1
|
Tran H, Sawatari A, Leamey CA. Ten-m3 plays a role in the formation of thalamostriatal projections. Dev Neurobiol 2023; 83:255-267. [PMID: 37700636 DOI: 10.1002/dneu.22927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/28/2023] [Accepted: 08/25/2023] [Indexed: 09/14/2023]
Abstract
The importance of the thalamostriatal pathway for a myriad of brain functions is becoming increasingly apparent. Little is known about the formation of this pathway in mice. Further, while Ten-m3, a member of the Ten-m/teneurin/Odz family, is implicated in the proper wiring of mature thalamostriatal projections, its developmental time course is unknown. Here, we describe the normal development of thalamostriatal projections arising from the parafascicular nucleus (PFN) and show a role for Ten-m3 in its formation. Ten-m3 is expressed in both the PFN and the striatum by embryonic day 17 (E17). By postnatal day 3 (P3), it had a patchy appearance in the striatum, overlaid on a high dorsal-low ventral expression gradient in both structures. In wild-type mice, axons from the PFN begin to innervate the striatum by E17. By P3, terminals had ramified but were not confined to any striatal subregion. By P7, the axons had begun to avoid striosomes. The first indication of clustering of thalamic terminals within the striatal matrix was also seen at this time point. The compartmental targeting and clustering of PFN projections became more apparent by P10. Analysis of Ten-m3 knockout mice showed that while the early developmental progression of the thalamostriatal pathway is conserved, by P10 differences emerged, with a loss of topographic precision and the absence of terminal clustering. No evidence of the involvement of EphA7 downstream of Ten-m3 was found. Overall, our results suggest that Ten-m3 plays a role in the consolidation and refinement of thalamic axons to a specific subregion of the striatal matrix.
Collapse
Affiliation(s)
- Heidi Tran
- School of Medical Science, FMH, University of Sydney, Sydney, New South Wales, Australia
| | - Atomu Sawatari
- School of Medical Science, FMH, University of Sydney, Sydney, New South Wales, Australia
| | - Catherine A Leamey
- School of Medical Science, FMH, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Stinson JPC, Brett CA, Carroll JB, Gabriele ML. Registry of Compartmental Ephrin-B3 Guidance Patterns With Respect to Emerging Multimodal Midbrain Maps. Front Neuroanat 2021; 15:649478. [PMID: 33815071 PMCID: PMC8010652 DOI: 10.3389/fnana.2021.649478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
Guidance errors and unrefined neural map configurations appear linked to certain neurodevelopmental conditions, including autism spectrum disorders. Deficits in specific multisensory tasks that require midbrain processing are highly predictive of cognitive and behavioral phenotypes associated with such syndromes. The lateral cortex of the inferior colliculus (LCIC) is a shell region of the mesencephalon that integrates converging information from multiple levels and modalities. Mature LCIC sensory maps are discretely-organized, mimicking its compartmental micro-organization. Intermittent modular domains receive patchy somatosensory connections, while inputs of auditory origin terminate in the encompassing extramodular matrix.Eph-ephrin signaling mechanisms instruct comparable topographic arrangements in a variety of other systems. Whether Eph-ephrin interactions also govern the assembly of LCIC multimodal maps remains unaddressed. Previously, we identified EphA4 and ephrin-B2 as key mediators, with overlapping expression patterns that align with emerging LCIC modules. Here, we implicate another member of this guidance family, ephrin-B3, and quantify its transient expression with respect to neurochemically-defined LCIC compartments. Multiple-labeling studies in GAD67-GFP knock-in mice reveal extramodular ephrin-B3 expression, complementary to that of EphA4 and ephrin-B2. This distinctive pattern sharpens over the early postnatal period (birth to P8), prior to ephrin-B3 downregulation once multimodal LCIC inputs are largely segregated (P12). Channel-specific sampling of LCIC ROIs show ephrin-B3 signal periodicities that are out-of-phase with glutamic acid decarboxylase (GAD;modular marker) signal fluctuations, and match calretinin (CR) waveforms (matrix marker). Taken together, the guidance mosaic registry with emerging LCIC compartments and its interfacing afferent streams suggest a prominent role for Eph-ephrins in ordering behaviorally significant multisensory midbrain networks.
Collapse
Affiliation(s)
- Jeremiah P C Stinson
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Cooper A Brett
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Julianne B Carroll
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Mark L Gabriele
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| |
Collapse
|
3
|
Matsushima A, Graybiel AM. Combinatorial Developmental Controls on Striatonigral Circuits. Cell Rep 2020; 31:107778. [PMID: 32553154 PMCID: PMC7433760 DOI: 10.1016/j.celrep.2020.107778] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/12/2020] [Accepted: 05/27/2020] [Indexed: 11/17/2022] Open
Abstract
Cortical pyramidal cells are generated locally, from pre-programmed progenitors, to form functionally distinct areas. By contrast, striatal projection neurons (SPNs) are generated remotely from a common source, undergo migration to form mosaics of striosomes and matrix, and become incorporated into functionally distinct sectors. Striatal circuits might thus have a unique logic of developmental organization, distinct from those of the neocortex. We explore this possibility in mice by mapping one set of SPNs, those in striosomes, with striatonigral projections to the dopamine-containing substantia nigra pars compacta (SNpc). Same-age SPNs exhibit topographic striatonigral projections, according to their resident sector. However, the different birth dates of resident SPNs within a given sector specify the destination of their axons within the SNpc. These findings highlight a logic intercalating birth date-dependent and birth date-independent factors in determining the trajectories of SPN axons and organizing specialized units of striatonigral circuitry that could influence behavioral expression and vulnerabilities to disease.
Collapse
Affiliation(s)
- Ayano Matsushima
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 20139, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 20139, USA.
| |
Collapse
|
4
|
Lamb-Echegaray ID, Noftz WA, Stinson JPC, Gabriele ML. Shaping of discrete auditory inputs to extramodular zones of the lateral cortex of the inferior colliculus. Brain Struct Funct 2019; 224:3353-3371. [PMID: 31729553 DOI: 10.1007/s00429-019-01979-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022]
Abstract
The multimodal lateral cortex of the inferior colliculus (LCIC) exhibits a modular-extramodular micro-organization that is evident early in development. In addition to a set of neurochemical markers that reliably highlight its modular-extramodular organization (e.g. modules: GAD67-positive, extramodular zones: calretinin-positive, CR), mature projection patterns suggest that major LCIC afferents recognize and adhere to such a framework. In adult mice, distinct afferent projections appear segregated, with somatosensory inputs targeting LCIC modules and auditory inputs surrounding extramodular fields. Currently lacking is an understanding regarding the development and shaping of multimodal LCIC afferents with respect to its emerging modular-extramodular microarchitecture. Combining living slice tract-tracing and immunocytochemical approaches in GAD67-GFP knock-in mice, the present study characterizes the critical period of projection shaping for LCIC auditory afferents arising from its neighboring central nucleus (CNIC). Both crossed and uncrossed projection patterns exhibit LCIC extramodular mapping characteristics that emerge from initially diffuse distributions. Projection mismatch with GAD-defined modules and alignment with encompassing extramodular zones becomes increasingly clear over the early postnatal period (birth to postnatal day 12). CNIC inputs terminate almost exclusively in extramodular zones that express CR. These findings suggest multimodal LCIC inputs may initially be sparse and intermingle, prior to segregation into distinct processing streams. Future experiments are needed to determine the likely complex interactions and mechanisms (e.g. activity-dependent and independent) responsible for shaping early modality-specific LCIC circuits.
Collapse
Affiliation(s)
- Isabel D Lamb-Echegaray
- Department of Biology, James Madison University, MSC 7801, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - William A Noftz
- Department of Biology, James Madison University, MSC 7801, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Jeremiah P C Stinson
- Department of Biology, James Madison University, MSC 7801, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Mark L Gabriele
- Department of Biology, James Madison University, MSC 7801, 951 Carrier Drive, Harrisonburg, VA, 22807, USA.
| |
Collapse
|
5
|
Gay SM, Brett CA, Stinson JPC, Gabriele ML. Alignment of EphA4 and ephrin-B2 expression patterns with developing modularity in the lateral cortex of the inferior colliculus. J Comp Neurol 2018; 526:2706-2721. [PMID: 30156295 DOI: 10.1002/cne.24525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/31/2018] [Accepted: 08/21/2018] [Indexed: 01/26/2023]
Abstract
In the multimodal lateral cortex of the inferior colliculus (LCIC), there are two neurochemically and connectionally distinct compartments, termed modular and extramodular zones. Modular fields span LCIC layer 2 and are recipients of somatosensory afferents, while encompassing extramodular domains receive auditory inputs. Recently, in developing mice, we identified several markers (among them glutamic acid decarboxylase, GAD) that consistently label the same modular set, and a reliable extramodular marker, calretinin, (CR). Previous reports from our lab show similar modular-extramodular patterns for certain Eph-ephrin guidance members, although their precise alignment with the developing LCIC neurochemical framework has yet to be addressed. Here we confirm in the nascent LCIC complementary GAD/CR-positive compartments, and characterize the registry of EphA4 and ephrin-B2 expression patterns with respect to its emerging modular-extramodular organization. Immunocytochemical approaches in GAD67-GFP knock-in mice reveal patchy EphA4 and ephrin-B2 domains that precisely align with GAD-positive LCIC modules, and are complementary to CR-defined extramodular zones. Such patterning was detectable neonatally, yielding discrete compartments prior to hearing onset. A dense plexus of EphA4-positive fibers filled modules, surrounding labeled ephrin-B2 and GAD cell populations. The majority of observed GABAergic neurons within modular boundaries were also positive for ephrin-B2. These results suggest an early compartmentalization of the LCIC that is likely instructed in part through Eph-ephrin guidance mechanisms. The overlap of developing LCIC neurochemical and guidance patterns is discussed in the context of its seemingly segregated multimodal input-output streams.
Collapse
Affiliation(s)
- Sean M Gay
- Department of Biology, James Madison University, Harrisonburg, Virginia
| | - Cooper A Brett
- Department of Biology, James Madison University, Harrisonburg, Virginia
| | | | - Mark L Gabriele
- Department of Biology, James Madison University, Harrisonburg, Virginia
| |
Collapse
|
6
|
Miyamoto Y, Katayama S, Shigematsu N, Nishi A, Fukuda T. Striosome-based map of the mouse striatum that is conformable to both cortical afferent topography and uneven distributions of dopamine D1 and D2 receptor-expressing cells. Brain Struct Funct 2018; 223:4275-4291. [PMID: 30203304 PMCID: PMC6267261 DOI: 10.1007/s00429-018-1749-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/04/2018] [Indexed: 11/03/2022]
Abstract
The striatum is critically involved in execution of appropriate behaviors, but its internal structures remain unmapped due to its unique structural organization, leading to ambiguity when interpreting heterogeneous properties of striatal neurons that differ by location. We focused on site-specific diversity of striosomes/matrix compartmentalization to draw the striatum map. Five types of striosomes were discriminated according to diverse immunoreactivities for the µ-opioid receptor, substance P (SP) and enkephalin, and each type occupied a particular domain inside the striatum. Furthermore, there was an additional domain lacking striosomes. This striosome-free space was located at the dorsolateral region and received afferents preferentially from the primary motor and sensory cortices, whereas the striosome-rich part received afferents from associational/limbic cortices, with topography inside both innervations. The proportion of dopamine D1 receptor-expressing, presumptive striatonigral neurons was approximately 70% in SP-positive striosomes, 40% in SP-deficient striosomes, 30% in the striosome-free space, and 50% in the matrix. In contrast, the proportion of D2 receptor-expressing, presumptive striatopallidal neurons was complementary to that of D1 receptor-expressing cells, indicating a close relationship between the map and the direct and indirect parallel circuitry. Finally, the most caudal part of the striatum lacked compartmentalization and consisted of three lamina characterized by intense and mutually exclusive immunoreactivities for SP and enkephalin. This tri-laminar part also received specific afferents from the cortex. The newly obtained map will facilitate broad fields of research in the basal ganglia with higher resolution of the three-dimensional anatomy of the striatum.
Collapse
Affiliation(s)
- Yuta Miyamoto
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Sachiko Katayama
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Naoki Shigematsu
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Akinori Nishi
- Department of Pharmacology, Kurume University, Kurume, 830-0111, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
7
|
Dillingham CH, Gay SM, Behrooz R, Gabriele ML. Modular-extramodular organization in developing multisensory shell regions of the mouse inferior colliculus. J Comp Neurol 2017; 525:3742-3756. [PMID: 28786102 DOI: 10.1002/cne.24300] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/07/2017] [Accepted: 07/28/2017] [Indexed: 11/07/2022]
Abstract
The complex neuroanatomical connections of the inferior colliculus (IC) and its major subdivisions offer a juxtaposition of segregated processing streams with distinct organizational features. While the tonotopically layered central nucleus is well-documented, less is known about functional compartments in the neighboring lateral cortex (LCIC). In addition to a laminar framework, LCIC afferent-efferent patterns suggest a multimodal mosaic, consisting of a patchy modular network with surrounding extramodular domains. This study utilizes several neurochemical markers that reveal an emerging LCIC modular-extramodular microarchitecture. In newborn and post-hearing C57BL/6J and CBA/CaJ mice, histochemical and immunocytochemical stains were performed for acetylcholinesterase (AChE), nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d), glutamic acid decarboxylase (GAD), cytochrome oxidase (CO), and calretinin (CR). Discontinuous layer 2 modules are positive for AChE, NADPH-d, GAD, and CO throughout the rostrocaudal LCIC. While not readily apparent at birth, discrete cell clusters emerge over the first postnatal week, yielding an identifiable modular network prior to hearing onset. Modular boundaries continue to become increasingly distinct with age, as surrounding extramodular fields remain largely negative for each marker. Alignment of modular markers in serial sections suggests each highlight the same periodic patchy network throughout the nascent LCIC. In contrast, CR patterns appear complementary, preferentially staining extramodular LCIC zones. Double-labeling experiments confirm that NADPH-d, the most consistent developmental modular marker, and CR label separate, nonoverlapping LCIC compartments. Determining how this emerging modularity may align with similar LCIC patch-matrix-like Eph/ephrin guidance patterns, and how each interface with, and potentially influence developing multimodal LCIC projection configurations is discussed.
Collapse
Affiliation(s)
| | - Sean M Gay
- Department of Biology, James Madison University, Harrisonburg, Virginia
| | - Roxana Behrooz
- Department of Biology, James Madison University, Harrisonburg, Virginia
| | - Mark L Gabriele
- Department of Biology, James Madison University, Harrisonburg, Virginia
| |
Collapse
|
8
|
Receptor tyrosine kinase EphA7 is required for interneuron connectivity at specific subcellular compartments of granule cells. Sci Rep 2016; 6:29710. [PMID: 27405707 PMCID: PMC4942821 DOI: 10.1038/srep29710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/21/2016] [Indexed: 01/12/2023] Open
Abstract
Neuronal transmission is regulated by the local circuitry which is composed of principal neurons targeted at different subcellular compartments by a variety of interneurons. However, mechanisms that contribute to the subcellular localisation and maintenance of GABAergic interneuron terminals are poorly understood. Stabilization of GABAergic synapses depends on clustering of the postsynaptic scaffolding protein gephyrin and its interaction with the guanine nucleotide exchange factor collybistin. Lentiviral knockdown experiments in adult rats indicated that the receptor tyrosine kinase EphA7 is required for the stabilisation of basket cell terminals on proximal dendritic and somatic compartments of granular cells of the dentate gyrus. EphA7 deficiency and concomitant destabilisation of GABAergic synapses correlated with impaired long-term potentiation and reduced hippocampal learning. Reduced GABAergic innervation may be explained by an impact of EphA7 on gephyrin clustering. Overexpression or ephrin stimulation of EphA7 induced gephyrin clustering dependent on the mechanistic target of rapamycin (mTOR) which is an interaction partner of gephyrin. Gephyrin interactions with mTOR become released after mTOR activation while enhanced interaction with the guanine nucleotide exchange factor collybistin was observed in parallel. In conclusion, EphA7 regulates gephyrin clustering and the maintenance of inhibitory synaptic connectivity via mTOR signalling.
Collapse
|
9
|
Amegandjin CA, Jammow W, Laforest S, Riad M, Baharnoori M, Badeaux F, DesGroseillers L, Murai KK, Pasquale EB, Drolet G, Doucet G. Regional expression and ultrastructural localization of EphA7 in the hippocampus and cerebellum of adult rat. J Comp Neurol 2016; 524:2462-78. [PMID: 26780036 DOI: 10.1002/cne.23962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/18/2015] [Accepted: 01/04/2016] [Indexed: 11/06/2022]
Abstract
EphA7 is expressed in the adult central nervous system (CNS), where its roles are yet poorly defined. We mapped its distribution using in situ hybridization (ISH) and immunohistochemistry (IHC) combined with light (LM) and electron microscopy (EM) in adult rat and mouse brain. The strongest ISH signal was in the hippocampal pyramidal and granule cell layers. Moderate levels were detected in habenula, striatum, amygdala, the cingulate, piriform and entorhinal cortex, and in cerebellum, notably the Purkinje cell layer. The IHC signal distribution was consistent with ISH results, with transport of the protein to processes, as exemplified in the hippocampal neuropil layers and weakly stained pyramidal cell layers. In contrast, in the cerebellum, the Purkinje cell bodies were the most strongly immunolabeled elements. EM localized the cell surface-expression of EphA7 essentially in postsynaptic densities (PSDs) of dendritic spines and shafts, and on some astrocytic leaflets, in both hippocampus and cerebellum. Perikaryal and dendritic labeling was mostly intracellular, associated with the synthetic and trafficking machineries. Immunopositive vesicles were also observed in axons and axon terminals. Quantitative analysis in EM showed significant differences in the frequency of labeled elements between regions. Notably, labeled dendrites were ∼3-5 times less frequent in cerebellum than in hippocampus, but they were individually endowed with ∼10-40 times higher frequencies of PSDs, on their shafts and spines. The cell surface localization of EphA7, being preferentially in PSDs, and in perisynaptic astrocytic leaflets, provides morphologic evidence that EphA7 plays key roles in adult CNS synaptic maintenance, plasticity, or function. J. Comp. Neurol. 524:2462-2478, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Clara A Amegandjin
- Département de neurosciences and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Montréal, QC, Canada
| | - Wafaa Jammow
- Département de neurosciences and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Montréal, QC, Canada
| | - Sylvie Laforest
- Centre hospitalier de l'Université Laval (CHUL), Québec, QC, Canada
| | - Mustapha Riad
- Département de neurosciences and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Montréal, QC, Canada
| | - Moogeh Baharnoori
- Département de neurosciences and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Montréal, QC, Canada
| | - Frédérique Badeaux
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Luc DesGroseillers
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Keith K Murai
- Department of Neurology and Neurosurgery, McGill University, and Center for Research in Neuroscience, Montréal, QC, Canada
| | - Elena B Pasquale
- Sanford-Burnham Medical Research Institute, La Jolla, California, and Pathology Department, University of California, San Diego, La Jolla, California, USA
| | - Guy Drolet
- Centre hospitalier de l'Université Laval (CHUL), Québec, QC, Canada
| | - Guy Doucet
- Département de neurosciences and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
10
|
Son AI, Hashimoto-Torii K, Rakic P, Levitt P, Torii M. EphA4 has distinct functionality from EphA7 in the corticothalamic system during mouse brain development. J Comp Neurol 2015; 524:2080-92. [PMID: 26587807 DOI: 10.1002/cne.23933] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 11/11/2022]
Abstract
Deciphering the molecular basis for guiding specific aspects of neocortical development remains a challenge because of the complexity of histogenic events and the vast array of protein interactions mediating these events. The Eph family of receptor tyrosine kinases is implicated in a number of neurodevelopmental activities. Eph receptors have been known to be capable of responding to several ephrin ligands within their subgroups, often eliciting similar downstream effects. However, several recent studies have indicated specificity between receptor-ligand pairs within each subfamily, the functional relevance of which is not defined. Here we show that a receptor of the EphA subfamily, EphA4, has effects distinct from those of its close relative, EphA7, in the developing brain. Both EphA4 and EphA7 interact similarly with corresponding ligands expressed in the developing neocortex. However, only EphA7 shows strong interaction with ligands in the somatosensory thalamic nuclei; EphA4 affects only cortical neuronal migration, with no visible effects on the guidance of corticothalamic (CT) axons, whereas EphA7 affects both cortical neuronal migration and CT axon guidance. Our data provide new evidence that Eph receptors in the same subfamily are not simply interchangeable but are functionally specified through selective interactions with distinct ligands in vivo. J. Comp. Neurol. 524:2080-2092, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexander I Son
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010.,Department of Pediatrics, Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20010
| | - Pasko Rakic
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut, 06510
| | - Pat Levitt
- Department of Pediatrics, Children's Hospital Los Angeles and Keck School of Medicine of University of Southern California, Los Angeles, California, 90027
| | - Masaaki Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010.,Department of Pediatrics, Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20010
| |
Collapse
|
11
|
Tran H, Sawatari A, Leamey CA. The glycoprotein Ten-m3 mediates topography and patterning of thalamostriatal projections from the parafascicular nucleus in mice. Eur J Neurosci 2014; 41:55-68. [PMID: 25406022 DOI: 10.1111/ejn.12767] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 11/27/2022]
Abstract
The striatum is the key input nucleus of the basal ganglia, and is implicated in motor control and learning. Despite the importance of striatal circuits, the mechanisms associated with their development are not well established. Previously, Ten-m3, a member of the Ten-m/teneurin/odz family of transmembrane glycoproteins, was found to be important in the mapping of binocular visual pathways. Here, we investigated a potential role for Ten-m3 in striatal circuit formation. In situ hybridisation revealed a patchy distribution of Ten-m3 mRNA expression superimposed on a high-dorsal to low-ventral gradient in a subregion of the striatal matrix. A survey of afferent/efferent structures associated with the matrix identified the parafascicular thalamic nucleus (PF) as a potential locus of action. Ten-m3 was also found to be expressed in a high-dorsal to low-ventral gradient in the PF, corresponding topographically to its expression in the striatum. Further, a subset of thalamic terminal clusters overlapped with Ten-m3-positive domains within the striatal matrix. Studies in wild-type (WT) and Ten-m3 knockout (KO) mice revealed no differences in overall striatal or PF structure. Thalamostriatal terminals in KOs, however, while still confined to the matrix subregion, lost their clustered appearance. Topography was also altered, with terminals from the lateral PF projecting ectopically to ventral and medial striatum, rather than remaining confined dorsolaterally as in WTs. Behaviorally, Ten-m3 KOs displayed delayed motor skill acquisition. This study demonstrates that Ten-m3 plays a key role in directing the formation of thalamostriatal circuitry, the first molecular candidate reported to regulate connectivity within this pathway.
Collapse
Affiliation(s)
- Heidi Tran
- Discipline of Physiology, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | | | | |
Collapse
|
12
|
Tai AX, Kromer LF. Corticofugal projections from medial primary somatosensory cortex avoid EphA7-expressing neurons in striatum and thalamus. Neuroscience 2014; 274:409-18. [PMID: 24909897 DOI: 10.1016/j.neuroscience.2014.05.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/08/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022]
Abstract
Within the first two postnatal weeks, corticostriatal axons from the primary somatosensory cortex (S1) form topographic projections that organize into characteristic bands of axon terminals in the dorsolateral striatum. Molecules regulating the development of these topographically organized projections are currently unknown. Thus, the present study investigated whether EphA receptor tyrosine kinases, which regulate axonal guidance in the visual system via axon repulsion, could participate in the formation of corticostriatal connections during development. Prior studies indicate that EphA7-expressing striatal neurons are organized into banded compartments resembling the matrisome innervation pattern formed by cortical afferents from the S1 cortex and that ephrin-A5, a known EphA7 ligand, is expressed in a medial (high) to lateral (low) gradient in S1. Thus, we hypothesized that the organization of EphA7-expressing striatal neurons in banded domains provides a repulsive barrier preventing corticostriatal axons containing EphA7-ligands from innervating inappropriate regions of the striatum. To evaluate this, we injected the anterograde tracer, biotinylated dextran amine (BDA), into two locations in medial areas of S1 (the anterior and posterior whisker fields), which are reported to express high levels of ephrin-A5 during development. Injections were made in mouse pups on postnatal day 9 (P9) and the animals were processed for immunohistochemistry on P12. Our data demonstrate that projections from both the forelimb/anterior whisker field and the posterior whisker field avoid EphA7-expressing neurons and terminate in a banded pattern in regions with very low EphA7-expression. We also determined that corticothalamic projections from medial S1 also exhibit a restricted distribution in the thalamus and avoid neurons expressing EphA7. Thus, our results support the hypothesis that the anatomical organization of striatal and thalamic neurons expressing EphA7 receptors restricts the topographic distribution of cortical afferents from medial regions of S1 which express high levels of ephrin-A5.
Collapse
Affiliation(s)
- A X Tai
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20007, USA.
| | - L F Kromer
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20007, USA; Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20007, USA.
| |
Collapse
|