant 1707316, the Heritage Medical Research Institute and the Beckman Institute for CLARITY, Optogenetics and Vector Engineering Research (CLOVER) for technology development and dissemination, NIH BRAIN UG3MH120095.
- The Swiss National Science Foundation (310030_188952, A.K), the Synapsis (grant 2019-PI02, A.K.), the Swiss Multiple Sclerosis Society (A.K.).
- CNPRC base grant (NIH P51 OD011107)
- The CZI Neurodegeneration Challenge Network. C.E. is an investigator of the Howard Hughes Medical Institute.
Collapse
Affiliation(s)
- Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Damien A Wolfe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Mengying Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Naz Taskin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - David Goertsen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Timothy F Shay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Erin E Sullivan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Sheng-Fu Huang
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zürich, Switzerland
| | - Sripriya Ravindra Kumar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Cynthia M Arokiaraj
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Lillian J Campos
- Department of Psychology and California National Primate Research Center, University of California, Davis, Davis, CA, 95616, USA
| | - John K Mich
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Deja Monet
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Victoria Ngo
- Cortical Systems and Behavior Lab, University of California San Diego, La Jolla, CA, 92039, USA
| | - Xiaozhe Ding
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Natalie Weed
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Yeme Bishaw
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Bryan B Gore
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Athena Akrami
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Cory Miller
- Cortical Systems and Behavior Lab, University of California San Diego, La Jolla, CA, 92039, USA
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Jonathan T Ting
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Andrew S Fox
- Department of Psychology and California National Primate Research Center, University of California, Davis, Davis, CA, 95616, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
4
|
Chen X, Wolfe DA, Bindu DS, Zhang M, Taskin N, Goertsen D, Shay TF, Sullivan E, Huang SF, Kumar SR, Arokiaraj CM, Plattner V, Campos LJ, Mich J, Monet D, Ngo V, Ding X, Omstead V, Weed N, Bishaw Y, Gore B, Lein ES, Akrami A, Miller C, Levi BP, Keller A, Ting JT, Fox AS, Eroglu C, Gradinaru V. Functional gene delivery to and across brain vasculature of systemic AAVs with endothelial-specific tropism in rodents and broad tropism in primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523844. [PMID: 36711773 PMCID: PMC9882234 DOI: 10.1101/2023.01.12.523844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds and rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and ex vivo human brain slices although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. Vasculature-secreted Hevin (a synaptogenic protein) rescued synaptic deficits in a mouse model.
Collapse
Affiliation(s)
- Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Damien A Wolfe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Mengying Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Naz Taskin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - David Goertsen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Timothy F Shay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Erin Sullivan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Sheng-Fu Huang
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich University Hospital, University of Zurich, Zurich, Switzerland
| | - Sripriya Ravindra Kumar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Cynthia M Arokiaraj
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Viktor Plattner
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Lillian J Campos
- Department of Psychology and California National Primate Research Center, University of California, Davis, Davis, CA, 95616, USA
| | - John Mich
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Deja Monet
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Victoria Ngo
- Cortical Systems and Behavior Lab, University of California San Diego, La Jolla, CA, 92039, USA
| | - Xiaozhe Ding
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Natalie Weed
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Yeme Bishaw
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Bryan Gore
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Athena Akrami
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Cory Miller
- Cortical Systems and Behavior Lab, University of California San Diego, La Jolla, CA, 92039, USA
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich University Hospital, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jonathan T Ting
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Andrew S Fox
- Department of Psychology and California National Primate Research Center, University of California, Davis, Davis, CA, 95616, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
5
|
Characterization of Hevin (SPARCL1) Immunoreactivity in Postmortem Human Brain Homogenates. Neuroscience 2021; 467:91-109. [PMID: 34033869 DOI: 10.1016/j.neuroscience.2021.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022]
Abstract
Hevin is a matricellular glycoprotein that plays important roles in neural developmental processes such as neuronal migration, synaptogenesis and synaptic plasticity. In contrast to other matricellular proteins whose expression decreases when development is complete, hevin remains highly expressed, suggesting its involvement in adult brain function. In vitro studies have shown that hevin can have different post-translational modifications. However, the glycosylation pattern of hevin in the human brain remains unknown, as well as its relative distribution and localization. The present study provides the first thorough characterization of hevin protein expression by Western blot in postmortem adult human brain. Our results demonstrated two major specific immunoreactive bands for hevin: an intense band migrating around 130 kDa, and a band migrating around 100 kDa. Biochemical assays revealed that both hevin bands have a different glycosylation pattern. Subcellular fractionation showed greater expression in membrane-enriched fraction than in cytosolic preparation, and a higher expression in prefrontal cortex (PFC) compared to hippocampus (HIP), caudate nucleus (CAU) and cerebellum (CB). We confirmed that a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) and matrixmetalloproteinase 3 (MMP-3) proteases digestion led to an intense double band with similar molecular weight to that described as SPARC-like fragment (SLF). Finally, hevin immunoreactivity was also detected in human astrocytoma, meningioma, cerebrospinal fluid and serum samples, but was absent from any blood cell type.
Collapse
|
6
|
Interplay between hevin, SPARC, and MDGAs: Modulators of neurexin-neuroligin transsynaptic bridges. Structure 2021; 29:664-678.e6. [PMID: 33535026 DOI: 10.1016/j.str.2021.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/20/2020] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
Hevin is secreted by astrocytes and its synaptogenic effects are antagonized by the related protein, SPARC. Hevin stabilizes neurexin-neuroligin transsynaptic bridges in vivo. A third protein, membrane-tethered MDGA, blocks these bridges. Here, we reveal the molecular underpinnings of a regulatory network formed by this trio of proteins. The hevin FS-EC structure differs from SPARC, in that the EC domain appears rearranged around a conserved core. The FS domain is structurally conserved and it houses nanomolar affinity binding sites for neurexin and neuroligin. SPARC also binds neurexin and neuroligin, competing with hevin, so its antagonist action is rooted in its shortened N-terminal region. Strikingly, the hevin FS domain competes with MDGA for an overlapping binding site on neuroligin, while the hevin EC domain binds the extracellular matrix protein collagen (like SPARC), so that this trio of proteins can regulate neurexin-neuroligin transsynaptic bridges and also extracellular matrix interactions, impacting synapse formation and ultimately neural circuits.
Collapse
|
7
|
Strunz M, Jarrell JT, Cohen DS, Rosin ER, Vanderburg CR, Huang X. Modulation of SPARC/Hevin Proteins in Alzheimer's Disease Brain Injury. J Alzheimers Dis 2020; 68:695-710. [PMID: 30883351 PMCID: PMC6481539 DOI: 10.3233/jad-181032] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer’s disease (AD) is an age-related progressive form of dementia that features neuronal loss, intracellular tau, and extracellular amyloid-β (Aβ) protein deposition. Neurodegeneration is accompanied by neuroinflammation mainly involving microglia, the resident innate immune cell population of the brain. During AD progression, microglia shift their phenotype, and it has been suggested that they express matricellular proteins such as secreted protein acidic and rich in cysteine (SPARC) and Hevin protein, which facilitate the migration of other immune cells, such as blood-derived dendritic cells. We have detected both SPARC and Hevin in postmortem AD brain tissues and confirmed significant alterations in transcript expression using real-time qPCR. We suggest that an infiltration of myeloid-derived immune cells occurs in the areas of diseased tissue. SPARC is highly expressed in AD brain and collocates to Aβ protein deposits, thus contributing actively to cerebral inflammation and subsequent tissue repair, and Hevin may be downregulated in the diseased state. However, further research is needed to reveal the exact roles of SPARC and Hevin proteins and associated signaling pathways in AD-related neuroinflammation. Nevertheless, normalizing SPARC/Hevin protein expression such as interdicting heightened SPARC protein expression may confer a novel therapeutic opportunity for modulating AD progression.
Collapse
Affiliation(s)
- Maximilian Strunz
- Department of Neurology, Harvard NeuroDiscovery Center, Advanced Tissue Resource Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Juliet T Jarrell
- Department of Psychiatry, Neurochemistry Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - David S Cohen
- Department of Psychiatry, Neurochemistry Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Eric R Rosin
- Department of Psychiatry, Neurochemistry Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Charles R Vanderburg
- Department of Neurology, Harvard NeuroDiscovery Center, Advanced Tissue Resource Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Xudong Huang
- Department of Psychiatry, Neurochemistry Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
8
|
Pedrero-Prieto CM, García-Carpintero S, Frontiñán-Rubio J, Llanos-González E, Aguilera García C, Alcaín FJ, Lindberg I, Durán-Prado M, Peinado JR, Rabanal-Ruiz Y. A comprehensive systematic review of CSF proteins and peptides that define Alzheimer's disease. Clin Proteomics 2020; 17:21. [PMID: 32518535 PMCID: PMC7273668 DOI: 10.1186/s12014-020-09276-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During the last two decades, over 100 proteomics studies have identified a variety of potential biomarkers in CSF of Alzheimer's (AD) patients. Although several reviews have proposed specific biomarkers, to date, the statistical relevance of these proteins has not been investigated and no peptidomic analyses have been generated on the basis of specific up- or down- regulation. Herein, we perform an analysis of all unbiased explorative proteomics studies of CSF biomarkers in AD to critically evaluate whether proteins and peptides identified in each study are consistent in distribution; direction change; and significance, which would strengthen their potential use in studies of AD pathology and progression. METHODS We generated a database containing all CSF proteins whose levels are known to be significantly altered in human AD from 47 independent, validated, proteomics studies. Using this database, which contains 2022 AD and 2562 control human samples, we examined whether each protein is consistently present on the basis of reliable statistical studies; and if so, whether it is over- or under-represented in AD. Additionally, we performed a direct analysis of available mass spectrometric data of these proteins to generate an AD CSF peptide database with 3221 peptides for further analysis. RESULTS Of the 162 proteins that were identified in 2 or more studies, we investigated their enrichment or depletion in AD CSF. This allowed us to identify 23 proteins which were increased and 50 proteins which were decreased in AD, some of which have never been revealed as consistent AD biomarkers (i.e. SPRC or MUC18). Regarding the analysis of the tryptic peptide database, we identified 87 peptides corresponding to 13 proteins as the most highly consistently altered peptides in AD. Analysis of tryptic peptide fingerprinting revealed specific peptides encoded by CH3L1, VGF, SCG2, PCSK1N, FBLN3 and APOC2 with the highest probability of detection in AD. CONCLUSIONS Our study reveals a panel of 27 proteins and 21 peptides highly altered in AD with consistent statistical significance; this panel constitutes a potent tool for the classification and diagnosis of AD.
Collapse
Affiliation(s)
- Cristina M. Pedrero-Prieto
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Sonia García-Carpintero
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Javier Frontiñán-Rubio
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Emilio Llanos-González
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Cristina Aguilera García
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Francisco J. Alcaín
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201 USA
| | - Mario Durán-Prado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Juan R. Peinado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Yoana Rabanal-Ruiz
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
9
|
Cartography of hevin-expressing cells in the adult brain reveals prominent expression in astrocytes and parvalbumin neurons. Brain Struct Funct 2019; 224:1219-1244. [PMID: 30656447 DOI: 10.1007/s00429-019-01831-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 01/08/2019] [Indexed: 02/03/2023]
Abstract
Hevin, also known as SPARC-like 1, is a member of the secreted protein acidic and rich in cysteine family of matricellular proteins, which has been implicated in neuronal migration and synaptogenesis during development. Unlike previously characterized matricellular proteins, hevin remains strongly expressed in the adult brain in both astrocytes and neurons, but its precise pattern of expression is unknown. The present study provides the first systematic description of hevin mRNA distribution in the adult mouse brain. Using isotopic in situ hybridization, we showed that hevin is strongly expressed in the cortex, hippocampus, basal ganglia complex, diverse thalamic nuclei and brainstem motor nuclei. To identify the cellular phenotype of hevin-expressing cells, we used double fluorescent in situ hybridization in mouse and human adult brains. In the mouse, hevin mRNA was found in the majority of astrocytes but also in specific neuronal populations. Hevin was expressed in almost all parvalbumin-positive projection neurons and local interneurons. In addition, hevin mRNA was found in: (1) subsets of other inhibitory GABAergic neuronal subtypes, including calbindin, cholecystokinin, neuropeptide Y, and somatostatin-positive neurons; (2) subsets of glutamatergic neurons, identified by the expression of the vesicular glutamate transporters VGLUT1 and VGLUT2; and (3) the majority of cholinergic neurons from motor nuclei. Hevin mRNA was absent from all monoaminergic neurons and cholinergic neurons of the ascending pathway. A similar cellular profile of expression was observed in human, with expression of hevin in parvalbumin interneurons and astrocytes in the cortex and caudate nucleus as well as in cortical glutamatergic neurons. Furthermore, hevin transcript was enriched in ribosomes of astrocytes and parvalbumin neurons providing a direct evidence of hevin mRNAs translation in these cell types. This study reveals the unique and complex expression profile of the matricellular protein hevin in the adult brain. This distribution is compatible with a role of hevin in astrocytic-mediated adult synaptic plasticity and in the regulation of network activity mediated by parvalbumin-expressing neurons.
Collapse
|
10
|
Hillen AEJ, Burbach JPH, Hol EM. Cell adhesion and matricellular support by astrocytes of the tripartite synapse. Prog Neurobiol 2018; 165-167:66-86. [PMID: 29444459 DOI: 10.1016/j.pneurobio.2018.02.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/25/2017] [Accepted: 02/07/2018] [Indexed: 12/18/2022]
Abstract
Astrocytes contribute to the formation, function, and plasticity of synapses. Their processes enwrap the neuronal components of the tripartite synapse, and due to this close interaction they are perfectly positioned to modulate neuronal communication. The interaction between astrocytes and synapses is facilitated by cell adhesion molecules and matricellular proteins, which have been implicated in the formation and functioning of tripartite synapses. The importance of such neuron-astrocyte integration at the synapse is underscored by the emerging role of astrocyte dysfunction in synaptic pathologies such as autism and schizophrenia. Here we review astrocyte-expressed cell adhesion molecules and matricellular molecules that play a role in integration of neurons and astrocytes within the tripartite synapse.
Collapse
Affiliation(s)
- Anne E J Hillen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Department of Pediatrics/Child Neurology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Bridel C, Koel-Simmelink MJA, Peferoen L, Derada Troletti C, Durieux S, Gorter R, Nutma E, Gami P, Iacobaeus E, Brundin L, Kuhle J, Vrenken H, Killestein J, Piersma SR, Pham TV, De Vries HE, Amor S, Jimenez CR, Teunissen CE. Brain endothelial cell expression of SPARCL-1 is specific to chronic multiple sclerosis lesions and is regulated by inflammatory mediators in vitro. Neuropathol Appl Neurobiol 2017; 44:404-416. [PMID: 28543098 DOI: 10.1111/nan.12412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 05/18/2017] [Accepted: 05/24/2017] [Indexed: 02/05/2023]
Abstract
AIMS Cell matrix modulating protein SPARCL-1 is highly expressed by astrocytes during CNS development and following acute CNS damage. Applying NanoLC-MS/MS to CSF of RRMS and SPMS patients, we identified SPARCL-1 as differentially expressed between these two stages of MS, suggesting a potential as CSF biomarker to differentiate RRMS from SPMS and a role in MS pathogenesis. METHODS This study examines the potential of SPARCL-1 as CSF biomarker discriminating RRMS from SPMS in three independent cohorts (n = 249), analyses its expression pattern in MS lesions (n = 26), and studies its regulation in cultured human brain microvasculature endothelial cells (BEC) after exposure to MS-relevant inflammatory mediators. RESULTS SPARCL-1 expression in CSF was significantly higher in SPMS compared to RRMS in a Dutch cohort of 76 patients. This finding was not replicated in 2 additional cohorts of MS patients from Sweden (n = 81) and Switzerland (n = 92). In chronic MS lesions, but not active lesions or NAWM, a vessel expression pattern of SPARCL-1 was observed in addition to the expression by astrocytes. EC were found to express SPARCL-1 in chronic MS lesions, and SPARCL-1 expression was regulated by MS-relevant inflammatory mediators in cultured human BEC. CONCLUSIONS Conflicting results of SPARCL-1's differential expression in CSF of three independent cohorts of RRMS and SPMS patients precludes its use as biomarker for disease progression. The expression of SPARCL-1 by BEC in chronic MS lesions together with its regulation by inflammatory mediators in vitro suggest a role for SPARCL-1 in MS neuropathology, possibly at the brain vascular level.
Collapse
Affiliation(s)
- C Bridel
- Department of Clinical Chemistry, Neurochemistry Lab and Biobank, VU Medical Centre, Amsterdam, The Netherlands
| | - M J A Koel-Simmelink
- Department of Clinical Chemistry, Neurochemistry Lab and Biobank, VU Medical Centre, Amsterdam, The Netherlands
| | - L Peferoen
- Department of Pathology, VU Medical Centre, Amsterdam, The Netherlands
| | - C Derada Troletti
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
| | - S Durieux
- Department of Clinical Chemistry, Neurochemistry Lab and Biobank, VU Medical Centre, Amsterdam, The Netherlands
| | - R Gorter
- Department of Pathology, VU Medical Centre, Amsterdam, The Netherlands
| | - E Nutma
- Department of Pathology, VU Medical Centre, Amsterdam, The Netherlands
| | - P Gami
- Department of Pathology, VU Medical Centre, Amsterdam, The Netherlands
| | - E Iacobaeus
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institute, Solna, Sweden.,Center for Molecular Medicine, Stockholm, Sweden
| | - L Brundin
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institute, Solna, Sweden.,Center for Molecular Medicine, Stockholm, Sweden
| | - J Kuhle
- Neurology, Department of Medicine, Biomedicine and Clinical Research, University Hospital Basel, Basel, Switzerland
| | - H Vrenken
- Department of Radiology and Nuclear Medicine and Department of Physics and Medical Technology, VU University Medical Center, Amsterdam, The Netherlands
| | - J Killestein
- Department of Neurology, MS Centre Amsterdam, VU Medical Centre, Amsterdam, The Netherlands
| | - S R Piersma
- Department of Medical Oncology, OncoProteomics Laboratory, VU Medical Centre, Amsterdam, The Netherlands
| | - T V Pham
- Department of Medical Oncology, OncoProteomics Laboratory, VU Medical Centre, Amsterdam, The Netherlands
| | - H E De Vries
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
| | - S Amor
- Department of Pathology, VU Medical Centre, Amsterdam, The Netherlands.,Queen Mary University of London, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - C R Jimenez
- Department of Medical Oncology, OncoProteomics Laboratory, VU Medical Centre, Amsterdam, The Netherlands
| | - C E Teunissen
- Department of Clinical Chemistry, Neurochemistry Lab and Biobank, VU Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Germline Chd8 haploinsufficiency alters brain development in mouse. Nat Neurosci 2017; 20:1062-1073. [PMID: 28671691 DOI: 10.1038/nn.4592] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 05/23/2017] [Indexed: 02/06/2023]
Abstract
The chromatin remodeling gene CHD8 represents a central node in neurodevelopmental gene networks implicated in autism. We examined the impact of germline heterozygous frameshift Chd8 mutation on neurodevelopment in mice. Chd8+/del5 mice displayed normal social interactions with no repetitive behaviors but exhibited cognitive impairment correlated with increased regional brain volume, validating that phenotypes of Chd8+/del5 mice overlap pathology reported in humans with CHD8 mutations. We applied network analysis to characterize neurodevelopmental gene expression, revealing widespread transcriptional changes in Chd8+/del5 mice across pathways disrupted in neurodevelopmental disorders, including neurogenesis, synaptic processes and neuroimmune signaling. We identified a co-expression module with peak expression in early brain development featuring dysregulation of RNA processing, chromatin remodeling and cell-cycle genes enriched for promoter binding by Chd8, and we validated increased neuronal proliferation and developmental splicing perturbation in Chd8+/del5 mice. This integrative analysis offers an initial picture of the consequences of Chd8 haploinsufficiency for brain development.
Collapse
|
13
|
SPARCL1 a novel player in cancer biology. Crit Rev Oncol Hematol 2017; 109:63-68. [DOI: 10.1016/j.critrevonc.2016.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/22/2016] [Indexed: 01/02/2023] Open
|
14
|
Hashimoto N, Sato T, Yajima T, Fujita M, Sato A, Shimizu Y, Shimada Y, Shoji N, Sasano T, Ichikawa H. SPARCL1-containing neurons in the human brainstem and sensory ganglion. Somatosens Mot Res 2016; 33:112-7. [PMID: 27357901 DOI: 10.1080/08990220.2016.1197115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Secreted protein, acidic and rich in cysteine-like 1 (SPARCL1) is a member of the osteonectin family of proteins. In this study, immunohistochemistry for SPARCL1 was performed to obtain its distribution in the human brainstem, cervical spinal cord, and sensory ganglion. SPARCL1-immunoreactivity was detected in neuronal cell bodies including perikarya and proximal dendrites, and the neuropil. The motor nuclei of the IIIrd, Vth, VIth, VIIth, IXth, Xth, XIth, and XIIth cranial nerves and spinal nerves contained many SPARCL1-immunoreactive (-IR) neurons with medium-sized to large cell bodies. Small and medium-sized SPARCL1-IR neurons were distributed in sensory nuclei of the Vth, VIIth, VIIIth, IXth, and Xth cranial nerves. In the medulla oblongata, the dorsal column nuclei also had small to medium-sized SPARCL1-IR neurons. In addition, SPARCL1-IR neurons were detected in the nucleus of the trapezoid body and pontine nucleus within the pons and the arcuate nucleus in the medulla oblongata. In the cervical spinal cord, the ventral horn contained some SPARCL1-IR neurons with large cell bodies. These findings suggest that SPARCL1-containing neurons function to relay and regulate motor and sensory signals in the human brainstem. In the dorsal root (DRG) and trigeminal ganglia (TG), primary sensory neurons contained SPARCL1-immunoreactivity. The proportion of SPARCL1-IR neurons in the TG (mean ± SD, 39.9 ± 2.4%) was higher than in the DRG (30.6 ± 2.1%). SPARCL1-IR neurons were mostly medium-sized to large (mean ± SD, 1494.5 ± 708.3 μm(2); range, 320.4-4353.4 μm(2)) in the DRG, whereas such neurons were of various cell body sizes in the TG (mean ± SD, 1291.2 ± 532.8 μm(2); range, 209.3-4326.4 μm(2)). There appears to be a SPARCL1-containing sensory pathway in the ganglion and brainstem of the spinal and trigeminal nervous systems.
Collapse
Affiliation(s)
- Naoya Hashimoto
- a Division of Oral Diagnosis , Graduate School of Dentistry, Tohoku University , Sendai , Japan
| | - Tadasu Sato
- b Division of Oral and Craniofacial Anatomy , Graduate School of Dentistry, Tohoku University , Sendai , Japan
| | - Takehiro Yajima
- c Division of Operative Dentistry , Graduate School of Dentistry, Tohoku University , Sendai , Japan
| | - Masatoshi Fujita
- d Division of Dental Anesthesiology and Pain Management , Graduate School of Dentistry, Tohoku University , Sendai , Japan
| | - Ayumi Sato
- b Division of Oral and Craniofacial Anatomy , Graduate School of Dentistry, Tohoku University , Sendai , Japan
| | - Yoshinaka Shimizu
- b Division of Oral and Craniofacial Anatomy , Graduate School of Dentistry, Tohoku University , Sendai , Japan
| | - Yusuke Shimada
- a Division of Oral Diagnosis , Graduate School of Dentistry, Tohoku University , Sendai , Japan
| | - Noriaki Shoji
- a Division of Oral Diagnosis , Graduate School of Dentistry, Tohoku University , Sendai , Japan
| | - Takashi Sasano
- a Division of Oral Diagnosis , Graduate School of Dentistry, Tohoku University , Sendai , Japan
| | - Hiroyuki Ichikawa
- b Division of Oral and Craniofacial Anatomy , Graduate School of Dentistry, Tohoku University , Sendai , Japan
| |
Collapse
|
15
|
COX-2-Derived Prostaglandin E2 Produced by Pyramidal Neurons Contributes to Neurovascular Coupling in the Rodent Cerebral Cortex. J Neurosci 2015; 35:11791-810. [PMID: 26311764 DOI: 10.1523/jneurosci.0651-15.2015] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Vasodilatory prostaglandins play a key role in neurovascular coupling (NVC), the tight link between neuronal activity and local cerebral blood flow, but their precise identity, cellular origin and the receptors involved remain unclear. Here we show in rats that NMDA-induced vasodilation and hemodynamic responses evoked by whisker stimulation involve cyclooxygenase-2 (COX-2) activity and activation of the prostaglandin E2 (PgE2) receptors EP2 and EP4. Using liquid chromatography-electrospray ionization-tandem mass spectrometry, we demonstrate that PgE2 is released by NMDA in cortical slices. The characterization of PgE2 producing cells by immunohistochemistry and single-cell reverse transcriptase-PCR revealed that pyramidal cells and not astrocytes are the main cell type equipped for PgE2 synthesis, one third expressing COX-2 systematically associated with a PgE2 synthase. Consistent with their central role in NVC, in vivo optogenetic stimulation of pyramidal cells evoked COX-2-dependent hyperemic responses in mice. These observations identify PgE2 as the main prostaglandin mediating sensory-evoked NVC, pyramidal cells as their principal source and vasodilatory EP2 and EP4 receptors as their targets. SIGNIFICANCE STATEMENT Brain function critically depends on a permanent spatiotemporal match between neuronal activity and blood supply, known as NVC. In the cerebral cortex, prostaglandins are major contributors to NVC. However, their biochemical identity remains elusive and their cellular origins are still under debate. Although astrocytes can induce vasodilations through the release of prostaglandins, the recruitment of this pathway during sensory stimulation is questioned. Using multidisciplinary approaches from single-cell reverse transcriptase-PCR, mass spectrometry, to ex vivo and in vivo pharmacology and optogenetics, we provide compelling evidence identifying PgE2 as the main prostaglandin in NVC, pyramidal neurons as their main cellular source and the vasodilatory EP2 and EP4 receptors as their main targets. These original findings will certainly change the current view of NVC.
Collapse
|
16
|
Blakely PK, Hussain S, Carlin LE, Irani DN. Astrocyte matricellular proteins that control excitatory synaptogenesis are regulated by inflammatory cytokines and correlate with paralysis severity during experimental autoimmune encephalomyelitis. Front Neurosci 2015; 9:344. [PMID: 26500475 PMCID: PMC4598482 DOI: 10.3389/fnins.2015.00344] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/14/2015] [Indexed: 11/29/2022] Open
Abstract
The matricellular proteins, secreted protein acidic and rich in cysteine (SPARC) and SPARC-like 1 (SPARCL1), are produced by astrocytes and control excitatory synaptogenesis in the central nervous system. While SPARCL1 directly promotes excitatory synapse formation in vitro and in the developing nervous system in vivo, SPARC specifically antagonizes the synaptogenic actions of SPARCL1. We hypothesized these proteins also help maintain existing excitatory synapses in adult hosts, and that local inflammation in the spinal cord alters their production in a way that dynamically modulates motor synapses and impacts the severity of paralysis during experimental autoimmune encephalomyelitis (EAE) in mice. Using a spontaneously remitting EAE model, paralysis severity correlated inversely with both expression of synaptic proteins and the number of synapses in direct contact with the perikarya of motor neurons in spinal gray matter. In both remitting and non-remitting EAE models, paralysis severity also correlated inversely with sparcl1:sparc transcript and SPARCL1:SPARC protein ratios directly in lumbar spinal cord tissue. In vitro, astrocyte production of both SPARCL1 and SPARC was regulated by T cell-derived cytokines, causing dynamic modulation of the SPARCL1:SPARC expression ratio. Taken together, these data support a model whereby proinflammatory cytokines inhibit SPARCL1 and/or augment SPARC expression by astrocytes in spinal gray matter that, in turn, cause either transient or sustained synaptic retraction from lumbar spinal motor neurons thereby regulating hind limb paralysis during EAE. Ongoing studies seek ways to alter this SPARCL1:SPARC expression ratio in favor of synapse reformation/maintenance and thus help to modulate neurologic deficits during times of inflammation. This could identify new astrocyte-targeted therapies for diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Pennelope K Blakely
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School Ann Arbor, MI, USA
| | - Shabbir Hussain
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School Ann Arbor, MI, USA
| | - Lindsey E Carlin
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School Ann Arbor, MI, USA
| | - David N Irani
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School Ann Arbor, MI, USA
| |
Collapse
|
17
|
COX-2-Derived Prostaglandin E2 Produced by Pyramidal Neurons Contributes to Neurovascular Coupling in the Rodent Cerebral Cortex. J Neurosci 2015. [PMID: 26311764 DOI: 10.1523/jneurosci.0651‐15.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Vasodilatory prostaglandins play a key role in neurovascular coupling (NVC), the tight link between neuronal activity and local cerebral blood flow, but their precise identity, cellular origin and the receptors involved remain unclear. Here we show in rats that NMDA-induced vasodilation and hemodynamic responses evoked by whisker stimulation involve cyclooxygenase-2 (COX-2) activity and activation of the prostaglandin E2 (PgE2) receptors EP2 and EP4. Using liquid chromatography-electrospray ionization-tandem mass spectrometry, we demonstrate that PgE2 is released by NMDA in cortical slices. The characterization of PgE2 producing cells by immunohistochemistry and single-cell reverse transcriptase-PCR revealed that pyramidal cells and not astrocytes are the main cell type equipped for PgE2 synthesis, one third expressing COX-2 systematically associated with a PgE2 synthase. Consistent with their central role in NVC, in vivo optogenetic stimulation of pyramidal cells evoked COX-2-dependent hyperemic responses in mice. These observations identify PgE2 as the main prostaglandin mediating sensory-evoked NVC, pyramidal cells as their principal source and vasodilatory EP2 and EP4 receptors as their targets. SIGNIFICANCE STATEMENT Brain function critically depends on a permanent spatiotemporal match between neuronal activity and blood supply, known as NVC. In the cerebral cortex, prostaglandins are major contributors to NVC. However, their biochemical identity remains elusive and their cellular origins are still under debate. Although astrocytes can induce vasodilations through the release of prostaglandins, the recruitment of this pathway during sensory stimulation is questioned. Using multidisciplinary approaches from single-cell reverse transcriptase-PCR, mass spectrometry, to ex vivo and in vivo pharmacology and optogenetics, we provide compelling evidence identifying PgE2 as the main prostaglandin in NVC, pyramidal neurons as their main cellular source and the vasodilatory EP2 and EP4 receptors as their main targets. These original findings will certainly change the current view of NVC.
Collapse
|
18
|
Medina-Bolívar C, González-Arnay E, Talos F, González-Gómez M, Moll UM, Meyer G. Cortical hypoplasia and ventriculomegaly of p73-deficient mice: Developmental and adult analysis. J Comp Neurol 2014; 522:2663-79. [PMID: 24500610 DOI: 10.1002/cne.23556] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/19/2013] [Accepted: 01/31/2014] [Indexed: 12/24/2022]
Abstract
Trp73, a member of the p53 gene family, plays a crucial role in neural development. We describe two main phenotypic variants of p73 deficiency in the brain, a severe one characterized by massive apoptosis in the cortex leading to early postnatal death and a milder, non-/low-apoptosis one in which 50% of pups may reach adulthood using an intensive-care breeding protocol. Both variants display the core triad of p73 deficiency: cortical hypoplasia, hippocampal malformations, and ventriculomegaly. We studied the development of the neocortex in p73 KO mice from early embryonic life into advanced age (25 months). Already at E14.5, the incipient cortical plate of the p73 KO brains showed a reduced width. Examination of adult neocortex revealed a generalized, nonprogressive reduction by 10-20%. Area-specific architectonic landmarks and lamination were preserved in all cortical areas. The surviving adult animals had moderate ventricular distension, whereas pups of the early lethal phenotypic variant showed severe ventriculomegaly. Ependymal cells of wild-type ventricles strongly express p73 and are particularly vulnerable to p73 deficiency. Ependymal denudation by apoptosis and reduction of ependymal cilia were already evident in young mice, with complete absence of cilia in older animals. Loss of p73 function in the ependyma may thus be one determining factor for chronic hydrocephalus, which leads to atrophy of subcortical structures (striatum, septum, amygdala). p73 Is thus involved in a variety of CNS activities ranging from embryonic regulation of brain size to the control of cerebrospinal fluid homeostasis in the adult brain via maintenance of the ependyma.
Collapse
Affiliation(s)
- Carolina Medina-Bolívar
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, 38071 La Laguna, Tenerife, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Astrocyte-secreted matricellular proteins in CNS remodelling during development and disease. Neural Plast 2014; 2014:321209. [PMID: 24551460 PMCID: PMC3914553 DOI: 10.1155/2014/321209] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/18/2013] [Indexed: 12/20/2022] Open
Abstract
Matricellular proteins are secreted, nonstructural proteins that regulate the extracellular matrix (ECM) and interactions between cells through modulation of growth factor signaling, cell adhesion, migration, and proliferation. Despite being well described in the context of nonneuronal tissues, recent studies have revealed that these molecules may also play instrumental roles in central nervous system (CNS) development and diseases. In this minireview, we discuss the matricellular protein families SPARC (secreted protein acidic and rich in cysteine), Hevin/SC1 (SPARC-like 1), TN-C (Tenascin C), TSP (Thrombospondin), and CCN (CYR61/CTGF/NOV), which are secreted by astrocytes during development. These proteins exhibit a reduced expression in adult CNS but are upregulated in reactive astrocytes following injury or disease, where they are well placed to modulate the repair processes such as tissue remodeling, axon regeneration, glial scar formation, angiogenesis, and rewiring of neural circuitry. Conversely, their reexpression in reactive astrocytes may also lead to detrimental effects and promote the progression of neurodegenerative diseases.
Collapse
|
20
|
Xiang Y, Qiu Q, Jiang M, Jin R, Lehmann BD, Strand DW, Jovanovic B, DeGraff DJ, Zheng Y, Yousif DA, Simmons CQ, Case TC, Yi J, Cates JM, Virostko J, He X, Jin X, Hayward SW, Matusik RJ, George AL, Yi Y. SPARCL1 suppresses metastasis in prostate cancer. Mol Oncol 2013; 7:1019-30. [PMID: 23916135 DOI: 10.1016/j.molonc.2013.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/09/2013] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Metastasis, the main cause of death from cancer, remains poorly understood at the molecular level. EXPERIMENTAL DESIGN Based on a pattern of reduced expression in human prostate cancer tissues and tumor cell lines, a candidate suppressor gene (SPARCL1) was identified. We used in vitro approaches to determine whether overexpression of SPARCL1 affects cell growth, migration, and invasiveness. We then employed xenograft mouse models to analyze the impact of SPARCL1 on prostate cancer cell growth and metastasis in vivo. RESULTS SPARCL1 expression did not inhibit tumor cell proliferation in vitro. By contrast, SPARCL1 did suppress tumor cell migration and invasiveness in vitro and tumor metastatic growth in vivo, conferring improved survival in xenograft mouse models. CONCLUSIONS We present the first in vivo data suggesting that SPARCL1 suppresses metastasis of prostate cancer.
Collapse
Affiliation(s)
- Yuzhu Xiang
- Department of Medicine, Vanderbilt University, Nashville, TN 37232-0275, USA; Minimally Invasive Urology Center, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lloyd-Burton SM, York EM, Anwar MA, Vincent AJ, Roskams AJ. SPARC regulates microgliosis and functional recovery following cortical ischemia. J Neurosci 2013; 33:4468-81. [PMID: 23467362 PMCID: PMC6704956 DOI: 10.1523/jneurosci.3585-12.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 01/22/2013] [Accepted: 01/25/2013] [Indexed: 01/12/2023] Open
Abstract
Secreted protein acidic rich in cysteine (SPARC) is a matricellular protein that modulates the activity of growth factors, cytokines, and extracellular matrix to play multiple roles in tissue development and repair, such as cellular adhesion, migration, and proliferation. Throughout the CNS, SPARC is highly localized in mature ramified microglia, but its role in microglia--in development or during response to disease or injury--is not understood. In the postnatal brain, immature amoeboid myeloid precursors only induce SPARC expression after they cease proliferation and migration, and transform into mature, ramified resting microglia. SPARC null/CX3CR1-GFP reporter mice reveal that SPARC regulates the distribution and branching of mature microglia, with significant differences between cortical gray and white matter in both controls and SPARC nulls. Following ischemic and excitotoxic lesion, reactive, hypertrophic microglia rapidly downregulate and release SPARC at the lesion, concomitant with reactive, hypertrophic perilesion astrocytes upregulating SPARC. After photothrombotic stroke in the forelimb sensorimotor cortex, SPARC nulls demonstrate enhanced microgliosis in and around the lesion site, which accompanies significantly enhanced functional recovery by 32 d after lesion. Microglia from SPARC nulls also intrinsically proliferate at a greater rate in vitro--an enhanced effect that can be rescued by the addition of exogenous SPARC. SPARC is thus a novel regulator of microglial proliferation and structure, and, in addition to regulating glioma progression, may play an important role in differently regulating the gray and white matter microglial responses to CNS lesion--and modulating behavioral recovery--after injury.
Collapse
Affiliation(s)
- Samantha M. Lloyd-Burton
- Department of Zoology, Life Sciences Institute and Brain Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada and
| | - Elisa M. York
- Department of Zoology, Life Sciences Institute and Brain Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada and
| | - Mohammad A. Anwar
- Department of Zoology, Life Sciences Institute and Brain Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada and
| | - Adele J. Vincent
- Menzies Research Institute, University of Tasmania, Hobart, TAS 7000, Australia
| | - A. Jane Roskams
- Department of Zoology, Life Sciences Institute and Brain Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada and
| |
Collapse
|